File size: 14,678 Bytes
3d760ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7e273
3d760ea
4a7e273
 
3d760ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7e273
3d760ea
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7e273
3d760ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
srun -p INTERN2 --job-name='husky_multi_test' --gres=gpu:1 --cpus-per-task=8 --quotatype="auto" python -u demo/inference_new.py
"""

import abc
from typing import Optional

import os
import requests
from PIL import Image
from io import BytesIO

import torch
import torchvision.transforms as T
from peft import PeftModel
from torchvision.transforms.functional import InterpolationMode

from transformers import (
    LlamaTokenizer,
    GenerationConfig,
    StoppingCriteria,
    StoppingCriteriaList,
)

from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration

from robohusky.conversation import (
    conv_templates,
    get_conv_template,
)

from robohusky.video_transformers import (
    GroupNormalize,
    GroupScale,
    GroupCenterCrop,
    Stack,
    ToTorchFormatTensor,
    get_index,
)

from robohusky.compression import compress_module
from decord import VideoReader, cpu

# import deepspeed

IGNORE_INDEX = -100
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"

DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"

def get_gpu_memory(max_gpus=None):
    gpu_memory = []
    num_gpus = (
        torch.cuda.device_count()
        if max_gpus is None
        else min(max_gpus, torch.cuda.device_count())
    )

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024 ** 3)
            allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
            available_memory = total_memory - allocated_memory
            gpu_memory.append(available_memory)
    return gpu_memory

def load_model(
        model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, lora_weights=None
):
    if device == "cpu":
        kwargs = {}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus == "auto":
            kwargs["device_map"] = "auto"
        else:
            num_gpus = int(num_gpus)
            if num_gpus != 1:
                kwargs["device_map"] = "auto"
                if max_gpu_memory is None:
                    kwargs[
                        "device_map"
                    ] = "sequential"  # This is important for not the same VRAM sizes
                    available_gpu_memory = get_gpu_memory(num_gpus)
                    kwargs["max_memory"] = {
                        i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
                        for i in range(num_gpus)
                    }
                else:
                    kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
    else:
        raise ValueError(f"Invalid device: {device}")

    tokenizer = LlamaTokenizer.from_pretrained(
        model_path, use_fast=False)

    if lora_weights is None:
        model = HuskyForConditionalGeneration.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
    else:
        kwargs["device_map"] = "auto"
        model = HuskyForConditionalGeneration.from_pretrained(
            model_path, low_cpu_mem_usage=True, **kwargs
        )
        model.language_model = PeftModel.from_pretrained(
            model.language_model,
            lora_weights,
            **kwargs
        )

    if load_8bit:
        compress_module(model, device)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)

    model = model.eval()
    return model, tokenizer

def load_image(image_file, input_size=224):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')

    crop_pct = 224 / 256
    size = int(input_size / crop_pct)
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize(size, interpolation=InterpolationMode.BICUBIC),
        T.CenterCrop(input_size),
        T.ToTensor(),
        T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
    ])
    image = transform(image)
    return image

def load_video(video_path, num_segments=8):
    vr = VideoReader(video_path, ctx=cpu(0))
    num_frames = len(vr)
    frame_indices = get_index(num_frames, num_segments)

    # transform
    crop_size = 224
    scale_size = 224
    input_mean = [0.48145466, 0.4578275, 0.40821073]
    input_std = [0.26862954, 0.26130258, 0.27577711]

    transform = T.Compose([
        GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
        GroupCenterCrop(crop_size),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(input_mean, input_std)
    ])

    images_group = list()
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy())
        images_group.append(img)
    video = transform(images_group)
    return video

class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops, encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True

        return False

@torch.inference_mode()
def generate_stream(
        model, tokenizer, image_processor, params, device
):
    prompt = params["prompt"]
    images = params.get("images", None)
    videos = params.get("videos", None)
    temperature = float(params.get("temperature", 0.7))
    max_new_tokens = int(params.get("max_new_tokens", 1024))

    num_queries = model.config.num_query_tokens

    stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
    stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
    stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

    generation_config = GenerationConfig(
        bos_token_id=1,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        stopping_criteria=stopping_criteria
    )

    pixel_values = None
    if images is not None:
        pixel_values = load_image(images).to(device)  # only support one image
        image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
        prompt = prompt.replace("<image>", image_query)

    elif videos is not None:
        pixel_values = load_video(videos).to(device)
        video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
        prompt = prompt.replace("<video>", video_query)

    model_inputs = tokenizer([prompt], return_tensors="pt")
    model_inputs.pop("token_type_ids", None)

    if pixel_values is not None:
        model_inputs["pixel_values"] = pixel_values

        generation_output = model.generate(
            **model_inputs,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True
        )
    else:
        generation_output = model.language_model.generate(
            **model_inputs,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True
        )

    preds = generation_output.sequences
    outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
    return outputs

class Chat:
    def __init__(
            self,
            model_path,
            device,
            num_gpus=1,
            load_8bit=False,
            temperature=0.7,
            max_new_tokens=512,
            lora_path=None,
    ):
        model, tokenizer = load_model(
            model_path, device, num_gpus, load_8bit=load_8bit, lora_weights=lora_path
        )

        self.model = model
        # self.model.language_model = deepspeed.init_inference(
        #     self.model.language_model, mp_size=1, dtype=torch.float16, checkpoint=None, replace_with_kernel_inject=True)
        self.tokenizer = tokenizer
        num_queries = model.config.num_query_tokens

        self.device = device
        self.dtype = model.dtype

        stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
        stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

        self.conv = get_conv_template("husky")

        self.image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
        self.video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN

        self.generation_config = GenerationConfig(
            bos_token_id=1,
            do_sample=True,
            top_k=20,
            top_p=0.9,
            temperature=temperature,
            max_new_tokens=max_new_tokens

        )
        self.stopping_criteria = stopping_criteria
    def ask(self, text, conv, modal_type="image"):
        assert modal_type in ["text", "image", "video"]
        conversations = []

        if len(conv.messages) > 0 or modal_type == "text":
            conv.append_message(conv.roles[0], text)
        elif modal_type == "image":
            conv.append_message(conv.roles[0], self.image_query + "\n" + text)
        else:
            conv.append_message(conv.roles[0], self.video_query + "\n" + text)

        conv.append_message(conv.roles[1], None)
        conversations.append(conv.get_prompt())
        return conversations

    @torch.no_grad()
    def get_image_embedding(self, image_file):
        pixel_values = load_image(image_file)
        pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
        language_model_inputs = self.model.extract_feature(pixel_values)
        return language_model_inputs

    @torch.no_grad()
    def get_video_embedding(self, video_file):
        pixel_values = load_video(video_file)
        TC, H, W = pixel_values.shape
        pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1)  # [C, T, H, W]
        pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
        assert len(pixel_values.shape) == 5
        language_model_inputs = self.model.extract_feature(pixel_values)
        return language_model_inputs

    @torch.no_grad()
    def answer(self, conversations, language_model_inputs, modal_type="image"):
        model_inputs = self.tokenizer(
            conversations,
            return_tensors="pt",
        )
        model_inputs.pop("token_type_ids", None)

        input_ids = model_inputs["input_ids"].to(self.device)
        attention_mask = model_inputs["attention_mask"].to(self.device)

        if modal_type == "text":
            generation_output = self.model.language_model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                generation_config=self.generation_config,
                stopping_criteria=self.stopping_criteria,
                return_dict_in_generate=True,
                output_scores=True
            )
        else:
            pixel_values = model_inputs.pop("pixel_values", None)
            if pixel_values is not None:
                pixel_values = pixel_values.to(self.device)

            generation_output = self.model.generate(
                pixel_values=pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                language_model_inputs=language_model_inputs,
                generation_config=self.generation_config,
                stopping_criteria=self.stopping_criteria,
                return_dict_in_generate=True,
                output_scores=True
            )

        preds = generation_output.sequences
        outputs = self.tokenizer.batch_decode(preds, skip_special_tokens=True)[0]

        if modal_type == "text":
            skip_echo_len = len(conversations[0]) - conversations[0].count("</s>") * 3
            outputs = outputs[skip_echo_len:].strip()

        return outputs 

if __name__ == '__main__':
    # model_path = "/mnt/petrelfs/zhangqinglong/Documents/Husky/work_dirs/husky_v3/EmbodiedGPT/pretrain_0727"
    model_path = "./"
    device = "cuda" if torch.cuda.is_available() else "cpu"
    chat = Chat(model_path, device=device, num_gpus=1, max_new_tokens=1024, load_8bit=False)

    vision_feature = None
    image_state = False
    video_state = False

    while True:
        query = input("\n")
        if query.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
            if os.path.exists(query):
                print("received.")
                vision_feature = chat.get_image_embedding(query)
                chat.conv = get_conv_template("husky").copy()
                image_state = True
                continue
        if query.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
            if os.path.exists(query):
                print("received.")
                vision_feature = chat.get_video_embedding(query)
                chat.conv = get_conv_template("husky").copy()
                video_state = True
                continue

        if query == "stop":
            break
        if query == "clear" or query == "" or query == "\n":
            chat.conv = get_conv_template("husky").copy()
            image_state = False
            video_state = False
            os.system("clear")
            print("欢迎使用 husky-13b-zh 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
            continue

        if image_state:
            modal_type = "image"
        elif video_state:
            modal_type = "video"
        else:
            modal_type = "text"

        # image_test = "assets/husky.jpg"
        # image_test = "assets/yoga.mp4"
        # video_test = "assets/pretty_girl.mp4"
        # video_test = "assets/stock-footage-billiards-concentrated-young-woman-playing-in-club.webm"
        # video_test = "assets/stock-footage-kherson-ukraine-may-open-free-rock-music-festival-crowd-partying-at-a-rock-concert.webm"
        conversations = chat.ask(text=query, conv=chat.conv, modal_type=modal_type)
        outputs = chat.answer(conversations, vision_feature, modal_type=modal_type)
        # NOTE: strip is important to align with the training data.
        chat.conv.messages[-1][1] = outputs.strip()

        print(f"Husky: \n{outputs}")