Kandinsky 2.0

Kandinsky 2.0 — the first multilingual text2image model.

Open In Colab

GitHub repository

Habr post

Demo

UNet size: 1.2B parameters

NatallE.png

It is a latent diffusion model with two multi-lingual text encoders:

  • mCLIP-XLMR (560M parameters)
  • mT5-encoder-small (146M parameters)

These encoders and multilingual training datasets unveil the real multilingual text2image generation experience!

header.png

How to use

pip install "git+https://github.com/ai-forever/Kandinsky-2.0.git"

from kandinsky2 import get_kandinsky2
model = get_kandinsky2('cuda', task_type='text2img')
images = model.generate_text2img('кошка в космосе', batch_size=4, h=512, w=512, num_steps=75, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.01, guidance_scale=10)

Authors

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.