Training update: 17,832/238,632 rows (7.47%) | +393 new @ 2025-10-23 13:12:22
Browse files- README.md +6 -5
- model.safetensors +1 -1
- training_args.bin +1 -1
- training_metadata.json +7 -7
README.md
CHANGED
|
@@ -25,7 +25,8 @@ pipeline_tag: fill-mask
|
|
| 25 |
- Model type: fine-tuned lightweight BERT variant
|
| 26 |
- Languages: English & Indonesia
|
| 27 |
- Finetuned from: `boltuix/bert-micro`
|
| 28 |
-
- Status: **Early version** — trained on **
|
|
|
|
| 29 |
**Model sources**
|
| 30 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 31 |
- Data: Cybersecurity Data
|
|
@@ -50,7 +51,7 @@ You can use this model to classify cybersecurity-related text — for example, w
|
|
| 50 |
- Early classification of SIEM alert & events.
|
| 51 |
|
| 52 |
## 3. Bias, Risks, and Limitations
|
| 53 |
-
Because the model is based on a small subset (
|
| 54 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 55 |
- **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
|
| 56 |
|
|
@@ -74,9 +75,9 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
|
|
| 74 |
- **LR scheduler**: Linear with warmup
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
-
- **Total database rows**: 238,
|
| 78 |
-
- **Rows processed (cumulative)**:
|
| 79 |
-
- **Training date**: 2025-10-23
|
| 80 |
|
| 81 |
### Post-Training Metrics
|
| 82 |
- **Final training loss**:
|
|
|
|
| 25 |
- Model type: fine-tuned lightweight BERT variant
|
| 26 |
- Languages: English & Indonesia
|
| 27 |
- Finetuned from: `boltuix/bert-micro`
|
| 28 |
+
- Status: **Early version** — trained on **7.47%** of planned data.
|
| 29 |
+
|
| 30 |
**Model sources**
|
| 31 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 32 |
- Data: Cybersecurity Data
|
|
|
|
| 51 |
- Early classification of SIEM alert & events.
|
| 52 |
|
| 53 |
## 3. Bias, Risks, and Limitations
|
| 54 |
+
Because the model is based on a small subset (7.47%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
| 55 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 56 |
- **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
|
| 57 |
|
|
|
|
| 75 |
- **LR scheduler**: Linear with warmup
|
| 76 |
|
| 77 |
### Training Data
|
| 78 |
+
- **Total database rows**: 238,632
|
| 79 |
+
- **Rows processed (cumulative)**: 17,832 (7.47%)
|
| 80 |
+
- **Training date**: 2025-10-23 13:12:22
|
| 81 |
|
| 82 |
### Post-Training Metrics
|
| 83 |
- **Final training loss**:
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89a59bba88488a698b4e0daaa7cea694140c2ee2aadac582cf5c574f29ffbb92
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5905
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09b4c7c8181e5f99f8cabfbb16284680bcd4d694613243b5ee85dc0db5bfc790
|
| 3 |
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-23
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
-
"total_db_rows":
|
| 8 |
-
"percentage":
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1761225142.9111428,
|
| 3 |
+
"trained_at_readable": "2025-10-23 13:12:22",
|
| 4 |
+
"samples_this_session": 5238,
|
| 5 |
+
"new_rows_this_session": 393,
|
| 6 |
+
"trained_rows_total": 17832,
|
| 7 |
+
"total_db_rows": 238632,
|
| 8 |
+
"percentage": 7.472593784572061,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|