File size: 27,180 Bytes
f7708ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nreimers/albert-small-v2
widget:
- source_sentence: What processes are used to separate the raw liquid mix from natural
gas in a gas recycling plant?
sentences:
- '2016 ►M43 (*1) ◄ 21 September 2017 ►M43 (*2) ◄ [▼M28](./../../../legal-content/EN/AUTO/?uri=celex:32014R0895
"32014R0895: INSERTED") 23. Formaldehyde, oligomeric reaction products with aniline
(technical MDA) EC No: 500-036-1 CAS No: 25214-70-4 Carcinogenic (category 1B)
22 February 2016 ►M43 (*1) ◄ 22 August 2017 ►M43 (*2) ◄ — 24. Arsenic acid EC
No: 231-901-9 CAS No: 7778-39-4 Carcinogenic (category 1A) 22 February 2016 22
August 2017 — 25. Bis(2-methoxyethyl) ether (diglyme) EC No: 203-924-4 CAS No:
111-96-6 Toxic for reproduction (category 1B) 22 February 2016 ►M43 (*1) ◄ 22
August 2017 ►M43 (*2) ◄ — 26. 1,2-dichloroethane (EDC) EC No: 203-458-1 CAS No:
107-06-2 Carcinogenic (category 1B) 22 May 2016 22 November 2017 — 27.'
- '1. Member States shall ensure that their competent authorities establish at least
one AI regulatory sandbox at national level, which shall be operational by 2 August
2026. That sandbox may also be established jointly with the competent authorities
of other Member States. The Commission may provide technical support, advice and
tools for the establishment and operation of AI regulatory sandboxes.
The obligation under the first subparagraph may also be fulfilled by participating
in an existing sandbox in so far as that participation provides an equivalent
level of national coverage for the participating Member States.'
- and that boils in a range of approximately 149 °C to 205 °C.) 649-345-00-4 232-489-3
8052-41-3 P Natural gas condensates (petroleum); Low boiling point naphtha — unspecified
(A complex combination of hydrocarbons separated as a liquid from natural gas
in a surface separator by retrograde condensation. It consists mainly of hydrocarbons
having carbon numbers predominantly in the range of C2 to C20. It is a liquid
at atmospheric temperature and pressure.) 649-346-00-X 265-047-3 64741-47-5 P
Natural gas (petroleum), raw liquid mix; Low boiling point naphtha — unspecified
(A complex combination of hydrocarbons separated as a liquid from natural gas
in a gas recycling plant by processes such as refrigeration or absorption. It
consists mainly of
- source_sentence: What should the report on income tax information include as per
Article 48c?
sentences:
- '(d)
seal any business premises and books or records for the period of time of, and
to the extent necessary for, the inspection.
3.
The undertaking or association of undertakings shall submit to inspections ordered
by decision of the Commission. The officials and other accompanying persons authorised
by the Commission to conduct an inspection shall exercise their powers upon production
of a Commission decision:
(a)
specifying the subject matter and purpose of the inspection;
(b)
containing a statement that, pursuant to Article 16, a lack of cooperation allows
the Commission to take a decision on the basis of the facts that are available
to it;
(c)'
- 'By way of derogation from Article 10c, the Member States concerned may only give
transitional free allocation to installations in accordance with that Article
for investments carried out until 31 December 2024. Any allowances available to
the Member States concerned in accordance with Article 10c for the period from
2021 to 2030 that are not used for such investments shall, in the proportion determined
by the respective Member State:
(a)
be added to the total quantity of allowances that the Member State concerned is
to auction pursuant to Article 10(2); or
(b)'
- '7.
Member States shall require subsidiary undertakings or branches not subject to
the provisions of paragraphs 4 and 5 of this Article to publish and make accessible
a report on income tax information where such subsidiary undertakings or branches
serve no other objective than to circumvent the reporting requirements set out
in this Chapter.
Article 48c
Content of the report on income tax information
1.
The report on income tax information required under Article 48b shall include
information relating to all the activities of the standalone undertaking or ultimate
parent undertaking, including those of all affiliated undertakings consolidated
in the financial statements in respect of the relevant financial year.
2.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on nreimers/albert-small-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.23333333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7675917633552429
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7300000000000001
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.739090909090909
name: Cosine Map@100
---
# SentenceTransformer based on nreimers/albert-small-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2) <!-- at revision 18045fa83de53fd7d4548fdc2473862914cbc7d5 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What should the report on income tax information include as per Article 48c?',
'7.\n\nMember States shall require subsidiary undertakings or branches not subject to the provisions of paragraphs 4 and 5 of this Article to publish and make accessible a report on income tax information where such subsidiary undertakings or branches serve no other objective than to circumvent the reporting requirements set out in this Chapter.\n\nArticle 48c\n\nContent of the report on income tax information\n\n1.\n\nThe report on income tax information required under Article 48b shall include information relating to all the activities of the standalone undertaking or ultimate parent undertaking, including those of all affiliated undertakings consolidated in the financial statements in respect of the relevant financial year.\n\n2.',
'(d)\n\nseal any business premises and books or records for the period of time of, and to the extent necessary for, the inspection.\n\n3.\n\nThe undertaking or association of undertakings shall submit to inspections ordered by decision of the Commission. The officials and other accompanying persons authorised by the Commission to conduct an inspection shall exercise their powers upon production of a Commission decision:\n\n(a)\n\nspecifying the subject matter and purpose of the inspection;\n\n(b)\n\ncontaining a statement that, pursuant to Article 16, a lack of cooperation allows the Commission to take a decision on the basis of the facts that are available to it;\n\n(c)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.7 |
| cosine_accuracy@5 | 0.8 |
| cosine_accuracy@10 | 0.9 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.2333 |
| cosine_precision@5 | 0.16 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.7 |
| cosine_recall@3 | 0.7 |
| cosine_recall@5 | 0.8 |
| cosine_recall@10 | 0.9 |
| **cosine_ndcg@10** | **0.7676** |
| cosine_mrr@10 | 0.73 |
| cosine_map@100 | 0.7391 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10 training samples
* Columns: <code>query_text</code> and <code>doc_text</code>
* Approximate statistics based on the first 10 samples:
| | query_text | doc_text |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 17 tokens</li><li>mean: 38.6 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 113 tokens</li><li>mean: 237.7 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query_text | doc_text |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are the requirements for Member States regarding the establishment of AI regulatory sandboxes, including the timeline for operational readiness and the possibility of joint establishment with other Member States?</code> | <code>1. Member States shall ensure that their competent authorities establish at least one AI regulatory sandbox at national level, which shall be operational by 2 August 2026. That sandbox may also be established jointly with the competent authorities of other Member States. The Commission may provide technical support, advice and tools for the establishment and operation of AI regulatory sandboxes.<br><br>The obligation under the first subparagraph may also be fulfilled by participating in an existing sandbox in so far as that participation provides an equivalent level of national coverage for the participating Member States.</code> |
| <code>Member States must provide updates on their national energy and climate strategies, detailing the anticipated energy savings from 2021 to 2030. They are also obligated to report on the necessary energy savings and the policies intended to achieve these goals. If assessments reveal that a Member State's measures are inadequate to meet energy savings targets, the Commission may issue recommendations for improvement. Additionally, any shortfall in energy savings must be addressed in subsequent obligation periods.</code> | <code>9. Member States shall apply and calculate the effect of the options chosen under paragraph 8 for the period referred to in paragraph 1, first subparagraph, points (a) and (b)(i), separately:<br><br>(a) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (a), Member States may make use of the options listed in paragraph 8, points (a) to (d). All the options chosen under paragraph 8 taken together shall amount to no more than 25 % of the amount of energy savings referred to in paragraph 1, first subparagraph, point (a); (b) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (b)(i), Member States may make use of the options listed in paragraph 8, points (b) to (g), provided that the individual actions referred to in paragraph 8, point (d), continue to have a verifiable and measurable impact after 31 December 2020. All...</code> |
| <code>What is the functional definition of a remote biometric identification system, and how does it operate in terms of identifying individuals without their active participation?</code> | <code>(17) The notion of ‘remote biometric identification system’ referred to in this Regulation should be defined functionally, as an AI system intended for the identification of natural persons without their active involvement, typically at a distance, through the comparison of a person’s biometric data with the biometric data contained in a reference database, irrespectively of the particular technology, processes or types of biometric data used. Such remote biometric identification systems are typically used to perceive multiple persons or their behaviour simultaneously in order to facilitate significantly the identification of natural persons without their active involvement. This excludes AI systems intended to be used for biometric</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 3
- `per_device_eval_batch_size`: 3
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 3
- `per_device_eval_batch_size`: 3
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| -1 | -1 | 0.7676 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 4.0.2
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 0.26.0
- Datasets: 3.1.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |