Redis fine-tuned CrossEncoder model for semantic caching on LangCache

This is a Cross Encoder model finetuned from Alibaba-NLP/gte-reranker-modernbert-base on the LangCache Sentence Pairs (all) dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for sentence pair classification.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("aditeyabaral-redis/langcache-reranker-v1")
# Get scores for pairs of texts
pairs = [
    ['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .'],
    ['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .'],
    ['After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .', 'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .'],
    ['She married Peter Haygarth on 29 May 1964 in Durban . Her second marriage , to Robin Osborne , took place in 1977 .', 'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .'],
    ['In 2005 she moved to Norway , settled in Geilo and worked as a rafting guide , in 2006 she started mountain biking - races .', 'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'The newer Punts are still very much in existence today and race in the same fleets as the older boats .',
    [
        'The newer punts are still very much in existence today and run in the same fleets as the older boats .',
        'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .',
        'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .',
        'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .',
        'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Classification

Metric val test
accuracy 0.7718 0.8947
accuracy_threshold 0.8927 0.8616
f1 0.6934 0.8797
f1_threshold 0.8759 0.5037
precision 0.6788 0.8643
recall 0.7086 0.8957
average_precision 0.7676 0.9345

Training Details

Training Dataset

LangCache Sentence Pairs (all)

  • Dataset: LangCache Sentence Pairs (all)
  • Size: 62,021 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 27 characters
    • mean: 112.72 characters
    • max: 197 characters
    • min: 27 characters
    • mean: 112.54 characters
    • max: 198 characters
    • 0: ~50.30%
    • 1: ~49.70%
  • Samples:
    sentence1 sentence2 label
    The newer Punts are still very much in existence today and race in the same fleets as the older boats . The newer punts are still very much in existence today and run in the same fleets as the older boats . 1
    Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada . Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada . 0
    After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall . Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall . 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Evaluation Dataset

LangCache Sentence Pairs (all)

  • Dataset: LangCache Sentence Pairs (all)
  • Size: 62,021 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 27 characters
    • mean: 112.72 characters
    • max: 197 characters
    • min: 27 characters
    • mean: 112.54 characters
    • max: 198 characters
    • 0: ~50.30%
    • 1: ~49.70%
  • Samples:
    sentence1 sentence2 label
    The newer Punts are still very much in existence today and race in the same fleets as the older boats . The newer punts are still very much in existence today and run in the same fleets as the older boats . 1
    Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada . Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada . 0
    After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall . Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall . 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • learning_rate: 0.0002
  • num_train_epochs: 50
  • warmup_steps: 1000
  • load_best_model_at_end: True
  • optim: adamw_torch
  • push_to_hub: True
  • hub_model_id: aditeyabaral-redis/langcache-reranker-v1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 1000
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: aditeyabaral-redis/langcache-reranker-v1
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss val_average_precision test_average_precision
-1 -1 - - 0.7676 0.6907
0.1833 1000 0.2986 0.3912 - 0.8585
0.3666 2000 0.2465 0.3856 - 0.8956
0.5499 3000 0.2287 0.3362 - 0.9160
0.7331 4000 0.2171 0.3408 - 0.9071
0.9164 5000 0.2068 0.3182 - 0.9220
1.0997 6000 0.1991 0.3458 - 0.8686
1.2830 7000 0.1939 0.3188 - 0.9244
1.4663 8000 0.1917 0.3120 - 0.9287
1.6496 9000 0.1906 0.3015 - 0.9279
1.8328 10000 0.1884 0.2986 - 0.9316
2.0161 11000 0.183 0.3065 - 0.9320
2.1994 12000 0.1714 0.3046 - 0.9180
2.3827 13000 0.1738 0.2994 - 0.9315
2.5660 14000 0.1709 0.2965 - 0.9347
2.7493 15000 0.1717 0.2911 - 0.9309
2.9326 16000 0.1698 0.2900 - 0.9354
3.1158 17000 0.16 0.2894 - 0.9377
3.2991 18000 0.1589 0.2830 - 0.9356
3.4824 19000 0.1574 0.2829 - 0.9337
3.6657 20000 0.1572 0.2818 - 0.9324
3.8490 21000 0.1587 0.2866 - 0.9365
4.0323 22000 0.1543 0.2923 - 0.9389
4.2155 23000 0.1445 0.2871 - 0.9430
4.3988 24000 0.1447 0.2793 - 0.9429
4.5821 25000 0.1473 0.2791 - 0.9386
4.7654 26000 0.146 0.2700 - 0.9417
4.9487 27000 0.1473 0.2697 - 0.9419
5.1320 28000 0.1365 0.2810 - 0.9411
5.3152 29000 0.1331 0.2764 - 0.9397
5.4985 30000 0.1372 0.2794 - 0.9416
5.6818 31000 0.1365 0.2751 - 0.9408
5.8651 32000 0.1365 0.2724 - 0.9411
6.0484 33000 0.1348 0.2767 - 0.9378
6.2317 34000 0.1236 0.2840 - 0.9388
6.4150 35000 0.1262 0.2845 - 0.9437
6.5982 36000 0.1277 0.2781 - 0.9446
6.7815 37000 0.129 0.2705 - 0.9427
6.9648 38000 0.1279 0.2773 - 0.9381
7.1481 39000 0.1173 0.2875 - 0.9420
7.3314 40000 0.1175 0.2901 - 0.9438
7.5147 41000 0.1174 0.2787 - 0.9420
7.6979 42000 0.118 0.2879 - 0.9424
7.8812 43000 0.1201 0.2826 - 0.9450
8.0645 44000 0.1168 0.2851 - 0.9419
8.2478 45000 0.1062 0.2913 - 0.9450
8.4311 46000 0.1091 0.2918 - 0.9454
8.6144 47000 0.1117 0.2799 - 0.9445
8.7977 48000 0.1123 0.2762 - 0.9443
8.9809 49000 0.1132 0.2772 - 0.9455
9.1642 50000 0.1016 0.2943 - 0.9433
9.3475 51000 0.1012 0.2879 - 0.9441
9.5308 52000 0.1029 0.2851 - 0.9442
9.7141 53000 0.105 0.2905 - 0.9448
9.8974 54000 0.1062 0.2960 - 0.9425
10.0806 55000 0.0996 0.2984 - 0.9430
10.2639 56000 0.0924 0.2947 - 0.9432
10.4472 57000 0.0939 0.2918 - 0.9421
10.6305 58000 0.0977 0.2895 - 0.9438
10.8138 59000 0.0977 0.2905 - 0.9446
10.9971 60000 0.0985 0.2882 - 0.9403
11.1804 61000 0.0857 0.3025 - 0.9435
11.3636 62000 0.0869 0.2997 - 0.9450
11.5469 63000 0.0886 0.3025 - 0.9459
11.7302 64000 0.0901 0.3000 - 0.9443
11.9135 65000 0.092 0.2913 - 0.9424
12.0968 66000 0.085 0.3017 - 0.9443
12.2801 67000 0.0801 0.3101 - 0.9449
12.4633 68000 0.0823 0.3018 - 0.9468
12.6466 69000 0.0841 0.2971 - 0.9457
12.8299 70000 0.0855 0.3063 - 0.9428
13.0132 71000 0.0854 0.3105 - 0.9436
13.1965 72000 0.0744 0.3017 - 0.9451
13.3798 73000 0.0763 0.3024 - 0.9425
13.5630 74000 0.0777 0.2948 - 0.9461
13.7463 75000 0.0791 0.3006 - 0.9466
13.9296 76000 0.0803 0.3001 - 0.9446
14.1129 77000 0.0721 0.3229 - 0.9445
14.2962 78000 0.0692 0.3231 - 0.9437
14.4795 79000 0.0703 0.3242 - 0.9458
14.6628 80000 0.073 0.3078 - 0.9469
14.8460 81000 0.073 0.3111 - 0.9448
15.0293 82000 0.0731 0.3319 - 0.9459
15.2126 83000 0.0629 0.3094 - 0.9464
15.3959 84000 0.0644 0.3440 - 0.9427
15.5792 85000 0.0673 0.3234 - 0.9457
15.7625 86000 0.068 0.3192 - 0.9430
15.9457 87000 0.0687 0.3097 - 0.9428
16.1290 88000 0.0618 0.3379 - 0.9466
16.3123 89000 0.0615 0.3192 - 0.9436
16.4956 90000 0.0605 0.3303 - 0.9452
16.6789 91000 0.0635 0.3154 - 0.9445
16.8622 92000 0.0637 0.3324 - 0.9467
17.0455 93000 0.0615 0.3365 - 0.9424
17.2287 94000 0.056 0.3332 - 0.9446
17.4120 95000 0.0567 0.3412 - 0.9432
17.5953 96000 0.0571 0.3419 - 0.9444
17.7786 97000 0.0589 0.3271 - 0.9403
17.9619 98000 0.0588 0.3281 - 0.9440
18.1452 99000 0.053 0.3282 - 0.9475
18.3284 100000 0.0525 0.3414 - 0.9470
18.5117 101000 0.0528 0.3263 - 0.9450
18.6950 102000 0.0539 0.3363 - 0.9428
18.8783 103000 0.056 0.3487 - 0.9454
19.0616 104000 0.0528 0.3701 - 0.9465
19.2449 105000 0.0464 0.3877 - 0.9328
19.4282 106000 0.0499 0.3379 - 0.9451
19.6114 107000 0.0496 0.3500 - 0.9442
19.7947 108000 0.0502 0.3420 - 0.9444
19.9780 109000 0.0519 0.3459 - 0.9442
20.1613 110000 0.0443 0.3755 - 0.9449
20.3446 111000 0.0449 0.3588 - 0.9447
20.5279 112000 0.0448 0.3616 - 0.9448
20.7111 113000 0.0471 0.3463 - 0.9426
20.8944 114000 0.0474 0.3784 - 0.9400
21.0777 115000 0.0451 0.3493 - 0.9447
21.2610 116000 0.0415 0.3633 - 0.9448
21.4443 117000 0.0412 0.3635 - 0.9472
21.6276 118000 0.0441 0.3710 - 0.9454
21.8109 119000 0.0427 0.3696 - 0.9459
21.9941 120000 0.045 0.3571 - 0.9440
22.1774 121000 0.0384 0.3815 - 0.9431
22.3607 122000 0.0389 0.3832 - 0.9428
22.5440 123000 0.0397 0.3773 - 0.9461
22.7273 124000 0.0402 0.3977 - 0.9415
22.9106 125000 0.0399 0.3870 - 0.9354
23.0938 126000 0.0376 0.3820 - 0.9409
23.2771 127000 0.0362 0.3755 - 0.9411
23.4604 128000 0.0358 0.3915 - 0.9461
23.6437 129000 0.0368 0.3688 - 0.9411
23.8270 130000 0.0374 0.4068 - 0.9427
24.0103 131000 0.0376 0.4155 - 0.9445
24.1935 132000 0.0325 0.3967 - 0.9434
24.3768 133000 0.0333 0.4209 - 0.9425
24.5601 134000 0.0335 0.4018 - 0.9432
24.7434 135000 0.0343 0.4250 - 0.9443
24.9267 136000 0.0345 0.4185 - 0.9414
25.1100 137000 0.0316 0.4075 - 0.9454
25.2933 138000 0.0299 0.4096 - 0.9454
25.4765 139000 0.0294 0.4135 - 0.9459
25.6598 140000 0.0317 0.3997 - 0.9445
25.8431 141000 0.0328 0.4093 - 0.9438
26.0264 142000 0.0317 0.4361 - 0.9404
26.2097 143000 0.027 0.4347 - 0.9454
26.3930 144000 0.0281 0.4149 - 0.9413
26.5762 145000 0.0283 0.4151 - 0.9454
26.7595 146000 0.0302 0.4041 - 0.9416
26.9428 147000 0.0301 0.4265 - 0.9340
27.1261 148000 0.026 0.4223 - 0.9426
27.3094 149000 0.0267 0.4237 - 0.9430
27.4927 150000 0.0268 0.4281 - 0.9458
27.6760 151000 0.0262 0.4193 - 0.9426
27.8592 152000 0.0262 0.4412 - 0.9402
28.0425 153000 0.0261 0.4795 - 0.9425
28.2258 154000 0.024 0.4519 - 0.9442
28.4091 155000 0.024 0.4395 - 0.9440
28.5924 156000 0.025 0.4549 - 0.9456
28.7757 157000 0.0253 0.4446 - 0.9429
28.9589 158000 0.0258 0.4349 - 0.9425
29.1422 159000 0.0211 0.4490 - 0.9430
29.3255 160000 0.0218 0.4538 - 0.9455
29.5088 161000 0.0217 0.4771 - 0.9435
29.6921 162000 0.0228 0.4238 - 0.9440
29.8754 163000 0.022 0.4731 - 0.9412
30.0587 164000 0.0227 0.4630 - 0.9450
30.2419 165000 0.0197 0.4840 - 0.9453
30.4252 166000 0.0198 0.4799 - 0.9434
30.6085 167000 0.022 0.4650 - 0.9453
30.7918 168000 0.0211 0.4592 - 0.9465
30.9751 169000 0.022 0.4727 - 0.9405
31.1584 170000 0.0184 0.4802 - 0.9460
31.3416 171000 0.0186 0.4953 - 0.9449
31.5249 172000 0.0187 0.4516 - 0.9424
31.7082 173000 0.019 0.4803 - 0.9444
31.8915 174000 0.0186 0.4499 - 0.9448
32.0748 175000 0.0181 0.5211 - 0.9377
32.2581 176000 0.0163 0.4941 - 0.9434
32.4413 177000 0.0168 0.4672 - 0.9433
32.6246 178000 0.0171 0.4990 - 0.9414
32.8079 179000 0.0185 0.4537 - 0.9444
32.9912 180000 0.0179 0.4929 - 0.9460
33.1745 181000 0.0144 0.5037 - 0.9407
33.3578 182000 0.0143 0.4986 - 0.9449
33.5411 183000 0.016 0.5043 - 0.9452
33.7243 184000 0.0152 0.5090 - 0.9427
33.9076 185000 0.0154 0.5100 - 0.9414
34.0909 186000 0.0146 0.5367 - 0.9386
34.2742 187000 0.0138 0.5063 - 0.9395
34.4575 188000 0.0143 0.4871 - 0.9446
34.6408 189000 0.014 0.4947 - 0.9483
34.824 190000 0.0142 0.5079 - 0.9467
35.0073 191000 0.014 0.5062 - 0.9439
35.1906 192000 0.0122 0.5293 - 0.9410
35.3739 193000 0.0127 0.5351 - 0.9401
35.5572 194000 0.0132 0.5263 - 0.9369
35.7405 195000 0.0134 0.5300 - 0.9427
35.9238 196000 0.0138 0.5230 - 0.9416
36.1070 197000 0.0129 0.5399 - 0.9417
36.2903 198000 0.0109 0.5352 - 0.9433
36.4736 199000 0.0114 0.5587 - 0.9404
36.6569 200000 0.012 0.5289 - 0.9441
36.8402 201000 0.012 0.5516 - 0.9434
37.0235 202000 0.0121 0.5467 - 0.9418
37.2067 203000 0.0108 0.5499 - 0.9412
37.3900 204000 0.0107 0.5459 - 0.9427
37.5733 205000 0.0105 0.5375 - 0.9414
37.7566 206000 0.0109 0.5566 - 0.9421
37.9399 207000 0.011 0.5601 - 0.9428
38.1232 208000 0.0095 0.5700 - 0.9406
38.3065 209000 0.0098 0.5493 - 0.9417
38.4897 210000 0.0093 0.5867 - 0.9372
38.6730 211000 0.0095 0.6087 - 0.9394
38.8563 212000 0.0096 0.5888 - 0.9397
39.0396 213000 0.0094 0.5806 - 0.9380
39.2229 214000 0.0087 0.5927 - 0.9393
39.4062 215000 0.0079 0.6153 - 0.9376
39.5894 216000 0.009 0.6151 - 0.9398
39.7727 217000 0.009 0.5601 - 0.9379
39.9560 218000 0.0086 0.5845 - 0.9409
40.1393 219000 0.0078 0.5929 - 0.9396
40.3226 220000 0.0077 0.6086 - 0.9417
40.5059 221000 0.0075 0.6053 - 0.9418
40.6891 222000 0.008 0.6078 - 0.9394
40.8724 223000 0.0084 0.5975 - 0.9423
41.0557 224000 0.0068 0.6410 - 0.9400
41.2390 225000 0.0067 0.6183 - 0.9409
41.4223 226000 0.0067 0.6239 - 0.9401
41.6056 227000 0.0075 0.5971 - 0.9408
41.7889 228000 0.0069 0.6458 - 0.9396
41.9721 229000 0.0073 0.6289 - 0.9337
42.1554 230000 0.0061 0.6311 - 0.9351
42.3387 231000 0.0064 0.6371 - 0.9254
42.5220 232000 0.0067 0.6119 - 0.9238
42.7053 233000 0.0068 0.6045 - 0.9435
42.8886 234000 0.0064 0.6246 - 0.9403
43.0718 235000 0.0066 0.6077 - 0.9355
43.2551 236000 0.0054 0.6348 - 0.9429
43.4384 237000 0.0053 0.6606 - 0.9414
43.6217 238000 0.0054 0.6373 - 0.9421
43.8050 239000 0.006 0.6122 - 0.9391
43.9883 240000 0.0058 0.6438 - 0.9380
44.1716 241000 0.0051 0.6474 - 0.9392
44.3548 242000 0.0049 0.6637 - 0.9399
44.5381 243000 0.005 0.6765 - 0.9420
44.7214 244000 0.0052 0.6585 - 0.9406
44.9047 245000 0.005 0.6609 - 0.9420
45.0880 246000 0.0048 0.6725 - 0.9417
45.2713 247000 0.0044 0.6597 - 0.9411
45.4545 248000 0.0045 0.6717 - 0.9381
45.6378 249000 0.0046 0.6689 - 0.9361
45.8211 250000 0.0046 0.6703 - 0.9334
46.0044 251000 0.0044 0.6958 - 0.9324
46.1877 252000 0.0041 0.6884 - 0.9380
46.3710 253000 0.0041 0.6958 - 0.9342
46.5543 254000 0.004 0.6796 - 0.9375
46.7375 255000 0.0042 0.6735 - 0.9311
46.9208 256000 0.004 0.7004 - 0.9264
47.1041 257000 0.0041 0.6798 - 0.9303
47.2874 258000 0.0036 0.7039 - 0.9330
47.4707 259000 0.0037 0.7133 - 0.9277
47.6540 260000 0.0033 0.7200 - 0.9250
47.8372 261000 0.0038 0.7204 - 0.9292
48.0205 262000 0.0034 0.7214 - 0.9336
48.2038 263000 0.0037 0.7077 - 0.9313
48.3871 264000 0.0033 0.7218 - 0.9289
48.5704 265000 0.0033 0.7258 - 0.9328
48.7537 266000 0.0034 0.7215 - 0.9346
48.9370 267000 0.0031 0.7300 - 0.9347
49.1202 268000 0.0033 0.7242 - 0.9350
49.3035 269000 0.0028 0.7320 - 0.9345
49.4868 270000 0.003 0.7397 - 0.9341
49.6701 271000 0.0029 0.7410 - 0.9342
49.8534 272000 0.0029 0.7426 - 0.9345
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.0
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
199
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aditeyabaral-redis/langcache-reranker-v1

Finetuned
(5)
this model

Dataset used to train aditeyabaral-redis/langcache-reranker-v1

Evaluation results