Phi-4 Magpie Reasoning GGUF v4

This is a GGUF format version of the Phi-4 model fine-tuned on the Magpie dataset (v4).

Model Details

  • Base Model: Microsoft Phi-4 (14B parameters)
  • Available Formats:
    • GGUF FP16 (full precision)
    • GGUF Q8 (8-bit quantization)
  • Fine-tuning: LoRA with merged weights
  • Training Dataset: Magpie Reasoning Dataset
  • Version: 4

Training Data

  • 2,200 excellent quality examples
  • 3,000 good quality examples
  • Total training samples: 5,200

Evaluation Dataset

  • 5 very hard + excellent quality examples
  • 5 medium + excellent quality examples
  • 5 very easy + excellent quality examples

Technical Details

  • LoRA Parameters:

    • Rank (r): 24
    • Alpha: 48
    • Target Modules: q_proj, k_proj, v_proj, o_proj
    • Dropout: 0.05
  • Training Configuration:

    • Epochs: 5
    • Learning Rate: 3e-5
    • Batch Size: 1 with gradient accumulation steps of 16
    • Optimizer: AdamW (Fused)
    • Precision: BFloat16 during training
    • Available Formats: FP16 and 8-bit quantized GGUF

Usage with llama.cpp

For CPU inference with the Q8 model:

main -m phi4-magpie-reasoning-q8.gguf -n 512 --repeat_penalty 1.1 --color -i -r User:

For GPU inference with the FP16 model:

main -m phi4-magpie-reasoning-fp16.gguf -n 512 --repeat_penalty 1.1 --color -i -r User: --n-gpu-layers 35

Model Sizes

  • GGUF FP16 Format: ~28GB
  • GGUF Q8 Format: ~14GB
  • Original Model (14B parameters)

License

This model inherits the license terms from Microsoft Phi-4 and the Magpie dataset.

Downloads last month
54
GGUF
Model size
14.7B params
Architecture
phi3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bveiseh/phi4-magpie-reasoning-v4-gguf

Base model

microsoft/phi-4
Quantized
(111)
this model

Dataset used to train bveiseh/phi4-magpie-reasoning-v4-gguf