File size: 4,558 Bytes
e98a1bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import torch.nn.functional as F

from dataclasses import dataclass
from typing import Literal, Optional

try:
    from torchao import quantize_
    from torchao.quantization import int4_weight_only
except ImportError:

    def quantize_(model, quant_mode):
        raise ImportError(
            "torchao is not installed. Please install it with `pip install torchao`."
        )

    def int4_weight_only(group_size):
        raise ImportError(
            "torchao is not installed. Please install it with `pip install torchao`."
        )


def gelu_approx(x):
    return F.gelu(x, approximate="tanh")


@dataclass
class LinearWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
    return F.linear(x, w.weight, w.bias)


def dequantize_tensor(W_q, scale, zero, orig_shape, dtype=torch.bfloat16):
    _step = W_q.shape[0]
    W_r = torch.empty([2 * _step, W_q.shape[1]], dtype=dtype, device=W_q.device)
    W_r[:_step] = (W_q & 0b11110000) >> 4
    W_r[_step:] = W_q & 0b00001111
    W_r.sub_(zero).mul_(scale)
    return W_r.reshape(orig_shape)


class QuantizedLinear(nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        dtype: torch.dtype,
    ):
        # TODO: Take group_size as an input instead of hardcoding it here.
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.ParameterDict(
            {
                "packed": nn.Parameter(
                    torch.empty(
                        out_features * in_features // (128 * 2), 128, dtype=torch.uint8
                    ),
                    requires_grad=False,
                ),
                "scale": nn.Parameter(
                    torch.empty(out_features * in_features // 128, 1),
                    requires_grad=False,
                ),
                "zero_point": nn.Parameter(
                    torch.empty(out_features * in_features // 128, 1),
                    requires_grad=False,
                ),
            }
        )
        self.bias = nn.Parameter(torch.empty(out_features), requires_grad=False)
        self.unpacked = False

    def unpack(self):
        if self.unpacked:
            return

        self.weight = nn.Parameter(
            dequantize_tensor(
                self.weight["packed"],
                self.weight["scale"],
                self.weight["zero_point"],
                (self.out_features, self.in_features),
                torch.bfloat16,
            )
        )
        with torch.device("meta"):
            self.linear = nn.Linear(
                self.in_features, self.out_features, dtype=torch.bfloat16
            )
        self.linear.weight = self.weight
        self.linear.bias = nn.Parameter(
            self.bias.to(torch.bfloat16), requires_grad=False
        )

        del self.weight, self.bias
        quantize_(self, int4_weight_only(group_size=128))
        self.unpacked = True
        torch.cuda.empty_cache()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if not self.unpacked:
            self.unpack()
        return self.linear(x)


@dataclass
class LayerNormWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
    return F.layer_norm(x, w.bias.shape, w.weight, w.bias)


@dataclass
class MLPWeights:
    fc1: LinearWeights
    fc2: LinearWeights
    act: Literal["gelu_approx"] = "gelu_approx"


def mlp(x: torch.Tensor, w: MLPWeights, lora: Optional[dict] = None) -> torch.Tensor:
    x0 = w.fc1(x)
    if lora is not None:
        x1 = F.linear(F.linear(x, lora["fc1"]["A"]), lora["fc1"]["B"])
        x = x0 + x1
    else:
        x = x0

    x = gelu_approx(x)

    x0 = w.fc2(x)
    if lora is not None:
        x1 = F.linear(F.linear(x, lora["fc2"]["A"]), lora["fc2"]["B"])
        x = x0 + x1
    else:
        x = x0

    return x


@dataclass
class AttentionWeights:
    qkv: LinearWeights
    proj: LinearWeights


def attn(x: torch.Tensor, w: AttentionWeights, n_heads: int) -> torch.Tensor:
    bsz, q_len, d_model = x.shape
    head_dim = d_model // n_heads

    q, k, v = [
        t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
        for t in linear(x, w.qkv).chunk(3, dim=-1)
    ]
    out = F.scaled_dot_product_attention(q, k, v)
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
    out = linear(out, w.proj)
    return out