File size: 49,911 Bytes
5ada8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
5c8f0a8
5ada8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8f0a8
 
 
 
 
 
 
5ada8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf290b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8f0a8
cf290b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ada8ca
cf290b1
5ada8ca
5c8f0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf290b1
 
 
5ada8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
---
language:
- en
license: apache-2.0
tags:
- cross-encoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1047690
- loss:BinaryCrossEntropyLoss
base_model: Alibaba-NLP/gte-reranker-modernbert-base
datasets:
- aditeyabaral-redis/langcache-sentencepairs
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- accuracy
- accuracy_threshold
- f1
- f1_threshold
- precision
- recall
- average_precision
model-index:
- name: Redis fine-tuned CrossEncoder model for semantic caching on LangCache
  results:
  - task:
      type: cross-encoder-classification
      name: Cross Encoder Classification
    dataset:
      name: val
      type: val
    metrics:
    - type: accuracy
      value: 0.77180249851279
      name: Accuracy
    - type: accuracy_threshold
      value: 0.8926752805709839
      name: Accuracy Threshold
    - type: f1
      value: 0.6933947772657449
      name: F1
    - type: f1_threshold
      value: 0.8759380578994751
      name: F1 Threshold
    - type: precision
      value: 0.678796992481203
      name: Precision
    - type: recall
      value: 0.7086342229199372
      name: Recall
    - type: average_precision
      value: 0.7676424589681807
      name: Average Precision
  - task:
      type: cross-encoder-classification
      name: Cross Encoder Classification
    dataset:
      name: test
      type: test
    metrics:
    - type: accuracy
      value: 0.8947292046242402
      name: Accuracy
    - type: accuracy_threshold
      value: 0.8615613579750061
      name: Accuracy Threshold
    - type: f1
      value: 0.8797439414723366
      name: F1
    - type: f1_threshold
      value: 0.503699541091919
      name: F1 Threshold
    - type: precision
      value: 0.8643306379155435
      name: Precision
    - type: recall
      value: 0.8957169459962756
      name: Recall
    - type: average_precision
      value: 0.934515467879065
      name: Average Precision
---

# Redis fine-tuned CrossEncoder model for semantic caching on LangCache

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for sentence pair classification.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) <!-- at revision f7481e6055501a30fb19d090657df9ec1f79ab2c -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("aditeyabaral-redis/langcache-reranker-v1")
# Get scores for pairs of texts
pairs = [
    ['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .'],
    ['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .'],
    ['After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .', 'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .'],
    ['She married Peter Haygarth on 29 May 1964 in Durban . Her second marriage , to Robin Osborne , took place in 1977 .', 'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .'],
    ['In 2005 she moved to Norway , settled in Geilo and worked as a rafting guide , in 2006 she started mountain biking - races .', 'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'The newer Punts are still very much in existence today and race in the same fleets as the older boats .',
    [
        'The newer punts are still very much in existence today and run in the same fleets as the older boats .',
        'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .',
        'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .',
        'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .',
        'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Classification

* Datasets: `val` and `test`
* Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator)

| Metric                | val        | test       |
|:----------------------|:-----------|:-----------|
| accuracy              | 0.7718     | 0.8947     |
| accuracy_threshold    | 0.8927     | 0.8616     |
| f1                    | 0.6934     | 0.8797     |
| f1_threshold          | 0.8759     | 0.5037     |
| precision             | 0.6788     | 0.8643     |
| recall                | 0.7086     | 0.8957     |
| **average_precision** | **0.7676** | **0.9345** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs)
* Size: 62,021 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                                        | sentence2                                                                                        | label                                           |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           | int                                             |
  | details | <ul><li>min: 27 characters</li><li>mean: 112.72 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 27 characters</li><li>mean: 112.54 characters</li><li>max: 198 characters</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> |
* Samples:
  | sentence1                                                                                                                                   | sentence2                                                                                                                                     | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>1</code> |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code>                       | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code>                | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs)
* Size: 62,021 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                                        | sentence2                                                                                        | label                                           |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           | int                                             |
  | details | <ul><li>min: 27 characters</li><li>mean: 112.72 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 27 characters</li><li>mean: 112.54 characters</li><li>max: 198 characters</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> |
* Samples:
  | sentence1                                                                                                                                   | sentence2                                                                                                                                     | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>1</code> |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code>                       | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code>                | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `learning_rate`: 0.0002
- `num_train_epochs`: 50
- `warmup_steps`: 1000
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `push_to_hub`: True
- `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0002
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 1000
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step       | Training Loss | Validation Loss | val_average_precision | test_average_precision |
|:----------:|:----------:|:-------------:|:---------------:|:---------------------:|:----------------------:|
| -1         | -1         | -             | -               | 0.7676                | 0.6907                 |
| 0.1833     | 1000       | 0.2986        | 0.3912          | -                     | 0.8585                 |
| 0.3666     | 2000       | 0.2465        | 0.3856          | -                     | 0.8956                 |
| 0.5499     | 3000       | 0.2287        | 0.3362          | -                     | 0.9160                 |
| 0.7331     | 4000       | 0.2171        | 0.3408          | -                     | 0.9071                 |
| 0.9164     | 5000       | 0.2068        | 0.3182          | -                     | 0.9220                 |
| 1.0997     | 6000       | 0.1991        | 0.3458          | -                     | 0.8686                 |
| 1.2830     | 7000       | 0.1939        | 0.3188          | -                     | 0.9244                 |
| 1.4663     | 8000       | 0.1917        | 0.3120          | -                     | 0.9287                 |
| 1.6496     | 9000       | 0.1906        | 0.3015          | -                     | 0.9279                 |
| 1.8328     | 10000      | 0.1884        | 0.2986          | -                     | 0.9316                 |
| 2.0161     | 11000      | 0.183         | 0.3065          | -                     | 0.9320                 |
| 2.1994     | 12000      | 0.1714        | 0.3046          | -                     | 0.9180                 |
| 2.3827     | 13000      | 0.1738        | 0.2994          | -                     | 0.9315                 |
| 2.5660     | 14000      | 0.1709        | 0.2965          | -                     | 0.9347                 |
| 2.7493     | 15000      | 0.1717        | 0.2911          | -                     | 0.9309                 |
| 2.9326     | 16000      | 0.1698        | 0.2900          | -                     | 0.9354                 |
| 3.1158     | 17000      | 0.16          | 0.2894          | -                     | 0.9377                 |
| 3.2991     | 18000      | 0.1589        | 0.2830          | -                     | 0.9356                 |
| 3.4824     | 19000      | 0.1574        | 0.2829          | -                     | 0.9337                 |
| 3.6657     | 20000      | 0.1572        | 0.2818          | -                     | 0.9324                 |
| 3.8490     | 21000      | 0.1587        | 0.2866          | -                     | 0.9365                 |
| 4.0323     | 22000      | 0.1543        | 0.2923          | -                     | 0.9389                 |
| 4.2155     | 23000      | 0.1445        | 0.2871          | -                     | 0.9430                 |
| 4.3988     | 24000      | 0.1447        | 0.2793          | -                     | 0.9429                 |
| 4.5821     | 25000      | 0.1473        | 0.2791          | -                     | 0.9386                 |
| 4.7654     | 26000      | 0.146         | 0.2700          | -                     | 0.9417                 |
| 4.9487     | 27000      | 0.1473        | 0.2697          | -                     | 0.9419                 |
| 5.1320     | 28000      | 0.1365        | 0.2810          | -                     | 0.9411                 |
| 5.3152     | 29000      | 0.1331        | 0.2764          | -                     | 0.9397                 |
| 5.4985     | 30000      | 0.1372        | 0.2794          | -                     | 0.9416                 |
| 5.6818     | 31000      | 0.1365        | 0.2751          | -                     | 0.9408                 |
| 5.8651     | 32000      | 0.1365        | 0.2724          | -                     | 0.9411                 |
| 6.0484     | 33000      | 0.1348        | 0.2767          | -                     | 0.9378                 |
| 6.2317     | 34000      | 0.1236        | 0.2840          | -                     | 0.9388                 |
| 6.4150     | 35000      | 0.1262        | 0.2845          | -                     | 0.9437                 |
| 6.5982     | 36000      | 0.1277        | 0.2781          | -                     | 0.9446                 |
| 6.7815     | 37000      | 0.129         | 0.2705          | -                     | 0.9427                 |
| 6.9648     | 38000      | 0.1279        | 0.2773          | -                     | 0.9381                 |
| 7.1481     | 39000      | 0.1173        | 0.2875          | -                     | 0.9420                 |
| 7.3314     | 40000      | 0.1175        | 0.2901          | -                     | 0.9438                 |
| 7.5147     | 41000      | 0.1174        | 0.2787          | -                     | 0.9420                 |
| 7.6979     | 42000      | 0.118         | 0.2879          | -                     | 0.9424                 |
| 7.8812     | 43000      | 0.1201        | 0.2826          | -                     | 0.9450                 |
| 8.0645     | 44000      | 0.1168        | 0.2851          | -                     | 0.9419                 |
| 8.2478     | 45000      | 0.1062        | 0.2913          | -                     | 0.9450                 |
| 8.4311     | 46000      | 0.1091        | 0.2918          | -                     | 0.9454                 |
| 8.6144     | 47000      | 0.1117        | 0.2799          | -                     | 0.9445                 |
| 8.7977     | 48000      | 0.1123        | 0.2762          | -                     | 0.9443                 |
| 8.9809     | 49000      | 0.1132        | 0.2772          | -                     | 0.9455                 |
| 9.1642     | 50000      | 0.1016        | 0.2943          | -                     | 0.9433                 |
| 9.3475     | 51000      | 0.1012        | 0.2879          | -                     | 0.9441                 |
| 9.5308     | 52000      | 0.1029        | 0.2851          | -                     | 0.9442                 |
| 9.7141     | 53000      | 0.105         | 0.2905          | -                     | 0.9448                 |
| 9.8974     | 54000      | 0.1062        | 0.2960          | -                     | 0.9425                 |
| 10.0806    | 55000      | 0.0996        | 0.2984          | -                     | 0.9430                 |
| 10.2639    | 56000      | 0.0924        | 0.2947          | -                     | 0.9432                 |
| 10.4472    | 57000      | 0.0939        | 0.2918          | -                     | 0.9421                 |
| 10.6305    | 58000      | 0.0977        | 0.2895          | -                     | 0.9438                 |
| 10.8138    | 59000      | 0.0977        | 0.2905          | -                     | 0.9446                 |
| 10.9971    | 60000      | 0.0985        | 0.2882          | -                     | 0.9403                 |
| 11.1804    | 61000      | 0.0857        | 0.3025          | -                     | 0.9435                 |
| 11.3636    | 62000      | 0.0869        | 0.2997          | -                     | 0.9450                 |
| 11.5469    | 63000      | 0.0886        | 0.3025          | -                     | 0.9459                 |
| 11.7302    | 64000      | 0.0901        | 0.3000          | -                     | 0.9443                 |
| 11.9135    | 65000      | 0.092         | 0.2913          | -                     | 0.9424                 |
| 12.0968    | 66000      | 0.085         | 0.3017          | -                     | 0.9443                 |
| 12.2801    | 67000      | 0.0801        | 0.3101          | -                     | 0.9449                 |
| 12.4633    | 68000      | 0.0823        | 0.3018          | -                     | 0.9468                 |
| 12.6466    | 69000      | 0.0841        | 0.2971          | -                     | 0.9457                 |
| 12.8299    | 70000      | 0.0855        | 0.3063          | -                     | 0.9428                 |
| 13.0132    | 71000      | 0.0854        | 0.3105          | -                     | 0.9436                 |
| 13.1965    | 72000      | 0.0744        | 0.3017          | -                     | 0.9451                 |
| 13.3798    | 73000      | 0.0763        | 0.3024          | -                     | 0.9425                 |
| 13.5630    | 74000      | 0.0777        | 0.2948          | -                     | 0.9461                 |
| 13.7463    | 75000      | 0.0791        | 0.3006          | -                     | 0.9466                 |
| 13.9296    | 76000      | 0.0803        | 0.3001          | -                     | 0.9446                 |
| 14.1129    | 77000      | 0.0721        | 0.3229          | -                     | 0.9445                 |
| 14.2962    | 78000      | 0.0692        | 0.3231          | -                     | 0.9437                 |
| 14.4795    | 79000      | 0.0703        | 0.3242          | -                     | 0.9458                 |
| 14.6628    | 80000      | 0.073         | 0.3078          | -                     | 0.9469                 |
| 14.8460    | 81000      | 0.073         | 0.3111          | -                     | 0.9448                 |
| 15.0293    | 82000      | 0.0731        | 0.3319          | -                     | 0.9459                 |
| 15.2126    | 83000      | 0.0629        | 0.3094          | -                     | 0.9464                 |
| 15.3959    | 84000      | 0.0644        | 0.3440          | -                     | 0.9427                 |
| 15.5792    | 85000      | 0.0673        | 0.3234          | -                     | 0.9457                 |
| 15.7625    | 86000      | 0.068         | 0.3192          | -                     | 0.9430                 |
| 15.9457    | 87000      | 0.0687        | 0.3097          | -                     | 0.9428                 |
| 16.1290    | 88000      | 0.0618        | 0.3379          | -                     | 0.9466                 |
| 16.3123    | 89000      | 0.0615        | 0.3192          | -                     | 0.9436                 |
| 16.4956    | 90000      | 0.0605        | 0.3303          | -                     | 0.9452                 |
| 16.6789    | 91000      | 0.0635        | 0.3154          | -                     | 0.9445                 |
| 16.8622    | 92000      | 0.0637        | 0.3324          | -                     | 0.9467                 |
| 17.0455    | 93000      | 0.0615        | 0.3365          | -                     | 0.9424                 |
| 17.2287    | 94000      | 0.056         | 0.3332          | -                     | 0.9446                 |
| 17.4120    | 95000      | 0.0567        | 0.3412          | -                     | 0.9432                 |
| 17.5953    | 96000      | 0.0571        | 0.3419          | -                     | 0.9444                 |
| 17.7786    | 97000      | 0.0589        | 0.3271          | -                     | 0.9403                 |
| 17.9619    | 98000      | 0.0588        | 0.3281          | -                     | 0.9440                 |
| 18.1452    | 99000      | 0.053         | 0.3282          | -                     | 0.9475                 |
| 18.3284    | 100000     | 0.0525        | 0.3414          | -                     | 0.9470                 |
| 18.5117    | 101000     | 0.0528        | 0.3263          | -                     | 0.9450                 |
| 18.6950    | 102000     | 0.0539        | 0.3363          | -                     | 0.9428                 |
| 18.8783    | 103000     | 0.056         | 0.3487          | -                     | 0.9454                 |
| 19.0616    | 104000     | 0.0528        | 0.3701          | -                     | 0.9465                 |
| 19.2449    | 105000     | 0.0464        | 0.3877          | -                     | 0.9328                 |
| 19.4282    | 106000     | 0.0499        | 0.3379          | -                     | 0.9451                 |
| 19.6114    | 107000     | 0.0496        | 0.3500          | -                     | 0.9442                 |
| 19.7947    | 108000     | 0.0502        | 0.3420          | -                     | 0.9444                 |
| 19.9780    | 109000     | 0.0519        | 0.3459          | -                     | 0.9442                 |
| 20.1613    | 110000     | 0.0443        | 0.3755          | -                     | 0.9449                 |
| 20.3446    | 111000     | 0.0449        | 0.3588          | -                     | 0.9447                 |
| 20.5279    | 112000     | 0.0448        | 0.3616          | -                     | 0.9448                 |
| 20.7111    | 113000     | 0.0471        | 0.3463          | -                     | 0.9426                 |
| 20.8944    | 114000     | 0.0474        | 0.3784          | -                     | 0.9400                 |
| 21.0777    | 115000     | 0.0451        | 0.3493          | -                     | 0.9447                 |
| 21.2610    | 116000     | 0.0415        | 0.3633          | -                     | 0.9448                 |
| 21.4443    | 117000     | 0.0412        | 0.3635          | -                     | 0.9472                 |
| 21.6276    | 118000     | 0.0441        | 0.3710          | -                     | 0.9454                 |
| 21.8109    | 119000     | 0.0427        | 0.3696          | -                     | 0.9459                 |
| 21.9941    | 120000     | 0.045         | 0.3571          | -                     | 0.9440                 |
| 22.1774    | 121000     | 0.0384        | 0.3815          | -                     | 0.9431                 |
| 22.3607    | 122000     | 0.0389        | 0.3832          | -                     | 0.9428                 |
| 22.5440    | 123000     | 0.0397        | 0.3773          | -                     | 0.9461                 |
| 22.7273    | 124000     | 0.0402        | 0.3977          | -                     | 0.9415                 |
| 22.9106    | 125000     | 0.0399        | 0.3870          | -                     | 0.9354                 |
| 23.0938    | 126000     | 0.0376        | 0.3820          | -                     | 0.9409                 |
| 23.2771    | 127000     | 0.0362        | 0.3755          | -                     | 0.9411                 |
| 23.4604    | 128000     | 0.0358        | 0.3915          | -                     | 0.9461                 |
| 23.6437    | 129000     | 0.0368        | 0.3688          | -                     | 0.9411                 |
| 23.8270    | 130000     | 0.0374        | 0.4068          | -                     | 0.9427                 |
| 24.0103    | 131000     | 0.0376        | 0.4155          | -                     | 0.9445                 |
| 24.1935    | 132000     | 0.0325        | 0.3967          | -                     | 0.9434                 |
| 24.3768    | 133000     | 0.0333        | 0.4209          | -                     | 0.9425                 |
| 24.5601    | 134000     | 0.0335        | 0.4018          | -                     | 0.9432                 |
| 24.7434    | 135000     | 0.0343        | 0.4250          | -                     | 0.9443                 |
| 24.9267    | 136000     | 0.0345        | 0.4185          | -                     | 0.9414                 |
| 25.1100    | 137000     | 0.0316        | 0.4075          | -                     | 0.9454                 |
| 25.2933    | 138000     | 0.0299        | 0.4096          | -                     | 0.9454                 |
| 25.4765    | 139000     | 0.0294        | 0.4135          | -                     | 0.9459                 |
| 25.6598    | 140000     | 0.0317        | 0.3997          | -                     | 0.9445                 |
| 25.8431    | 141000     | 0.0328        | 0.4093          | -                     | 0.9438                 |
| 26.0264    | 142000     | 0.0317        | 0.4361          | -                     | 0.9404                 |
| 26.2097    | 143000     | 0.027         | 0.4347          | -                     | 0.9454                 |
| 26.3930    | 144000     | 0.0281        | 0.4149          | -                     | 0.9413                 |
| 26.5762    | 145000     | 0.0283        | 0.4151          | -                     | 0.9454                 |
| 26.7595    | 146000     | 0.0302        | 0.4041          | -                     | 0.9416                 |
| 26.9428    | 147000     | 0.0301        | 0.4265          | -                     | 0.9340                 |
| 27.1261    | 148000     | 0.026         | 0.4223          | -                     | 0.9426                 |
| 27.3094    | 149000     | 0.0267        | 0.4237          | -                     | 0.9430                 |
| 27.4927    | 150000     | 0.0268        | 0.4281          | -                     | 0.9458                 |
| 27.6760    | 151000     | 0.0262        | 0.4193          | -                     | 0.9426                 |
| 27.8592    | 152000     | 0.0262        | 0.4412          | -                     | 0.9402                 |
| 28.0425    | 153000     | 0.0261        | 0.4795          | -                     | 0.9425                 |
| 28.2258    | 154000     | 0.024         | 0.4519          | -                     | 0.9442                 |
| 28.4091    | 155000     | 0.024         | 0.4395          | -                     | 0.9440                 |
| 28.5924    | 156000     | 0.025         | 0.4549          | -                     | 0.9456                 |
| 28.7757    | 157000     | 0.0253        | 0.4446          | -                     | 0.9429                 |
| 28.9589    | 158000     | 0.0258        | 0.4349          | -                     | 0.9425                 |
| 29.1422    | 159000     | 0.0211        | 0.4490          | -                     | 0.9430                 |
| 29.3255    | 160000     | 0.0218        | 0.4538          | -                     | 0.9455                 |
| 29.5088    | 161000     | 0.0217        | 0.4771          | -                     | 0.9435                 |
| 29.6921    | 162000     | 0.0228        | 0.4238          | -                     | 0.9440                 |
| 29.8754    | 163000     | 0.022         | 0.4731          | -                     | 0.9412                 |
| 30.0587    | 164000     | 0.0227        | 0.4630          | -                     | 0.9450                 |
| 30.2419    | 165000     | 0.0197        | 0.4840          | -                     | 0.9453                 |
| 30.4252    | 166000     | 0.0198        | 0.4799          | -                     | 0.9434                 |
| 30.6085    | 167000     | 0.022         | 0.4650          | -                     | 0.9453                 |
| 30.7918    | 168000     | 0.0211        | 0.4592          | -                     | 0.9465                 |
| 30.9751    | 169000     | 0.022         | 0.4727          | -                     | 0.9405                 |
| 31.1584    | 170000     | 0.0184        | 0.4802          | -                     | 0.9460                 |
| 31.3416    | 171000     | 0.0186        | 0.4953          | -                     | 0.9449                 |
| 31.5249    | 172000     | 0.0187        | 0.4516          | -                     | 0.9424                 |
| 31.7082    | 173000     | 0.019         | 0.4803          | -                     | 0.9444                 |
| 31.8915    | 174000     | 0.0186        | 0.4499          | -                     | 0.9448                 |
| 32.0748    | 175000     | 0.0181        | 0.5211          | -                     | 0.9377                 |
| 32.2581    | 176000     | 0.0163        | 0.4941          | -                     | 0.9434                 |
| 32.4413    | 177000     | 0.0168        | 0.4672          | -                     | 0.9433                 |
| 32.6246    | 178000     | 0.0171        | 0.4990          | -                     | 0.9414                 |
| 32.8079    | 179000     | 0.0185        | 0.4537          | -                     | 0.9444                 |
| 32.9912    | 180000     | 0.0179        | 0.4929          | -                     | 0.9460                 |
| 33.1745    | 181000     | 0.0144        | 0.5037          | -                     | 0.9407                 |
| 33.3578    | 182000     | 0.0143        | 0.4986          | -                     | 0.9449                 |
| 33.5411    | 183000     | 0.016         | 0.5043          | -                     | 0.9452                 |
| 33.7243    | 184000     | 0.0152        | 0.5090          | -                     | 0.9427                 |
| 33.9076    | 185000     | 0.0154        | 0.5100          | -                     | 0.9414                 |
| 34.0909    | 186000     | 0.0146        | 0.5367          | -                     | 0.9386                 |
| 34.2742    | 187000     | 0.0138        | 0.5063          | -                     | 0.9395                 |
| 34.4575    | 188000     | 0.0143        | 0.4871          | -                     | 0.9446                 |
| 34.6408    | 189000     | 0.014         | 0.4947          | -                     | 0.9483                 |
| **34.824** | **190000** | **0.0142**    | **0.5079**      | **-**                 | **0.9467**             |
| 35.0073    | 191000     | 0.014         | 0.5062          | -                     | 0.9439                 |
| 35.1906    | 192000     | 0.0122        | 0.5293          | -                     | 0.9410                 |
| 35.3739    | 193000     | 0.0127        | 0.5351          | -                     | 0.9401                 |
| 35.5572    | 194000     | 0.0132        | 0.5263          | -                     | 0.9369                 |
| 35.7405    | 195000     | 0.0134        | 0.5300          | -                     | 0.9427                 |
| 35.9238    | 196000     | 0.0138        | 0.5230          | -                     | 0.9416                 |
| 36.1070    | 197000     | 0.0129        | 0.5399          | -                     | 0.9417                 |
| 36.2903    | 198000     | 0.0109        | 0.5352          | -                     | 0.9433                 |
| 36.4736    | 199000     | 0.0114        | 0.5587          | -                     | 0.9404                 |
| 36.6569    | 200000     | 0.012         | 0.5289          | -                     | 0.9441                 |
| 36.8402    | 201000     | 0.012         | 0.5516          | -                     | 0.9434                 |
| 37.0235    | 202000     | 0.0121        | 0.5467          | -                     | 0.9418                 |
| 37.2067    | 203000     | 0.0108        | 0.5499          | -                     | 0.9412                 |
| 37.3900    | 204000     | 0.0107        | 0.5459          | -                     | 0.9427                 |
| 37.5733    | 205000     | 0.0105        | 0.5375          | -                     | 0.9414                 |
| 37.7566    | 206000     | 0.0109        | 0.5566          | -                     | 0.9421                 |
| 37.9399    | 207000     | 0.011         | 0.5601          | -                     | 0.9428                 |
| 38.1232    | 208000     | 0.0095        | 0.5700          | -                     | 0.9406                 |
| 38.3065    | 209000     | 0.0098        | 0.5493          | -                     | 0.9417                 |
| 38.4897    | 210000     | 0.0093        | 0.5867          | -                     | 0.9372                 |
| 38.6730    | 211000     | 0.0095        | 0.6087          | -                     | 0.9394                 |
| 38.8563    | 212000     | 0.0096        | 0.5888          | -                     | 0.9397                 |
| 39.0396    | 213000     | 0.0094        | 0.5806          | -                     | 0.9380                 |
| 39.2229    | 214000     | 0.0087        | 0.5927          | -                     | 0.9393                 |
| 39.4062    | 215000     | 0.0079        | 0.6153          | -                     | 0.9376                 |
| 39.5894    | 216000     | 0.009         | 0.6151          | -                     | 0.9398                 |
| 39.7727    | 217000     | 0.009         | 0.5601          | -                     | 0.9379                 |
| 39.9560    | 218000     | 0.0086        | 0.5845          | -                     | 0.9409                 |
| 40.1393    | 219000     | 0.0078        | 0.5929          | -                     | 0.9396                 |
| 40.3226    | 220000     | 0.0077        | 0.6086          | -                     | 0.9417                 |
| 40.5059    | 221000     | 0.0075        | 0.6053          | -                     | 0.9418                 |
| 40.6891    | 222000     | 0.008         | 0.6078          | -                     | 0.9394                 |
| 40.8724    | 223000     | 0.0084        | 0.5975          | -                     | 0.9423                 |
| 41.0557    | 224000     | 0.0068        | 0.6410          | -                     | 0.9400                 |
| 41.2390    | 225000     | 0.0067        | 0.6183          | -                     | 0.9409                 |
| 41.4223    | 226000     | 0.0067        | 0.6239          | -                     | 0.9401                 |
| 41.6056    | 227000     | 0.0075        | 0.5971          | -                     | 0.9408                 |
| 41.7889    | 228000     | 0.0069        | 0.6458          | -                     | 0.9396                 |
| 41.9721    | 229000     | 0.0073        | 0.6289          | -                     | 0.9337                 |
| 42.1554    | 230000     | 0.0061        | 0.6311          | -                     | 0.9351                 |
| 42.3387    | 231000     | 0.0064        | 0.6371          | -                     | 0.9254                 |
| 42.5220    | 232000     | 0.0067        | 0.6119          | -                     | 0.9238                 |
| 42.7053    | 233000     | 0.0068        | 0.6045          | -                     | 0.9435                 |
| 42.8886    | 234000     | 0.0064        | 0.6246          | -                     | 0.9403                 |
| 43.0718    | 235000     | 0.0066        | 0.6077          | -                     | 0.9355                 |
| 43.2551    | 236000     | 0.0054        | 0.6348          | -                     | 0.9429                 |
| 43.4384    | 237000     | 0.0053        | 0.6606          | -                     | 0.9414                 |
| 43.6217    | 238000     | 0.0054        | 0.6373          | -                     | 0.9421                 |
| 43.8050    | 239000     | 0.006         | 0.6122          | -                     | 0.9391                 |
| 43.9883    | 240000     | 0.0058        | 0.6438          | -                     | 0.9380                 |
| 44.1716    | 241000     | 0.0051        | 0.6474          | -                     | 0.9392                 |
| 44.3548    | 242000     | 0.0049        | 0.6637          | -                     | 0.9399                 |
| 44.5381    | 243000     | 0.005         | 0.6765          | -                     | 0.9420                 |
| 44.7214    | 244000     | 0.0052        | 0.6585          | -                     | 0.9406                 |
| 44.9047    | 245000     | 0.005         | 0.6609          | -                     | 0.9420                 |
| 45.0880    | 246000     | 0.0048        | 0.6725          | -                     | 0.9417                 |
| 45.2713    | 247000     | 0.0044        | 0.6597          | -                     | 0.9411                 |
| 45.4545    | 248000     | 0.0045        | 0.6717          | -                     | 0.9381                 |
| 45.6378    | 249000     | 0.0046        | 0.6689          | -                     | 0.9361                 |
| 45.8211    | 250000     | 0.0046        | 0.6703          | -                     | 0.9334                 |
| 46.0044    | 251000     | 0.0044        | 0.6958          | -                     | 0.9324                 |
| 46.1877    | 252000     | 0.0041        | 0.6884          | -                     | 0.9380                 |
| 46.3710    | 253000     | 0.0041        | 0.6958          | -                     | 0.9342                 |
| 46.5543    | 254000     | 0.004         | 0.6796          | -                     | 0.9375                 |
| 46.7375    | 255000     | 0.0042        | 0.6735          | -                     | 0.9311                 |
| 46.9208    | 256000     | 0.004         | 0.7004          | -                     | 0.9264                 |
| 47.1041    | 257000     | 0.0041        | 0.6798          | -                     | 0.9303                 |
| 47.2874    | 258000     | 0.0036        | 0.7039          | -                     | 0.9330                 |
| 47.4707    | 259000     | 0.0037        | 0.7133          | -                     | 0.9277                 |
| 47.6540    | 260000     | 0.0033        | 0.7200          | -                     | 0.9250                 |
| 47.8372    | 261000     | 0.0038        | 0.7204          | -                     | 0.9292                 |
| 48.0205    | 262000     | 0.0034        | 0.7214          | -                     | 0.9336                 |
| 48.2038    | 263000     | 0.0037        | 0.7077          | -                     | 0.9313                 |
| 48.3871    | 264000     | 0.0033        | 0.7218          | -                     | 0.9289                 |
| 48.5704    | 265000     | 0.0033        | 0.7258          | -                     | 0.9328                 |
| 48.7537    | 266000     | 0.0034        | 0.7215          | -                     | 0.9346                 |
| 48.9370    | 267000     | 0.0031        | 0.7300          | -                     | 0.9347                 |
| 49.1202    | 268000     | 0.0033        | 0.7242          | -                     | 0.9350                 |
| 49.3035    | 269000     | 0.0028        | 0.7320          | -                     | 0.9345                 |
| 49.4868    | 270000     | 0.003         | 0.7397          | -                     | 0.9341                 |
| 49.6701    | 271000     | 0.0029        | 0.7410          | -                     | 0.9342                 |
| 49.8534    | 272000     | 0.0029        | 0.7426          | -                     | 0.9345                 |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->