ccclemenfff's picture
Add model code supports
cf932d8
raw
history blame
23.2 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright Qing-Long Zhang. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
import json
import logging
import os
import sys
import warnings
from functools import partial
from multiprocessing import cpu_count
from typing import Optional
from dataclasses import dataclass, field
from torch.utils.data import Dataset, ConcatDataset
from datasets import load_dataset, load_from_disk
from robohusky.dist_utils import init_dist
from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
import transformers
from transformers import (
HfArgumentParser,
TrainingArguments,
LlamaTokenizer,
Trainer,
set_seed,
default_data_collator,
DataCollatorForSeq2Seq,
)
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
)
from robohusky.base_dataset_uni import (
process_func,
BaseDataset,
WeightedConcatDataset
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from transformers.utils.logging import (
set_verbosity_info,
set_verbosity,
enable_default_handler,
enable_explicit_format,
)
from robohusky.train.llama_flash_attn_monkey_patch import (
replace_llama_attn_with_flash_attn
)
from robohusky.train.llama_rmsnorm_monkey_patch import (
replace_llama_rmsnorm_with_fused_rmsnorm
)
replace_llama_attn_with_flash_attn()
replace_llama_rmsnorm_with_fused_rmsnorm()
IGNORE_INDEX = -100
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.32.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
warnings.filterwarnings('ignore')
logger = logging.getLogger(__name__)
os.environ["WANDB_DISABLED"] = "true"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
freeze_model: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
freeze_vision_model: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained vision model whose head dimensions are different."},
)
freeze_vision_adapter: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained vision adapter whose head dimensions are different."},
)
freeze_text_model: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained text model whose head dimensions are different."},
)
freeze_qformer: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained qformer model whose head dimensions are different."},
)
un_freeze_vision_embedding: bool = field(
default=False,
metadata={"help": "Will enable to tuning image patch_embedding when vision_model are frozen"},
)
un_freeze_video_embedding: bool = field(
default=False,
metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"},
)
un_freeze_llm_head: bool = field(
default=False,
metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"},
)
use_lora: bool = field(
default=False, metadata={"help": "add the LoRA adapters to the base model"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
data_dir: Optional[str] = field(
default=None, metadata={"help": "The data directory containing input files."})
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines)."})
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file."
},
)
train_val_split: Optional[float] = field(
default=0.0, metadata={"help": "Percent to split off of train for validation."}
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."},
)
image_path: Optional[str] = field(
default=None,
metadata={"help": "An optional image path"},
)
video_path: Optional[str] = field(
default=None,
metadata={"help": "An optional video path"},
)
input_size: Optional[int] = field(
default=224,
metadata={"help": "The input size of images."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
val_max_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
conv_style: Optional[str] = field(
default=None, metadata={"help": "prompt style for a conversation."}
)
save_data_path: Optional[str] = field(
default=None, metadata={"help": "prompt style for a conversation."}
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
" be the target language token.(Usually it is the target language token)"
)
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
# accepting both json and jsonl file extensions, as
# many jsonlines files actually have a .json extension
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "jsonl", "parquet"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "jsonl",
"parquet"], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension == "json", "`test_file` should be a json file."
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
init_dist(launcher='slurm', backend='nccl', port=29598)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script, and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# 2. Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
set_verbosity(log_level)
enable_default_handler()
enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# 3. Detecting last checkpoint and eventually continue from last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# 4. Get the datasets
# you can either provide your own JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
ds = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
data_dir=data_args.data_dir,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
# ds = load_dataset(
# "json" if extension == "jsonl" else extension,
# data_files=data_files,
# split="train"
# )
ds = json.load(open(data_args.train_file, "r"))
# 5. Load pretrained model, tokenizer, and image processor
#
# Distributed training: The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = LlamaTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
legacy=True,
)
# add special token
tokenizer.pad_token_id = 0
if tokenizer.unk_token is None:
tokenizer.add_special_tokens({"unk_token": DEFAULT_UNK_TOKEN})
tokens_list = [
DEFAULT_IMG_START_TOKEN, DEFAULT_IMG_END_TOKEN,
DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN
]
tokenizer.add_tokens(tokens_list, special_tokens=True)
model = HuskyForConditionalGeneration.from_pretrained(
model_args.model_name_or_path, ignore_mismatched_sizes=True
)
embedding_size = model.language_model.get_input_embeddings().weight.shape[0]
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
model.language_model.resize_token_embeddings(len(tokenizer))
model.config.text_config.vocab_size = len(tokenizer)
model.config.use_cache = False
def _freeze_params(module):
for param in module.parameters():
param.requires_grad = False
if model_args.freeze_model:
_freeze_params(model)
# only update language projection
model.language_projection.weight.requires_grad = True
if model_args.freeze_vision_model:
model.vision_model = model.vision_model.eval()
_freeze_params(model.vision_model)
if model_args.freeze_vision_adapter:
_freeze_params(model.vision_adapter)
if model_args.freeze_qformer:
model.qformer = model.qformer.eval()
_freeze_params(model.qformer)
model.query_tokens.requires_grad = False
if model_args.freeze_text_model:
_freeze_params(model.language_model)
if model_args.use_lora:
training_args.ddp_find_unused_parameters = False
_freeze_params(model)
lora_config = LoraConfig(
r=16,
target_modules=["q_proj", "v_proj"],
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model.language_model = get_peft_model(model.language_model, lora_config)
model.language_model.print_trainable_parameters()
if model_args.un_freeze_video_embedding:
_freeze_params(model)
model.vision_model.video_embeddings.patch_embedding.weight.requires_grad = True
model.vision_model.video_embeddings.class_embedding.requires_grad = True
model.vision_model.video_embeddings.position_embedding.requires_grad = True
if model_args.un_freeze_llm_head:
model.language_model.lm_head.weight.requires_grad = True
# set seed for torch dataloaders
set_seed(training_args.seed)
# 7. Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
# set padding.
padding = "max_length" if data_args.pad_to_max_length else False
def husky_processor(examples):
processor = partial(
process_func,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
)
model_inputs = processor(examples)
return model_inputs
# Data collator
label_pad_token_id = IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
if data_args.pad_to_max_length:
data_collator = default_data_collator
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
concat_dataset = []
weights = []
batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
for data in ds:
data_name = data['data_name']
data_file = data["text_file"]
extension = data_file.split(".")[-1]
extension = "json" if extension == "jsonl" else extension
logger.info(f"Loading dataset: {data_name}")
raw_dataset = load_dataset(extension, data_files=data_file, num_proc=cpu_count(), split="train")
raw_dataset = raw_dataset.shuffle(seed=0)
max_train_sample = min(len(raw_dataset), batch_size * (len(raw_dataset) // batch_size))
raw_dataset = raw_dataset.select(range(max_train_sample))
media_type = data["data_type"]
input_size = data_args.video_size if media_type == "video" else data_args.input_size
temp = BaseDataset(
raw_dataset,
processor=husky_processor,
image_path=data["image_path"],
input_size=input_size,
num_segments=8,
norm_type="openai",
media_type=media_type
)
concat_dataset.append(temp)
weights.append(1 / len(temp))
logger.info(f"All datasets have been loaded!")
if len(concat_dataset) > 1:
train_dataset = WeightedConcatDataset(datasets=concat_dataset, weights=weights, batch_size=batch_size)
else:
train_dataset = concat_dataset[0]
# 8. Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=data_collator,
)
# 9. Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
if model_args.use_lora:
model.language_model.save_pretrained(training_args.output_dir)
else:
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if __name__ == "__main__":
main()