From John6666/wai-shuffle-noob-vpred01-sdxl: https://civitai.com/models/989367/wai-shuffle-noob

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。

Downloads last month
188
GGUF
Model size
2.57B params
Architecture
sdxl

4-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for btaskel/wai-shuffle-noob-vpred01-sdxl-GGUF