w2v-bert-punjabi

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1810
  • Wer: 0.1029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4419 0.2174 2000 0.3828 0.2268
0.3492 0.4348 4000 0.3401 0.1836
0.3205 0.6522 6000 0.2932 0.1712
0.2813 0.8696 8000 0.2844 0.1590
0.255 1.0870 10000 0.2562 0.1469
0.2451 1.3043 12000 0.2431 0.1386
0.2305 1.5217 14000 0.2299 0.1312
0.2156 1.7391 16000 0.2191 0.1274
0.2119 1.9565 18000 0.2269 0.1205
0.182 2.1739 20000 0.2091 0.1181
0.1789 2.3913 22000 0.1980 0.1136
0.1766 2.6087 24000 0.1945 0.1092
0.1657 2.8261 26000 0.1881 0.1079
0.1461 3.0435 28000 0.1809 0.1050
0.1454 3.2609 30000 0.1810 0.1029

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cdactvm/w2vbert-punjabi-quantized

Finetuned
(252)
this model