|
--- |
|
language: |
|
- bn |
|
- gu |
|
- hi |
|
- kn |
|
- ml |
|
- mr |
|
- ta |
|
- te |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:112855 |
|
- loss:MSELoss |
|
- indic |
|
base_model: aloobun/d-mxbai-L8-embed |
|
widget: |
|
- source_sentence: (Laughter) And I've already hinted what that something is. |
|
sentences: |
|
- >- |
|
हे मजेशीर आहे, मी ट्विटर आणि फेसबुकवर विचारले असे की, "तुम्ही अगतिकतेची |
|
व्याख्या कशी कराल? तुम्हाला कशामुळे अगतिक वाटते?" |
|
- (हशा) आणि मी आधीच थोडीशी कल्पना दिली आहे ते काय करावे लागेल त्याबद्दल. |
|
- >- |
|
तर मी जेव्हा ह्या दालनात नजर फिरवितो माणसांवर, ज्यांनी मिळवलंय, किंवा |
|
मिळवायच्या मार्गावर आहेत, लक्षणीय यश, मी त्यांना हे लक्षात ठेवायला सांगतो: |
|
वाट पाहू नका. |
|
- source_sentence: I no longer try to be right; I choose to be happy. |
|
sentences: |
|
- এটি একটি অসাধারণ ঘনটা এবং এক অদ্ভুত অনুধাবন। |
|
- কেন এই ধারণাটা ছড়িয়ে গেল? |
|
- আমি সুখে থাকাকেই বেছে নিয়েছি। |
|
- source_sentence: >- |
|
And if tempers are still too high, then they send someone off to visit some |
|
relatives, as a cooling-off period. |
|
sentences: |
|
- >- |
|
और यदि तब भी गुस्सा शांत न हो, तो वो किसी को अपने रिश्तेदारों से मिलने भेज |
|
देते हैं शांत होने के लिये। |
|
- >- |
|
और वे तुम्हे गलत समय पर बाधित करते रहते है जब तुम अच मैं कुच करने कि कोशिश |
|
कर रहे होते हो जिसके लिये वे तुम्हे भुगतान करते है वे तुमको बधित करते हैं। |
|
- >- |
|
इस प्रयोग का आखिरी सवाल था: कैसे आप अपने जीवन से दूसरों पर सकारात्मक प्रभाव |
|
डालेंगे? |
|
- source_sentence: I see, I see one way in the back. |
|
sentences: |
|
- ಸ್ಟಾಂಡರ್ಡ್ ಚಾರ್ಟರ್ಡ್ 140 ಮಿಲಿಯನ್ ತಂದಿದೆ. |
|
- ನಗರಗಳಲ್ಲಂತೂ ಶೇಕಡಾ ೮೦ರಷ್ಟು ಮಕ್ಕಳು ಕಾಲೇಜಿಗೆ ಹೋಗುತ್ತಾರೆ. |
|
- ಇನ್ನು ಯಾರಾದರೂ? ನನಗೆ ಕಾಣಿಸುತ್ತಿದೆ, ಅಲ್ಲಿ..ಹಿಂದೆ.. ಒಂದು ಕೈ ಕಾಣಿಸುತ್ತಿದೆ. |
|
- source_sentence: Whenever it rains, magically, mushrooms appear overnight. |
|
sentences: |
|
- ಈ ವಿಷಯವನ್ನು ಅವರು ಮುಚ್ಚಿಟ್ಟರು, ಆದರೆ ಇತರರಿಗೆ ಬೇಗನೇ ತಿಳಿಯಿತು. |
|
- >- |
|
ಮಳೆಯಾದಾಗೆಲ್ಲ, ಮನಮೋಹಕವಾಗಿ, ಅಣಬೆಗಳು ಒಂದು ರಾತ್ರಿಯ ವೇಳೆಯಲ್ಲಿ |
|
ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ. |
|
- 'ಪ್ರೇಕ್ಷಕ: 1947 ಎಬಿ: 1947, ಯಾವ ತಿಂಗಳು?' |
|
datasets: |
|
- aloobun/indic-parallel-sentences-talks |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- negative_mse |
|
- src2trg_accuracy |
|
- trg2src_accuracy |
|
- mean_accuracy |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on aloobun/d-mxbai-L8-embed |
|
results: |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en mr |
|
type: en-mr |
|
metrics: |
|
- type: negative_mse |
|
value: -14.405468106269836 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en mr |
|
type: en-mr |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.324 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.174 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.249 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en mr test |
|
type: sts17-en-mr-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.21811289256702704 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.22533360893418355 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en hi |
|
type: en-hi |
|
metrics: |
|
- type: negative_mse |
|
value: -14.047445356845856 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en hi |
|
type: en-hi |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.465 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.244 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.35450000000000004 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en hi test |
|
type: sts17-en-hi-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.08483694965794362 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.13404452326754046 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en bn |
|
type: en-bn |
|
metrics: |
|
- type: negative_mse |
|
value: -15.71638137102127 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en bn |
|
type: en-bn |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.242 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.081 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.1615 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en bn test |
|
type: sts17-en-bn-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.14785129719314127 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.1830075106480045 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en gu |
|
type: en-gu |
|
metrics: |
|
- type: negative_mse |
|
value: -16.396714746952057 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en gu |
|
type: en-gu |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.04 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.017 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.0285 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en gu test |
|
type: sts17-en-gu-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.08746107622701571 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.11731440991672663 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en ta |
|
type: en-ta |
|
metrics: |
|
- type: negative_mse |
|
value: -16.221003234386444 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en ta |
|
type: en-ta |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.102 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.04 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.071 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en ta test |
|
type: sts17-en-ta-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: -0.02863897450386144 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: -0.039475796340022885 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en kn |
|
type: en-kn |
|
metrics: |
|
- type: negative_mse |
|
value: -16.703946888446808 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en kn |
|
type: en-kn |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.117 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.068 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.0925 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en kn test |
|
type: sts17-en-kn-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.04635550247380243 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.020029816999255046 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en te |
|
type: en-te |
|
metrics: |
|
- type: negative_mse |
|
value: -17.04743355512619 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en te |
|
type: en-te |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.075 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.025 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.05 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en te test |
|
type: sts17-en-te-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.12394140653755585 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.19417699598729235 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: en ml |
|
type: en-ml |
|
metrics: |
|
- type: negative_mse |
|
value: -17.274518311023712 |
|
name: Negative Mse |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: en ml |
|
type: en-ml |
|
metrics: |
|
- type: src2trg_accuracy |
|
value: 0.054 |
|
name: Src2Trg Accuracy |
|
- type: trg2src_accuracy |
|
value: 0.024 |
|
name: Trg2Src Accuracy |
|
- type: mean_accuracy |
|
value: 0.039 |
|
name: Mean Accuracy |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts17 en ml test |
|
type: sts17-en-ml-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.24086569602868083 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2717089217002832 |
|
name: Spearman Cosine |
|
license: apache-2.0 |
|
--- |
|
|
|
# SentenceTransformer based on aloobun/d-mxbai-L8-embed |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned (to extend a monolingual model to several indic languages) from [aloobun/d-mxbai-L8-embed](https://huggingface.co/aloobun/d-mxbai-L8-embed) on the [en-mr](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-hi](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-bn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-gu](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-ta](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-kn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks), [en-te](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) and [en-ml](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
WIP |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [aloobun/d-mxbai-L8-embed](https://huggingface.co/aloobun/d-mxbai-L8-embed) <!-- at revision 0ce426e9751ae51079e5642fbd1c2423f4b84786 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Datasets:** |
|
- [en-mr](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-hi](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-bn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-gu](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-ta](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-kn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-te](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- [en-ml](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) |
|
- **Languages:** bn, gu, hi, kn, ml, mr, ta, te |
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Whenever it rains, magically, mushrooms appear overnight.', |
|
'ಮಳೆಯಾದಾಗೆಲ್ಲ, ಮನಮೋಹಕವಾಗಿ, ಅಣಬೆಗಳು ಒಂದು ರಾತ್ರಿಯ ವೇಳೆಯಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ.', |
|
'ಈ ವಿಷಯವನ್ನು ಅವರು ಮುಚ್ಚಿಟ್ಟರು, ಆದರೆ ಇತರರಿಗೆ ಬೇಗನೇ ತಿಳಿಯಿತು.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Knowledge Distillation |
|
|
|
* Datasets: `en-mr`, `en-hi`, `en-bn`, `en-gu`, `en-ta`, `en-kn`, `en-te` and `en-ml` |
|
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) |
|
|
|
| Metric | en-mr | en-hi | en-bn | en-gu | en-ta | en-kn | en-te | en-ml | |
|
|:-----------------|:-------------|:-------------|:-------------|:-------------|:------------|:-------------|:-------------|:-------------| |
|
| **negative_mse** | **-14.4055** | **-14.0474** | **-15.7164** | **-16.3967** | **-16.221** | **-16.7039** | **-17.0474** | **-17.2745** | |
|
|
|
#### Translation |
|
|
|
* Datasets: `en-mr`, `en-hi`, `en-bn`, `en-gu`, `en-ta`, `en-kn`, `en-te` and `en-ml` |
|
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator) |
|
|
|
| Metric | en-mr | en-hi | en-bn | en-gu | en-ta | en-kn | en-te | en-ml | |
|
|:------------------|:----------|:-----------|:-----------|:-----------|:----------|:-----------|:---------|:----------| |
|
| src2trg_accuracy | 0.324 | 0.465 | 0.242 | 0.04 | 0.102 | 0.117 | 0.075 | 0.054 | |
|
| trg2src_accuracy | 0.174 | 0.244 | 0.081 | 0.017 | 0.04 | 0.068 | 0.025 | 0.024 | |
|
| **mean_accuracy** | **0.249** | **0.3545** | **0.1615** | **0.0285** | **0.071** | **0.0925** | **0.05** | **0.039** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `sts17-en-mr-test`, `sts17-en-hi-test`, `sts17-en-bn-test`, `sts17-en-gu-test`, `sts17-en-ta-test`, `sts17-en-kn-test`, `sts17-en-te-test` and `sts17-en-ml-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | sts17-en-mr-test | sts17-en-hi-test | sts17-en-bn-test | sts17-en-gu-test | sts17-en-ta-test | sts17-en-kn-test | sts17-en-te-test | sts17-en-ml-test | |
|
|:--------------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------| |
|
| pearson_cosine | 0.2181 | 0.0848 | 0.1479 | 0.0875 | -0.0286 | 0.0464 | 0.1239 | 0.2409 | |
|
| **spearman_cosine** | **0.2253** | **0.134** | **0.183** | **0.1173** | **-0.0395** | **0.02** | **0.1942** | **0.2717** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Datasets |
|
|
|
#### en-mr |
|
|
|
* Dataset: [en-mr](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 21,756 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 19.45 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 47.25 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>(Laughter) But in any case, that was more than 100 years ago.</code> | <code>(हशा) पण काही झालेतरी ते होते १०० वर्षांपूर्वीचे.</code> | <code>[-0.07917306572198868, 0.40863776206970215, 0.39547035098075867, 0.5217214822769165, -0.49311134219169617, ...]</code> | |
|
| <code>You'd think we might have grown up since then.</code> | <code>तेव्हापासून आपण थोडे सुधारलो आहोत असे आपल्याला वाटते.</code> | <code>[0.4867176115512848, -0.18171744048595428, 0.2339124083518982, 0.6620380878448486, 0.38678815960884094, ...]</code> | |
|
| <code>Now, a friend, an intelligent lapsed Jew, who, incidentally, observes the Sabbath for reasons of cultural solidarity, describes himself as a "tooth-fairy agnostic."</code> | <code>आता एक मित्र, एक बुद्धिमान माजी-ज्यू, जो आपल्या संस्कृतीशी एकजूट दाखवण्यासाठी सबाथ पाळतो, स्वतःला दंतपरी अज्ञेय समजतो,</code> | <code>[0.5010754466056824, -0.5600723028182983, 0.10560179501771927, -0.12681618332862854, -0.47324138879776, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-hi |
|
|
|
* Dataset: [en-hi](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 46,116 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.17 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 49.58 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:----------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>I've been living with HIV for the past four years.</code> | <code>मैं पिछले चार साल से एच आइ वी के साथ रह रही हूँ</code> | <code>[-0.004218218382447958, -0.9862065315246582, -1.1370266675949097, 1.2322533130645752, 0.4485853314399719, ...]</code> | |
|
| <code>My husband left me a year ago.</code> | <code>मेरे पति ने एक साल पहले मुझको छोड़ दिया।</code> | <code>[0.5797509551048279, -0.816991925239563, -0.28531885147094727, 0.5789890885353088, -0.9830609560012817, ...]</code> | |
|
| <code>I have two kids under the age of five.</code> | <code>मेरे दो बच्चे हैं जो पाँच साल के भी नहीं हैं</code> | <code>[-0.45990556478500366, 0.5632603168487549, -0.11529318988323212, 0.23170329630374908, -0.177066370844841, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-bn |
|
|
|
* Dataset: [en-bn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 9,401 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.89 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 64.74 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------| |
|
| <code>They're just practicing.</code> | <code>তারা শুধুই অনুশীলন করছে।</code> | <code>[0.03945370391011238, 0.9245128631591797, -0.12790781259536743, 0.5141751766204834, -0.6310628056526184, ...]</code> | |
|
| <code>One day they'll get here.</code> | <code>একদিন হয়তো তারা এখানে আসতে পারবে।</code> | <code>[-0.1937061846256256, 0.3374898135662079, -0.1676691621541977, 0.44971567392349243, 0.45998144149780273, ...]</code> | |
|
| <code>Now when I got out, I was diagnosed and I was given medications by a psychiatrist.</code> | <code>তো, আমি যখন সেখান থেকে বের হলাম, তখন আমার রোগ নির্নয় করা হলো আর আমাকে ঔষুধপত্র দিলেন মনোরোগ চিকিৎসক</code> | <code>[0.35454168915748596, -0.8726581335067749, -0.3993096947669983, 0.7934805750846863, -0.9255509376525879, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-gu |
|
|
|
* Dataset: [en-gu](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 14,805 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.92 tokens</li><li>max: 109 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.83 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>It's doing that based on the content inside the images.</code> | <code>તે છબીઓની અંદર સામગ્રી પર આધારિત છે.</code> | <code>[-0.10993346571922302, -0.16450753808021545, 0.46822917461395264, -0.2844494879245758, 0.869172990322113, ...]</code> | |
|
| <code>And that gets really exciting when you think about the richness of the semantic information a lot of images have.</code> | <code>અને જ્યારે તમે સમૃદ્ધિ વિશે વિચારો છો ત્યારે તે ખરેખર આકર્ષક બને છે સિમેન્ટીક માહિતીની ઘણી બધી છબીઓ છે.</code> | <code>[0.09240571409463882, -0.15316684544086456, 0.3019101619720459, -0.13211244344711304, 0.494329571723938, ...]</code> | |
|
| <code>Like when you do a web search for images, you type in phrases, and the text on the web page is carrying a lot of information about what that picture is of.</code> | <code>જેમ તમે છબીઓ માટે વેબ શોધ કરો છો ત્યારે, તમે શબ્દસમૂહો લખો છો, અને વેબ પૃષ્ઠ પરનો ટેક્સ્ટ ઘણી બધી માહિતી લઈ રહી છે તે ચિત્ર શું છે તે વિશે</code> | <code>[-0.17813900113105774, -0.5480513572692871, 0.2136719971895218, 0.1629626601934433, 0.7170971632003784, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-ta |
|
|
|
* Dataset: [en-ta](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 10,196 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 21.05 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 34.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Or perhaps an ordinary person like you or me?</code> | <code>அல்லது சாதாரண மனிதனாக வாழ்ந்த நம்மைப் போன்றவரா?</code> | <code>[0.03689160570502281, -0.021389128640294075, -0.6246430277824402, -0.20952607691287994, 0.054864056408405304, ...]</code> | |
|
| <code>We don't know.</code> | <code>அது நமக்கு தெரியாது.</code> | <code>[0.15699629485607147, -0.3969012498855591, -1.0549111366271973, -0.5266945958137512, -0.07592934370040894, ...]</code> | |
|
| <code>But the Indus people also left behind artifacts with writing on them.</code> | <code>ஆனால் சிந்து சமவெளி மக்கள் எழுத்துகள் நிறைந்த கலைப்பொருட்களை நமக்கு விட்டுச் சென்றிருக்கின்றனர்.</code> | <code>[-0.5243279337882996, 0.48444223403930664, -0.06693703681230545, -0.01581714116036892, -0.21955616772174835, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-kn |
|
|
|
* Dataset: [en-kn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,266 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 23.65 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.11 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Now, there is other origami in space.</code> | <code>ಜಪಾನಿನ ಏರೋಸ್ಪೇಸ್ ಏಜೆನ್ಸಿಯು ಕಳುಹಿಸಿರುವ ಸೌರಪಟದ</code> | <code>[-0.08880611509084702, 0.09982031583786011, 0.02458847127854824, 0.476515531539917, -0.021379221230745316, ...]</code> | |
|
| <code>Japan Aerospace [Exploration] Agency flew a solar sail, and you can see here that the sail expands out, and you can still see the fold lines.</code> | <code>ಹಾಯಿಯು ಬಿಚ್ಚಿಕೊಳ್ಳುವುದನ್ನು ನೀವಿಲ್ಲಿ ನೋಡಬಹುದು. ಜೊತೆಗೆ ಮಡಿಕೆಯ ಗೆರೆಗಳನ್ನು ಇನ್ನೂ ನೋಡಬಹುದು. ಇಲ್ಲಿ ಬಗೆಹರಿಸಲಾದ ಸಮಸ್ಯೆ ಏನೆಂದರೆ, ಗುರಿ</code> | <code>[-0.34035903215408325, 0.07759397476911545, 0.1922168731689453, -0.2632356286048889, 0.5736825466156006, ...]</code> | |
|
| <code>The problem that's being solved here is something that needs to be big and sheet-like at its destination, but needs to be small for the journey.</code> | <code>ತಲುಪಿದಾಗ ಹಾಳೆಯಂತೆ ಹರಡಿಕೊಳ್ಳುವ, ಆದರೆ ಪ್ರಯಾಣದ ಸಮಯದಲ್ಲಿ ಪುಟ್ಟದಾಗಿ ಇರಬೇಕು ಎಂಬ ಸಮಸ್ಯೆ. ಇದು ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ಹೋಗಬೇಕಾದರಾಗಲೀ ಅಥವಾ</code> | <code>[0.07517104595899582, -0.14021596312522888, 0.6983174681663513, 0.4898601472377777, -0.5877286195755005, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-te |
|
|
|
* Dataset: [en-te](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 4,284 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.17 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 15.56 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Friends, maybe one of you can tell me, what was I doing before becoming a children's rights activist?</code> | <code>మిత్రులారా మీలో ఎవరోఒకరు నాతో చెప్పొచ్చు బాలల హక్కులకోసం పోరాడ్డానికి ముందు నేనేం చేసేవాడినో</code> | <code>[-0.40020492672920227, -0.2989244759082794, -0.6533952951431274, 0.23902057111263275, 0.08480175584554672, ...]</code> | |
|
| <code>Does anybody know?</code> | <code>ఎవరికైనా తెలుసా?</code> | <code>[0.2367328256368637, -0.04550345987081528, -1.176395297050476, -0.44055190682411194, 0.13103251159191132, ...]</code> | |
|
| <code>No.</code> | <code>తెలీదు</code> | <code>[-0.06585437804460526, -0.36286693811416626, 0.11095129698514938, -0.14597812294960022, -0.03260830044746399, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-ml |
|
|
|
* Dataset: [en-ml](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 5,031 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 27.75 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.73 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>(Applause) Trevor Neilson: And also, Tan's mother is here today, in the fourth or fifth row.</code> | <code>(കൈയ്യടി ) ട്രെവോര് നെല്സണ്: കൂടാതെ താനിന്റെ അമ്മയും ഇന്ന് ഇവിടെ ഉണ്ട് നാലാമത്തെയോ അഞ്ചാമത്തെയോ വരിയില്</code> | <code>[0.4477437138557434, -0.10711782425642014, 0.19890448451042175, 0.2685866355895996, 0.12080372869968414, ...]</code> | |
|
| <code>(Applause)</code> | <code>(കൈയ്യടി )</code> | <code>[0.07853835821151733, 0.18781603872776031, -0.09047681838274002, 0.25601497292518616, -0.5206068754196167, ...]</code> | |
|
| <code>So a couple of years ago I started a program to try to get the rockstar tech and design people to take a year off and work in the one environment that represents pretty much everything they're supposed to hate; we have them work in government.</code> | <code>രണ്ടു കൊല്ലങ്ങൾക്കു മുൻപ് ഞാൻ ഒരു സംരഭത്തിനു തുടക്കമിട്ടു ടെക്നിക്കൽ ഡിസൈൻ മേഖലകളിലെ വലിയ താരങ്ങളെ അവരുടെ ഒരു വർഷത്തെ ജോലികളിൽ നിന്നൊക്കെ അടർത്തിയെടുത്ത് മറ്റൊരു മേഖലയിൽ ജോലി ചെയ്യാൻ ക്ഷണിക്കാൻ അതും അവർ ഏറ്റവും കൂടുതൽ വെറുത്തേക്കാവുന്ന ഒരു മേഖലയിൽ: ഞങ്ങൾ അവരെ ഗവൺ മെന്റിനു വേണ്ടി പണിയെടുപ്പിക്കുന്നു.</code> | <code>[0.10994623601436615, -0.09076910465955734, -0.3843494653701782, 0.33856505155563354, 0.3447953462600708, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
### Evaluation Datasets |
|
|
|
#### en-mr |
|
|
|
* Dataset: [en-mr](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.58 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 53.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-------------------------------------------------------------------------|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Now I'm going to give you a story.</code> | <code>मी आज तुम्हाला एक कथा सांगणार आहे.</code> | <code>[0.19280874729156494, -0.07861180603504181, -0.40782108902931213, 0.3979630172252655, 0.08477412909269333, ...]</code> | |
|
| <code>It's an Indian story about an Indian woman and her journey.</code> | <code>एक भारतीय महिला आणि तिच्या वाटचालीची हि एक भारतीय कहाणी आहे.</code> | <code>[-0.5461456179618835, -0.08608868718147278, -1.2833353281021118, -0.04911373183131218, -0.23803967237472534, ...]</code> | |
|
| <code>Let me begin with my parents.</code> | <code>माझ्या पालकांपासून मी सुरु करते.</code> | <code>[-0.6556792855262756, -0.7583472728729248, 0.04619251936674118, -0.42713433504104614, -0.18057923018932343, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-hi |
|
|
|
* Dataset: [en-hi](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 22.82 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 51.35 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Thank you so much, Chris.</code> | <code>बहुत बहुत धन्यवाद,क्रिस.</code> | <code>[0.6755521297454834, 0.03665495663881302, -0.060318127274513245, 0.7523263692855835, -0.6887623071670532, ...]</code> | |
|
| <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>और यह सच में एक बड़ा सम्मान है कि मुझे इस मंच पर दोबारा आने का मौका मिला. मैं बहुत आभारी हूँ</code> | <code>[-0.16181467473506927, -0.18791291117668152, -0.5519911050796509, 0.9049180150032043, -0.747071385383606, ...]</code> | |
|
| <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>मैं इस सम्मलेन से बहुत आश्चर्यचकित हो गया हूँ, और मैं आप सबको धन्यवाद कहना चाहता हूँ उन सभी अच्छी टिप्पणियों के लिए, जो आपने मेरी पिछली रात के भाषण पर करीं.</code> | <code>[0.28718116879463196, -0.5640321373939514, -0.14048989117145538, 0.6461797952651978, -0.7105054259300232, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-bn |
|
|
|
* Dataset: [en-bn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 23.61 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 67.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>The first thing I want to do is say thank you to all of you.</code> | <code>প্রথমেই আমি আপনাদের সবাইকে ধন্যবাদ জানাতে চাই।</code> | <code>[-0.00464015593752265, -0.2528093159198761, -0.2521325945854187, 0.8438198566436768, -0.5279574990272522, ...]</code> | |
|
| <code>The second thing I want to do is introduce my co-author and dear friend and co-teacher.</code> | <code>দ্বিতীয় যে কাজটা করতে চাই, তা হল- পরিচয় করিয়ে দিতে চাই আমার সহ-লেখক, প্রিয় বন্ধু ও সহ-শিক্ষকের সঙ্গে।</code> | <code>[0.4810849130153656, -0.14021430909633636, 0.19718660414218903, -0.5403660535812378, 0.06668329983949661, ...]</code> | |
|
| <code>Ken and I have been working together for almost 40 years.</code> | <code>কেইন আর আমি একসঙ্গে কাজ করছি প্রায় ৪০ বছর ধরে</code> | <code>[0.21682043373584747, 0.1364896148443222, -0.4569880962371826, 1.075974464416504, 0.17770573496818542, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-gu |
|
|
|
* Dataset: [en-gu](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 21.6 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 19.2 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Thank you so much, Chris.</code> | <code>ખુબ ખુબ ધન્યવાદ ક્રીસ.</code> | <code>[0.6755521297454834, 0.03665495663881302, -0.060318127274513245, 0.7523263692855835, -0.6887623071670532, ...]</code> | |
|
| <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>અને એ તો ખરેખર મારું અહોભાગ્ય છે. કે મને અહી મંચ પર બીજી વખત આવવાની તક મળી. હું ખુબ જ કૃતજ્ઞ છું .</code> | <code>[-0.16181467473506927, -0.18791291117668152, -0.5519911050796509, 0.9049180150032043, -0.747071385383606, ...]</code> | |
|
| <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>હું આ સંમેલન થી ઘણો ખુશ થયો છે, અને તમને બધાને ખુબ જ આભારું છું જે મારે ગયી વખતે કહેવાનું હતું એ બાબતે સારી ટીપ્પણીઓ (કરવા) માટે.</code> | <code>[0.28718116879463196, -0.5640321373939514, -0.14048989117145538, 0.6461797952651978, -0.7105054259300232, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-ta |
|
|
|
* Dataset: [en-ta](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 21.04 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 33.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-------------------------------------------------------------------------|:-----------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Now I'm going to give you a story.</code> | <code>தற்போது நான் உங்களுக்கு ஒரு செய்தி சொல்லப்போகிறேன்.</code> | <code>[0.19280874729156494, -0.07861180603504181, -0.40782108902931213, 0.3979630172252655, 0.08477412909269333, ...]</code> | |
|
| <code>It's an Indian story about an Indian woman and her journey.</code> | <code>இது ஒரு இந்திய பெண்ணின் பயணத்தைப் பற்றிய செய்தி</code> | <code>[-0.5461456179618835, -0.08608868718147278, -1.2833353281021118, -0.04911373183131218, -0.23803967237472534, ...]</code> | |
|
| <code>Let me begin with my parents.</code> | <code>எனது பெற்றோர்களிலிருந்து தொடங்குகின்றேன்.</code> | <code>[-0.6556792855262756, -0.7583472728729248, 0.04619251936674118, -0.42713433504104614, -0.18057923018932343, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-kn |
|
|
|
* Dataset: [en-kn](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.03 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>The night before I was heading for Scotland, I was invited to host the final of "China's Got Talent" show in Shanghai with the 80,000 live audience in the stadium.</code> | <code>ನಾನು ಸ್ಕಾಟ್ ಲ್ಯಾಂಡ್ ಗೆ ಬಾರೋ ಹಿಂದಿನ ರಾತ್ರಿ ಶಾಂಗಯ್ ನಲ್ಲಿ ನಡೆದ "ಚೈನಾ ಹ್ಯಾಸ್ ಗಾಟ್ ದ ಟ್ಯಾಲೆಂಟ್" ಕಾರ್ಯಕ್ರಮದ ಫೈನಲ್ ಎಪಿಸೋಡ್ ಗೆ ನಿರೂಪಕಿಯಾಗಿ ಹೋಗಬೇಕಾಗಿತ್ತು ಸುಮಾರು ೮೦೦೦೦ ಜನ ಸೇರಿದ್ದ ಆ ಸ್ಟೇಡಿಯಂನಲ್ಲಿ</code> | <code>[-0.7951263189315796, -0.7824558615684509, -0.35716816782951355, -0.32674771547317505, -0.11001778393983841, ...]</code> | |
|
| <code>Guess who was the performing guest?</code> | <code>ಯಾರು ಪರ್ಫಾರ್ಮ್ ಮಾಡ್ತಾಯಿದ್ರು ಗೊತ್ತಾ ..?</code> | <code>[0.35022979974746704, -0.13758550584316254, -0.30045709013938904, -0.26804691553115845, -0.45069000124931335, ...]</code> | |
|
| <code>Susan Boyle.</code> | <code>ಸುಸನ್ ಬಾಯ್ಲೇ</code> | <code>[0.08617134392261505, -0.4860222339630127, -0.18299497663974762, 0.2238812893629074, -0.2626381516456604, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-te |
|
|
|
* Dataset: [en-te](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.29 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>A few years ago, I felt like I was stuck in a rut, so I decided to follow in the footsteps of the great American philosopher, Morgan Spurlock, and try something new for 30 days.</code> | <code>కొన్ని సంవత్సరాల ముందు, నేను బాగా ఆచరానములో ఉన్న ఆచారాన్ని పాతిస్తునాట్లు భావన నాలో కలిగింది. అందుకే నేను గొప్ప అమెరికన్ తత్వవేత్తఅయిన మోర్గన్ స్పుర్లాక్ గారి దారిని పాటించాలనుకున్నాను. అదే 30 రోజులలో కొత్త వాటి కోసం ప్రయత్నించటం</code> | <code>[-0.08676779270172119, -0.40070414543151855, -0.45080363750457764, -0.14886732399463654, -1.1394624710083008, ...]</code> | |
|
| <code>The idea is actually pretty simple.</code> | <code>ఈ ఆలోచన చాలా సులభమైనది.</code> | <code>[-0.3568742871284485, 0.4474738538265228, 0.05005272850394249, -0.5078891515731812, -0.43413764238357544, ...]</code> | |
|
| <code>Think about something you've always wanted to add to your life and try it for the next 30 days.</code> | <code>మీ జీవితములో మీరు చేయాలి అనుకునే పనిని ఆలోచించండి. తరువాతా ఆ పనిని తదుపరి 30 రోజులలో ప్రయత్నించండి.</code> | <code>[-0.3424505889415741, 0.566207230091095, -0.5596306324005127, -0.12378782778978348, -0.7162606716156006, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
#### en-ml |
|
|
|
* Dataset: [en-ml](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co/datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 22.54 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.84 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>My big idea is a very, very small idea that can unlock billions of big ideas that are at the moment dormant inside us.</code> | <code>എന്റെ വലിയ ആശയം വാസ്തവത്തില് ഒരു വളരെ ചെറിയ ആശയമാണ് നമ്മുടെ അകത്തു ഉറങ്ങിക്കിടക്കുന്ന കോടിക്കണക്കിനു മഹത്തായ ആശയങ്ങളെ പുറത്തു കൊണ്ടുവരാന് അതിനു കഴിയും</code> | <code>[-0.5196835398674011, -0.486665815114975, -0.3554009795188904, -0.4337313771247864, -0.2802641689777374, ...]</code> | |
|
| <code>And my little idea that will do that is sleep.</code> | <code>എന്റെ ആ ചെറിയ ആശയമാണ് നിദ്ര</code> | <code>[-0.38715794682502747, 0.13692918419837952, -0.05456114560365677, -0.5371901988983154, -0.4038388431072235, ...]</code> | |
|
| <code>(Laughter) (Applause) This is a room of type A women.</code> | <code>(സദസ്സില് ചിരി) (പ്രേക്ഷകരുടെ കൈയ്യടി) ഇത് ഉന്നത ഗണത്തില് പെടുന്ന സ്ത്രീകളുടെ ഒരു മുറിയാണ്</code> | <code>[0.14095601439476013, 0.5374701619148254, -0.07505392283201218, 0.0036823241971433163, -0.5300045013427734, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MSELoss |
|
```bibtex |
|
@inproceedings{reimers-2020-multilingual-sentence-bert, |
|
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2020", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/2004.09813", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |