|
--- |
|
library_name: transformers |
|
language: |
|
- uz |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- risqaliyevds/uzbek_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Uzbek NER model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Uzbek NER model |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the Uzbek Ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1421 |
|
- Precision: 0.6071 |
|
- Recall: 0.6482 |
|
- F1: 0.6270 |
|
- Accuracy: 0.9486 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1671 | 0.5758 | 150 | 0.1632 | 0.5260 | 0.6425 | 0.5785 | 0.9402 | |
|
| 0.1453 | 1.1497 | 300 | 0.1481 | 0.5935 | 0.6191 | 0.6061 | 0.9467 | |
|
| 0.134 | 1.7255 | 450 | 0.1449 | 0.5936 | 0.6216 | 0.6073 | 0.9480 | |
|
| 0.1273 | 2.2994 | 600 | 0.1413 | 0.6217 | 0.6262 | 0.6239 | 0.9493 | |
|
| 0.1258 | 2.8752 | 750 | 0.1421 | 0.6071 | 0.6482 | 0.6270 | 0.9486 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|