distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2572
- Precision: 0.3363
- Recall: 0.5110
- F1: 0.4057
- Accuracy: 0.8931
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 30 | 0.3976 | 0.1405 | 0.3058 | 0.1925 | 0.7921 |
No log | 2.0 | 60 | 0.3511 | 0.2360 | 0.4038 | 0.2979 | 0.8260 |
No log | 3.0 | 90 | 0.3595 | 0.1863 | 0.3827 | 0.2506 | 0.8211 |
No log | 4.0 | 120 | 0.3591 | 0.2144 | 0.4288 | 0.2859 | 0.8299 |
No log | 5.0 | 150 | 0.3605 | 0.1989 | 0.4212 | 0.2702 | 0.8343 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.