|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for sequence to sequence. |
|
""" |
|
import json |
|
import logging |
|
import os |
|
import sys |
|
import warnings |
|
from functools import partial |
|
|
|
from multiprocessing import cpu_count |
|
|
|
from typing import Optional |
|
from dataclasses import dataclass, field |
|
|
|
from torch.utils.data import Dataset, ConcatDataset |
|
from datasets import load_dataset, load_from_disk |
|
|
|
from robohusky.dist_utils import init_dist |
|
from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration |
|
|
|
import transformers |
|
from transformers import ( |
|
HfArgumentParser, |
|
TrainingArguments, |
|
LlamaTokenizer, |
|
Trainer, |
|
set_seed, |
|
default_data_collator, |
|
DataCollatorForSeq2Seq, |
|
) |
|
|
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
prepare_model_for_int8_training, |
|
) |
|
|
|
from robohusky.base_dataset_uni import ( |
|
process_func, |
|
BaseDataset, |
|
WeightedConcatDataset |
|
) |
|
|
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
from transformers.utils.logging import ( |
|
set_verbosity_info, |
|
set_verbosity, |
|
enable_default_handler, |
|
enable_explicit_format, |
|
) |
|
from robohusky.train.llama_flash_attn_monkey_patch import ( |
|
replace_llama_attn_with_flash_attn |
|
) |
|
|
|
from robohusky.train.llama_rmsnorm_monkey_patch import ( |
|
replace_llama_rmsnorm_with_fused_rmsnorm |
|
) |
|
|
|
replace_llama_attn_with_flash_attn() |
|
replace_llama_rmsnorm_with_fused_rmsnorm() |
|
|
|
IGNORE_INDEX = -100 |
|
DEFAULT_UNK_TOKEN = "<unk>" |
|
DEFAULT_IMG_START_TOKEN = "<img>" |
|
DEFAULT_IMG_END_TOKEN = "</img>" |
|
|
|
DEFAULT_VIDEO_START_TOKEN = "<vid>" |
|
DEFAULT_VIDEO_END_TOKEN = "</vid>" |
|
|
|
|
|
check_min_version("4.32.0.dev0") |
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt") |
|
|
|
warnings.filterwarnings('ignore') |
|
logger = logging.getLogger(__name__) |
|
|
|
os.environ["WANDB_DISABLED"] = "true" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
freeze_model: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, |
|
) |
|
freeze_vision_model: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained vision model whose head dimensions are different."}, |
|
) |
|
freeze_vision_adapter: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained vision adapter whose head dimensions are different."}, |
|
) |
|
freeze_text_model: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained text model whose head dimensions are different."}, |
|
) |
|
freeze_qformer: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained qformer model whose head dimensions are different."}, |
|
) |
|
un_freeze_vision_embedding: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to tuning image patch_embedding when vision_model are frozen"}, |
|
) |
|
un_freeze_video_embedding: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"}, |
|
) |
|
un_freeze_llm_head: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"}, |
|
) |
|
use_lora: bool = field( |
|
default=False, metadata={"help": "add the LoRA adapters to the base model"} |
|
) |
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
data_dir: Optional[str] = field( |
|
default=None, metadata={"help": "The data directory containing input files."}) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file." |
|
}, |
|
) |
|
train_val_split: Optional[float] = field( |
|
default=0.0, metadata={"help": "Percent to split off of train for validation."} |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."}, |
|
) |
|
image_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional image path"}, |
|
) |
|
video_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional video path"}, |
|
) |
|
input_size: Optional[int] = field( |
|
default=224, |
|
metadata={"help": "The input size of images."}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_seq_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to model maximum sentence length. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " |
|
"efficient on GPU but very bad for TPU." |
|
) |
|
}, |
|
) |
|
val_max_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for validation target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." |
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " |
|
"during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
conv_style: Optional[str] = field( |
|
default=None, metadata={"help": "prompt style for a conversation."} |
|
) |
|
save_data_path: Optional[str] = field( |
|
default=None, metadata={"help": "prompt style for a conversation."} |
|
) |
|
num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " |
|
"which is used during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
ignore_pad_token_for_loss: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." |
|
}, |
|
) |
|
source_prefix: Optional[str] = field( |
|
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} |
|
) |
|
forced_bos_token: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" |
|
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" |
|
" be the target language token.(Usually it is the target language token)" |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
|
|
|
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "jsonl", "parquet"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json", "jsonl", |
|
"parquet"], "`validation_file` should be a csv or a json file." |
|
if self.test_file is not None: |
|
extension = self.test_file.split(".")[-1] |
|
assert extension == "json", "`test_file` should be a json file." |
|
|
|
def main(): |
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
init_dist(launcher='slurm', backend='nccl', port=29598) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
set_verbosity(log_level) |
|
enable_default_handler() |
|
enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
ds = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
data_dir=data_args.data_dir, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
ds = json.load(open(data_args.train_file, "r")) |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
legacy=True, |
|
) |
|
|
|
tokenizer.pad_token_id = 0 |
|
if tokenizer.unk_token is None: |
|
tokenizer.add_special_tokens({"unk_token": DEFAULT_UNK_TOKEN}) |
|
|
|
tokens_list = [ |
|
DEFAULT_IMG_START_TOKEN, DEFAULT_IMG_END_TOKEN, |
|
DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN |
|
] |
|
tokenizer.add_tokens(tokens_list, special_tokens=True) |
|
|
|
model = HuskyForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, ignore_mismatched_sizes=True |
|
) |
|
embedding_size = model.language_model.get_input_embeddings().weight.shape[0] |
|
|
|
|
|
|
|
|
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
model.language_model.resize_token_embeddings(len(tokenizer)) |
|
model.config.text_config.vocab_size = len(tokenizer) |
|
|
|
model.config.use_cache = False |
|
|
|
def _freeze_params(module): |
|
for param in module.parameters(): |
|
param.requires_grad = False |
|
|
|
if model_args.freeze_model: |
|
_freeze_params(model) |
|
|
|
model.language_projection.weight.requires_grad = True |
|
|
|
if model_args.freeze_vision_model: |
|
model.vision_model = model.vision_model.eval() |
|
_freeze_params(model.vision_model) |
|
|
|
if model_args.freeze_vision_adapter: |
|
_freeze_params(model.vision_adapter) |
|
|
|
if model_args.freeze_qformer: |
|
model.qformer = model.qformer.eval() |
|
_freeze_params(model.qformer) |
|
model.query_tokens.requires_grad = False |
|
|
|
if model_args.freeze_text_model: |
|
_freeze_params(model.language_model) |
|
|
|
if model_args.use_lora: |
|
training_args.ddp_find_unused_parameters = False |
|
_freeze_params(model) |
|
lora_config = LoraConfig( |
|
r=16, |
|
target_modules=["q_proj", "v_proj"], |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
model.language_model = get_peft_model(model.language_model, lora_config) |
|
model.language_model.print_trainable_parameters() |
|
|
|
if model_args.un_freeze_video_embedding: |
|
_freeze_params(model) |
|
model.vision_model.video_embeddings.patch_embedding.weight.requires_grad = True |
|
model.vision_model.video_embeddings.class_embedding.requires_grad = True |
|
model.vision_model.video_embeddings.position_embedding.requires_grad = True |
|
|
|
if model_args.un_freeze_llm_head: |
|
model.language_model.lm_head.weight.requires_grad = True |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
padding = "max_length" if data_args.pad_to_max_length else False |
|
|
|
def husky_processor(examples): |
|
processor = partial( |
|
process_func, |
|
tokenizer=tokenizer, |
|
max_seq_length=data_args.max_seq_length, |
|
) |
|
model_inputs = processor(examples) |
|
return model_inputs |
|
|
|
|
|
label_pad_token_id = IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id |
|
if data_args.pad_to_max_length: |
|
data_collator = default_data_collator |
|
else: |
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
label_pad_token_id=label_pad_token_id, |
|
pad_to_multiple_of=8 if training_args.fp16 else None, |
|
) |
|
|
|
concat_dataset = [] |
|
weights = [] |
|
batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size |
|
for data in ds: |
|
data_name = data['data_name'] |
|
data_file = data["text_file"] |
|
extension = data_file.split(".")[-1] |
|
extension = "json" if extension == "jsonl" else extension |
|
logger.info(f"Loading dataset: {data_name}") |
|
|
|
raw_dataset = load_dataset(extension, data_files=data_file, num_proc=cpu_count(), split="train") |
|
raw_dataset = raw_dataset.shuffle(seed=0) |
|
max_train_sample = min(len(raw_dataset), batch_size * (len(raw_dataset) // batch_size)) |
|
raw_dataset = raw_dataset.select(range(max_train_sample)) |
|
|
|
media_type = data["data_type"] |
|
input_size = data_args.video_size if media_type == "video" else data_args.input_size |
|
|
|
temp = BaseDataset( |
|
raw_dataset, |
|
processor=husky_processor, |
|
image_path=data["image_path"], |
|
input_size=input_size, |
|
num_segments=8, |
|
norm_type="openai", |
|
media_type=media_type |
|
) |
|
|
|
concat_dataset.append(temp) |
|
weights.append(1 / len(temp)) |
|
logger.info(f"All datasets have been loaded!") |
|
|
|
if len(concat_dataset) > 1: |
|
train_dataset = WeightedConcatDataset(datasets=concat_dataset, weights=weights, batch_size=batch_size) |
|
else: |
|
train_dataset = concat_dataset[0] |
|
|
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=None, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
if model_args.use_lora: |
|
model.language_model.save_pretrained(training_args.output_dir) |
|
else: |
|
trainer.save_model() |
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|