yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8182
  • Map: 0.5572
  • Map 50: 0.8422
  • Map 75: 0.5925
  • Map Small: -1.0
  • Map Medium: 0.4995
  • Map Large: 0.5815
  • Mar 1: 0.406
  • Mar 10: 0.7081
  • Mar 100: 0.771
  • Mar Small: -1.0
  • Mar Medium: 0.6571
  • Mar Large: 0.7893
  • Map Banana: 0.4184
  • Mar 100 Banana: 0.755
  • Map Orange: 0.5804
  • Mar 100 Orange: 0.7667
  • Map Apple: 0.6727
  • Mar 100 Apple: 0.7914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.3832 0.0662 0.1157 0.0675 -1.0 0.0739 0.0823 0.2406 0.4375 0.5766 -1.0 0.3429 0.6114 0.0589 0.585 0.0233 0.5476 0.1164 0.5971
No log 2.0 120 1.1698 0.1353 0.2296 0.1411 -1.0 0.084 0.153 0.2702 0.4985 0.5976 -1.0 0.3 0.6393 0.1204 0.64 0.0371 0.45 0.2482 0.7029
No log 3.0 180 1.1113 0.2256 0.3806 0.2196 -1.0 0.2253 0.2425 0.2869 0.541 0.6777 -1.0 0.4429 0.7111 0.2027 0.6825 0.0814 0.619 0.3926 0.7314
No log 4.0 240 1.1347 0.2893 0.4969 0.3288 -1.0 0.227 0.3081 0.31 0.5639 0.6804 -1.0 0.5 0.708 0.2585 0.6575 0.1758 0.6524 0.4336 0.7314
No log 5.0 300 1.2339 0.3139 0.5879 0.2967 -1.0 0.331 0.3322 0.3008 0.5406 0.632 -1.0 0.5429 0.6512 0.206 0.575 0.2292 0.681 0.5065 0.64
No log 6.0 360 0.9967 0.4014 0.6469 0.4216 -1.0 0.3962 0.4191 0.358 0.6481 0.7231 -1.0 0.6286 0.742 0.3186 0.6625 0.2708 0.7238 0.6147 0.7829
No log 7.0 420 1.0597 0.4142 0.7448 0.4478 -1.0 0.3237 0.4436 0.3425 0.6121 0.6731 -1.0 0.5143 0.6985 0.3237 0.6575 0.3926 0.6762 0.5264 0.6857
No log 8.0 480 0.8963 0.4543 0.7499 0.457 -1.0 0.4688 0.4784 0.3545 0.6702 0.7344 -1.0 0.6357 0.75 0.3374 0.72 0.4997 0.7548 0.526 0.7286
1.1464 9.0 540 0.9669 0.4473 0.706 0.4926 -1.0 0.3025 0.4892 0.369 0.6374 0.719 -1.0 0.5643 0.7461 0.3263 0.6775 0.4506 0.731 0.5649 0.7486
1.1464 10.0 600 0.9448 0.4642 0.7241 0.5078 -1.0 0.4185 0.4969 0.3656 0.6285 0.7131 -1.0 0.5714 0.7363 0.3286 0.6875 0.4589 0.7262 0.6051 0.7257
1.1464 11.0 660 0.9464 0.4645 0.7321 0.4897 -1.0 0.393 0.502 0.381 0.6472 0.7229 -1.0 0.6071 0.7425 0.3356 0.6925 0.4614 0.7476 0.5964 0.7286
1.1464 12.0 720 0.9143 0.4816 0.7601 0.5366 -1.0 0.4266 0.5129 0.37 0.6644 0.7434 -1.0 0.6143 0.7642 0.3459 0.7225 0.4752 0.7333 0.6236 0.7743
1.1464 13.0 780 0.8523 0.5186 0.7851 0.5524 -1.0 0.4882 0.5457 0.3976 0.6733 0.7352 -1.0 0.6071 0.7542 0.3849 0.7475 0.5316 0.7238 0.6394 0.7343
1.1464 14.0 840 0.8937 0.5077 0.7907 0.557 -1.0 0.4944 0.5348 0.3906 0.6622 0.748 -1.0 0.6571 0.7649 0.3544 0.7125 0.5471 0.7571 0.6215 0.7743
1.1464 15.0 900 0.8502 0.52 0.8012 0.5662 -1.0 0.4128 0.5524 0.4075 0.669 0.7367 -1.0 0.5857 0.7619 0.3692 0.715 0.5478 0.7381 0.6432 0.7571
1.1464 16.0 960 0.8644 0.515 0.8117 0.5603 -1.0 0.4659 0.5399 0.3743 0.6587 0.7319 -1.0 0.5857 0.7537 0.3634 0.7325 0.5928 0.769 0.5889 0.6943
0.6981 17.0 1020 0.8121 0.5252 0.8011 0.5394 -1.0 0.4677 0.5524 0.3924 0.6975 0.7589 -1.0 0.6571 0.7767 0.347 0.73 0.5675 0.7667 0.6611 0.78
0.6981 18.0 1080 0.8345 0.5364 0.8268 0.5691 -1.0 0.5232 0.559 0.3959 0.6849 0.7559 -1.0 0.6571 0.7713 0.3633 0.7425 0.58 0.7595 0.6659 0.7657
0.6981 19.0 1140 0.8186 0.531 0.8115 0.5705 -1.0 0.4991 0.5533 0.3908 0.6815 0.748 -1.0 0.65 0.7623 0.3856 0.7525 0.5816 0.7571 0.6257 0.7343
0.6981 20.0 1200 0.7999 0.562 0.8515 0.598 -1.0 0.4755 0.5915 0.4071 0.7006 0.7647 -1.0 0.6143 0.7881 0.4081 0.755 0.6069 0.7762 0.6711 0.7629
0.6981 21.0 1260 0.8050 0.5545 0.8284 0.6088 -1.0 0.4877 0.5829 0.3939 0.704 0.7691 -1.0 0.6429 0.7885 0.4096 0.7625 0.608 0.7619 0.6459 0.7829
0.6981 22.0 1320 0.8181 0.5503 0.813 0.573 -1.0 0.4993 0.5756 0.4033 0.7077 0.77 -1.0 0.6714 0.787 0.4089 0.7375 0.5731 0.7667 0.6689 0.8057
0.6981 23.0 1380 0.8230 0.553 0.8332 0.5737 -1.0 0.4984 0.5758 0.4016 0.7059 0.7706 -1.0 0.6571 0.7882 0.405 0.7575 0.5733 0.7571 0.6807 0.7971
0.6981 24.0 1440 0.8177 0.5512 0.8339 0.5859 -1.0 0.5113 0.5758 0.402 0.701 0.7675 -1.0 0.6357 0.7882 0.4096 0.7525 0.5716 0.7643 0.6724 0.7857
0.5444 25.0 1500 0.8300 0.558 0.8348 0.5836 -1.0 0.4993 0.5835 0.4049 0.7054 0.7706 -1.0 0.65 0.7902 0.4095 0.75 0.5775 0.7619 0.6868 0.8
0.5444 26.0 1560 0.8121 0.5618 0.8348 0.5814 -1.0 0.5067 0.5873 0.4102 0.7154 0.7776 -1.0 0.6714 0.7954 0.4142 0.7575 0.5854 0.7667 0.6859 0.8086
0.5444 27.0 1620 0.8138 0.5582 0.8328 0.5901 -1.0 0.5006 0.5824 0.4064 0.7073 0.7702 -1.0 0.6571 0.7883 0.4105 0.755 0.5879 0.7643 0.6762 0.7914
0.5444 28.0 1680 0.8084 0.5597 0.842 0.5932 -1.0 0.4993 0.5837 0.4052 0.704 0.7677 -1.0 0.6571 0.7854 0.4212 0.7525 0.5829 0.7619 0.6748 0.7886
0.5444 29.0 1740 0.8162 0.5581 0.8424 0.593 -1.0 0.4995 0.5829 0.4052 0.7065 0.7719 -1.0 0.6571 0.79 0.4187 0.76 0.5811 0.7643 0.6745 0.7914
0.5444 30.0 1800 0.8182 0.5572 0.8422 0.5925 -1.0 0.4995 0.5815 0.406 0.7081 0.771 -1.0 0.6571 0.7893 0.4184 0.755 0.5804 0.7667 0.6727 0.7914

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aiarenm/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model