embodied_explainer / inference.py
ccclemenfff's picture
fix some errors in inference.py
4a7e273
raw
history blame
14.7 kB
"""
srun -p INTERN2 --job-name='husky_multi_test' --gres=gpu:1 --cpus-per-task=8 --quotatype="auto" python -u demo/inference_new.py
"""
import abc
from typing import Optional
import os
import requests
from PIL import Image
from io import BytesIO
import torch
import torchvision.transforms as T
from peft import PeftModel
from torchvision.transforms.functional import InterpolationMode
from transformers import (
LlamaTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
)
from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
from robohusky.conversation import (
conv_templates,
get_conv_template,
)
from robohusky.video_transformers import (
GroupNormalize,
GroupScale,
GroupCenterCrop,
Stack,
ToTorchFormatTensor,
get_index,
)
from robohusky.compression import compress_module
from decord import VideoReader, cpu
# import deepspeed
IGNORE_INDEX = -100
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"
def get_gpu_memory(max_gpus=None):
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024 ** 3)
allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def load_model(
model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, lora_weights=None
):
if device == "cpu":
kwargs = {}
elif device == "cuda":
kwargs = {"torch_dtype": torch.float16}
if num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
num_gpus = int(num_gpus)
if num_gpus != 1:
kwargs["device_map"] = "auto"
if max_gpu_memory is None:
kwargs[
"device_map"
] = "sequential" # This is important for not the same VRAM sizes
available_gpu_memory = get_gpu_memory(num_gpus)
kwargs["max_memory"] = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
for i in range(num_gpus)
}
else:
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
else:
raise ValueError(f"Invalid device: {device}")
tokenizer = LlamaTokenizer.from_pretrained(
model_path, use_fast=False)
if lora_weights is None:
model = HuskyForConditionalGeneration.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
else:
kwargs["device_map"] = "auto"
model = HuskyForConditionalGeneration.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
model.language_model = PeftModel.from_pretrained(
model.language_model,
lora_weights,
**kwargs
)
if load_8bit:
compress_module(model, device)
if (device == "cuda" and num_gpus == 1) or device == "mps":
model.to(device)
model = model.eval()
return model, tokenizer
def load_image(image_file, input_size=224):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
crop_pct = 224 / 256
size = int(input_size / crop_pct)
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size, interpolation=InterpolationMode.BICUBIC),
T.CenterCrop(input_size),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
image = transform(image)
return image
def load_video(video_path, num_segments=8):
vr = VideoReader(video_path, ctx=cpu(0))
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
# transform
crop_size = 224
scale_size = 224
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
transform = T.Compose([
GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
video = transform(images_group)
return video
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
@torch.inference_mode()
def generate_stream(
model, tokenizer, image_processor, params, device
):
prompt = params["prompt"]
images = params.get("images", None)
videos = params.get("videos", None)
temperature = float(params.get("temperature", 0.7))
max_new_tokens = int(params.get("max_new_tokens", 1024))
num_queries = model.config.num_query_tokens
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
pixel_values = None
if images is not None:
pixel_values = load_image(images).to(device) # only support one image
image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
prompt = prompt.replace("<image>", image_query)
elif videos is not None:
pixel_values = load_video(videos).to(device)
video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
prompt = prompt.replace("<video>", video_query)
model_inputs = tokenizer([prompt], return_tensors="pt")
model_inputs.pop("token_type_ids", None)
if pixel_values is not None:
model_inputs["pixel_values"] = pixel_values
generation_output = model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
else:
generation_output = model.language_model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
return outputs
class Chat:
def __init__(
self,
model_path,
device,
num_gpus=1,
load_8bit=False,
temperature=0.7,
max_new_tokens=512,
lora_path=None,
):
model, tokenizer = load_model(
model_path, device, num_gpus, load_8bit=load_8bit, lora_weights=lora_path
)
self.model = model
# self.model.language_model = deepspeed.init_inference(
# self.model.language_model, mp_size=1, dtype=torch.float16, checkpoint=None, replace_with_kernel_inject=True)
self.tokenizer = tokenizer
num_queries = model.config.num_query_tokens
self.device = device
self.dtype = model.dtype
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.conv = get_conv_template("husky")
self.image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
self.video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
self.generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
top_k=20,
top_p=0.9,
temperature=temperature,
max_new_tokens=max_new_tokens
)
self.stopping_criteria = stopping_criteria
def ask(self, text, conv, modal_type="image"):
assert modal_type in ["text", "image", "video"]
conversations = []
if len(conv.messages) > 0 or modal_type == "text":
conv.append_message(conv.roles[0], text)
elif modal_type == "image":
conv.append_message(conv.roles[0], self.image_query + "\n" + text)
else:
conv.append_message(conv.roles[0], self.video_query + "\n" + text)
conv.append_message(conv.roles[1], None)
conversations.append(conv.get_prompt())
return conversations
@torch.no_grad()
def get_image_embedding(self, image_file):
pixel_values = load_image(image_file)
pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def get_video_embedding(self, video_file):
pixel_values = load_video(video_file)
TC, H, W = pixel_values.shape
pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1) # [C, T, H, W]
pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
assert len(pixel_values.shape) == 5
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def answer(self, conversations, language_model_inputs, modal_type="image"):
model_inputs = self.tokenizer(
conversations,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
input_ids = model_inputs["input_ids"].to(self.device)
attention_mask = model_inputs["attention_mask"].to(self.device)
if modal_type == "text":
generation_output = self.model.language_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=self.generation_config,
stopping_criteria=self.stopping_criteria,
return_dict_in_generate=True,
output_scores=True
)
else:
pixel_values = model_inputs.pop("pixel_values", None)
if pixel_values is not None:
pixel_values = pixel_values.to(self.device)
generation_output = self.model.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
language_model_inputs=language_model_inputs,
generation_config=self.generation_config,
stopping_criteria=self.stopping_criteria,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = self.tokenizer.batch_decode(preds, skip_special_tokens=True)[0]
if modal_type == "text":
skip_echo_len = len(conversations[0]) - conversations[0].count("</s>") * 3
outputs = outputs[skip_echo_len:].strip()
return outputs
if __name__ == '__main__':
# model_path = "/mnt/petrelfs/zhangqinglong/Documents/Husky/work_dirs/husky_v3/EmbodiedGPT/pretrain_0727"
model_path = "./"
device = "cuda" if torch.cuda.is_available() else "cpu"
chat = Chat(model_path, device=device, num_gpus=1, max_new_tokens=1024, load_8bit=False)
vision_feature = None
image_state = False
video_state = False
while True:
query = input("\n")
if query.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
if os.path.exists(query):
print("received.")
vision_feature = chat.get_image_embedding(query)
chat.conv = get_conv_template("husky").copy()
image_state = True
continue
if query.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
if os.path.exists(query):
print("received.")
vision_feature = chat.get_video_embedding(query)
chat.conv = get_conv_template("husky").copy()
video_state = True
continue
if query == "stop":
break
if query == "clear" or query == "" or query == "\n":
chat.conv = get_conv_template("husky").copy()
image_state = False
video_state = False
os.system("clear")
print("欢迎使用 husky-13b-zh 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
continue
if image_state:
modal_type = "image"
elif video_state:
modal_type = "video"
else:
modal_type = "text"
# image_test = "assets/husky.jpg"
# image_test = "assets/yoga.mp4"
# video_test = "assets/pretty_girl.mp4"
# video_test = "assets/stock-footage-billiards-concentrated-young-woman-playing-in-club.webm"
# video_test = "assets/stock-footage-kherson-ukraine-may-open-free-rock-music-festival-crowd-partying-at-a-rock-concert.webm"
conversations = chat.ask(text=query, conv=chat.conv, modal_type=modal_type)
outputs = chat.answer(conversations, vision_feature, modal_type=modal_type)
# NOTE: strip is important to align with the training data.
chat.conv.messages[-1][1] = outputs.strip()
print(f"Husky: \n{outputs}")