| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						sys.path.insert(0, ".") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers.models import ( | 
					
					
						
						| 
							 | 
						    AutoencoderKL, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from omegaconf import OmegaConf | 
					
					
						
						| 
							 | 
						from diffusers.schedulers import DDIMScheduler | 
					
					
						
						| 
							 | 
						from diffusers.utils import logging | 
					
					
						
						| 
							 | 
						from typing import Any | 
					
					
						
						| 
							 | 
						from accelerate import init_empty_weights | 
					
					
						
						| 
							 | 
						from accelerate.utils import set_module_tensor_to_device | 
					
					
						
						| 
							 | 
						from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from mv_unet import MultiViewUNetModel | 
					
					
						
						| 
							 | 
						from pipeline_mvdream import MVDreamPipeline | 
					
					
						
						| 
							 | 
						import kiui | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						    paths, | 
					
					
						
						| 
							 | 
						    checkpoint, | 
					
					
						
						| 
							 | 
						    old_checkpoint, | 
					
					
						
						| 
							 | 
						    attention_paths_to_split=None, | 
					
					
						
						| 
							 | 
						    additional_replacements=None, | 
					
					
						
						| 
							 | 
						    config=None, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | 
					
					
						
						| 
							 | 
						    attention layers, and takes into account additional replacements that may arise. | 
					
					
						
						| 
							 | 
						    Assigns the weights to the new checkpoint. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    assert isinstance( | 
					
					
						
						| 
							 | 
						        paths, list | 
					
					
						
						| 
							 | 
						    ), "Paths should be a list of dicts containing 'old' and 'new' keys." | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if attention_paths_to_split is not None: | 
					
					
						
						| 
							 | 
						        for path, path_map in attention_paths_to_split.items(): | 
					
					
						
						| 
							 | 
						            old_tensor = old_checkpoint[path] | 
					
					
						
						| 
							 | 
						            channels = old_tensor.shape[0] // 3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert config is not None | 
					
					
						
						| 
							 | 
						            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            old_tensor = old_tensor.reshape( | 
					
					
						
						| 
							 | 
						                (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            query, key, value = old_tensor.split(channels // num_heads, dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            checkpoint[path_map["query"]] = query.reshape(target_shape) | 
					
					
						
						| 
							 | 
						            checkpoint[path_map["key"]] = key.reshape(target_shape) | 
					
					
						
						| 
							 | 
						            checkpoint[path_map["value"]] = value.reshape(target_shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for path in paths: | 
					
					
						
						| 
							 | 
						        new_path = path["new"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            attention_paths_to_split is not None | 
					
					
						
						| 
							 | 
						            and new_path in attention_paths_to_split | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | 
					
					
						
						| 
							 | 
						        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | 
					
					
						
						| 
							 | 
						        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if additional_replacements is not None: | 
					
					
						
						| 
							 | 
						            for replacement in additional_replacements: | 
					
					
						
						| 
							 | 
						                new_path = new_path.replace(replacement["old"], replacement["new"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_attn_weight = "proj_attn.weight" in new_path or ( | 
					
					
						
						| 
							 | 
						            "attentions" in new_path and "to_" in new_path | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        shape = old_checkpoint[path["old"]].shape | 
					
					
						
						| 
							 | 
						        if is_attn_weight and len(shape) == 3: | 
					
					
						
						| 
							 | 
						            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | 
					
					
						
						| 
							 | 
						        elif is_attn_weight and len(shape) == 4: | 
					
					
						
						| 
							 | 
						            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            checkpoint[new_path] = old_checkpoint[path["old"]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def shave_segments(path, n_shave_prefix_segments=1): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Removes segments. Positive values shave the first segments, negative shave the last segments. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if n_shave_prefix_segments >= 0: | 
					
					
						
						| 
							 | 
						        return ".".join(path.split(".")[n_shave_prefix_segments:]) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        return ".".join(path.split(".")[:n_shave_prefix_segments]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def create_vae_diffusers_config(original_config, image_size): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Creates a config for the diffusers based on the config of the LDM model. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if 'imagedream' in original_config.model.target: | 
					
					
						
						| 
							 | 
						        vae_params = original_config.model.params.vae_config.params.ddconfig | 
					
					
						
						| 
							 | 
						        _ = original_config.model.params.vae_config.params.embed_dim | 
					
					
						
						| 
							 | 
						        vae_key = "vae_model." | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        vae_params = original_config.model.params.first_stage_config.params.ddconfig | 
					
					
						
						| 
							 | 
						        _ = original_config.model.params.first_stage_config.params.embed_dim | 
					
					
						
						| 
							 | 
						        vae_key = "first_stage_model." | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | 
					
					
						
						| 
							 | 
						    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | 
					
					
						
						| 
							 | 
						    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    config = { | 
					
					
						
						| 
							 | 
						        "sample_size": image_size, | 
					
					
						
						| 
							 | 
						        "in_channels": vae_params.in_channels, | 
					
					
						
						| 
							 | 
						        "out_channels": vae_params.out_ch, | 
					
					
						
						| 
							 | 
						        "down_block_types": tuple(down_block_types), | 
					
					
						
						| 
							 | 
						        "up_block_types": tuple(up_block_types), | 
					
					
						
						| 
							 | 
						        "block_out_channels": tuple(block_out_channels), | 
					
					
						
						| 
							 | 
						        "latent_channels": vae_params.z_channels, | 
					
					
						
						| 
							 | 
						        "layers_per_block": vae_params.num_res_blocks, | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    return config, vae_key | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def convert_ldm_vae_checkpoint(checkpoint, config, vae_key): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vae_state_dict = {} | 
					
					
						
						| 
							 | 
						    keys = list(checkpoint.keys()) | 
					
					
						
						| 
							 | 
						    for key in keys: | 
					
					
						
						| 
							 | 
						        if key.startswith(vae_key): | 
					
					
						
						| 
							 | 
						            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_checkpoint = {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "encoder.conv_out.weight" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "encoder.norm_out.weight" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "encoder.norm_out.bias" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "decoder.conv_out.weight" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "decoder.norm_out.weight" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ | 
					
					
						
						| 
							 | 
						        "decoder.norm_out.bias" | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | 
					
					
						
						| 
							 | 
						    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    num_down_blocks = len( | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            ".".join(layer.split(".")[:3]) | 
					
					
						
						| 
							 | 
						            for layer in vae_state_dict | 
					
					
						
						| 
							 | 
						            if "encoder.down" in layer | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    down_blocks = { | 
					
					
						
						| 
							 | 
						        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] | 
					
					
						
						| 
							 | 
						        for layer_id in range(num_down_blocks) | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    num_up_blocks = len( | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            ".".join(layer.split(".")[:3]) | 
					
					
						
						| 
							 | 
						            for layer in vae_state_dict | 
					
					
						
						| 
							 | 
						            if "decoder.up" in layer | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    up_blocks = { | 
					
					
						
						| 
							 | 
						        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] | 
					
					
						
						| 
							 | 
						        for layer_id in range(num_up_blocks) | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for i in range(num_down_blocks): | 
					
					
						
						| 
							 | 
						        resnets = [ | 
					
					
						
						| 
							 | 
						            key | 
					
					
						
						| 
							 | 
						            for key in down_blocks[i] | 
					
					
						
						| 
							 | 
						            if f"down.{i}" in key and f"down.{i}.downsample" not in key | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | 
					
					
						
						| 
							 | 
						            new_checkpoint[ | 
					
					
						
						| 
							 | 
						                f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" | 
					
					
						
						| 
							 | 
						            ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") | 
					
					
						
						| 
							 | 
						            new_checkpoint[ | 
					
					
						
						| 
							 | 
						                f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" | 
					
					
						
						| 
							 | 
						            ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        paths = renew_vae_resnet_paths(resnets) | 
					
					
						
						| 
							 | 
						        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | 
					
					
						
						| 
							 | 
						        assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						            paths, | 
					
					
						
						| 
							 | 
						            new_checkpoint, | 
					
					
						
						| 
							 | 
						            vae_state_dict, | 
					
					
						
						| 
							 | 
						            additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						            config=config, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | 
					
					
						
						| 
							 | 
						    num_mid_res_blocks = 2 | 
					
					
						
						| 
							 | 
						    for i in range(1, num_mid_res_blocks + 1): | 
					
					
						
						| 
							 | 
						        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        paths = renew_vae_resnet_paths(resnets) | 
					
					
						
						| 
							 | 
						        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | 
					
					
						
						| 
							 | 
						        assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						            paths, | 
					
					
						
						| 
							 | 
						            new_checkpoint, | 
					
					
						
						| 
							 | 
						            vae_state_dict, | 
					
					
						
						| 
							 | 
						            additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						            config=config, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | 
					
					
						
						| 
							 | 
						    paths = renew_vae_attention_paths(mid_attentions) | 
					
					
						
						| 
							 | 
						    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | 
					
					
						
						| 
							 | 
						    assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						        paths, | 
					
					
						
						| 
							 | 
						        new_checkpoint, | 
					
					
						
						| 
							 | 
						        vae_state_dict, | 
					
					
						
						| 
							 | 
						        additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						        config=config, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    conv_attn_to_linear(new_checkpoint) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for i in range(num_up_blocks): | 
					
					
						
						| 
							 | 
						        block_id = num_up_blocks - 1 - i | 
					
					
						
						| 
							 | 
						        resnets = [ | 
					
					
						
						| 
							 | 
						            key | 
					
					
						
						| 
							 | 
						            for key in up_blocks[block_id] | 
					
					
						
						| 
							 | 
						            if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | 
					
					
						
						| 
							 | 
						            new_checkpoint[ | 
					
					
						
						| 
							 | 
						                f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" | 
					
					
						
						| 
							 | 
						            ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] | 
					
					
						
						| 
							 | 
						            new_checkpoint[ | 
					
					
						
						| 
							 | 
						                f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" | 
					
					
						
						| 
							 | 
						            ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        paths = renew_vae_resnet_paths(resnets) | 
					
					
						
						| 
							 | 
						        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | 
					
					
						
						| 
							 | 
						        assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						            paths, | 
					
					
						
						| 
							 | 
						            new_checkpoint, | 
					
					
						
						| 
							 | 
						            vae_state_dict, | 
					
					
						
						| 
							 | 
						            additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						            config=config, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | 
					
					
						
						| 
							 | 
						    num_mid_res_blocks = 2 | 
					
					
						
						| 
							 | 
						    for i in range(1, num_mid_res_blocks + 1): | 
					
					
						
						| 
							 | 
						        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        paths = renew_vae_resnet_paths(resnets) | 
					
					
						
						| 
							 | 
						        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | 
					
					
						
						| 
							 | 
						        assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						            paths, | 
					
					
						
						| 
							 | 
						            new_checkpoint, | 
					
					
						
						| 
							 | 
						            vae_state_dict, | 
					
					
						
						| 
							 | 
						            additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						            config=config, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | 
					
					
						
						| 
							 | 
						    paths = renew_vae_attention_paths(mid_attentions) | 
					
					
						
						| 
							 | 
						    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | 
					
					
						
						| 
							 | 
						    assign_to_checkpoint( | 
					
					
						
						| 
							 | 
						        paths, | 
					
					
						
						| 
							 | 
						        new_checkpoint, | 
					
					
						
						| 
							 | 
						        vae_state_dict, | 
					
					
						
						| 
							 | 
						        additional_replacements=[meta_path], | 
					
					
						
						| 
							 | 
						        config=config, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    conv_attn_to_linear(new_checkpoint) | 
					
					
						
						| 
							 | 
						    return new_checkpoint | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Updates paths inside resnets to the new naming scheme (local renaming) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    mapping = [] | 
					
					
						
						| 
							 | 
						    for old_item in old_list: | 
					
					
						
						| 
							 | 
						        new_item = old_item | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("nin_shortcut", "conv_shortcut") | 
					
					
						
						| 
							 | 
						        new_item = shave_segments( | 
					
					
						
						| 
							 | 
						            new_item, n_shave_prefix_segments=n_shave_prefix_segments | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        mapping.append({"old": old_item, "new": new_item}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return mapping | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Updates paths inside attentions to the new naming scheme (local renaming) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    mapping = [] | 
					
					
						
						| 
							 | 
						    for old_item in old_list: | 
					
					
						
						| 
							 | 
						        new_item = old_item | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("norm.weight", "group_norm.weight") | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("norm.bias", "group_norm.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("q.weight", "to_q.weight") | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("q.bias", "to_q.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("k.weight", "to_k.weight") | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("k.bias", "to_k.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("v.weight", "to_v.weight") | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("v.bias", "to_v.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | 
					
					
						
						| 
							 | 
						        new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        new_item = shave_segments( | 
					
					
						
						| 
							 | 
						            new_item, n_shave_prefix_segments=n_shave_prefix_segments | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        mapping.append({"old": old_item, "new": new_item}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return mapping | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def conv_attn_to_linear(checkpoint): | 
					
					
						
						| 
							 | 
						    keys = list(checkpoint.keys()) | 
					
					
						
						| 
							 | 
						    attn_keys = ["query.weight", "key.weight", "value.weight"] | 
					
					
						
						| 
							 | 
						    for key in keys: | 
					
					
						
						| 
							 | 
						        if ".".join(key.split(".")[-2:]) in attn_keys: | 
					
					
						
						| 
							 | 
						            if checkpoint[key].ndim > 2: | 
					
					
						
						| 
							 | 
						                checkpoint[key] = checkpoint[key][:, :, 0, 0] | 
					
					
						
						| 
							 | 
						        elif "proj_attn.weight" in key: | 
					
					
						
						| 
							 | 
						            if checkpoint[key].ndim > 2: | 
					
					
						
						| 
							 | 
						                checkpoint[key] = checkpoint[key][:, :, 0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def create_unet_config(original_config) -> Any: | 
					
					
						
						| 
							 | 
						    return OmegaConf.to_container( | 
					
					
						
						| 
							 | 
						        original_config.model.params.unet_config.params, resolve=True | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device): | 
					
					
						
						| 
							 | 
						    checkpoint = torch.load(checkpoint_path, map_location=device) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    torch.cuda.empty_cache() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    original_config = OmegaConf.load(original_config_file) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    prediction_type = "epsilon" | 
					
					
						
						| 
							 | 
						    image_size = 256 | 
					
					
						
						| 
							 | 
						    num_train_timesteps = ( | 
					
					
						
						| 
							 | 
						        getattr(original_config.model.params, "timesteps", None) or 1000 | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 | 
					
					
						
						| 
							 | 
						    beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 | 
					
					
						
						| 
							 | 
						    scheduler = DDIMScheduler( | 
					
					
						
						| 
							 | 
						        beta_end=beta_end, | 
					
					
						
						| 
							 | 
						        beta_schedule="scaled_linear", | 
					
					
						
						| 
							 | 
						        beta_start=beta_start, | 
					
					
						
						| 
							 | 
						        num_train_timesteps=num_train_timesteps, | 
					
					
						
						| 
							 | 
						        steps_offset=1, | 
					
					
						
						| 
							 | 
						        clip_sample=False, | 
					
					
						
						| 
							 | 
						        set_alpha_to_one=False, | 
					
					
						
						| 
							 | 
						        prediction_type=prediction_type, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    scheduler.register_to_config(clip_sample=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    unet_config = create_unet_config(original_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unet_config.pop('legacy', None) | 
					
					
						
						| 
							 | 
						    unet_config.pop('use_linear_in_transformer', None) | 
					
					
						
						| 
							 | 
						    unet_config.pop('use_spatial_transformer', None) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unet_config.pop('ip_mode', None) | 
					
					
						
						| 
							 | 
						    unet_config.pop('with_ip', None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    unet = MultiViewUNetModel(**unet_config) | 
					
					
						
						| 
							 | 
						    unet.register_to_config(**unet_config) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unet.load_state_dict( | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            key.replace("model.diffusion_model.", ""): value | 
					
					
						
						| 
							 | 
						            for key, value in checkpoint.items() | 
					
					
						
						| 
							 | 
						            if key.replace("model.diffusion_model.", "") in unet.state_dict() | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    for param_name, param in unet.state_dict().items(): | 
					
					
						
						| 
							 | 
						        set_module_tensor_to_device(unet, param_name, device=device, value=param) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size) | 
					
					
						
						| 
							 | 
						    converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if ( | 
					
					
						
						| 
							 | 
						        "model" in original_config | 
					
					
						
						| 
							 | 
						        and "params" in original_config.model | 
					
					
						
						| 
							 | 
						        and "scale_factor" in original_config.model.params | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        vae_scaling_factor = original_config.model.params.scale_factor | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        vae_scaling_factor = 0.18215   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    vae_config["scaling_factor"] = vae_scaling_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with init_empty_weights(): | 
					
					
						
						| 
							 | 
						        vae = AutoencoderKL(**vae_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for param_name, param in converted_vae_checkpoint.items(): | 
					
					
						
						| 
							 | 
						        set_module_tensor_to_device(vae, param_name, device=device, value=param) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer") | 
					
					
						
						| 
							 | 
						    text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device)   | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if unet.ip_dim > 0: | 
					
					
						
						| 
							 | 
						        feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | 
					
					
						
						| 
							 | 
						        image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        feature_extractor = None | 
					
					
						
						| 
							 | 
						        image_encoder = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    pipe = MVDreamPipeline( | 
					
					
						
						| 
							 | 
						        vae=vae, | 
					
					
						
						| 
							 | 
						        unet=unet, | 
					
					
						
						| 
							 | 
						        tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						        text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						        scheduler=scheduler, | 
					
					
						
						| 
							 | 
						        feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						        image_encoder=image_encoder, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return pipe | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--checkpoint_path", | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        type=str, | 
					
					
						
						| 
							 | 
						        required=True, | 
					
					
						
						| 
							 | 
						        help="Path to the checkpoint to convert.", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--original_config_file", | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        type=str, | 
					
					
						
						| 
							 | 
						        help="The YAML config file corresponding to the original architecture.", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--to_safetensors", | 
					
					
						
						| 
							 | 
						        action="store_true", | 
					
					
						
						| 
							 | 
						        help="Whether to store pipeline in safetensors format or not.", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--half", action="store_true", help="Save weights in half precision." | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--test", | 
					
					
						
						| 
							 | 
						        action="store_true", | 
					
					
						
						| 
							 | 
						        help="Whether to test inference after convertion.", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--dump_path", | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        type=str, | 
					
					
						
						| 
							 | 
						        required=True, | 
					
					
						
						| 
							 | 
						        help="Path to the output model.", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    args.device = torch.device( | 
					
					
						
						| 
							 | 
						        args.device | 
					
					
						
						| 
							 | 
						        if args.device is not None | 
					
					
						
						| 
							 | 
						        else "cuda" | 
					
					
						
						| 
							 | 
						        if torch.cuda.is_available() | 
					
					
						
						| 
							 | 
						        else "cpu" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    pipe = convert_from_original_mvdream_ckpt( | 
					
					
						
						| 
							 | 
						        checkpoint_path=args.checkpoint_path, | 
					
					
						
						| 
							 | 
						        original_config_file=args.original_config_file, | 
					
					
						
						| 
							 | 
						        device=args.device, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if args.half: | 
					
					
						
						| 
							 | 
						        pipe.to(torch_dtype=torch.float16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Saving pipeline to {args.dump_path}...") | 
					
					
						
						| 
							 | 
						    pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if args.test: | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if pipe.unet.ip_dim == 0: | 
					
					
						
						| 
							 | 
						                print(f"Testing each subcomponent of the pipeline...") | 
					
					
						
						| 
							 | 
						                images = pipe( | 
					
					
						
						| 
							 | 
						                    prompt="Head of Hatsune Miku", | 
					
					
						
						| 
							 | 
						                    negative_prompt="painting, bad quality, flat", | 
					
					
						
						| 
							 | 
						                    output_type="pil", | 
					
					
						
						| 
							 | 
						                    guidance_scale=7.5, | 
					
					
						
						| 
							 | 
						                    num_inference_steps=50, | 
					
					
						
						| 
							 | 
						                    device=args.device, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for i, image in enumerate(images): | 
					
					
						
						| 
							 | 
						                    image.save(f"test_image_{i}.png")   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                print(f"Testing entire pipeline...") | 
					
					
						
						| 
							 | 
						                loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path)   | 
					
					
						
						| 
							 | 
						                images = loaded_pipe( | 
					
					
						
						| 
							 | 
						                    prompt="Head of Hatsune Miku", | 
					
					
						
						| 
							 | 
						                    negative_prompt="painting, bad quality, flat", | 
					
					
						
						| 
							 | 
						                    output_type="pil", | 
					
					
						
						| 
							 | 
						                    guidance_scale=7.5, | 
					
					
						
						| 
							 | 
						                    num_inference_steps=50, | 
					
					
						
						| 
							 | 
						                    device=args.device, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for i, image in enumerate(images): | 
					
					
						
						| 
							 | 
						                    image.save(f"test_image_{i}.png")   | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                input_image = kiui.read_image('data/anya_rgba.png', mode='float') | 
					
					
						
						| 
							 | 
						                print(f"Testing each subcomponent of the pipeline...") | 
					
					
						
						| 
							 | 
						                images = pipe( | 
					
					
						
						| 
							 | 
						                    image=input_image, | 
					
					
						
						| 
							 | 
						                    prompt="", | 
					
					
						
						| 
							 | 
						                    negative_prompt="", | 
					
					
						
						| 
							 | 
						                    output_type="pil", | 
					
					
						
						| 
							 | 
						                    guidance_scale=5.0, | 
					
					
						
						| 
							 | 
						                    num_inference_steps=50, | 
					
					
						
						| 
							 | 
						                    device=args.device, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for i, image in enumerate(images): | 
					
					
						
						| 
							 | 
						                    image.save(f"test_image_{i}.png")   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                print(f"Testing entire pipeline...") | 
					
					
						
						| 
							 | 
						                loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path)   | 
					
					
						
						| 
							 | 
						                images = loaded_pipe( | 
					
					
						
						| 
							 | 
						                    image=input_image, | 
					
					
						
						| 
							 | 
						                    prompt="", | 
					
					
						
						| 
							 | 
						                    negative_prompt="", | 
					
					
						
						| 
							 | 
						                    output_type="pil", | 
					
					
						
						| 
							 | 
						                    guidance_scale=5.0, | 
					
					
						
						| 
							 | 
						                    num_inference_steps=50, | 
					
					
						
						| 
							 | 
						                    device=args.device, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for i, image in enumerate(images): | 
					
					
						
						| 
							 | 
						                    image.save(f"test_image_{i}.png")   | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            print("Inference test passed!") | 
					
					
						
						| 
							 | 
						        except Exception as e: | 
					
					
						
						| 
							 | 
						            print(f"Failed to test inference: {e}") | 
					
					
						
						| 
							 | 
						
 |