|
--- |
|
base_model: |
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-7B |
|
datasets: |
|
- open-r1/codeforces-cots |
|
license: mit |
|
tags: |
|
- code |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
# Paper Page |
|
|
|
[**Pruning the Unsurprising: Efficient Code Reasoning via First-Token Surprisal.**](https://arxiv.org/abs/2508.05988) |
|
|
|
# LogicCoder-7B |
|
|
|
**LogicCoder-7B** is a 7B-parameter language model fine-tuned for code generation tasks. It is based on the DeepSeek-R1-Distill-Qwen-7B model and trained on a Python subset of the open-r1/codeforces-cots dataset. |
|
|
|
This model was fine-tuned on pruned CoTs examples derived via our **ASAP** method(**A**nchor-guided, **S**urpris**a**l-polished **P**runing), focusing on highly compressed yet semantically informative reasoning traces. |
|
|
|
GitHub Repository: [https://github.com/Zengwh02/ASAP](https://github.com/Zengwh02/ASAP) |
|
|
|
# 🧠 Reasoning Mode |
|
|
|
We recommend **explicitly activating reasoning mode by inserting ```<think>``` in the prompt**. |
|
|
|
# 🔧 Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("azzzacs/LogicCoder-7B", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("azzzacs/LogicCoder-7B", device_map="auto", trust_remote_code=True).eval() |
|
|
|
message = [{"role": "user", "content": "Please write a Python quick sort algorithm. |
|
"}] |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) + "<|Assistant|><think> |
|
" |
|
|
|
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=4096, |
|
do_sample=False, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
print(tokenizer.decode(outputs[0][len(model_inputs.input_ids[0]):], skip_special_tokens=False)) |
|
``` |