https://github.com/open-mmlab/mmpose/tree/main/projects/rtmo with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform pose-estimation w/ Xenova/RTMO-t.

import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';

// Load model and processor
const model_id = 'Xenova/RTMO-t';
const model = await AutoModel.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);

// Read image and run processor
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
const image = await RawImage.read(url);
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image);

// Predict bounding boxes and keypoints
const { dets, keypoints } = await model({ input: pixel_values });

// Select the first image
const predicted_boxes = dets.tolist()[0];
const predicted_points = keypoints.tolist()[0];
const [height, width] = original_sizes[0];
const [resized_height, resized_width] = reshaped_input_sizes[0];

// Compute scale values
const xScale = width / resized_width;
const yScale = height / resized_height;

// Define thresholds
const point_threshold = 0.3;
const box_threshold = 0.3;

// Display results
for (let i = 0; i < predicted_boxes.length; ++i) {
    const [xmin, ymin, xmax, ymax, box_score] = predicted_boxes[i];
    if (box_score < box_threshold) continue;

    const x1 = (xmin * xScale).toFixed(2);
    const y1 = (ymin * yScale).toFixed(2);
    const x2 = (xmax * xScale).toFixed(2);
    const y2 = (ymax * yScale).toFixed(2);

    console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${box_score.toFixed(3)}`)
    const points = predicted_points[i]; // of shape [17, 3]
    for (let id = 0; id < points.length; ++id) {
        const label = model.config.id2label[id];
        const [x, y, point_score] = points[id];
        if (point_score < point_threshold) continue;
        console.log(`  - ${label}: (${(x * xScale).toFixed(2)}, ${(y * yScale).toFixed(2)}) with score ${point_score.toFixed(3)}`);
    }
}
See example output
Found person at [411.10, 63.87, 647.68, 505.40] with score 0.986
  - nose: (526.09, 119.83) with score 0.874
  - left_eye: (539.01, 110.39) with score 0.696
  - right_eye: (512.50, 111.08) with score 0.662
  - left_shoulder: (563.59, 171.10) with score 0.999
  - right_shoulder: (467.38, 160.82) with score 0.999
  - left_elbow: (572.72, 240.61) with score 0.999
  - right_elbow: (437.86, 218.20) with score 0.998
  - left_wrist: (603.74, 303.53) with score 0.995
  - right_wrist: (506.01, 218.68) with score 0.992
  - left_hip: (536.00, 306.25) with score 1.000
  - right_hip: (472.79, 311.69) with score 0.999
  - left_knee: (580.82, 366.38) with score 0.996
  - right_knee: (500.25, 449.72) with score 0.954
  - left_ankle: (572.21, 449.52) with score 0.993
  - right_ankle: (541.37, 436.71) with score 0.916
Found person at [93.58, 19.64, 492.62, 522.45] with score 0.909
  - left_shoulder: (233.76, 109.57) with score 0.971
  - right_shoulder: (229.56, 100.34) with score 0.950
  - left_elbow: (317.31, 162.73) with score 0.950
  - right_elbow: (229.98, 179.31) with score 0.934
  - left_wrist: (385.59, 219.03) with score 0.870
  - right_wrist: (161.31, 230.74) with score 0.952
  - left_hip: (351.23, 243.42) with score 0.998
  - right_hip: (361.94, 240.70) with score 0.999
  - left_knee: (297.77, 382.00) with score 0.998
  - right_knee: (306.07, 393.59) with score 1.000
  - left_ankle: (413.48, 354.16) with score 1.000
  - right_ankle: (445.30, 488.11) with score 0.999
Found person at [-1.46, 50.68, 160.66, 371.74] with score 0.780
  - nose: (80.17, 81.16) with score 0.570
  - left_eye: (85.17, 75.45) with score 0.383
  - right_eye: (70.20, 77.09) with score 0.382
  - left_shoulder: (121.30, 114.98) with score 0.981
  - right_shoulder: (46.56, 114.41) with score 0.981
  - left_elbow: (144.09, 163.76) with score 0.777
  - right_elbow: (29.69, 159.24) with score 0.886
  - left_wrist: (142.31, 205.64) with score 0.725
  - right_wrist: (6.24, 199.62) with score 0.876
  - left_hip: (108.07, 208.90) with score 0.992
  - right_hip: (64.72, 212.01) with score 0.996
  - left_knee: (115.26, 276.52) with score 0.998
  - right_knee: (65.09, 283.25) with score 0.998
  - left_ankle: (126.09, 340.42) with score 0.991
  - right_ankle: (63.88, 348.88) with score 0.977
Found person at [526.35, 36.25, 650.42, 280.90] with score 0.328
  - nose: (554.06, 71.87) with score 0.901
  - left_eye: (562.10, 66.30) with score 0.928
  - right_eye: (546.65, 66.36) with score 0.746
  - left_ear: (575.98, 68.17) with score 0.658
  - left_shoulder: (588.04, 102.61) with score 0.999
  - right_shoulder: (526.00, 102.94) with score 0.704
  - left_elbow: (618.11, 149.18) with score 0.984
  - left_wrist: (630.77, 189.42) with score 0.961
  - left_hip: (578.74, 181.42) with score 0.966
  - right_hip: (530.33, 176.46) with score 0.698
  - left_knee: (568.74, 233.01) with score 0.958
  - right_knee: (542.44, 243.87) with score 0.687
  - left_ankle: (585.17, 284.79) with score 0.838
  - right_ankle: (550.07, 292.19) with score 0.435
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.