codechrl commited on
Commit
dd8e433
·
verified ·
1 Parent(s): 24217b7

Training update: 17,832/238,632 rows (7.47%) | +393 new @ 2025-10-23 13:12:22

Browse files
Files changed (4) hide show
  1. README.md +6 -5
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +7 -7
README.md CHANGED
@@ -25,7 +25,8 @@ pipeline_tag: fill-mask
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
- - Status: **Early version** — trained on **6.12%** of planned data.
 
29
  **Model sources**
30
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
31
  - Data: Cybersecurity Data
@@ -50,7 +51,7 @@ You can use this model to classify cybersecurity-related text — for example, w
50
  - Early classification of SIEM alert & events.
51
 
52
  ## 3. Bias, Risks, and Limitations
53
- Because the model is based on a small subset (6.12%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
54
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
55
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
56
 
@@ -74,9 +75,9 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
74
  - **LR scheduler**: Linear with warmup
75
 
76
  ### Training Data
77
- - **Total database rows**: 238,556
78
- - **Rows processed (cumulative)**: 14,599 (6.12%)
79
- - **Training date**: 2025-10-23 08:23:30
80
 
81
  ### Post-Training Metrics
82
  - **Final training loss**:
 
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
+ - Status: **Early version** — trained on **7.47%** of planned data.
29
+
30
  **Model sources**
31
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
32
  - Data: Cybersecurity Data
 
51
  - Early classification of SIEM alert & events.
52
 
53
  ## 3. Bias, Risks, and Limitations
54
+ Because the model is based on a small subset (7.47%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
55
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
56
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
57
 
 
75
  - **LR scheduler**: Linear with warmup
76
 
77
  ### Training Data
78
+ - **Total database rows**: 238,632
79
+ - **Rows processed (cumulative)**: 17,832 (7.47%)
80
+ - **Training date**: 2025-10-23 13:12:22
81
 
82
  ### Post-Training Metrics
83
  - **Final training loss**:
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:86472796d3e4b1bb73312a0465948981442c08867a00031d1016af552cf3abc7
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89a59bba88488a698b4e0daaa7cea694140c2ee2aadac582cf5c574f29ffbb92
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:529ab1fc70678f54a11dd53b3a151f93741a356a27e6add95b4915f5d610f70e
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09b4c7c8181e5f99f8cabfbb16284680bcd4d694613243b5ee85dc0db5bfc790
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1761207810.4960542,
3
- "trained_at_readable": "2025-10-23 08:23:30",
4
- "samples_this_session": 4716,
5
- "new_rows_this_session": 3482,
6
- "trained_rows_total": 14599,
7
- "total_db_rows": 238556,
8
- "percentage": 6.119737084793508,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1761225142.9111428,
3
+ "trained_at_readable": "2025-10-23 13:12:22",
4
+ "samples_this_session": 5238,
5
+ "new_rows_this_session": 393,
6
+ "trained_rows_total": 17832,
7
+ "total_db_rows": 238632,
8
+ "percentage": 7.472593784572061,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,