T4_code / vllm-deploy /minicpm.py
Wangtwohappy's picture
Upload folder using huggingface_hub
f8ba0eb verified
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only MiniCPM-V model compatible with HuggingFace weights."""
import math
from collections import defaultdict
from collections.abc import Iterable, Mapping, Sequence
from functools import partial
from typing import Annotated, Any, Callable, Literal, Optional, Union
import numpy as np
import torch
import torch.types
from torch import nn
from transformers import BatchFeature, PretrainedConfig
from typing_extensions import TypeVar
from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.awq_marlin import AWQMarlinConfig
from vllm.model_executor.layers.resampler import (BaseResampler, Resampler2,
get_2d_sincos_pos_embed)
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.models.minicpm import MiniCPMForCausalLM
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargsItems
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
NestedTensors)
from vllm.multimodal.parse import (DictEmbeddingItems, ImageItem,
ImageProcessorItems, ImageSize,
ModalityData, ModalityDataItems,
MultiModalDataItems, MultiModalDataParser,
VideoItem, VideoProcessorItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.utils import flatten_2d_lists
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .idefics2_vision_model import Idefics2VisionTransformer
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
merge_multimodal_embeddings)
# For profile run
_MAX_FRAMES_PER_VIDEO = 16
class MiniCPMVImagePixelInputs(TensorSchema):
"""
Dimensions:
- bns: Batch size * number of images * number of slices
- bn: Batch size * number of images
- c: Number of channels
- h: Height
- w: Width
"""
type: Literal["pixel_values"] = "pixel_values"
# Note that the image size may vary, so we pass it as a list instead of a
# batched tensor.
pixel_values: Annotated[
list[torch.Tensor],
TensorShape("bns", "c", "h", "w", dynamic_dims={"h", "w"}),
]
tgt_sizes: Annotated[
torch.Tensor,
TensorShape("bns", 2), # This should be in `(height, width)` format.
]
num_slices: Annotated[
torch.Tensor,
TensorShape("bn"),
]
class MiniCPMVImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- ns: Number of slices
- hs: Hidden size (must match language model backbone)
"""
type: Literal["image_embeds"]
image_embeds: Annotated[
Union[torch.Tensor, list[torch.Tensor]],
TensorShape("bn", "ns", "hs"),
]
MiniCPMVImageInputs = Union[MiniCPMVImagePixelInputs,
MiniCPMVImageEmbeddingInputs]
DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6)
class Resampler2_5(BaseResampler):
def __init__(self,
num_queries: int,
embed_dim: int,
num_heads: int,
kv_dim: Optional[int] = None,
norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
max_size: tuple[int, int] = (70, 70),
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> None:
super().__init__(num_queries,
embed_dim,
num_heads,
kv_dim,
norm_layer,
quant_config=quant_config,
prefix=prefix)
self.max_size = max_size
self._set_2d_pos_cache(self.max_size)
def _set_2d_pos_cache(self,
max_size: tuple[int, int],
device: torch.types.Device = "cpu") -> None:
pos_embed_arr = get_2d_sincos_pos_embed(self.embed_dim,
max_size,
version=(2, 5))
pos_embed = torch.from_numpy(pos_embed_arr).float().to(device)
self.register_buffer("pos_embed", pos_embed, persistent=False)
def _adjust_pos_cache(self, tgt_sizes: torch.Tensor,
device: torch.types.Device) -> None:
max_h = tgt_sizes[:, 0].max().item()
max_w = tgt_sizes[:, 1].max().item()
assert isinstance(max_h, int) and isinstance(max_w, int)
if max_h > self.max_size[0] or max_w > self.max_size[1]:
self.max_size = (
max(max_h, self.max_size[0]),
max(max_w, self.max_size[1]),
)
self._set_2d_pos_cache(self.max_size, device)
def forward(self, x: torch.Tensor,
tgt_sizes: torch.Tensor) -> torch.Tensor:
assert x.shape[0] == tgt_sizes.shape[0]
bs = x.shape[0]
device = x.device
dtype = x.dtype
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
self._adjust_pos_cache(tgt_sizes, device=device)
max_patch_len = patch_len.max().item()
assert isinstance(max_patch_len, int)
key_padding_mask = torch.zeros((bs, max_patch_len),
dtype=torch.bool,
device=device)
pos_embed = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i].tolist()
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape(
(tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed,
batch_first=True,
padding_value=0.0).permute(
1, 0,
2) # BLD => L * B * D
x, _ = self.kv_proj(x) # B * L * D
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
q = self.ln_q(self.query) # Q * D
out = self.attn(
self._repeat(q, bs), # Q * B * D
x + pos_embed, # L * B * D + L * B * D
x,
key_padding_mask=key_padding_mask,
)[0]
# out: Q * B * D
x = out.permute(1, 0, 2) # B * Q * D
x = self.ln_post(x)
x = x @ self.proj
return x
def get_version_by_config(config: PretrainedConfig) -> tuple[int, ...]:
version_float = getattr(config, "version", None)
# The old configs do not include version number
# TODO: Remove this after the HF repos are updated
if version_float is None:
if config.hidden_size == 2304 and config.query_num == 64:
return (2, 0)
return (2, 5)
version_str = str(version_float)
return tuple(int(x) for x in version_str.split("."))
def _minicpmv_field_config(hf_inputs: Mapping[str, torch.Tensor]):
pixel_values = hf_inputs.get("pixel_values", torch.empty(0))
num_images = len(pixel_values)
video_pixel_values = hf_inputs.get("video_pixel_values", torch.empty(0))
num_videos = len(video_pixel_values)
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
image_sizes=MultiModalFieldConfig.batched("image"),
tgt_sizes=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
video_pixel_values=MultiModalFieldConfig.batched("video"),
video_image_sizes=MultiModalFieldConfig.batched("video"),
video_tgt_sizes=MultiModalFieldConfig.batched("video"),
video_embeds=MultiModalFieldConfig.batched("video"),
image_token_id=MultiModalFieldConfig.shared("image", num_images),
video_token_id=MultiModalFieldConfig.shared("video", num_videos),
)
class MiniCPMVImageEmbeddingItems(DictEmbeddingItems):
def __init__(
self,
data: Mapping[str, torch.Tensor],
fields_factory: Callable[
[Mapping[str, torch.Tensor]],
Mapping[str, MultiModalFieldConfig],
],
) -> None:
super().__init__(
data,
modality="image",
required_fields={"image_embeds", "image_sizes"},
fields_factory=fields_factory,
)
def get_image_size(self, index: int) -> ImageSize:
image_size = self.get(index)["image_sizes"].tolist()
return ImageSize(width=image_size[0], height=image_size[1])
class MiniCPMVVideoEmbeddingItems(DictEmbeddingItems):
def __init__(
self,
data: Mapping[str, torch.Tensor],
fields_factory: Callable[
[Mapping[str, torch.Tensor]],
Mapping[str, MultiModalFieldConfig],
],
) -> None:
super().__init__(
data,
modality="video",
required_fields={"video_embeds", "video_image_sizes"},
fields_factory=fields_factory,
)
def get_frame_size(self, index: int) -> ImageSize:
frame_size = self.get(index)["video_image_sizes"].tolist()
return ImageSize(width=frame_size[0], height=frame_size[1])
def get_num_frames(self, index: int) -> int:
return len(self.get(index)["video_image_sizes"])
class MiniCPMVMultiModalDataParser(MultiModalDataParser):
def _parse_image_data(
self,
data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
) -> Optional[ModalityDataItems[Any, Any]]:
if isinstance(data, dict):
return MiniCPMVImageEmbeddingItems(
data,
fields_factory=_minicpmv_field_config,
)
return super()._parse_image_data(data)
def _parse_video_data(
self,
data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
) -> Optional[ModalityDataItems[Any, Any]]:
if isinstance(data, dict):
return MiniCPMVVideoEmbeddingItems(
data,
fields_factory=_minicpmv_field_config,
)
return super()._parse_video_data(data)
class MiniCPMVProcessingInfo(BaseProcessingInfo):
image_pattern = "(<image>./</image>)"
video_pattern = "(<video>./</video>)"
def get_hf_config(self):
return self.ctx.get_hf_config()
def get_hf_processor(self, **kwargs: object):
hf_processor = self.ctx.get_hf_processor(**kwargs)
# NumPy arrays are considered as Iterable but not Sequence in
# https://github.com/huggingface/transformers/blob/main/src/transformers/image_transforms.py#L428
image_processor = hf_processor.image_processor # type: ignore
for attr in ("mean", "std"):
val = getattr(image_processor, attr)
if isinstance(val, np.ndarray):
setattr(image_processor, attr, val.tolist())
return hf_processor
def get_image_processor(self, **kwargs: object):
return self.get_hf_processor(**kwargs).image_processor
def get_model_version(self):
return get_version_by_config(self.get_hf_config())
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
mm_limits = {"image": None}
if self.get_model_version() == (2,
6) or self.get_model_version() == (4,
0):
mm_limits["video"] = None
return mm_limits
def get_slice_image_placeholder(
self,
image_size: ImageSize,
# For MiniCPM V/O 2.6
image_idx: int = 0,
max_slice_nums: Optional[int] = None,
use_image_id: bool = True,
) -> str:
image_processor = self.get_image_processor()
version = self.get_model_version()
if version == (2, 0) or version == (2, 5):
return image_processor.get_slice_image_placeholder(image_size)
return image_processor.get_slice_image_placeholder(
image_size,
image_idx=image_idx,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
)
def get_sliced_grid(
self,
image_size: ImageSize,
# For MiniCPM V/O 2.6
max_slice_nums: Optional[int] = None,
) -> Optional[tuple[int, int]]:
image_processor = self.get_image_processor()
version = self.get_model_version()
if version == (2, 0) or version == (2, 5):
return image_processor.get_sliced_grid(image_size)
if max_slice_nums is None:
max_slice_nums = image_processor.max_slice_nums
return image_processor.get_sliced_grid(
image_size,
max_slice_nums=max_slice_nums,
)
def get_num_image_tokens(
self,
image_size: ImageSize,
max_slice_nums: Optional[int] = None,
) -> int:
image_processor = self.get_image_processor()
grid = self.get_sliced_grid(
image_size,
max_slice_nums=max_slice_nums,
)
if grid is None:
ncols = nrows = 0
else:
ncols, nrows = grid
return (ncols * nrows + 1) * image_processor.image_feature_size
def get_max_image_tokens(self) -> int:
image_size = self.get_image_size_with_most_features()
return self.get_num_image_tokens(image_size)
def get_image_max_slice_num(self) -> int:
return getattr(self.get_hf_config(), "max_slice_num", 9)
def get_image_size_with_most_features(self) -> ImageSize:
image_size = getattr(self.get_hf_config(), "image_size", 448)
max_slice_num = self.get_image_max_slice_num()
return ImageSize(width=image_size, height=image_size * max_slice_num)
def get_max_video_frame_tokens(self) -> int:
frame_size = self.get_video_frame_size_with_most_features()
return self.get_num_image_tokens(
frame_size,
max_slice_nums=self.get_video_max_slice_num(),
)
def get_max_video_tokens(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> int:
num_frames = self.get_num_frames_with_most_features(seq_len, mm_counts)
num_video_tokens_total = self.get_max_video_frame_tokens() * num_frames
return num_video_tokens_total
def get_video_max_slice_num(self) -> int:
return 1
def get_video_frame_size_with_most_features(self) -> ImageSize:
image_size = getattr(self.get_hf_config(), "image_size", 448)
max_slice_num = self.get_video_max_slice_num()
return ImageSize(width=image_size, height=image_size * max_slice_num)
def get_max_video_frames(self, max_tokens: int) -> int:
num_frame_tokens = self.get_max_video_frame_tokens()
num_frames = max_tokens // num_frame_tokens
return num_frames
def get_num_frames_with_most_features(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> int:
max_images = mm_counts.get("image", 0)
max_videos = mm_counts.get("video", 0)
max_image_tokens = self.get_max_image_tokens() * max_images
max_total_frames = self.get_max_video_frames(seq_len -
max_image_tokens)
max_frames_per_video = min(max_total_frames // max(max_videos, 1),
_MAX_FRAMES_PER_VIDEO)
return max(max_frames_per_video, 1)
_I = TypeVar("_I",
bound=MiniCPMVProcessingInfo,
default=MiniCPMVProcessingInfo)
class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
image_prompt_texts = self.info.image_pattern * num_images
video_prompt_texts = self.info.video_pattern * num_videos
return image_prompt_texts + video_prompt_texts
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
image_width, image_height = \
self.info.get_image_size_with_most_features()
video_width, video_height = \
self.info.get_video_frame_size_with_most_features()
num_video_frames = \
self.info.get_num_frames_with_most_features(seq_len, mm_counts)
return {
"image":
self._get_dummy_images(width=image_width,
height=image_height,
num_images=num_images),
"video": [
self._get_dummy_images(width=video_width,
height=video_height,
num_images=num_video_frames)
] * num_videos,
}
class MiniCPMVMultiModalProcessor(BaseMultiModalProcessor[_I]):
def _get_data_parser(self) -> MultiModalDataParser:
return MiniCPMVMultiModalDataParser()
def get_image_prompt_texts(self,
image_size: ImageSize,
image_idx: int = 0) -> str:
return self.info.get_slice_image_placeholder(
image_size,
image_idx=image_idx,
)
def get_video_prompt_texts(self, image_size: ImageSize,
num_frames: int) -> str:
return self.info.get_slice_image_placeholder(
image_size=image_size,
image_idx=0,
max_slice_nums=self.info.get_video_max_slice_num(),
use_image_id=False,
) * num_frames
def process_images(
self,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> Mapping[str, NestedTensors]:
if (images := mm_data.get("images")) is None:
return {}
parsed_images = (self._get_data_parser().parse_mm_data({
"image": images
}).get_items("image",
(MiniCPMVImageEmbeddingItems, ImageProcessorItems)))
if isinstance(parsed_images, MiniCPMVImageEmbeddingItems):
image_inputs = {}
else:
image_inputs = self._base_call_hf_processor(
prompts=[self.info.image_pattern] * len(parsed_images),
mm_data={"images": [[image] for image in parsed_images]},
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
)
tokenizer = self.info.get_tokenizer()
unk_token_id = tokenizer.get_vocab()["<unk>"]
image_inputs["image_token_id"] = torch.tensor(unk_token_id)
return image_inputs
def process_videos(
self,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> Mapping[str, NestedTensors]:
if (videos := mm_data.get("videos")) is None:
return {}
parsed_videos = (self._get_data_parser().parse_mm_data({
"video": videos
}).get_items("video",
(MiniCPMVVideoEmbeddingItems, VideoProcessorItems)))
if isinstance(parsed_videos, MiniCPMVVideoEmbeddingItems):
video_inputs = {}
else:
video_inputs = self._base_call_hf_processor(
prompts=[
self.info.image_pattern * len(video)
for video in parsed_videos
],
mm_data={"images": list(parsed_videos)},
mm_kwargs={
**mm_kwargs,
"max_slice_nums":
self.info.get_video_max_slice_num(),
},
tok_kwargs=tok_kwargs,
out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
)
video_inputs = {f"video_{k}": v for k, v in video_inputs.items()}
tokenizer = self.info.get_tokenizer()
unk_token_id = tokenizer.get_vocab()["<unk>"]
video_inputs["video_token_id"] = torch.tensor(unk_token_id)
return video_inputs
def process_mm_inputs(
self,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> Mapping[str, NestedTensors]:
return {
**self.process_images(mm_data, mm_kwargs, tok_kwargs),
**self.process_videos(mm_data, mm_kwargs, tok_kwargs),
}
def _base_call_hf_processor(
self,
prompts: list[str],
mm_data: Mapping[str, Sequence[object]],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
*,
out_keys: set[str],
) -> dict[str, NestedTensors]:
# This processor supports zipping prompt and mm_data together
if self.info.get_model_version() == (
2, 6) or self.info.get_model_version() == (4, 0):
inputs = super()._call_hf_processor(
prompt=prompts, # type: ignore
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
else:
inputs = defaultdict[str, list[torch.Tensor]](list)
for i, prompt in enumerate(prompts):
inputs_one = super()._call_hf_processor(
prompt=prompt,
mm_data={
k: v[i]
for k, v in mm_data.items()
},
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
for k, v in inputs_one.items():
assert len(v) == 1, (k, len(v))
inputs[k].append(v[0])
return {k: inputs[k] for k in out_keys}
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
tokenizer = self.info.get_tokenizer()
input_ids = torch.tensor([tokenizer.encode(prompt, **tok_kwargs)])
mm_inputs = self.process_mm_inputs(mm_data, mm_kwargs, tok_kwargs)
return BatchFeature({
"input_ids": input_ids,
**mm_inputs,
})
def _hf_processor_applies_updates(
self,
prompt_text: str,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object],
) -> bool:
return False
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
placeholders = [("image", self.info.image_pattern),
("video", self.info.video_pattern)]
# hard code for inconsistency of encode-decode image_pattern
additional_placeholders = []
tokenizer = self.info.get_tokenizer()
for modality, pattern in placeholders:
sub_pattern = tokenizer.decode(
tokenizer.encode(pattern, add_special_tokens=False))
if sub_pattern != pattern:
additional_placeholders.append((modality, sub_pattern))
placeholders += additional_placeholders
def get_image_replacement(item_idx: int):
images = mm_items.get_items(
"image", (MiniCPMVImageEmbeddingItems, ImageProcessorItems))
image_size = images.get_image_size(item_idx)
return PromptUpdateDetails.select_text(
self.get_image_prompt_texts(image_size, item_idx),
"<unk>",
)
def get_video_replacement(item_idx: int):
videos = mm_items.get_items(
"video", (MiniCPMVVideoEmbeddingItems, VideoProcessorItems))
frame_size = videos.get_frame_size(item_idx)
num_frames = videos.get_num_frames(item_idx)
return PromptUpdateDetails.select_text(
self.get_video_prompt_texts(frame_size, num_frames),
"<unk>",
)
get_replacement = {
"image": get_image_replacement,
"video": get_video_replacement,
}
return [
PromptReplacement(modality=modality,
target=pattern,
replacement=get_replacement[modality])
for modality, pattern in placeholders
]
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return _minicpmv_field_config(hf_inputs)
class MiniCPMVBaseModel(nn.Module, SupportsMultiModal, SupportsPP):
"""
The abstract class of MiniCPMV can only be inherited, but cannot be
instantiated.
"""
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):
return "(<image>./</image>)"
if modality.startswith("video"):
return "(<video>./</video>)"
raise ValueError("Only image or video modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
multimodal_config = vllm_config.model_config.multimodal_config
quant_config = vllm_config.quant_config
super().__init__()
# All MiniCPM-V models disable `tie_word_embeddings` but
# `PretrainedConfig.tie_word_embeddings` defaults to True; we cannot
# check `tie_word_embeddings` until vLLM integrate MiniCPM-V model
# and config class
self.config = config
self.multimodal_config = multimodal_config
self.version = get_version_by_config(self.config)
self.llm = self.init_llm(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "llm"))
self.vpm = self.init_vision_module(config,
quant_config,
prefix=maybe_prefix(prefix, "vpm"))
self.vision_dim = (self.vpm.embed_dim if self.version == (2, 0) else
self.vpm.embeddings.embed_dim)
self.embed_dim = self.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim,
self.vision_dim,
quant_config=quant_config,
prefix=maybe_prefix(
prefix, "resampler"))
self.mm_token_ids = set[int]()
self.make_empty_intermediate_tensors = (
self.llm.make_empty_intermediate_tensors)
def _parse_and_validate_vision_input(
self,
modality: str,
**kwargs: object,
) -> Optional[MiniCPMVImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
image_token_id = kwargs.pop("image_token_id")
if image_token_id is not None:
assert isinstance(image_token_id, torch.Tensor)
self.mm_token_ids.add(image_token_id.flatten().unique().item())
if image_embeds is not None:
if not isinstance(image_embeds, (torch.Tensor, list)):
raise ValueError(
f"Incorrect type of image_embeds for {modality=}. "
f"Got type: {type(image_embeds)}")
image_embeds_flat = flatten_bn(image_embeds)
return MiniCPMVImageEmbeddingInputs(
type="image_embeds",
image_embeds=image_embeds_flat,
)
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError(
f"Incorrect type of pixel_values for {modality=}. "
f"Got type: {type(pixel_values)}")
tgt_sizes = kwargs.pop("tgt_sizes")
if not isinstance(tgt_sizes, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of tgt_sizes for {modality=}. "
f"Got type: {type(tgt_sizes)}")
num_slices = [[len(p) for p in ps] for ps in pixel_values]
num_slices_flat = flatten_bn(torch.tensor(num_slices))
pixel_values_flat = flatten_bn(flatten_2d_lists(pixel_values))
tgt_sizes_flat = flatten_bn(flatten_2d_lists(tgt_sizes), concat=True)
return MiniCPMVImagePixelInputs(
type="pixel_values",
pixel_values=pixel_values_flat,
tgt_sizes=tgt_sizes_flat,
num_slices=num_slices_flat,
)
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key in ("pixel_values",
"image_embeds") and "images" not in modalities:
modalities["images"] = self._parse_and_validate_vision_input(
"images", **kwargs)
if input_key in ("video_pixel_values",
"video_embeds") and "videos" not in modalities:
def _image_key(video_key: str):
if video_key == "video_token_id":
return "image_token_id"
return video_key.removeprefix("video_")
modalities["videos"] = self._parse_and_validate_vision_input(
"videos", **{
_image_key(k): v
for k, v in kwargs.items()
})
return modalities
def _process_vision_input(
self,
image_input: MiniCPMVImageInputs,
) -> Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor, ...]]:
if image_input["type"] == "image_embeds":
return image_input["image_embeds"]
image_features_flat = self.get_vision_hidden_states(image_input)
num_slices = image_input["num_slices"]
return [
e.flatten(0, 1)
for e in image_features_flat.split(num_slices.tolist())
]
def _process_multimodal_inputs(self, modalities: dict):
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
image_features = self._process_vision_input(image_input)
multimodal_embeddings += tuple(image_features)
if modality == "videos":
video_input = modalities["videos"]
video_features = self._process_vision_input(video_input)
multimodal_embeddings += tuple(video_features)
return multimodal_embeddings
def get_language_model(self) -> torch.nn.Module:
return self.llm
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return []
return self._process_multimodal_inputs(modalities)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.llm.get_input_embeddings(input_ids)
if multimodal_embeddings is not None \
and len(multimodal_embeddings) != 0:
assert len(self.mm_token_ids) > 0
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
multimodal_embeddings,
list(self.mm_token_ids),
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Any,
) -> torch.Tensor:
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner from
# `get_multimodal_embeddings` and `get_input_embeddings`, this
# condition is only for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.llm.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.llm.compute_logits(hidden_states, sampling_metadata)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(language_model="llm",
connector="resampler",
tower_model="vpm")
def init_llm(
self,
vllm_config: VllmConfig,
prefix: str = "",
) -> nn.Module:
raise NotImplementedError
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> nn.Module:
raise NotImplementedError
def init_resampler(self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> nn.Module:
raise NotImplementedError
def get_vision_hidden_states(
self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
raise NotImplementedError
class MiniCPMV2_0(MiniCPMVBaseModel):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
assert self.version == (2, 0)
def init_llm(
self,
vllm_config: VllmConfig,
prefix: str = "",
) -> nn.Module:
return MiniCPMForCausalLM(vllm_config=vllm_config, prefix=prefix)
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> nn.Module:
# TODO: refactor vision model through timm wrapper from transformers
try:
import timm
except ImportError:
raise ImportError("Please install timm==0.9.10") from ImportError
with set_default_torch_dtype(torch.float16):
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True,
)
model = model.to(dtype=torch.get_default_dtype())
if (isinstance(model, timm.models.VisionTransformer)
and model.attn_pool is not None):
model.attn_pool = torch.nn.Identity()
if self.config.drop_vision_last_layer:
model.blocks = model.blocks[:-1]
return model
def init_resampler(self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> nn.Module:
with set_default_torch_dtype(torch.float16):
resampler = Resampler2(embed_dim=embed_dim,
num_heads=embed_dim // 128,
grid_size=int(
math.sqrt(self.config.query_num)),
kv_dim=vision_dim,
adaptive=False,
do_post_projection=True,
quant_config=quant_config,
prefix=prefix)
return resampler.to(device=current_platform.device_type,
dtype=torch.get_default_dtype())
def get_vision_hidden_states(
self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
pixel_values = data["pixel_values"]
P_h, P_w = self.vpm.patch_embed.patch_size
dtype: torch.dtype = self.vpm.pos_embed.data.dtype
num_prefix_tokens = getattr(self.vpm, "num_prefix_tokens", 0)
res = list[torch.Tensor]()
for pixel_value in pixel_values:
H, W = pixel_value[0].shape[-2:]
tgt_size = (math.ceil(H / P_h), math.ceil(W / P_w))
vision_embedding = self.vpm.forward_features(
pixel_value.unsqueeze(0).type(dtype))
if num_prefix_tokens > 0:
vision_embedding = vision_embedding[:, num_prefix_tokens:]
res.append(self.resampler(vision_embedding, tgt_size))
return torch.vstack(res)
class MiniCPMV2_5(MiniCPMVBaseModel, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
assert self.version == (2, 5)
def init_llm(
self,
vllm_config: VllmConfig,
prefix: str = "",
) -> nn.Module:
return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> nn.Module:
model = Idefics2VisionTransformer(config.vision_config,
quant_config=quant_config,
prefix=prefix)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
return model
def init_resampler(self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> nn.Module:
with set_default_torch_dtype(torch.float16):
resampler = Resampler2_5(num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
quant_config=quant_config,
prefix=prefix)
return resampler.to(device=current_platform.device_type,
dtype=torch.get_default_dtype())
def get_vision_hidden_states(
self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
pixel_values = data["pixel_values"]
tgt_sizes = data["tgt_sizes"]
B = len(pixel_values)
P = pixel_values[0].shape[-2]
L = max(item.shape[-1] for item in pixel_values)
device = pixel_values[0].device
dtype = pixel_values[0].dtype
all_pixel_values = torch.zeros((B, 3, P, L),
dtype=dtype,
device=device)
for i, pixel_values_item in enumerate(pixel_values):
L_item = pixel_values_item.shape[-1]
all_pixel_values[i, ..., :L_item] = pixel_values_item
num_patches = tgt_sizes.prod(-1)
max_patches = num_patches.max().item()
assert isinstance(max_patches, int)
patch_attn_mask = torch.zeros((B, max_patches),
dtype=torch.bool,
device=device)
for i, num_patches_item in enumerate(num_patches):
patch_attn_mask[i, :num_patches_item] = True
vision_embedding = self.vpm(
all_pixel_values,
patch_attention_mask=patch_attn_mask.unsqueeze(1),
tgt_sizes=None,
)
return self.resampler(vision_embedding, tgt_sizes)
class MiniCPMV2_6(MiniCPMVBaseModel, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
assert self.version == (2, 6)
def init_llm(
self,
vllm_config: VllmConfig,
prefix: str = "",
) -> nn.Module:
return Qwen2ForCausalLM(vllm_config=vllm_config, prefix=prefix)
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
model = Idefics2VisionTransformer(config.vision_config,
quant_config=quant_config,
prefix=prefix)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
return model
def init_resampler(self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> nn.Module:
with set_default_torch_dtype(torch.float16):
# The resampler in 2.6 remains consistent with the one in 2.5.
resampler = Resampler2_5(num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
quant_config=quant_config,
prefix=prefix)
return resampler.to(device=current_platform.device_type,
dtype=torch.get_default_dtype())
def get_vision_hidden_states(
self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
pixel_values = data["pixel_values"]
tgt_sizes = data["tgt_sizes"]
B = len(pixel_values)
P = pixel_values[0].shape[-2]
L = max(item.shape[-1] for item in pixel_values)
device = pixel_values[0].device
dtype = pixel_values[0].dtype
all_pixel_values = torch.zeros((B, 3, P, L),
dtype=dtype,
device=device)
for i, pixel_values_item in enumerate(pixel_values):
L_item = pixel_values_item.shape[-1]
all_pixel_values[i, ..., :L_item] = pixel_values_item
num_patches = tgt_sizes.prod(-1)
max_patches = num_patches.max().item()
assert isinstance(max_patches, int)
patch_attn_mask = torch.zeros((B, max_patches),
dtype=torch.bool,
device=device)
for i, num_patches_item in enumerate(num_patches):
patch_attn_mask[i, :num_patches_item] = True
vision_embedding = self.vpm(
all_pixel_values,
patch_attention_mask=patch_attn_mask.unsqueeze(1),
tgt_sizes=tgt_sizes,
)
return self.resampler(vision_embedding, tgt_sizes)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self,
skip_prefixes=["apm.", "audio", "tts"])
return loader.load_weights(weights)
class MiniCPMV4_0(MiniCPMVBaseModel, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
assert self.version == (4, 0)
def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
if isinstance(quant_config, (AWQConfig, AWQMarlinConfig)):
return None
return quant_config
def init_llm(
self,
vllm_config: VllmConfig,
prefix: str = "",
) -> nn.Module:
return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
quant_config = self._maybe_ignore_quant_config(quant_config)
model = Idefics2VisionTransformer(config.vision_config,
quant_config=quant_config,
prefix=prefix)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
return model
def init_resampler(
self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
quant_config = self._maybe_ignore_quant_config(quant_config)
with set_default_torch_dtype(torch.float16):
# The resampler in 4.0 remains consistent with the one in 2.5/2.6.
resampler = Resampler2_5(num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
quant_config=quant_config,
prefix=prefix)
return resampler.to(device=current_platform.device_type,
dtype=torch.get_default_dtype())
def get_vision_hidden_states(
self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
pixel_values = data["pixel_values"]
tgt_sizes = data["tgt_sizes"]
B = len(pixel_values)
P = pixel_values[0].shape[-2]
L = max(item.shape[-1] for item in pixel_values)
device = pixel_values[0].device
dtype = pixel_values[0].dtype
all_pixel_values = torch.zeros((B, 3, P, L),
dtype=dtype,
device=device)
for i, pixel_values_item in enumerate(pixel_values):
L_item = pixel_values_item.shape[-1]
all_pixel_values[i, ..., :L_item] = pixel_values_item
num_patches = tgt_sizes.prod(-1)
max_patches = num_patches.max().item()
assert isinstance(max_patches, int)
patch_attn_mask = torch.zeros((B, max_patches),
dtype=torch.bool,
device=device)
for i, num_patches_item in enumerate(num_patches):
patch_attn_mask[i, :num_patches_item] = True
vision_embedding = self.vpm(
all_pixel_values,
patch_attention_mask=patch_attn_mask.unsqueeze(1),
tgt_sizes=tgt_sizes,
)
return self.resampler(vision_embedding, tgt_sizes)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self,
skip_prefixes=["apm.", "audio", "tts"])
return loader.load_weights(weights)
_SUPPORT_VERSION = {
(2, 0): MiniCPMV2_0,
(2, 5): MiniCPMV2_5,
(2, 6): MiniCPMV2_6,
(4, 0): MiniCPMV4_0,
}
@MULTIMODAL_REGISTRY.register_processor(
MiniCPMVMultiModalProcessor,
info=MiniCPMVProcessingInfo,
dummy_inputs=MiniCPMVDummyInputsBuilder)
class MiniCPMV(MiniCPMVBaseModel, SupportsMultiModal, SupportsLoRA):
"""
Different versions of MiniCPMV use different visual encoders and LLMs,
which is not conducive to the current integration logic of LoRA and
bitsandbytes in vLLM. Therefore, it is necessary to separate them.
"""
def __new__(cls, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
if not hasattr(config, "version"):
if config.hidden_size == 2304 and config.query_num == 64:
version = (2, 0)
else:
version = (2, 5)
else:
version = str(config.version).split(".")
version = tuple([int(x) for x in version])
# Dispatch class based on version
instance_cls = _SUPPORT_VERSION.get(version)
if instance_cls is None:
supported_versions = ", ".join(
[f"{v[0]}.{v[1]}" for v in sorted(_SUPPORT_VERSION.keys())])
raise ValueError(f"Currently, MiniCPMV only supports versions "
f"{supported_versions}. Got version: {version}")
# quant_config references base class members,
# so update values before init is called
cls.packed_modules_mapping.update(instance_cls.packed_modules_mapping)
cls.embedding_modules.update(instance_cls.embedding_modules)
cls.embedding_padding_modules += instance_cls.embedding_padding_modules
return instance_cls(vllm_config=vllm_config, prefix=prefix)