Using a Trained Mini-GPT Model (Safetensors)
This guide explains how to load a trained Mini-GPT model saved in safetensors
format and generate text using it.
It is written in a step-by-step manner for learning and understanding.
1️⃣ Install Required Packages
Make sure you have the necessary packages:
pip install torch transformers safetensors
2️⃣ Load the Trained Model and Tokenizer
We saved our model earlier in ./mini_gpt_safetensor. Here’s how to load it:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "./mini_gpt_safetensor" # Path to your saved model
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token # GPT models don't have pad_token
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") # auto uses GPU if available
Note: Using device_map="auto" will load the model on GPU if available, otherwise CPU.
3️⃣ Generate Text from a Prompt
Once the model is loaded, we can generate text using a simple function:
def generate_text(prompt, max_length=50):
# Tokenize prompt
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
# Generate text
output_ids = model.generate(
input_ids,
max_length=max_length,
do_sample=True, # enable randomness
top_k=50, # sample from top 50 tokens
top_p=0.95, # nucleus sampling
temperature=0.7, # creativity factor
num_return_sequences=1
)
# Decode output
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
Tip:
do_sample=True → random outputs for creativity
top_k and top_p → control sampling probability
temperature → higher value = more creative output
4️⃣ Test Text Generation
Use your function with any prompt:
prompt = "Hello, I am training a mini GPT model"
generated_text = generate_text(prompt, max_length=50)
print("\n📝 Generated text:")
print(generated_text)
Example output:
Hello, I am training a mini GPT model to generate simple sentences about Python, deep learning, and AI projects.
✅ Summary
Load the tokenizer and model from the safetensors folder.
Use generate with proper sampling parameters for creative text.
Decode the output to get readable text.
You can experiment with prompt, max_length, top_k, top_p, and temperature to control text generation.
By following this MDX guide, you can easily load any trained Mini-GPT model and generate text interactively.
Model tree for ankitkushwaha90/distilgpt2-finetune-huggingface
Base model
Qwen/Qwen-Image