swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3937
  • Accuracy: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6866 0.99 37 0.6202 0.6742
0.5892 2.0 75 0.5467 0.72
0.5195 2.99 112 0.4933 0.7483
0.4322 4.0 150 0.4787 0.765
0.3712 4.99 187 0.3829 0.8208
0.3162 6.0 225 0.3960 0.8133
0.3082 6.99 262 0.3591 0.8392
0.3038 8.0 300 0.3274 0.8467
0.2794 8.99 337 0.3533 0.8433
0.2596 10.0 375 0.3766 0.8258
0.2369 10.99 412 0.3392 0.8575
0.2503 12.0 450 0.3198 0.8625
0.2009 12.99 487 0.3438 0.8625
0.2195 14.0 525 0.3234 0.8617
0.2025 14.99 562 0.3758 0.855
0.1879 16.0 600 0.3909 0.8408
0.18 16.99 637 0.3642 0.8617
0.1545 18.0 675 0.3948 0.8567
0.171 18.99 712 0.3889 0.8525
0.1667 20.0 750 0.3883 0.8625
0.163 20.99 787 0.3743 0.8575
0.1682 22.0 825 0.3739 0.8592
0.1611 22.99 862 0.3623 0.8742
0.1348 24.0 900 0.3806 0.8592
0.1366 24.99 937 0.3849 0.865
0.1418 26.0 975 0.4049 0.8558
0.1096 26.99 1012 0.3849 0.8608
0.1347 28.0 1050 0.3926 0.8592
0.137 28.99 1087 0.3938 0.8592
0.1312 29.6 1110 0.3937 0.8583

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.13.3
Downloads last month
30
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Evaluation results