Training update: 6,788/238,451 rows (2.85%) | +5 new @ 2025-10-23 02:48:14
Browse files- README.md +7 -7
- config.json +1 -1
- model.safetensors +1 -1
- training_args.bin +1 -1
- training_metadata.json +6 -6
README.md
CHANGED
|
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
-
- Status: **Early version** — trained on **2.
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
-
Because the model is based on a small subset (2.
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
@@ -75,11 +75,11 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,451
|
| 78 |
-
- **Rows processed (cumulative)**: 6,
|
| 79 |
-
- **Rows in this session**:
|
| 80 |
-
- **Training samples (after chunking)**:
|
| 81 |
-
- **Training date**: 2025-10-23 02:
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
- **Final training loss**: 0.0000
|
| 85 |
-
- **Rows→Samples ratio**:
|
|
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
+
- Status: **Early version** — trained on **2.85%** of planned data.
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
+
Because the model is based on a small subset (2.85%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,451
|
| 78 |
+
- **Rows processed (cumulative)**: 6,788 (2.85%)
|
| 79 |
+
- **Rows in this session**: 5
|
| 80 |
+
- **Training samples (after chunking)**: 28
|
| 81 |
+
- **Training date**: 2025-10-23 02:48:14
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
- **Final training loss**: 0.0000
|
| 85 |
+
- **Rows→Samples ratio**: 5.60x (average chunks per row)
|
config.json
CHANGED
|
@@ -17,7 +17,7 @@
|
|
| 17 |
"num_hidden_layers": 2,
|
| 18 |
"pad_token_id": 0,
|
| 19 |
"position_embedding_type": "absolute",
|
| 20 |
-
"transformers_version": "4.57.
|
| 21 |
"type_vocab_size": 2,
|
| 22 |
"use_cache": true,
|
| 23 |
"vocab_size": 30522
|
|
|
|
| 17 |
"num_hidden_layers": 2,
|
| 18 |
"pad_token_id": 0,
|
| 19 |
"position_embedding_type": "absolute",
|
| 20 |
+
"transformers_version": "4.57.1",
|
| 21 |
"type_vocab_size": 2,
|
| 22 |
"use_cache": true,
|
| 23 |
"vocab_size": 30522
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b491119a6ad59eaf03a443d49a6f86d14c3db6e0a46ba05e54d82c319e907689
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5905
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8004239770512ae458a8e909f7ac7c389c458a70bb8f5d47a2e8d72f65b2482d
|
| 3 |
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-23 02:
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
"total_db_rows": 238451,
|
| 8 |
-
"percentage": 2.
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1761187694.9856818,
|
| 3 |
+
"trained_at_readable": "2025-10-23 02:48:14",
|
| 4 |
+
"samples_this_session": 28,
|
| 5 |
+
"new_rows_this_session": 5,
|
| 6 |
+
"trained_rows_total": 6788,
|
| 7 |
"total_db_rows": 238451,
|
| 8 |
+
"percentage": 2.846706451220586,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|