File size: 8,752 Bytes
c3bf9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
import copy
from typing import Any


# IGNORE_INDEX = -100
# IMAGE_TOKEN_INDEX = -200
# DEFAULT_IMAGE_TOKEN = "<audio>"
from .configuration import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN

from transformers import PreTrainedTokenizer
import torch
from abc import ABC, abstractmethod
# from dataclasses import dataclass
# from typing import  Dict, Union, List


SLOT = Union[str, List[str], Dict[str, str]]

@dataclass
class Formatter(ABC):
    slot: SLOT = ""

    @abstractmethod
    def apply(self, **kwargs) -> SLOT: ...



@dataclass
class EmptyFormatter(Formatter):
    def apply(self, **kwargs) -> SLOT:
        return self.slot


@dataclass
class StringFormatter(Formatter):
    def apply(self, **kwargs) -> SLOT:
        msg = ""
        for name, value in kwargs.items():
            if value is None:
                msg = self.slot.split(':')[0] + ":"
                return msg
            if not isinstance(value, str):
                raise RuntimeError("Expected a string, got {}".format(value))
            msg = self.slot.replace("{{" + name + "}}", value, 1)
        return msg
    


@dataclass
class Template:
    format_image_token: "Formatter"
    format_user: "Formatter"
    format_assistant: "Formatter"
    system: "Formatter"
    separator: "Formatter"
    
    def encode(self, messages, tokenizer, mode='train'):
        """
        1. get list form messages(conversations:[{from:human, value:message}, {from:gpt, value:message}])
            ===>  human_list, value_list
        2. prompt two list
        3. tokenize prompt
        4. make target
        """
        question_list, answer_list = self.get_list_from_message(messages)
        if mode == 'rl':
            gt = answer_list[-1]
            answer_list[-1] = ''  # last answer is empty in RL mode
        prompt = self.prompt(question_list, answer_list)
        if mode == 'rl' and prompt.endswith(self.separator.apply()[1]):
            prompt = prompt[:-len(self.separator.apply()[1])]
        input_ids = self.tokenizer_image_token(prompt, tokenizer, return_tensors='pt')
        if mode == 'train':
            labels = self.make_labels(input_ids, prompt, tokenizer)
            return dict(
                input_ids=input_ids,
                labels=labels
            )
        elif mode == 'rl':
            return dict(
                input_ids=input_ids,
                prompt=prompt,
                gt=gt
            )
        else:
            return dict(input_ids=input_ids, prompt=prompt)
        
    
    def get_list_from_message(self, messages):
        return self._get_list_from_message(messages)
    
    def _get_list_from_message(self, messages):
        """
        messages  ====>  [{from:human, value:message}, {from:gpt, value:message}]
        """
        question_list = []
        answer_list = []
        first_is_not_question = 0
        for i, message in enumerate(messages):
            if i == 0 and message['from'] != 'human':
                first_is_not_question = 1
                continue
            if i % 2 == first_is_not_question:
                question_list.append(message['value'])
            else:
                answer_list.append(message['value'])
        
        assert len(question_list) == len(answer_list) , \
            f"qa is not match : length_q:{len(question_list)} vs length_a:{len(answer_list)}"
        return question_list, answer_list
    

    def prompt(
        self,
        question_list, answer_list
    ):
        if type(question_list) is str:
            question_list = [question_list]
        if type(answer_list) is str:
            answer_list = [answer_list]    
        msg = self._prompt(question_list, answer_list)
        return msg

    def _prompt(
        self,
        question_list, answer_list,
    ):
        msg = ""
        for i, (question, answer) in enumerate(zip(question_list, answer_list)):
            if i == 0:
                msg += self.system.apply()
            # if DEFAULT_IMAGE_TOKEN in question:
            #     question = question.replace(DEFAULT_IMAGE_TOKEN, '').strip()
            #     question = self.format_image_token.apply(content=question).strip()
            msg += self.format_user.apply(content=question)
            msg += self.format_assistant.apply(content=answer)
        return msg
    
    def make_labels(self, input_ids, prompt, tokenizer):
        labels = copy.deepcopy(input_ids)
        sep, eos_token = self.separator.apply()
        total_len = int(labels.ne(tokenizer.pad_token_id).sum())
        if tokenizer.pad_token_id == tokenizer.eos_token_id:
            total_len += prompt.count(eos_token)
        rounds = prompt.split(eos_token)
        eos_token_length = len(tokenizer.encode(eos_token))
        labels, cur_len = self._make_masks(labels, tokenizer, sep, eos_token_length, rounds)
        if cur_len < tokenizer.model_max_length:
            # import time
            if (cur_len != total_len) and ( (cur_len+1) != total_len):
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )
                print("number of rounds: ", len(rounds) - 1)
                print("rounds: ", rounds[:-1])
                print("prompt: ", prompt)
                print(labels)
                print(input_ids)
                # time.sleep(5)
                # labels[:] = IGNORE_INDEX
        return labels
        
        
        
    def _make_masks(self, labels, tokenizer, sep, eos_token_length, rounds):
        cur_len = 0
        for rou in rounds:
            if rou == "":
                break
            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep
            round_len = len(self.tokenizer_image_token(rou, tokenizer)) + eos_token_length
            instruction_len = len(self.tokenizer_image_token(parts[0], tokenizer)) - 1
            labels[cur_len : cur_len + instruction_len] = IGNORE_INDEX
            cur_len += round_len
        labels[cur_len:] = IGNORE_INDEX
        return labels, cur_len
        
    @classmethod    
    def tokenizer_image_token(cls, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
        def _insert_separator(X, sep):
            return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
        prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<audio>')]

        input_ids = []
        offset = 0
        if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
            offset = 1
            input_ids.append(prompt_chunks[0][0])

        for x in _insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
            input_ids.extend(x[offset:])

        if return_tensors is not None:
            if return_tensors == 'pt':
                return torch.tensor(input_ids, dtype=torch.long)
            raise ValueError(f'Unsupported tensor type: {return_tensors}')
        return input_ids


TEMPlATE_FACTORY: Dict[str, Template] = {}

def TemplateFactory(version):
    template = TEMPlATE_FACTORY.get(version, None)
    assert template, f"{version} is not implmentation"
    return template


def register_template(name):
    def register_template_cls(cls):
        if name in TEMPlATE_FACTORY:
            return TEMPlATE_FACTORY[name]

        TEMPlATE_FACTORY[name] = cls
        return cls

    return register_template_cls


system = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."

@register_template('qwen2_instruct')
@dataclass
class Qwen2InstructTemplate(Template):
    format_image_token: "Formatter" = field(default_factory=lambda: StringFormatter(slot="<audio>\n{{content}}"))
    format_user: "Formatter" = field(default_factory=lambda: StringFormatter(slot="USER" + ": " + "{{content}}" + " "))
    format_assistant: "Formatter" = field(default_factory=lambda: StringFormatter(slot="ASSISTANT" + ": " + "{{content}}" + "<|im_end|>"))
    system: "Formatter" = field(default_factory=lambda: EmptyFormatter(slot=system+" "))
    separator: "Formatter" = field(default_factory=lambda: EmptyFormatter(slot=[' ASSISTANT: ', '<|im_end|>']))


class TextPreprocess:
    def __init__(self, tokenizer, version):
        self.tokenizer = tokenizer
        self.template = TemplateFactory(version)()
    
    def __call__(self, messages, mode='eval'):
        return self.template.encode(messages, self.tokenizer, mode)