File size: 14,678 Bytes
3d760ea 4a7e273 3d760ea 4a7e273 3d760ea 4a7e273 3d760ea 4a7e273 3d760ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
"""
srun -p INTERN2 --job-name='husky_multi_test' --gres=gpu:1 --cpus-per-task=8 --quotatype="auto" python -u demo/inference_new.py
"""
import abc
from typing import Optional
import os
import requests
from PIL import Image
from io import BytesIO
import torch
import torchvision.transforms as T
from peft import PeftModel
from torchvision.transforms.functional import InterpolationMode
from transformers import (
LlamaTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
)
from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
from robohusky.conversation import (
conv_templates,
get_conv_template,
)
from robohusky.video_transformers import (
GroupNormalize,
GroupScale,
GroupCenterCrop,
Stack,
ToTorchFormatTensor,
get_index,
)
from robohusky.compression import compress_module
from decord import VideoReader, cpu
# import deepspeed
IGNORE_INDEX = -100
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"
def get_gpu_memory(max_gpus=None):
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024 ** 3)
allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def load_model(
model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, lora_weights=None
):
if device == "cpu":
kwargs = {}
elif device == "cuda":
kwargs = {"torch_dtype": torch.float16}
if num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
num_gpus = int(num_gpus)
if num_gpus != 1:
kwargs["device_map"] = "auto"
if max_gpu_memory is None:
kwargs[
"device_map"
] = "sequential" # This is important for not the same VRAM sizes
available_gpu_memory = get_gpu_memory(num_gpus)
kwargs["max_memory"] = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
for i in range(num_gpus)
}
else:
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
else:
raise ValueError(f"Invalid device: {device}")
tokenizer = LlamaTokenizer.from_pretrained(
model_path, use_fast=False)
if lora_weights is None:
model = HuskyForConditionalGeneration.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
else:
kwargs["device_map"] = "auto"
model = HuskyForConditionalGeneration.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
model.language_model = PeftModel.from_pretrained(
model.language_model,
lora_weights,
**kwargs
)
if load_8bit:
compress_module(model, device)
if (device == "cuda" and num_gpus == 1) or device == "mps":
model.to(device)
model = model.eval()
return model, tokenizer
def load_image(image_file, input_size=224):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
crop_pct = 224 / 256
size = int(input_size / crop_pct)
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size, interpolation=InterpolationMode.BICUBIC),
T.CenterCrop(input_size),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
image = transform(image)
return image
def load_video(video_path, num_segments=8):
vr = VideoReader(video_path, ctx=cpu(0))
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
# transform
crop_size = 224
scale_size = 224
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
video = transform(images_group)
return video
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
@torch.inference_mode()
def generate_stream(
model, tokenizer, image_processor, params, device
):
prompt = params["prompt"]
images = params.get("images", None)
videos = params.get("videos", None)
temperature = float(params.get("temperature", 0.7))
max_new_tokens = int(params.get("max_new_tokens", 1024))
num_queries = model.config.num_query_tokens
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
pixel_values = None
if images is not None:
pixel_values = load_image(images).to(device) # only support one image
image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
prompt = prompt.replace("<image>", image_query)
elif videos is not None:
pixel_values = load_video(videos).to(device)
video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
prompt = prompt.replace("<video>", video_query)
model_inputs = tokenizer([prompt], return_tensors="pt")
model_inputs.pop("token_type_ids", None)
if pixel_values is not None:
model_inputs["pixel_values"] = pixel_values
generation_output = model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
else:
generation_output = model.language_model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
return outputs
class Chat:
def __init__(
self,
model_path,
device,
num_gpus=1,
load_8bit=False,
temperature=0.7,
max_new_tokens=512,
lora_path=None,
):
model, tokenizer = load_model(
model_path, device, num_gpus, load_8bit=load_8bit, lora_weights=lora_path
)
self.model = model
# self.model.language_model = deepspeed.init_inference(
# self.model.language_model, mp_size=1, dtype=torch.float16, checkpoint=None, replace_with_kernel_inject=True)
self.tokenizer = tokenizer
num_queries = model.config.num_query_tokens
self.device = device
self.dtype = model.dtype
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.conv = get_conv_template("husky")
self.image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
self.video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
self.generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
top_k=20,
top_p=0.9,
temperature=temperature,
max_new_tokens=max_new_tokens
)
self.stopping_criteria = stopping_criteria
def ask(self, text, conv, modal_type="image"):
assert modal_type in ["text", "image", "video"]
conversations = []
if len(conv.messages) > 0 or modal_type == "text":
conv.append_message(conv.roles[0], text)
elif modal_type == "image":
conv.append_message(conv.roles[0], self.image_query + "\n" + text)
else:
conv.append_message(conv.roles[0], self.video_query + "\n" + text)
conv.append_message(conv.roles[1], None)
conversations.append(conv.get_prompt())
return conversations
@torch.no_grad()
def get_image_embedding(self, image_file):
pixel_values = load_image(image_file)
pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def get_video_embedding(self, video_file):
pixel_values = load_video(video_file)
TC, H, W = pixel_values.shape
pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1) # [C, T, H, W]
pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
assert len(pixel_values.shape) == 5
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def answer(self, conversations, language_model_inputs, modal_type="image"):
model_inputs = self.tokenizer(
conversations,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
input_ids = model_inputs["input_ids"].to(self.device)
attention_mask = model_inputs["attention_mask"].to(self.device)
if modal_type == "text":
generation_output = self.model.language_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=self.generation_config,
stopping_criteria=self.stopping_criteria,
return_dict_in_generate=True,
output_scores=True
)
else:
pixel_values = model_inputs.pop("pixel_values", None)
if pixel_values is not None:
pixel_values = pixel_values.to(self.device)
generation_output = self.model.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
language_model_inputs=language_model_inputs,
generation_config=self.generation_config,
stopping_criteria=self.stopping_criteria,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = self.tokenizer.batch_decode(preds, skip_special_tokens=True)[0]
if modal_type == "text":
skip_echo_len = len(conversations[0]) - conversations[0].count("</s>") * 3
outputs = outputs[skip_echo_len:].strip()
return outputs
if __name__ == '__main__':
# model_path = "/mnt/petrelfs/zhangqinglong/Documents/Husky/work_dirs/husky_v3/EmbodiedGPT/pretrain_0727"
model_path = "./"
device = "cuda" if torch.cuda.is_available() else "cpu"
chat = Chat(model_path, device=device, num_gpus=1, max_new_tokens=1024, load_8bit=False)
vision_feature = None
image_state = False
video_state = False
while True:
query = input("\n")
if query.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
if os.path.exists(query):
print("received.")
vision_feature = chat.get_image_embedding(query)
chat.conv = get_conv_template("husky").copy()
image_state = True
continue
if query.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
if os.path.exists(query):
print("received.")
vision_feature = chat.get_video_embedding(query)
chat.conv = get_conv_template("husky").copy()
video_state = True
continue
if query == "stop":
break
if query == "clear" or query == "" or query == "\n":
chat.conv = get_conv_template("husky").copy()
image_state = False
video_state = False
os.system("clear")
print("欢迎使用 husky-13b-zh 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
continue
if image_state:
modal_type = "image"
elif video_state:
modal_type = "video"
else:
modal_type = "text"
# image_test = "assets/husky.jpg"
# image_test = "assets/yoga.mp4"
# video_test = "assets/pretty_girl.mp4"
# video_test = "assets/stock-footage-billiards-concentrated-young-woman-playing-in-club.webm"
# video_test = "assets/stock-footage-kherson-ukraine-may-open-free-rock-music-festival-crowd-partying-at-a-rock-concert.webm"
conversations = chat.ask(text=query, conv=chat.conv, modal_type=modal_type)
outputs = chat.answer(conversations, vision_feature, modal_type=modal_type)
# NOTE: strip is important to align with the training data.
chat.conv.messages[-1][1] = outputs.strip()
print(f"Husky: \n{outputs}")
|