File size: 23,517 Bytes
03a5a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
import logging
from typing import Any, Dict, Iterable, Optional, Tuple, Union, List

import torch
from torch import nn

from sglang.srt.distributed import (
    get_pp_group,
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import (
    default_weight_loader,
    kv_cache_scales_loader,
)
from sglang.srt.utils import add_prefix, make_layers

Qwen2Config = None


logger = logging.getLogger(__name__)


class Qwen2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("down_proj", prefix),
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class Qwen2Attention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        head_dim: Optional[int] = None,
        layer_id: int = 0,
        rope_theta: float = 1000000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 32768,
        quant_config: Optional[QuantizationConfig] = None,
        dual_chunk_attention_config: Optional[dict[str, Any]] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        if head_dim is not None:
            self.head_dim = head_dim
        else:
            self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
            quant_config=quant_config,
            prefix=add_prefix("qkv_proj", prefix),
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("o_proj", prefix),
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            dual_chunk_attention_config=dual_chunk_attention_config,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
            quant_config=quant_config,
            prefix=add_prefix("attn", prefix),
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, forward_batch)
        output, _ = self.o_proj(attn_output)
        return output


class Qwen2DecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        layer_id: int = 0,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        alt_stream: Optional[torch.cuda.Stream] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 1000000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
        head_dim = getattr(config, "head_dim", None)
        dual_chunk_attention_config = getattr(
            config, "dual_chunk_attention_config", None
        )
        self.self_attn = Qwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            head_dim=head_dim,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            dual_chunk_attention_config=dual_chunk_attention_config,
            prefix=add_prefix("self_attn", prefix),
        )
        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            prefix=add_prefix("mlp", prefix),
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen2Model(nn.Module):
    def __init__(
        self,
        config: Qwen2Config,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        decoder_layer_type: type[nn.Module] = Qwen2DecoderLayer,
        alt_stream: Optional[torch.cuda.Stream] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.pp_group = get_pp_group()

        if self.pp_group.is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                enable_tp=not global_server_args_dict["enable_dp_attention"],
                prefix=add_prefix("embed_tokens", prefix),
            )
        else:
            self.embed_tokens = PPMissingLayer()

        # Use the provided decoder layer type or default to Qwen2DecoderLayer
        decoder_layer_type = decoder_layer_type or Qwen2DecoderLayer
        self.layers, self.start_layer, self.end_layer = make_layers(
            config.num_hidden_layers,
            lambda idx, prefix: decoder_layer_type(
                layer_id=idx,
                config=config,
                quant_config=quant_config,
                prefix=prefix,
                alt_stream=alt_stream,
            ),
            pp_rank=self.pp_group.rank_in_group,
            pp_size=self.pp_group.world_size,
            prefix=add_prefix("layers", prefix),
        )
        if self.pp_group.is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer(return_tuple=True)

        # For EAGLE3 support
        self.layers_to_capture = []

    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
        if hasattr(self.config, "scale_emb"):
            return self.get_input_embeddings()(input_ids) * self.config.scale_emb
        else:
            return self.get_input_embeddings()(input_ids)

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embed_tokens

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        input_embeds: torch.Tensor = None,
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> Union[torch.Tensor, PPProxyTensors]:
        if self.pp_group.is_first_rank:
            if input_embeds is None:
                hidden_states = self.embed_tokens(input_ids)
            else:
                hidden_states = input_embeds
            residual = None
        else:
            assert pp_proxy_tensors is not None
            hidden_states = pp_proxy_tensors["hidden_states"]
            residual = pp_proxy_tensors["residual"]

        aux_hidden_states = []
        for i in range(self.start_layer, self.end_layer):
            if i in self.layers_to_capture:
                aux_hidden_states.append(
                    hidden_states + residual if residual is not None else hidden_states
                )
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                forward_batch,
                residual,
            )
        if not self.pp_group.is_last_rank:
            return PPProxyTensors(
                {
                    "hidden_states": hidden_states,
                    "residual": residual,
                }
            )
        else:
            if hidden_states.shape[0] != 0:
                if residual is None:
                    hidden_states = self.norm(hidden_states)
                else:
                    hidden_states, _ = self.norm(hidden_states, residual)

        if len(aux_hidden_states) == 0:
            return hidden_states

        return hidden_states, aux_hidden_states

    # If this function is called, it should always initialize KV cache scale
    # factors (or else raise an exception). Thus, handled exceptions should
    # make sure to leave KV cache scale factors in a known good (dummy) state
    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        tp_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        for layer_idx, scaling_factor in kv_cache_scales_loader(
            quantization_param_path,
            tp_rank,
            tp_size,
            self.config.num_hidden_layers,
            self.config.__class__.model_type,
        ):
            if not isinstance(self.layers[layer_idx], nn.Identity):
                layer_self_attn = self.layers[layer_idx].self_attn
            if hasattr(layer_self_attn.attn, "k_scale"):
                layer_self_attn.attn.k_scale = scaling_factor
                layer_self_attn.attn.v_scale = scaling_factor
            else:
                raise RuntimeError(
                    "Self attention has no KV cache scaling " "factor attribute!"
                )


class Qwen2ForCausalLM(nn.Module):
    # BitandBytes specific attributes
    default_bitsandbytes_target_modules = [
        ".gate_proj.",
        ".down_proj.",
        ".up_proj.",
        ".q_proj.",
        ".k_proj.",
        ".v_proj.",
        ".o_proj.",
    ]
    bitsandbytes_stacked_params_mapping = {
        # shard_name, weight_name, index
        "q_proj": ("qkv_proj", 0),
        "k_proj": ("qkv_proj", 1),
        "v_proj": ("qkv_proj", 2),
        "gate_proj": ("gate_up_proj", 0),
        "up_proj": ("gate_up_proj", 1),
    }

    def __init__(
        self,
        config: Qwen2Config,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.pp_group = get_pp_group()
        self.config = config
        self.quant_config = quant_config
        self.model = Qwen2Model(
            config, quant_config=quant_config, prefix=add_prefix("model", prefix)
        )
        self.capture_aux_hidden_states = False

        # handle the lm head on different pp ranks
        if self.pp_group.is_last_rank:
            if self.pp_group.world_size == 1 and config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                self.lm_head = ParallelLMHead(
                    config.vocab_size,
                    config.hidden_size,
                    quant_config=quant_config,
                    prefix=add_prefix("lm_head", prefix),
                )
        else:
            # ranks other than the last rank will have a placeholder layer
            self.lm_head = PPMissingLayer()

        # perform weight tying for PP
        if self.pp_group.world_size > 1 and config.tie_word_embeddings:
            if self.pp_group.is_first_rank:
                self.pp_group.send(
                    self.model.embed_tokens.weight, dst=self.pp_group.last_rank
                )
            else:
                emb_token_weight = self.pp_group.recv(
                    size=(config.vocab_size, config.hidden_size),
                    dtype=next(self.model.parameters()).dtype,
                    src=self.pp_group.first_rank,
                )
                self.lm_head.weight.copy_(emb_token_weight)

        self.logits_processor = LogitsProcessor(config)
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)

    def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embedding(input_ids)

    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        input_embeds: torch.Tensor = None,
        get_embedding: bool = False,
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
    ) -> torch.Tensor:
        hidden_states = self.model(
            input_ids,
            positions,
            forward_batch,
            input_embeds,
            pp_proxy_tensors=pp_proxy_tensors,
        )
        aux_hidden_states = None
        if self.capture_aux_hidden_states:
            hidden_states, aux_hidden_states = hidden_states

        if self.pp_group.is_last_rank:
            if not get_embedding:
                return self.logits_processor(
                    input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
                )
            else:
                return self.pooler(hidden_states, forward_batch)
        else:
            return hidden_states

    @torch.no_grad()
    def forward_split_prefill(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        split_interval: Tuple[int, int],  # [start, end) 0-based
        input_embeds: torch.Tensor = None,
    ):
        start, end = split_interval
        # embed
        if start == 0:
            if input_embeds is None:
                forward_batch.hidden_states = self.model.embed_tokens(input_ids)
            else:
                forward_batch.hidden_states = input_embeds
        # decoder layer
        for i in range(start, end):
            layer = self.model.layers[i]
            forward_batch.hidden_states, forward_batch.residual = layer(
                positions,
                forward_batch.hidden_states,
                forward_batch,
                forward_batch.residual,
            )

        if end == self.model.config.num_hidden_layers:
            # norm
            hidden_states, _ = self.model.norm(
                forward_batch.hidden_states, forward_batch.residual
            )
            forward_batch.hidden_states = hidden_states
            # logits process
            result = self.logits_processor(
                input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
            )
        else:
            result = None

        return result

    @property
    def start_layer(self):
        return self.model.start_layer

    @property
    def end_layer(self):
        return self.model.end_layer

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
            layer_id = get_layer_id(name)
            if (
                layer_id is not None
                and hasattr(self.model, "start_layer")
                and (
                    layer_id < self.model.start_layer
                    or layer_id >= self.model.end_layer
                )
            ):
                continue

            if "rotary_emb.inv_freq" in name or "projector" in name:
                continue
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            if self.config.tie_word_embeddings and "lm_head.weight" in name:
                if self.pp_group.world_size > 1 and self.pp_group.is_last_rank:
                    # Handle pp weight tying here
                    # find the embed_tokens.weight in the weights
                    embed_token_weights = next(
                        filter(lambda x: x[0] == "model.embed_tokens.weight", weights)
                    )[1]
                    loaded_weight = embed_token_weights
                else:
                    continue
            if name.startswith("model.vision_tower") and name not in params_dict:
                continue

            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                if name in params_dict.keys():
                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)
                else:
                    logger.warning(f"Parameter {name} not found in params_dict")

    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    def load_kv_cache_scales(self, quantization_param_path: str) -> None:
        self.model.load_kv_cache_scales(quantization_param_path)
    
    def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
        if not self.pp_group.is_last_rank:
            return

        self.capture_aux_hidden_states = True
        if layer_ids is None:
            num_layers = self.config.num_hidden_layers
            self.model.layers_to_capture = [
                2,
                num_layers // 2,
                num_layers - 3,
            ]  # Specific layers for EAGLE3 support
        else:
            self.model.layers_to_capture = [val + 1 for val in layer_ids]


EntryClass = Qwen2ForCausalLM