codechrl commited on
Commit
50d5289
·
verified ·
1 Parent(s): ae1a849

Training update: 6,788/238,451 rows (2.85%) | +5 new @ 2025-10-23 02:48:14

Browse files
Files changed (5) hide show
  1. README.md +7 -7
  2. config.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
  5. training_metadata.json +6 -6
README.md CHANGED
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
- - Status: **Early version** — trained on **2.84%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
- Because the model is based on a small subset (2.84%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
@@ -75,11 +75,11 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
75
 
76
  ### Training Data
77
  - **Total database rows**: 238,451
78
- - **Rows processed (cumulative)**: 6,763 (2.84%)
79
- - **Rows in this session**: 25
80
- - **Training samples (after chunking)**: 25
81
- - **Training date**: 2025-10-23 02:45:29
82
 
83
  ### Post-Training Metrics
84
  - **Final training loss**: 0.0000
85
- - **Rows→Samples ratio**: 1.00x (average chunks per row)
 
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
+ - Status: **Early version** — trained on **2.85%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
 
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
+ Because the model is based on a small subset (2.85%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
 
75
 
76
  ### Training Data
77
  - **Total database rows**: 238,451
78
+ - **Rows processed (cumulative)**: 6,788 (2.85%)
79
+ - **Rows in this session**: 5
80
+ - **Training samples (after chunking)**: 28
81
+ - **Training date**: 2025-10-23 02:48:14
82
 
83
  ### Post-Training Metrics
84
  - **Final training loss**: 0.0000
85
+ - **Rows→Samples ratio**: 5.60x (average chunks per row)
config.json CHANGED
@@ -17,7 +17,7 @@
17
  "num_hidden_layers": 2,
18
  "pad_token_id": 0,
19
  "position_embedding_type": "absolute",
20
- "transformers_version": "4.57.0",
21
  "type_vocab_size": 2,
22
  "use_cache": true,
23
  "vocab_size": 30522
 
17
  "num_hidden_layers": 2,
18
  "pad_token_id": 0,
19
  "position_embedding_type": "absolute",
20
+ "transformers_version": "4.57.1",
21
  "type_vocab_size": 2,
22
  "use_cache": true,
23
  "vocab_size": 30522
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:983be3a2e9678daa96170b0969607343ac60dacf50afe2de4005fbdbb918d54d
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b491119a6ad59eaf03a443d49a6f86d14c3db6e0a46ba05e54d82c319e907689
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ef5380f08e852850356b566ce57de8329dc2f88e4f45d0840e444f505dbe40b
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8004239770512ae458a8e909f7ac7c389c458a70bb8f5d47a2e8d72f65b2482d
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1761187529.3583431,
3
- "trained_at_readable": "2025-10-23 02:45:29",
4
- "samples_this_session": 25,
5
- "new_rows_this_session": 25,
6
- "trained_rows_total": 6763,
7
  "total_db_rows": 238451,
8
- "percentage": 2.8362221169129085,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1761187694.9856818,
3
+ "trained_at_readable": "2025-10-23 02:48:14",
4
+ "samples_this_session": 28,
5
+ "new_rows_this_session": 5,
6
+ "trained_rows_total": 6788,
7
  "total_db_rows": 238451,
8
+ "percentage": 2.846706451220586,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,