|
--- |
|
language: |
|
- en |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:60315 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
widget: |
|
- source_sentence: Which university did Cheryl Miller attend? |
|
sentences: |
|
- Cheryl Miller male or female, to be named an All-American by "Parade" magazine |
|
four times. Averaging 32.8 points and 15.0 rebounds a game, Miller was Street |
|
& Smith's national High School Player of the Year in both 1981 and 1982. In her |
|
senior year she scored 105 points in a game against Norte Vista High School. She |
|
set California state records for points scored in a single season (1156), and |
|
points scored in a high school career (3405). At the University of Southern California |
|
(USC), the 6 ft. 2 in. (1.87 m) Miller played the forward position. She was a |
|
four-year letter |
|
- 1979 Formula One season 1979 Formula One season The 1979 Formula One season was |
|
the 33rd season of FIA Formula One motor racing. It featured the 1979 World Championship |
|
of F1 Drivers and the 1979 International Cup for F1 Constructors which were contested |
|
concurrently over a fifteen-round series which commenced on 21 January 1979, and |
|
ended on 7 October. The season also included three non-championship Formula One |
|
races. Jody Scheckter of Scuderia Ferrari won the 1979 World Championship of F1 |
|
Drivers while Scuderia Ferrari won 1979 International Cup for F1 Constructors. |
|
Gilles Villeneuve made it a 1–2 for Ferrari in the championship, concluding a |
|
- Cheryl Miller April 30, 2014, she was named the women's basketball coach at Langston |
|
University by athletic director Mike Garrett. On May 26, 2016, she was named the |
|
women's basketball coach at California State Los Angeles by athletic director |
|
Mike Garrett. Cheryl Miller serves as a sideline reporter for the "NBA on TNT"’s |
|
Thursday night doubleheader coverage for TNT Sports. She also made appearances |
|
on NBA TV during the 2008-09 NBA season as a reporter and analyst. Miller joined |
|
Turner Sports in September 1995 as an analyst and reporter for the "NBA on TBS" |
|
and TNT. She did make occasional appearances as |
|
- source_sentence: For what did Georgie O'Keefe become famous? |
|
sentences: |
|
- The Day the Earth Stood Still The Day the Earth Stood Still The Day the Earth |
|
Stood Still (a.k.a. Farewell to the Master and Journey to the World) is a 1951 |
|
American black-and-white science fiction film from 20th Century Fox, produced |
|
by Julian Blaustein and directed by Robert Wise. The film stars Michael Rennie, |
|
Patricia Neal, Billy Gray, Hugh Marlowe, and Sam Jaffe. The screenplay was written |
|
by Edmund H. North, based on the 1940 science fiction short story "Farewell to |
|
the Master" by Harry Bates, and the film score was composed by Bernard Herrmann. |
|
The storyline for "The Day the Earth Stood Still" involves a |
|
- Brian Keefe Bryant University in Smithfield, R.I. for four seasons (2001-05). |
|
In his final season, he helped the Bryant Bulldogs earn a trip to the Division |
|
II Championship in 2005. NBA Career Keefe started his career in professional basketball |
|
at the San Antonio Spurs where he served as video coordinator under head coach |
|
Gregg Popovich, and won a ring as part of the Spur’s 2007 championship in his |
|
second season. Keefe was selected by former Spurs assistant GM Sam Presti and |
|
former Spurs assistant coach PJ Carlesimo to join them in laying the groundwork |
|
for what would become the Oklahoma City Thunder. |
|
- What Have We Become? playlist in April 2014. The cover painting is by David Storey. |
|
"What Have We Become?" received generally positive reviews from music critics. |
|
The album received an average score of 76/100 from 14 reviews on Metacritic, indicating |
|
"generally favorable reviews". In his review for AllMusic, David Jeffries wrote |
|
that, "Anyone who enjoys their pop with extra wry and some sobering awareness |
|
should love What Have We Become?, but it's the Beautiful South faithful who will |
|
rightfully gush over the release, as these antiheroes have lost none of their |
|
touch or fatalistic flair." What Have We Become? What Have We Become? is |
|
- source_sentence: How much time did Jonah spend in the belly of the whale? |
|
sentences: |
|
- Book of Jonah all their efforts fail and they are eventually forced to throw Jonah |
|
overboard. As a result, the storm calms and the sailors then offer sacrifices |
|
to God. Jonah is miraculously saved by being swallowed by a large fish, in whose |
|
belly he spends three days and three nights. While in the great fish, Jonah prays |
|
to God in his affliction and commits to thanksgiving and to paying what he has |
|
vowed. God then commands the fish to vomit Jonah out. God again commands Jonah |
|
to travel to Nineveh and prophesy to its inhabitants. This time he goes and enters |
|
the |
|
- Jonah Who Lived in the Whale Jonah Who Lived in the Whale Jonah Who Lived in the |
|
Whale (), in the United States released as (Look to the Sky) is a 1993 Italian-French |
|
drama film directed by Roberto Faenza, based on the autobiographical novel by |
|
the writer Jona Oberski entitled "Childhood", focused on the drama of the Holocaust. |
|
It was entered into the 18th Moscow International Film Festival, where it won |
|
the Prix of Ecumenical Jury. Jonah is a four-year-old Dutch boy who lives in Amsterdam |
|
during the Second World War. After the occupation of the city by the Germans, |
|
he was deported to the concentration |
|
- Rain Man Rain Man Rain Man is a 1988 American comedy-drama road movie directed |
|
by Barry Levinson and written by Barry Morrow and Ronald Bass. It tells the story |
|
of an abrasive, selfish young wheeler-dealer Charlie Babbitt (Tom Cruise), who |
|
discovers that his estranged father has died and bequeathed all of his multimillion-dollar |
|
estate to his other son, Raymond (Dustin Hoffman), an autistic savant, of whose |
|
existence Charlie was unaware. Charlie is left with only his father's car and |
|
collection of rose bushes. In addition to the two leads, Valeria Golino stars |
|
as Charlie's girlfriend, Susanna. Morrow created the character of Raymond |
|
- source_sentence: In which country are Tangier and Casablanca? |
|
sentences: |
|
- Casablanca–Tangier high-speed rail line by a new high-speed right of way, with |
|
construction scheduled to begin in 2020. Two electrification types are used—from |
|
Tangier to Kenitra the new trackage was built with 25 kV at 50 Hz, while the line |
|
from Kenitra to Casablanca retained the existing 3 kV DC catenary. The ETCS-type |
|
signal system was installed by Ansaldo STS and Cofely Ineo. At the launch of service |
|
in 2018, the travel time between Casablanca and Tangier was reduced from 4 hours |
|
and 45 minutes to 2 hours and 10 minutes. The completion of dedicated high-speed |
|
trackage into Casablanca would further reduce the end-to-end |
|
- 'Maybellene Maybellene "Maybellene" is one of the first rock and roll songs. It |
|
was written and recorded in 1955 by Chuck Berry, and inspired/adapted from the |
|
Western Swing fiddle tune "Ida Red", which was recorded in 1938 by Bob Wills and |
|
his Texas Playboys. Berry''s song tells the story of a hot rod race and a broken |
|
romance. It was released in July 1955 as a single by Chess Records, of Chicago, |
|
Illinois. It was Berry''s first single and his first hit. "Maybellene" is considered |
|
one of the pioneering rock songs: "Rolling Stone" magazine wrote, "Rock & roll |
|
guitar starts here."' |
|
- Casablanca–Tangier high-speed rail line travel time to 1 hour and 30 minutes. |
|
The 12 Alstom Euroduplex trainsets operating on the line are bilevel trains, each |
|
comprised two power cars and eight passenger cars. The passenger capacity is 533 |
|
across two first-class cars, five second-class cars, and a food-service car. Casablanca–Tangier |
|
high-speed rail line The Casablanca—Tangier high-speed rail line is a high-speed |
|
rail line in Morocco that is the first on the African continent. The line was |
|
inaugurated on 15 November 2018 by King Mohammed VI of Morocco following over |
|
a decade of planning and construction by Moroccan national railway company ONCF. |
|
It is the |
|
- source_sentence: Where in Australia was swashbuckling Errol Flynn born? |
|
sentences: |
|
- 'Errol Flynn early in his career: Errol Flynn Errol Leslie Thomson Flynn (20 June |
|
1909 – 14 October 1959) was an Australian-born American actor during the Golden |
|
Age of Hollywood. Considered the natural successor to Douglas Fairbanks, he achieved |
|
worldwide fame for his romantic swashbuckler roles in Hollywood films, as well |
|
as frequent partnerships with Olivia de Havilland. He was best known for his role |
|
as Robin Hood in "The Adventures of Robin Hood" (1938); his portrayal of the character |
|
was named by the American Film Institute as the 18th greatest hero in American |
|
film history. His other famous roles included the' |
|
- Phillips Recording Phillips Recording Phillips Recording is the short name widely |
|
used to refer to the Sam C. Phillips Recording Studio opened at 639 Madison Avenue |
|
in Memphis, Tennessee, by Sam Phillips in 1960. Internationally regarded at that |
|
time as a state-of-the-art facility, it was built to fill the needs of the Sun |
|
Records recording label that the older, smaller Sun Records Studio was no longer |
|
able to handle. This Memphis studio was originally a division of a larger corporation, |
|
Sam Phillips Recording Service, Inc., which also briefly included under its umbrella |
|
a Nashville studio, where famed CBS Records producer Billy Sherrill |
|
- Errol Flynn Blood" (1935), Major Geoffrey Vickers in "The Charge of the Light |
|
Brigade" (1936), as well as a number of Westerns, such as "Dodge City" (1939), |
|
"Santa Fe Trail" (1940), and "San Antonio" (1945). Errol Leslie Flynn was born |
|
on 20 June 1909 in Battery Point, a suburb of Hobart, Tasmania, Australia. His |
|
father, Theodore Thomson Flynn, was a lecturer (1909) and later professor (1911) |
|
of biology at the University of Tasmania. His mother was born Lily Mary Young, |
|
but shortly after marrying Theodore at St John's Church of England, Birchgrove, |
|
Sydney, on 23 January 1909, she changed her first name |
|
datasets: |
|
- sentence-transformers/trivia-qa-triplet |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoClimateFEVER |
|
type: NanoClimateFEVER |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.28 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.46 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.54 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.68 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.28 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.18 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.132 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08800000000000001 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.12166666666666667 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.22666666666666666 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.2773333333333333 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.349 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2921247797723984 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.3988253968253968 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23009905552923093 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoDBPedia |
|
type: NanoDBPedia |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.78 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.84 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.92 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.52 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.496 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.4320000000000001 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.06294234345262387 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.13008183594343983 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.1826677141588478 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.28710629918570024 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.5202322797992843 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7049126984126982 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3763292112580843 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoFEVER |
|
type: NanoFEVER |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.64 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.92 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.94 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.64 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.18799999999999997 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09599999999999997 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6166666666666667 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8566666666666666 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8766666666666666 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8966666666666667 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7846547160527625 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7672222222222221 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.740638888888889 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoFiQA2018 |
|
type: NanoFiQA2018 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.3 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.38 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.42 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.48 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.3 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.18 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.128 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07600000000000001 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.15541269841269842 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.22260317460317464 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.26460317460317456 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.3058253968253968 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2790870219513927 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.35669047619047617 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.24703484886940344 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoHotpotQA |
|
type: NanoHotpotQA |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.66 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.78 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.82 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.92 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.66 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3466666666666666 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.244 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.142 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.33 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.52 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.61 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.71 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6313501479198645 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7391587301587301 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.5492849385578099 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoMSMARCO |
|
type: NanoMSMARCO |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.38 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.6 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.74 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.38 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16666666666666669 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.12000000000000002 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07400000000000001 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.38 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.6 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.74 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.5328147829793286 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4702142857142857 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4805827799103662 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoNFCorpus |
|
type: NanoNFCorpus |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.34 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.56 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.34 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.30000000000000004 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.3 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.244 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.01210979765940875 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.040583707862991376 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.05871448569598863 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.08206726954742757 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.26991337113740815 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.428 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.09944171039889445 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoNQ |
|
type: NanoNQ |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.26 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.48 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.64 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.72 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.26 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.15999999999999998 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.132 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07600000000000001 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.25 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.46 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.61 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.69 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.46501655674505726 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.39988888888888885 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3974487222592024 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoQuoraRetrieval |
|
type: NanoQuoraRetrieval |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.86 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.96 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.96 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.86 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.4 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.25199999999999995 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.13599999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7473333333333332 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9253333333333333 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9420000000000001 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9933333333333334 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9203896722112936 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9073333333333332 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8924516594516595 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoSCIDOCS |
|
type: NanoSCIDOCS |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.34 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.48 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.6 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.7 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.34 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.24666666666666665 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.204 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.132 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.07366666666666667 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.15466666666666667 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.21166666666666664 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.27266666666666667 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2719940457772305 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4480555555555556 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.22300523301536854 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoArguAna |
|
type: NanoArguAna |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.18 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.52 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.64 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.18 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.17333333333333337 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.128 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.18 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.52 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.64 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4849234061490301 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.3843809523809524 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3930335420922445 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoSciFact |
|
type: NanoSciFact |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.56 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.66 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.68 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.84 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.56 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.14400000000000002 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09599999999999997 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.54 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.64 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.66 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.84 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6789363300745337 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6334285714285713 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6282075055376187 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: NanoTouche2020 |
|
type: NanoTouche2020 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.46938775510204084 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7346938775510204 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8163265306122449 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9183673469387755 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.46938775510204084 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3945578231292517 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.38775510204081626 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.32653061224489793 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.03566240843889317 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.08551618356765243 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.1405258525735832 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.2203603523232973 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.36905892568943005 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6109653385163588 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.2939021691226414 |
|
name: Cosine Map@100 |
|
- task: |
|
type: nano-beir |
|
name: Nano BEIR |
|
dataset: |
|
name: NanoBEIR mean |
|
type: NanoBEIR_mean |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.4514913657770801 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.6257456828885399 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.6951020408163264 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.789105180533752 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.4514913657770801 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27701726844583985 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.21967346938775512 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.15373312401883832 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.26965081394591983 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.40631678733158394 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.4672444533614047 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.552848152657576 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.5000381566353087 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.5576212653559591 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.42703540499164716 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [trivia](https://huggingface.co/datasets/sentence-transformers/trivia-qa-triplet) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 196 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [trivia](https://huggingface.co/datasets/sentence-transformers/trivia-qa-triplet) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 196, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bwang0911/bge-int8") |
|
# Run inference |
|
sentences = [ |
|
'Where in Australia was swashbuckling Errol Flynn born?', |
|
'Errol Flynn Blood" (1935), Major Geoffrey Vickers in "The Charge of the Light Brigade" (1936), as well as a number of Westerns, such as "Dodge City" (1939), "Santa Fe Trail" (1940), and "San Antonio" (1945). Errol Leslie Flynn was born on 20 June 1909 in Battery Point, a suburb of Hobart, Tasmania, Australia. His father, Theodore Thomson Flynn, was a lecturer (1909) and later professor (1911) of biology at the University of Tasmania. His mother was born Lily Mary Young, but shortly after marrying Theodore at St John\'s Church of England, Birchgrove, Sydney, on 23 January 1909, she changed her first name', |
|
'Errol Flynn early in his career: Errol Flynn Errol Leslie Thomson Flynn (20 June 1909 – 14 October 1959) was an Australian-born American actor during the Golden Age of Hollywood. Considered the natural successor to Douglas Fairbanks, he achieved worldwide fame for his romantic swashbuckler roles in Hollywood films, as well as frequent partnerships with Olivia de Havilland. He was best known for his role as Robin Hood in "The Adventures of Robin Hood" (1938); his portrayal of the character was named by the American Film Institute as the 18th greatest hero in American film history. His other famous roles included the', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |
|
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:----------|:-------------------|:------------|:------------|:------------|:---------------| |
|
| cosine_accuracy@1 | 0.28 | 0.6 | 0.64 | 0.3 | 0.66 | 0.38 | 0.34 | 0.26 | 0.86 | 0.34 | 0.18 | 0.56 | 0.4694 | |
|
| cosine_accuracy@3 | 0.46 | 0.78 | 0.9 | 0.38 | 0.78 | 0.5 | 0.5 | 0.48 | 0.96 | 0.48 | 0.52 | 0.66 | 0.7347 | |
|
| cosine_accuracy@5 | 0.54 | 0.84 | 0.92 | 0.42 | 0.82 | 0.6 | 0.56 | 0.64 | 0.96 | 0.6 | 0.64 | 0.68 | 0.8163 | |
|
| cosine_accuracy@10 | 0.68 | 0.92 | 0.94 | 0.48 | 0.92 | 0.74 | 0.6 | 0.72 | 1.0 | 0.7 | 0.8 | 0.84 | 0.9184 | |
|
| cosine_precision@1 | 0.28 | 0.6 | 0.64 | 0.3 | 0.66 | 0.38 | 0.34 | 0.26 | 0.86 | 0.34 | 0.18 | 0.56 | 0.4694 | |
|
| cosine_precision@3 | 0.18 | 0.52 | 0.3 | 0.18 | 0.3467 | 0.1667 | 0.3 | 0.16 | 0.4 | 0.2467 | 0.1733 | 0.2333 | 0.3946 | |
|
| cosine_precision@5 | 0.132 | 0.496 | 0.188 | 0.128 | 0.244 | 0.12 | 0.3 | 0.132 | 0.252 | 0.204 | 0.128 | 0.144 | 0.3878 | |
|
| cosine_precision@10 | 0.088 | 0.432 | 0.096 | 0.076 | 0.142 | 0.074 | 0.244 | 0.076 | 0.136 | 0.132 | 0.08 | 0.096 | 0.3265 | |
|
| cosine_recall@1 | 0.1217 | 0.0629 | 0.6167 | 0.1554 | 0.33 | 0.38 | 0.0121 | 0.25 | 0.7473 | 0.0737 | 0.18 | 0.54 | 0.0357 | |
|
| cosine_recall@3 | 0.2267 | 0.1301 | 0.8567 | 0.2226 | 0.52 | 0.5 | 0.0406 | 0.46 | 0.9253 | 0.1547 | 0.52 | 0.64 | 0.0855 | |
|
| cosine_recall@5 | 0.2773 | 0.1827 | 0.8767 | 0.2646 | 0.61 | 0.6 | 0.0587 | 0.61 | 0.942 | 0.2117 | 0.64 | 0.66 | 0.1405 | |
|
| cosine_recall@10 | 0.349 | 0.2871 | 0.8967 | 0.3058 | 0.71 | 0.74 | 0.0821 | 0.69 | 0.9933 | 0.2727 | 0.8 | 0.84 | 0.2204 | |
|
| **cosine_ndcg@10** | **0.2921** | **0.5202** | **0.7847** | **0.2791** | **0.6314** | **0.5328** | **0.2699** | **0.465** | **0.9204** | **0.272** | **0.4849** | **0.6789** | **0.3691** | |
|
| cosine_mrr@10 | 0.3988 | 0.7049 | 0.7672 | 0.3567 | 0.7392 | 0.4702 | 0.428 | 0.3999 | 0.9073 | 0.4481 | 0.3844 | 0.6334 | 0.611 | |
|
| cosine_map@100 | 0.2301 | 0.3763 | 0.7406 | 0.247 | 0.5493 | 0.4806 | 0.0994 | 0.3974 | 0.8925 | 0.223 | 0.393 | 0.6282 | 0.2939 | |
|
|
|
#### Nano BEIR |
|
|
|
* Dataset: `NanoBEIR_mean` |
|
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters: |
|
```json |
|
{ |
|
"dataset_names": [ |
|
"climatefever", |
|
"dbpedia", |
|
"fever", |
|
"fiqa2018", |
|
"hotpotqa", |
|
"msmarco", |
|
"nfcorpus", |
|
"nq", |
|
"quoraretrieval", |
|
"scidocs", |
|
"arguana", |
|
"scifact", |
|
"touche2020" |
|
] |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| cosine_accuracy@1 | 0.4515 | |
|
| cosine_accuracy@3 | 0.6257 | |
|
| cosine_accuracy@5 | 0.6951 | |
|
| cosine_accuracy@10 | 0.7891 | |
|
| cosine_precision@1 | 0.4515 | |
|
| cosine_precision@3 | 0.277 | |
|
| cosine_precision@5 | 0.2197 | |
|
| cosine_precision@10 | 0.1537 | |
|
| cosine_recall@1 | 0.2697 | |
|
| cosine_recall@3 | 0.4063 | |
|
| cosine_recall@5 | 0.4672 | |
|
| cosine_recall@10 | 0.5528 | |
|
| **cosine_ndcg@10** | **0.5** | |
|
| cosine_mrr@10 | 0.5576 | |
|
| cosine_map@100 | 0.427 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### trivia |
|
|
|
* Dataset: [trivia](https://huggingface.co/datasets/sentence-transformers/trivia-qa-triplet) at [bfe9460](https://huggingface.co/datasets/sentence-transformers/trivia-qa-triplet/tree/bfe94607eb149a89fe8107e8c8d187977e587a7d) |
|
* Size: 60,315 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 15.15 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 113 tokens</li><li>mean: 138.92 tokens</li><li>max: 196 tokens</li></ul> | <ul><li>min: 111 tokens</li><li>mean: 137.88 tokens</li><li>max: 196 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Which American-born Sinclair won the Nobel Prize for Literature in 1930?</code> | <code>Sinclair Lewis Sinclair Lewis Harry Sinclair Lewis (February 7, 1885 – January 10, 1951) was an American novelist, short-story writer, and playwright. In 1930, he became the first writer from the United States to receive the Nobel Prize in Literature, which was awarded "for his vigorous and graphic art of description and his ability to create, with wit and humor, new types of characters." His works are known for their insightful and critical views of American capitalism and materialism between the wars. He is also respected for his strong characterizations of modern working women. H. L. Mencken wrote of him, "[If] there</code> | <code>Nobel Prize in Literature analyze its importance on potential future Nobel Prize in Literature laureates. Only Alice Munro (2009) has been awarded with both. The Neustadt International Prize for Literature is regarded as one of the most prestigious international literary prizes, often referred to as the American equivalent to the Nobel Prize. Like the Nobel or the Man Booker International Prize, it is awarded not for any one work, but for an entire body of work. It is frequently seen as an indicator of who may be awarded the Nobel Prize in Literature. Gabriel García Márquez (1972 Neustadt, 1982 Nobel), Czesław Miłosz (1978 Neustadt,</code> | |
|
| <code>Where in England was Dame Judi Dench born?</code> | <code>Judi Dench regular contact with the theatre. Her father, a physician, was also the GP for the York theatre, and her mother was its wardrobe mistress. Actors often stayed in the Dench household. During these years, Judi Dench was involved on a non-professional basis in the first three productions of the modern revival of the York Mystery Plays in 1951, 1954 and 1957. In the third production she played the role of the Virgin Mary, performed on a fixed stage in the Museum Gardens. Though she initially trained as a set designer, she became interested in drama school as her brother Jeff</code> | <code>Judi Dench to independence, published in August 2014, a few weeks before the Scottish referendum. In September 2018, Dench criticized the response to the sexual misconduct allegations made against actor Kevin Spacey, referring to him as a "good friend". Judi Dench Dame Judith Olivia Dench (born 9 December 1934) is an English actress. Dench made her professional debut in 1957 with the Old Vic Company. Over the following few years, she performed in several of Shakespeare's plays, in such roles as Ophelia in "Hamlet", Juliet in "Romeo and Juliet", and Lady Macbeth in "Macbeth". Although most of her work during this period</code> | |
|
| <code>From which country did Angola achieve independence in 1975?</code> | <code>Corruption in Angola they really are. Angola's colonial era ended with the Angolan War of Independence against Portugal occurred between 1970 and 1975. Independence did not produce a unified Angola, however; the country plunged into years of civil war between the National Union for the Total Independence of Angola (UNITA) and the governing Popular Movement for the Liberation of Angola (MPLA). 30 years of war would produce historical legacies that combine to allow for the persistence of a highly corrupt government system. The Angolan civil war was fought between the pro-western UNITA and the communist MPLA and had the characteristics typical of a</code> | <code>Cuban intervention in Angola Cuban intervention in Angola In November 1975, on the eve of Angola's independence, Cuba launched a large-scale military intervention in support of the leftist People's Movement for the Liberation of Angola (MPLA) against United States-backed interventions by South Africa and Zaire in support of two right-wing independence movements competing for power in the country, the National Liberation Front of Angola (FNLA) and the National Union for the Total Independence of Angola (UNITA). By the end of 1975 the Cuban military in Angola numbered more than 25,000 troops. Following the withdrawal of Zaire and South Africa, Cuban forces remained in Angola</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `learning_rate`: 1e-05 |
|
- `warmup_ratio`: 0.1 |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |
|
|:------:|:----:|:-------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:| |
|
| 0.0212 | 10 | 2.7514 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.0424 | 20 | 2.7415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.0636 | 30 | 2.5319 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.0847 | 40 | 2.3283 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.1059 | 50 | 2.0535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.1271 | 60 | 1.8257 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.1483 | 70 | 1.6569 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.1695 | 80 | 1.5127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.1907 | 90 | 1.3586 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.2119 | 100 | 1.3002 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.2331 | 110 | 1.2825 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.2542 | 120 | 1.1649 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.2754 | 130 | 1.1589 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.2966 | 140 | 1.1404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.3178 | 150 | 1.1462 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.3390 | 160 | 1.1297 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.3602 | 170 | 1.0774 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.3814 | 180 | 1.0845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.4025 | 190 | 1.0574 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.4237 | 200 | 1.1048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.4449 | 210 | 1.0817 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.4661 | 220 | 1.0603 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.4873 | 230 | 1.0383 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.5085 | 240 | 1.0197 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.5297 | 250 | 1.0979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.5508 | 260 | 1.0303 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.5720 | 270 | 1.0363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.5932 | 280 | 1.0433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.6144 | 290 | 0.98 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.6356 | 300 | 1.0272 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.6568 | 310 | 1.054 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.6780 | 320 | 1.0213 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.6992 | 330 | 1.0111 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.7203 | 340 | 0.9849 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.7415 | 350 | 1.0054 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.7627 | 360 | 0.9998 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.7839 | 370 | 0.9871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.8051 | 380 | 1.0223 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.8263 | 390 | 0.9592 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.8475 | 400 | 0.9736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.8686 | 410 | 0.9653 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.8898 | 420 | 0.9856 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.9110 | 430 | 1.0445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.9322 | 440 | 0.9818 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.9534 | 450 | 0.9937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.9746 | 460 | 0.9818 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 0.9958 | 470 | 0.9799 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.0169 | 480 | 0.908 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.0381 | 490 | 0.9568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.0593 | 500 | 0.9887 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.0805 | 510 | 0.9401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.1017 | 520 | 0.934 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.1229 | 530 | 0.9245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.1441 | 540 | 0.9329 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.1653 | 550 | 0.9985 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.1864 | 560 | 0.9591 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.2076 | 570 | 0.9433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.2288 | 580 | 0.9645 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.25 | 590 | 0.9682 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.2712 | 600 | 0.9385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.2924 | 610 | 0.8819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.3136 | 620 | 0.9471 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.3347 | 630 | 0.919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.3559 | 640 | 0.9523 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.3771 | 650 | 0.9248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.3983 | 660 | 0.9784 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.4195 | 670 | 0.9003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.4407 | 680 | 0.9652 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.4619 | 690 | 0.9286 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.4831 | 700 | 0.8873 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.5042 | 710 | 0.9252 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.5254 | 720 | 0.938 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.5466 | 730 | 0.9394 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.5678 | 740 | 0.9224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.5890 | 750 | 0.9128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.6102 | 760 | 0.9367 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.6314 | 770 | 0.9664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.6525 | 780 | 0.9307 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.6737 | 790 | 0.8823 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.6949 | 800 | 0.9306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.7161 | 810 | 0.8754 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.7373 | 820 | 0.9376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.7585 | 830 | 0.8803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.7797 | 840 | 0.9254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.8008 | 850 | 0.9282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.8220 | 860 | 0.9175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.8432 | 870 | 0.9482 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.8644 | 880 | 0.9289 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.8856 | 890 | 0.9354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.9068 | 900 | 0.9253 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.9280 | 910 | 0.9363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.9492 | 920 | 1.0037 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.9703 | 930 | 0.8552 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 1.9915 | 940 | 0.9267 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.0127 | 950 | 0.9043 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.0339 | 960 | 0.8859 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.0551 | 970 | 0.9149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.0763 | 980 | 0.917 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.0975 | 990 | 0.8839 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.1186 | 1000 | 0.9502 | 0.2921 | 0.5202 | 0.7847 | 0.2791 | 0.6314 | 0.5328 | 0.2699 | 0.4650 | 0.9204 | 0.2720 | 0.4849 | 0.6789 | 0.3691 | 0.5000 | |
|
| 2.1398 | 1010 | 0.9131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.1610 | 1020 | 0.9191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.1822 | 1030 | 0.8992 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.2034 | 1040 | 0.913 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.2246 | 1050 | 0.871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.2458 | 1060 | 0.9336 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.2669 | 1070 | 0.903 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.2881 | 1080 | 0.8995 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.3093 | 1090 | 0.9018 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.3305 | 1100 | 0.861 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.3517 | 1110 | 0.8548 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.3729 | 1120 | 0.8928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.3941 | 1130 | 0.9606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.4153 | 1140 | 0.8921 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.4364 | 1150 | 0.8511 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.4576 | 1160 | 0.8977 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.4788 | 1170 | 0.8894 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.5 | 1180 | 0.8647 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.5212 | 1190 | 0.8421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.5424 | 1200 | 0.8654 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.5636 | 1210 | 0.926 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.5847 | 1220 | 0.8911 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.6059 | 1230 | 0.9191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.6271 | 1240 | 0.8731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.6483 | 1250 | 0.8757 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.6695 | 1260 | 0.8825 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.6907 | 1270 | 0.8881 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7119 | 1280 | 0.8745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7331 | 1290 | 0.8404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7542 | 1300 | 0.9377 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7754 | 1310 | 0.9149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7966 | 1320 | 0.8881 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8178 | 1330 | 0.8889 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8390 | 1340 | 0.9289 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8602 | 1350 | 0.9169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8814 | 1360 | 0.8803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9025 | 1370 | 0.8398 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9237 | 1380 | 0.8716 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9449 | 1390 | 0.8912 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9661 | 1400 | 0.8471 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9873 | 1410 | 0.9158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.7.0+cu126 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.6.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |