swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3937
- Accuracy: 0.8583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6866 | 0.99 | 37 | 0.6202 | 0.6742 |
0.5892 | 2.0 | 75 | 0.5467 | 0.72 |
0.5195 | 2.99 | 112 | 0.4933 | 0.7483 |
0.4322 | 4.0 | 150 | 0.4787 | 0.765 |
0.3712 | 4.99 | 187 | 0.3829 | 0.8208 |
0.3162 | 6.0 | 225 | 0.3960 | 0.8133 |
0.3082 | 6.99 | 262 | 0.3591 | 0.8392 |
0.3038 | 8.0 | 300 | 0.3274 | 0.8467 |
0.2794 | 8.99 | 337 | 0.3533 | 0.8433 |
0.2596 | 10.0 | 375 | 0.3766 | 0.8258 |
0.2369 | 10.99 | 412 | 0.3392 | 0.8575 |
0.2503 | 12.0 | 450 | 0.3198 | 0.8625 |
0.2009 | 12.99 | 487 | 0.3438 | 0.8625 |
0.2195 | 14.0 | 525 | 0.3234 | 0.8617 |
0.2025 | 14.99 | 562 | 0.3758 | 0.855 |
0.1879 | 16.0 | 600 | 0.3909 | 0.8408 |
0.18 | 16.99 | 637 | 0.3642 | 0.8617 |
0.1545 | 18.0 | 675 | 0.3948 | 0.8567 |
0.171 | 18.99 | 712 | 0.3889 | 0.8525 |
0.1667 | 20.0 | 750 | 0.3883 | 0.8625 |
0.163 | 20.99 | 787 | 0.3743 | 0.8575 |
0.1682 | 22.0 | 825 | 0.3739 | 0.8592 |
0.1611 | 22.99 | 862 | 0.3623 | 0.8742 |
0.1348 | 24.0 | 900 | 0.3806 | 0.8592 |
0.1366 | 24.99 | 937 | 0.3849 | 0.865 |
0.1418 | 26.0 | 975 | 0.4049 | 0.8558 |
0.1096 | 26.99 | 1012 | 0.3849 | 0.8608 |
0.1347 | 28.0 | 1050 | 0.3926 | 0.8592 |
0.137 | 28.99 | 1087 | 0.3938 | 0.8592 |
0.1312 | 29.6 | 1110 | 0.3937 | 0.8583 |
Framework versions
- Transformers 4.30.1
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.13.3
- Downloads last month
- 30
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.858