calculito's picture
calculito/classify-ISIN-STEP6_binary
f4aa9cf verified
metadata
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - trl
  - sft
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: classify-ISIN-STEP6_binary
    results: []

classify-ISIN-STEP6_binary

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • Accuracy Label Gd622:null: 1.0
  • Accuracy Label Gd622:yes: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label Gd622:null Accuracy Label Gd622:yes
0.0056 2.4691 100 0.0042 1.0 1.0 1.0 1.0 1.0 1.0
0.001 4.9383 200 0.0009 1.0 1.0 1.0 1.0 1.0 1.0
0.0005 7.4074 300 0.0004 1.0 1.0 1.0 1.0 1.0 1.0
0.0003 9.8765 400 0.0003 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 12.3457 500 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 14.8148 600 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 17.2840 700 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 19.7531 800 0.0002 1.0 1.0 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1