Assignment4_Distilled_ModernBERT

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2589
  • Accuracy: 0.9681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.8963 0.2096 100 2.9564 0.7577
1.6375 0.4193 200 1.0919 0.8806
0.8239 0.6289 300 0.6403 0.9335
0.5738 0.8386 400 0.5019 0.9448
0.3915 1.0482 500 0.4918 0.9452
0.1938 1.2579 600 0.4370 0.9548
0.2045 1.4675 700 0.4937 0.9435
0.1874 1.6771 800 0.4477 0.9568
0.1804 1.8868 900 0.4118 0.9581
0.1237 2.0964 1000 0.3573 0.9616
0.076 2.3061 1100 0.3772 0.9574
0.0834 2.5157 1200 0.3337 0.9652
0.0713 2.7254 1300 0.3032 0.9658
0.0514 2.9350 1400 0.3009 0.9661
0.0448 3.1447 1500 0.2892 0.9661
0.0425 3.3543 1600 0.2864 0.9671
0.0341 3.5639 1700 0.2859 0.9642
0.0389 3.7736 1800 0.2763 0.9677
0.0409 3.9832 1900 0.2682 0.9668
0.0266 4.1929 2000 0.2624 0.9674
0.0265 4.4025 2100 0.2610 0.9684
0.0267 4.6122 2200 0.2592 0.9684
0.027 4.8218 2300 0.2589 0.9681

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
41
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for WilliamHH/Assignment4_Distilled_ModernBERT

Finetuned
(996)
this model

Evaluation results