Punica

Punica: Serving multiple LoRA finetuned LLMs at the cost of one

Paper: https://arxiv.org/abs/2310.18547

See https://github.com/punica-ai/punica/tree/master/examples/finetune

Model

  • Base Model: Llama-2-7b-hf
  • LoRA target: q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj
  • LoRA rank: 16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 4.0

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.2.0.dev20230911+cu121
  • Datasets 2.14.4
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for abcdabcd987/viggo-llama2-7b-lora-16

Adapter
(1828)
this model

Dataset used to train abcdabcd987/viggo-llama2-7b-lora-16