whisper-medium-tr / README.md
cankaracelebi's picture
End of training
8a5799b verified
metadata
language:
  - tr
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium  Tr Can
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: tr
          split: test
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 14.532913224899941

Whisper Medium Tr Can

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1694
  • Wer: 14.5329

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1912 0.3448 1000 0.2200 18.9662
0.1469 0.6895 2000 0.1978 16.9565
0.0666 1.0343 3000 0.1821 15.6791
0.0571 1.3791 4000 0.1778 15.0915
0.0502 1.7238 5000 0.1694 14.5329

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1