Autoencoder Implementation for Hugging Face Transformers
A complete autoencoder implementation that integrates seamlessly with the Hugging Face Transformers ecosystem, providing all the standard functionality you expect from transformer models.
🚀 Features
- Full Hugging Face Integration: Compatible with
AutoModel
,AutoConfig
, andAutoTokenizer
patterns - Standard Training Workflows: Works with
Trainer
,TrainingArguments
, and all HF training utilities - Model Hub Compatible: Save and share models on Hugging Face Hub with
push_to_hub()
- Flexible Architecture: Configurable encoder-decoder architecture with various activation functions
- Multiple Loss Functions: Support for MSE, BCE, L1, Huber, Smooth L1, KL Divergence, Cosine, Focal, Dice, Tversky, SSIM, and Perceptual loss
- Multiple Autoencoder Types (7): Classic, Variational (VAE), Beta-VAE, Denoising, Sparse, Contractive, and Recurrent autoencoders
- Extended Activation Functions: 18+ activation functions including ReLU, GELU, Swish, Mish, ELU, and more
- Learnable Preprocessing: Neural Scaler and Normalizing Flow preprocessors (2D and 3D tensors)
- Extensible Design: Easy to extend for new autoencoder variants and custom loss functions
- Production Ready: Proper serialization, checkpointing, and inference support
📦 Installation
uv sync # or: pip install -e .
Dependencies (see pyproject.toml):
torch>=2.8.0
transformers>=4.55.2
numpy>=2.3.2
scikit-learn>=1.7.1
datasets>=4.0.0
accelerate>=1.10.0
🏗️ Architecture
Note: This repository has been trimmed to essentials for easy reuse and distribution. Example scripts and tests were removed by request.
The implementation consists of three main components:
1. AutoencoderConfig
Configuration class that inherits from PretrainedConfig
:
- Defines model architecture parameters
- Handles validation and serialization
- Enables
AutoConfig.from_pretrained()
functionality
2. AutoencoderModel
Base model class that inherits from PreTrainedModel
:
- Implements encoder-decoder architecture
- Provides latent space representation
- Returns structured outputs with
AutoencoderOutput
3. AutoencoderForReconstruction
Task-specific model for reconstruction:
- Adds reconstruction loss calculation
- Compatible with
Trainer
for easy training - Returns
AutoencoderForReconstructionOutput
with loss
🔧 Quick Start
Basic Usage
from configuration_autoencoder import AutoencoderConfig
from modeling_autoencoder import AutoencoderForReconstruction
import torch
# Create configuration
config = AutoencoderConfig(
input_dim=784, # Input dimensionality (e.g., 28x28 images flattened)
hidden_dims=[512, 256], # Encoder hidden layers
latent_dim=64, # Latent space dimension
activation="gelu", # Activation function (18+ options available)
reconstruction_loss="mse", # Loss function (12+ options available)
autoencoder_type="classic", # Autoencoder type (7 types available)
# Optional learnable preprocessing
use_learnable_preprocessing=True,
preprocessing_type="neural_scaler", # or "normalizing_flow"
)
# Create model
model = AutoencoderForReconstruction(config)
# Forward pass
input_data = torch.randn(32, 784) # Batch of 32 samples
outputs = model(input_values=input_data)
print(f"Reconstruction loss: {outputs.loss}")
print(f"Latent shape: {outputs.last_hidden_state.shape}")
print(f"Reconstructed shape: {outputs.reconstructed.shape}")
Training with Hugging Face Trainer
from transformers import Trainer, TrainingArguments
from torch.utils.data import Dataset
class AutoencoderDataset(Dataset):
def __init__(self, data):
self.data = torch.FloatTensor(data)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return {
"input_values": self.data[idx],
"labels": self.data[idx] # For autoencoder, input = target
}
# Prepare data
train_dataset = AutoencoderDataset(your_training_data)
val_dataset = AutoencoderDataset(your_validation_data)
# Training arguments
training_args = TrainingArguments(
output_dir="./autoencoder_output",
num_train_epochs=10,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
evaluation_strategy="steps",
eval_steps=500,
save_steps=1000,
load_best_model_at_end=True,
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
# Train
trainer.train()
# Save model
model.save_pretrained("./my_autoencoder")
config.save_pretrained("./my_autoencoder")
Using AutoModel Framework
from register_autoencoder import register_autoencoder_models
from transformers import AutoConfig, AutoModel
# Register models with AutoModel framework
register_autoencoder_models()
# Now you can use standard HF patterns
config = AutoConfig.from_pretrained("./my_autoencoder")
model = AutoModel.from_pretrained("./my_autoencoder")
# Use the model
outputs = model(input_values=your_data)
⚙️ Configuration Options
The AutoencoderConfig
class supports extensive customization:
config = AutoencoderConfig(
input_dim=784, # Input dimension
hidden_dims=[512, 256, 128], # Encoder hidden layers
latent_dim=64, # Latent space dimension
activation="gelu", # Activation function (see full list below)
dropout_rate=0.1, # Dropout rate (0.0 to 1.0)
use_batch_norm=True, # Use batch normalization
tie_weights=False, # Tie encoder/decoder weights
reconstruction_loss="mse", # Loss function (see full list below)
autoencoder_type="variational", # Autoencoder type (see types below)
beta=0.5, # Beta parameter for β-VAE
temperature=1.0, # Temperature for Gumbel softmax
noise_factor=0.1, # Noise factor for denoising AE
# Recurrent autoencoder parameters
rnn_type="lstm", # RNN type: "lstm", "gru", "rnn"
num_layers=2, # Number of RNN layers
bidirectional=True, # Bidirectional encoding
sequence_length=None, # Fixed sequence length (None for variable)
teacher_forcing_ratio=0.5, # Teacher forcing ratio during training
# Learnable preprocessing parameters
use_learnable_preprocessing=False, # Enable learnable preprocessing
preprocessing_type="none", # "none", "neural_scaler", "normalizing_flow"
preprocessing_hidden_dim=64, # Hidden dimension for preprocessing networks
preprocessing_num_layers=2, # Number of layers in preprocessing networks
learn_inverse_preprocessing=True, # Learn inverse transformation
flow_coupling_layers=4, # Number of coupling layers for flows
)
🎛️ Available Activation Functions
Standard Activations:
relu
,leaky_relu
,relu6
,elu
,prelu
tanh
,sigmoid
,hardsigmoid
,hardtanh
gelu
,swish
,silu
,hardswish
mish
,softplus
,softsign
,tanhshrink
,threshold
📊 Available Loss Functions
Regression Losses:
mse
- Mean Squared Errorl1
- L1/MAE Losshuber
- Huber Losssmooth_l1
- Smooth L1 Loss
Classification/Probability Losses:
bce
- Binary Cross Entropykl_div
- KL Divergencefocal
- Focal Loss
Similarity Losses:
cosine
- Cosine Similarity Lossssim
- Structural Similarity Lossperceptual
- Perceptual Loss
Segmentation Losses:
dice
- Dice Losstversky
- Tversky Loss
🏗️ Available Autoencoder Types
Classic Autoencoder (classic
)
- Standard encoder-decoder architecture
- Direct reconstruction loss minimization
Variational Autoencoder (variational
)
- Probabilistic latent space with mean and variance
- KL divergence regularization
- Reparameterization trick for sampling
Beta-VAE (beta_vae
)
- Variational autoencoder with adjustable β parameter
- Better disentanglement of latent factors
Denoising Autoencoder (denoising
)
- Adds noise to input during training
- Learns robust representations
- Configurable noise factor
Sparse Autoencoder (sparse
)
- Encourages sparse latent representations
- L1 regularization on latent activations
- Useful for feature selection
Contractive Autoencoder (contractive
)
- Penalizes large gradients of latent w.r.t. input
- Learns smooth manifold representations
- Robust to small input perturbations
Recurrent Autoencoder (recurrent
)
- LSTM/GRU/RNN encoder-decoder architecture
- Bidirectional encoding for better sequence representations
- Variable length sequence support with padding
- Teacher forcing during training for stable learning
- Sequence-to-sequence reconstruction
## 📊 Model Outputs
### AutoencoderOutput
```python
@dataclass
class AutoencoderOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None # Latent representation
reconstructed: torch.FloatTensor = None # Reconstructed input
hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states
attentions: Tuple[torch.FloatTensor] = None # Not used
AutoencoderForReconstructionOutput
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
loss: torch.FloatTensor = None # Reconstruction loss
reconstructed: torch.FloatTensor = None # Reconstructed input
last_hidden_state: torch.FloatTensor = None # Latent representation
hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states
🔬 Advanced Usage
Custom Loss Functions
You can easily extend the model with custom loss functions:
class CustomAutoencoder(AutoencoderForReconstruction):
def _compute_reconstruction_loss(self, reconstructed, target):
# Custom loss implementation
return your_custom_loss(reconstructed, target)
Recurrent Autoencoder for Sequences
Perfect for time series, text, and sequential data:
config = AutoencoderConfig(
input_dim=50, # Feature dimension per timestep
latent_dim=32, # Compressed representation size
autoencoder_type="recurrent",
rnn_type="lstm", # or "gru", "rnn"
num_layers=2, # Number of RNN layers
bidirectional=True, # Bidirectional encoding
teacher_forcing_ratio=0.7, # Teacher forcing during training
sequence_length=None # Variable length sequences
)
# Usage with sequence data
model = AutoencoderForReconstruction(config)
sequence_data = torch.randn(batch_size, seq_len, input_dim)
outputs = model(input_values=sequence_data)
Learnable Preprocessing
Deep learning-based data normalization that adapts to your data:
# Neural Scaler - Learnable alternative to StandardScaler
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="neural_scaler",
preprocessing_hidden_dim=64
)
# Normalizing Flow - Invertible transformations
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="normalizing_flow",
flow_coupling_layers=4
)
# Works with all autoencoder types and sequence data
model = AutoencoderForReconstruction(config)
outputs = model(input_values=data)
print(f"Preprocessing loss: {outputs.preprocessing_loss}")
Variational Autoencoder Extension
The configuration supports variational autoencoders:
config = AutoencoderConfig(
autoencoder_type="variational",
beta=0.5, # β-VAE parameter
# ... other parameters
)
Integration with Datasets Library
from datasets import Dataset
# Convert your data to HF Dataset
dataset = Dataset.from_dict({
"input_values": your_data_list
})
# Use with Trainer
trainer = Trainer(
model=model,
train_dataset=dataset,
# ... other arguments
)
🧪 Testing
This repository has been trimmed to essential files. Example scripts and test files were removed by request. You can create your own quick checks using the Quick Start snippet above.
📁 Project Structure
autoencoder/
├── __init__.py # Package initialization
├── configuration_autoencoder.py # Configuration class
├── modeling_autoencoder.py # Model implementations
├── register_autoencoder.py # AutoModel registration
├── example_usage.py # Usage examples
├── test_save_load.py # Test suite
├── requirements.txt # Dependencies
└── README.md # This file
🤝 Contributing
This implementation follows Hugging Face conventions and can be easily extended:
- Adding new architectures: Extend
AutoencoderModel
or create new model classes - Custom configurations: Add parameters to
AutoencoderConfig
- Task-specific heads: Create new classes like
AutoencoderForReconstruction
- Integration: Register new models with the AutoModel framework
📚 References
🎯 Use Cases
This autoencoder implementation is perfect for:
- Dimensionality Reduction: Compress high-dimensional data to lower dimensions
- Anomaly Detection: Identify outliers based on reconstruction error
- Data Denoising: Remove noise from corrupted data
- Feature Learning: Learn meaningful representations for downstream tasks
- Data Generation: Generate new samples similar to training data
- Pretraining: Initialize encoders for other tasks
🔍 Model Comparison
Feature | Standard PyTorch | This Implementation |
---|---|---|
HF Integration | ❌ | ✅ |
AutoModel Support | ❌ | ✅ |
Trainer Compatible | ❌ | ✅ |
Hub Integration | ❌ | ✅ |
Config Management | Manual | ✅ Automatic |
Serialization | Manual | ✅ Built-in |
Checkpointing | Manual | ✅ Built-in |
🚀 Performance Tips
- Batch Size: Use larger batch sizes for better GPU utilization
- Learning Rate: Start with 1e-3 and adjust based on convergence
- Architecture: Gradually decrease hidden dimensions for better compression
- Regularization: Use dropout and batch normalization for better generalization
- Loss Function: Choose appropriate loss based on your data type
📄 License
This implementation is provided as an example and follows the same license terms as Hugging Face Transformers.