codechrl commited on
Commit
ae1a849
·
verified ·
1 Parent(s): feaddf8

Training update: 6,763/238,451 rows (2.84%) | +25 new @ 2025-10-23 02:45:29

Browse files
Files changed (4) hide show
  1. README.md +28 -5
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +10 -7
README.md CHANGED
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
- - Status: **Early version** — trained on **2.83%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
- Because the model is based on a small subset (2.83%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
@@ -55,8 +55,31 @@ logits = outputs.logits
55
  predicted_class = logits.argmax(dim=-1).item()
56
  ```
57
  ## 5. Training Details
58
- - **Trained records**: 6,737 / 238,451 (2.83%)
 
 
 
 
 
 
 
 
 
59
  - **Learning rate**: 5e-05
60
- - **Epochs**: 3
61
  - **Batch size**: 16
62
- - **Max sequence length**: 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
+ - Status: **Early version** — trained on **2.84%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
 
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
+ Because the model is based on a small subset (2.84%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
 
55
  predicted_class = logits.argmax(dim=-1).item()
56
  ```
57
  ## 5. Training Details
58
+
59
+ ### Text Processing & Chunking
60
+ Since cybersecurity data often contains lengthy alert descriptions and execution logs that exceed BERT's 512 token limit, we implement an overlapping chunking strategy:
61
+ - **Max sequence length**: 512 tokens
62
+ - **Stride**: 32 tokens (overlap between consecutive chunks)
63
+ - **Chunking behavior**: Long texts are split into overlapping segments. For example, with max_length=512 and stride=128, a 1000-token document becomes ~3 chunks with 128-token overlaps, preserving context across boundaries.
64
+
65
+ ### Training Hyperparameters
66
+ - **Base model**: `boltuix/bert-micro`
67
+ - **Training epochs**: 3
68
  - **Learning rate**: 5e-05
 
69
  - **Batch size**: 16
70
+ - **Weight decay**: 0.01
71
+ - **Warmup ratio**: 0.06
72
+ - **Gradient accumulation steps**: 1
73
+ - **Optimizer**: AdamW
74
+ - **LR scheduler**: Linear with warmup
75
+
76
+ ### Training Data
77
+ - **Total database rows**: 238,451
78
+ - **Rows processed (cumulative)**: 6,763 (2.84%)
79
+ - **Rows in this session**: 25
80
+ - **Training samples (after chunking)**: 25
81
+ - **Training date**: 2025-10-23 02:45:29
82
+
83
+ ### Post-Training Metrics
84
+ - **Final training loss**: 0.0000
85
+ - **Rows→Samples ratio**: 1.00x (average chunks per row)
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:487e4f9052c100978689e6eade446eeda6f4c8fba1363b7a582d6079bb33374a
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:983be3a2e9678daa96170b0969607343ac60dacf50afe2de4005fbdbb918d54d
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1f36e9bc24f3f3fbc56bfa76ad08bf8c96c15d398a5d494f6e83bfb7fc0d9d52
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ef5380f08e852850356b566ce57de8329dc2f88e4f45d0840e444f505dbe40b
3
  size 5905
training_metadata.json CHANGED
@@ -1,12 +1,15 @@
1
  {
2
- "trained_at": 1761186906.6386719,
3
- "trained_at_readable": "2025-10-23 02:35:06",
4
- "samples_this_session": 26,
5
- "new_rows_this_session": 26,
6
- "trained_rows_total": 6737,
7
  "total_db_rows": 238451,
8
- "percentage": 2.825318409232924,
9
  "final_loss": 0,
10
  "epochs": 3,
11
- "learning_rate": 5e-05
 
 
 
12
  }
 
1
  {
2
+ "trained_at": 1761187529.3583431,
3
+ "trained_at_readable": "2025-10-23 02:45:29",
4
+ "samples_this_session": 25,
5
+ "new_rows_this_session": 25,
6
+ "trained_rows_total": 6763,
7
  "total_db_rows": 238451,
8
+ "percentage": 2.8362221169129085,
9
  "final_loss": 0,
10
  "epochs": 3,
11
+ "learning_rate": 5e-05,
12
+ "batch_size": 16,
13
+ "stride": 32,
14
+ "max_length": 512
15
  }