vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation
This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4550
- Accuracy: 0.8373
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9032 | 7 | 0.6079 | 0.7263 |
0.4464 | 1.9355 | 15 | 0.4912 | 0.8107 |
0.3464 | 2.9677 | 23 | 0.6082 | 0.6820 |
0.2864 | 4.0 | 31 | 0.5636 | 0.7234 |
0.2864 | 4.9032 | 38 | 0.4431 | 0.8121 |
0.2617 | 5.9355 | 46 | 0.5066 | 0.7322 |
0.2504 | 6.9677 | 54 | 0.4550 | 0.8373 |
0.2319 | 8.0 | 62 | 0.7023 | 0.6686 |
0.2319 | 8.9032 | 69 | 0.6887 | 0.6346 |
0.2338 | 9.9355 | 77 | 0.5075 | 0.8107 |
0.2163 | 10.9677 | 85 | 0.6170 | 0.7189 |
0.2024 | 12.0 | 93 | 0.7783 | 0.6139 |
0.2027 | 12.9032 | 100 | 0.9525 | 0.5059 |
0.2027 | 13.9355 | 108 | 0.7353 | 0.6805 |
0.2086 | 14.9677 | 116 | 0.7734 | 0.6479 |
0.1921 | 16.0 | 124 | 0.9112 | 0.5251 |
0.1827 | 16.9032 | 131 | 0.6997 | 0.6997 |
0.1827 | 17.9355 | 139 | 0.7572 | 0.6731 |
0.1854 | 18.9677 | 147 | 0.6843 | 0.7041 |
0.172 | 20.0 | 155 | 0.7237 | 0.6997 |
0.1703 | 20.9032 | 162 | 0.7698 | 0.6598 |
0.1587 | 21.9355 | 170 | 0.7597 | 0.6420 |
0.1587 | 22.9677 | 178 | 0.8517 | 0.5976 |
0.1673 | 24.0 | 186 | 0.6763 | 0.6672 |
0.1474 | 24.9032 | 193 | 0.8353 | 0.6420 |
0.1512 | 25.9355 | 201 | 0.7117 | 0.6953 |
0.1512 | 26.9677 | 209 | 0.8383 | 0.6169 |
0.1427 | 28.0 | 217 | 1.0619 | 0.5399 |
0.1501 | 28.9032 | 224 | 0.7946 | 0.6760 |
0.1325 | 29.9355 | 232 | 1.0962 | 0.5222 |
0.1314 | 30.9677 | 240 | 0.8824 | 0.6183 |
0.1314 | 32.0 | 248 | 0.8409 | 0.6331 |
0.1294 | 32.9032 | 255 | 0.8754 | 0.6021 |
0.1204 | 33.9355 | 263 | 0.8036 | 0.6716 |
0.1218 | 34.9677 | 271 | 0.8477 | 0.6568 |
0.1218 | 36.0 | 279 | 0.8739 | 0.6331 |
0.1217 | 36.1290 | 280 | 0.8748 | 0.6331 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bmedeiros/vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation
Base model
facebook/vit-msn-small