Phi-4 Magpie Reasoning GGUF v4
This is a GGUF format version of the Phi-4 model fine-tuned on the Magpie dataset (v4).
Model Details
- Base Model: Microsoft Phi-4 (14B parameters)
- Available Formats:
- GGUF FP16 (full precision)
- GGUF Q8 (8-bit quantization)
- Fine-tuning: LoRA with merged weights
- Training Dataset: Magpie Reasoning Dataset
- Version: 4
Training Data
- 2,200 excellent quality examples
- 3,000 good quality examples
- Total training samples: 5,200
Evaluation Dataset
- 5 very hard + excellent quality examples
- 5 medium + excellent quality examples
- 5 very easy + excellent quality examples
Technical Details
LoRA Parameters:
- Rank (r): 24
- Alpha: 48
- Target Modules: q_proj, k_proj, v_proj, o_proj
- Dropout: 0.05
Training Configuration:
- Epochs: 5
- Learning Rate: 3e-5
- Batch Size: 1 with gradient accumulation steps of 16
- Optimizer: AdamW (Fused)
- Precision: BFloat16 during training
- Available Formats: FP16 and 8-bit quantized GGUF
Usage with llama.cpp
For CPU inference with the Q8 model:
main -m phi4-magpie-reasoning-q8.gguf -n 512 --repeat_penalty 1.1 --color -i -r User:
For GPU inference with the FP16 model:
main -m phi4-magpie-reasoning-fp16.gguf -n 512 --repeat_penalty 1.1 --color -i -r User: --n-gpu-layers 35
Model Sizes
- GGUF FP16 Format: ~28GB
- GGUF Q8 Format: ~14GB
- Original Model (14B parameters)
License
This model inherits the license terms from Microsoft Phi-4 and the Magpie dataset.
- Downloads last month
- 54
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bveiseh/phi4-magpie-reasoning-v4-gguf
Base model
microsoft/phi-4