See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  # geopandas
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # examples
  - path: https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # docs
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:1%]
    chat_template: qwen_25
    field_messages: conversations
    message_field_role: from
    message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.
output_dir: ./outputs/qlora-out
wandb_project: fused-io-copilot
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 2
optimizer: lion_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
warmup_steps: 20
saves_per_epoch: 1
deepspeed:
weight_decay: 0.01
special_tokens:
  pad_token: "<|end_of_text|>"
save_safetensors: true
outputs/qlora-out
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet, the https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345, the https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet and the mlabonne/FineTome-100k datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
 - train_batch_size: 4
 - eval_batch_size: 4
 - seed: 42
 - gradient_accumulation_steps: 2
 - total_train_batch_size: 8
 - optimizer: Use OptimizerNames.LION_8BIT and the args are: No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 20
 - num_epochs: 2
 
Training results
Framework versions
- Transformers 4.47.0
 - Pytorch 2.5.1+cu124
 - Datasets 3.1.0
 - Tokenizers 0.21.0
 
- Downloads last month
 - 1