Update train_model.py
Browse files- train_model.py +95 -30
train_model.py
CHANGED
@@ -1,47 +1,112 @@
|
|
1 |
# Install required packages first:
|
2 |
-
# pip install torch transformers safetensors
|
3 |
|
4 |
import torch
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# -----------------------------
|
8 |
-
# 1️⃣
|
9 |
# -----------------------------
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
tokenizer.pad_token = tokenizer.eos_token # GPT models don't have pad_token
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# -----------------------------
|
19 |
-
#
|
20 |
# -----------------------------
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
# -----------------------------
|
42 |
-
#
|
43 |
# -----------------------------
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
print(
|
|
|
1 |
# Install required packages first:
|
2 |
+
# pip install torch transformers datasets accelerate safetensors
|
3 |
|
4 |
import torch
|
5 |
+
from datasets import Dataset
|
6 |
+
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
Trainer,
|
10 |
+
TrainingArguments,
|
11 |
+
DataCollatorForLanguageModeling
|
12 |
+
)
|
13 |
|
14 |
# -----------------------------
|
15 |
+
# 1️⃣ Create a small custom dataset
|
16 |
# -----------------------------
|
17 |
+
print("📥 Creating small dataset for training...")
|
18 |
|
19 |
+
train_texts = [
|
20 |
+
"Hello, my name is Ankit.",
|
21 |
+
"I love programming in Python.",
|
22 |
+
"Transformers library makes NLP easy.",
|
23 |
+
"PyTorch is great for deep learning.",
|
24 |
+
"I am learning to fine-tune GPT models."
|
25 |
+
]
|
26 |
+
|
27 |
+
test_texts = [
|
28 |
+
"Hello, I am training a small GPT.",
|
29 |
+
"Deep learning is fun!",
|
30 |
+
"Python is my favorite programming language."
|
31 |
+
]
|
32 |
+
|
33 |
+
# Convert to Hugging Face Dataset
|
34 |
+
train_data = Dataset.from_dict({"text": train_texts})
|
35 |
+
test_data = Dataset.from_dict({"text": test_texts})
|
36 |
+
|
37 |
+
# -----------------------------
|
38 |
+
# 2️⃣ Load tokenizer
|
39 |
+
# -----------------------------
|
40 |
+
print("📝 Loading tokenizer...")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
42 |
tokenizer.pad_token = tokenizer.eos_token # GPT models don't have pad_token
|
43 |
|
44 |
+
# Tokenize dataset
|
45 |
+
def tokenize(batch):
|
46 |
+
return tokenizer(batch['text'], truncation=True, padding='max_length', max_length=32)
|
47 |
+
|
48 |
+
train_data = train_data.map(tokenize, batched=True)
|
49 |
+
test_data = test_data.map(tokenize, batched=True)
|
50 |
+
|
51 |
+
train_data.set_format('torch', columns=['input_ids', 'attention_mask'])
|
52 |
+
test_data.set_format('torch', columns=['input_ids', 'attention_mask'])
|
53 |
+
|
54 |
+
# -----------------------------
|
55 |
+
# 3️⃣ Load model
|
56 |
+
# -----------------------------
|
57 |
+
print("🤖 Loading model...")
|
58 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
59 |
+
|
60 |
+
# -----------------------------
|
61 |
+
# 4️⃣ Data collator
|
62 |
+
# -----------------------------
|
63 |
+
data_collator = DataCollatorForLanguageModeling(
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
mlm=False
|
66 |
+
)
|
67 |
|
68 |
# -----------------------------
|
69 |
+
# 5️⃣ Training arguments
|
70 |
# -----------------------------
|
71 |
+
training_args = TrainingArguments(
|
72 |
+
output_dir="./mini_gpt_safetensor",
|
73 |
+
overwrite_output_dir=True,
|
74 |
+
per_device_train_batch_size=2,
|
75 |
+
per_device_eval_batch_size=2,
|
76 |
+
num_train_epochs=3,
|
77 |
+
save_strategy="epoch",
|
78 |
+
logging_steps=10,
|
79 |
+
learning_rate=5e-5,
|
80 |
+
weight_decay=0.01,
|
81 |
+
fp16=True if torch.cuda.is_available() else False,
|
82 |
+
save_total_limit=2,
|
83 |
+
push_to_hub=False,
|
84 |
+
report_to=None,
|
85 |
+
optim="adamw_torch",
|
86 |
+
save_safetensors=True # saves in safetensors format
|
87 |
+
)
|
88 |
|
89 |
+
# -----------------------------
|
90 |
+
# 6️⃣ Trainer
|
91 |
+
# -----------------------------
|
92 |
+
trainer = Trainer(
|
93 |
+
model=model,
|
94 |
+
args=training_args,
|
95 |
+
train_dataset=train_data,
|
96 |
+
eval_dataset=test_data,
|
97 |
+
data_collator=data_collator
|
98 |
+
)
|
99 |
|
100 |
+
# -----------------------------
|
101 |
+
# 7️⃣ Train model
|
102 |
+
# -----------------------------
|
103 |
+
print("🏋️ Training model...")
|
104 |
+
trainer.train()
|
105 |
|
106 |
# -----------------------------
|
107 |
+
# 8️⃣ Save model in safetensor format
|
108 |
# -----------------------------
|
109 |
+
print("💾 Saving model in safetensors format...")
|
110 |
+
trainer.save_model("./mini_gpt_safetensor")
|
111 |
+
|
112 |
+
print("✅ Training complete and model saved!")
|