F-Coref: Fast, Accurate and Easy to Use Coreference Resolution

F-Coref allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the LingMess model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover

Please check the official repository for more details and updates.

Experiments

Model Runtime Memory
Joshi et al. (2020) 12:06 27.4
Otmazgin et al. (2022) 06:43 4.6
+ Batching 06:00 6.6
Kirstain et al. (2021) 04:37 4.4
Dobrovolskii (2021) 03:49 3.5
F-Coref 00:45 3.3
+ Batching 00:35 4.5
+ Leftovers batching 00:25 4.0
The inference time(Min:Sec) and memory(GiB) for each model on 2.8K documents. Average of 3 runs. Hardware, NVIDIA Tesla V100 SXM2.

Citation

@inproceedings{Otmazgin2022FcorefFA,
  title={F-coref: Fast, Accurate and Easy to Use Coreference Resolution},
  author={Shon Otmazgin and Arie Cattan and Yoav Goldberg},
  booktitle={AACL},
  year={2022}
}

F-coref: Fast, Accurate and Easy to Use Coreference Resolution (Otmazgin et al., AACL-IJCNLP 2022)

Downloads last month
99,990
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train biu-nlp/f-coref

Evaluation results