metadata
library_name: peft
license: gemma
base_model: google/codegemma-7b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: code-bench-CodeGemma-7B-cg-nv9n
results: []
code-bench-CodeGemma-7B-cg-nv9n
This model is a fine-tuned version of google/codegemma-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0676
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.623 | 0.0530 | 50 | 0.5961 |
| 0.473 | 0.1061 | 100 | 0.4669 |
| 0.4018 | 0.1591 | 150 | 0.3573 |
| 0.3249 | 0.2121 | 200 | 0.2696 |
| 0.2703 | 0.2652 | 250 | 0.2265 |
| 0.2066 | 0.3182 | 300 | 0.1859 |
| 0.1725 | 0.3713 | 350 | 0.1526 |
| 0.1588 | 0.4243 | 400 | 0.1341 |
| 0.1467 | 0.4773 | 450 | 0.1278 |
| 0.1349 | 0.5304 | 500 | 0.1229 |
| 0.1541 | 0.5834 | 550 | 0.1170 |
| 0.1262 | 0.6364 | 600 | 0.1137 |
| 0.1273 | 0.6895 | 650 | 0.1118 |
| 0.1322 | 0.7425 | 700 | 0.1091 |
| 0.1244 | 0.7955 | 750 | 0.1069 |
| 0.1134 | 0.8486 | 800 | 0.1043 |
| 0.1206 | 0.9016 | 850 | 0.1030 |
| 0.117 | 0.9547 | 900 | 0.1016 |
| 0.101 | 1.0077 | 950 | 0.1003 |
| 0.1095 | 1.0607 | 1000 | 0.0999 |
| 0.0989 | 1.1138 | 1050 | 0.0991 |
| 0.1054 | 1.1668 | 1100 | 0.0972 |
| 0.1073 | 1.2198 | 1150 | 0.0964 |
| 0.1057 | 1.2729 | 1200 | 0.0951 |
| 0.111 | 1.3259 | 1250 | 0.0953 |
| 0.0946 | 1.3789 | 1300 | 0.0935 |
| 0.0907 | 1.4320 | 1350 | 0.0926 |
| 0.0989 | 1.4850 | 1400 | 0.0919 |
| 0.1037 | 1.5381 | 1450 | 0.0905 |
| 0.0955 | 1.5911 | 1500 | 0.0899 |
| 0.0893 | 1.6441 | 1550 | 0.0887 |
| 0.1015 | 1.6972 | 1600 | 0.0881 |
| 0.0952 | 1.7502 | 1650 | 0.0874 |
| 0.0918 | 1.8032 | 1700 | 0.0868 |
| 0.0926 | 1.8563 | 1750 | 0.0860 |
| 0.0886 | 1.9093 | 1800 | 0.0852 |
| 0.0989 | 1.9623 | 1850 | 0.0841 |
| 0.0863 | 2.0154 | 1900 | 0.0839 |
| 0.0821 | 2.0684 | 1950 | 0.0836 |
| 0.0964 | 2.1215 | 2000 | 0.0830 |
| 0.0755 | 2.1745 | 2050 | 0.0824 |
| 0.0777 | 2.2275 | 2100 | 0.0817 |
| 0.0761 | 2.2806 | 2150 | 0.0807 |
| 0.0777 | 2.3336 | 2200 | 0.0802 |
| 0.0857 | 2.3866 | 2250 | 0.0795 |
| 0.0883 | 2.4397 | 2300 | 0.0793 |
| 0.0784 | 2.4927 | 2350 | 0.0785 |
| 0.0774 | 2.5457 | 2400 | 0.0779 |
| 0.0776 | 2.5988 | 2450 | 0.0772 |
| 0.0788 | 2.6518 | 2500 | 0.0770 |
| 0.0853 | 2.7064 | 2550 | 0.0768 |
| 0.0836 | 2.7595 | 2600 | 0.0764 |
| 0.0822 | 2.8125 | 2650 | 0.0758 |
| 0.0862 | 2.8656 | 2700 | 0.0755 |
| 0.0753 | 2.9186 | 2750 | 0.0750 |
| 0.0798 | 2.9716 | 2800 | 0.0744 |
| 0.0762 | 3.0247 | 2850 | 0.0741 |
| 0.0884 | 3.0777 | 2900 | 0.0736 |
| 0.0753 | 3.1307 | 2950 | 0.0731 |
| 0.0774 | 3.1838 | 3000 | 0.0727 |
| 0.0753 | 3.2368 | 3050 | 0.0725 |
| 0.0853 | 3.2898 | 3100 | 0.0723 |
| 0.0723 | 3.3429 | 3150 | 0.0718 |
| 0.0762 | 3.3959 | 3200 | 0.0713 |
| 0.0737 | 3.4490 | 3250 | 0.0712 |
| 0.0751 | 3.5020 | 3300 | 0.0705 |
| 0.0737 | 3.5550 | 3350 | 0.0700 |
| 0.069 | 3.6081 | 3400 | 0.0701 |
| 0.0696 | 3.6611 | 3450 | 0.0697 |
| 0.0725 | 3.7141 | 3500 | 0.0692 |
| 0.074 | 3.7672 | 3550 | 0.0686 |
| 0.0655 | 3.8202 | 3600 | 0.0684 |
| 0.0671 | 3.8732 | 3650 | 0.0679 |
| 0.0642 | 3.9263 | 3700 | 0.0676 |
| 0.07 | 3.9793 | 3750 | 0.0676 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.5.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1