squarerun

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3394
  • F1 Macro: 0.4627
  • F1 Micro: 0.5606
  • F1 Weighted: 0.5294
  • Precision Macro: 0.4704
  • Precision Micro: 0.5606
  • Precision Weighted: 0.5310
  • Recall Macro: 0.4855
  • Recall Micro: 0.5606
  • Recall Weighted: 0.5606
  • Accuracy: 0.5606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.903 1.0 29 1.8868 0.0658 0.1742 0.0900 0.0502 0.1742 0.0693 0.1293 0.1742 0.1742 0.1742
1.8662 2.0 58 1.8740 0.0754 0.2197 0.1004 0.0603 0.2197 0.0773 0.1580 0.2197 0.2197 0.2197
1.9291 3.0 87 1.8862 0.0485 0.2045 0.0695 0.0292 0.2045 0.0418 0.1429 0.2045 0.2045 0.2045
1.7838 4.0 116 1.8127 0.1171 0.2652 0.1474 0.1092 0.2652 0.1321 0.1973 0.2652 0.2652 0.2652
1.7113 5.0 145 1.6979 0.2133 0.3485 0.2592 0.3189 0.3485 0.3631 0.2822 0.3485 0.3485 0.3485
1.6459 6.0 174 1.5577 0.2714 0.3939 0.3225 0.4296 0.3939 0.4531 0.3198 0.3939 0.3939 0.3939
1.4829 7.0 203 1.3814 0.4069 0.5227 0.4611 0.3786 0.5227 0.4216 0.4511 0.5227 0.5227 0.5227
1.2847 8.0 232 1.3783 0.3675 0.4545 0.4176 0.4992 0.4545 0.5702 0.4080 0.4545 0.4545 0.4545
0.7746 9.0 261 1.1536 0.4579 0.5758 0.5298 0.5301 0.5758 0.5896 0.4853 0.5758 0.5758 0.5758
1.0172 10.0 290 1.2211 0.4700 0.5909 0.5365 0.5722 0.5909 0.6399 0.5182 0.5909 0.5909 0.5909
0.7865 11.0 319 1.1357 0.5282 0.6136 0.5961 0.5342 0.6136 0.6009 0.5432 0.6136 0.6136 0.6136
0.8335 12.0 348 1.1530 0.5315 0.6061 0.6017 0.5365 0.6061 0.6209 0.5489 0.6061 0.6061 0.6061
0.6959 13.0 377 1.1307 0.5638 0.6667 0.6451 0.5912 0.6667 0.6615 0.5773 0.6667 0.6667 0.6667
0.5864 14.0 406 1.1957 0.5211 0.5985 0.5894 0.5537 0.5985 0.6275 0.5389 0.5985 0.5985 0.5985
0.6145 15.0 435 0.9957 0.6086 0.7045 0.6833 0.6164 0.7045 0.6791 0.6160 0.7045 0.7045 0.7045
0.5632 16.0 464 1.2302 0.5112 0.5985 0.5781 0.5219 0.5985 0.5853 0.5236 0.5985 0.5985 0.5985
0.3392 17.0 493 1.1925 0.5335 0.6288 0.6043 0.5903 0.6288 0.6435 0.5355 0.6288 0.6288 0.6288
0.2998 18.0 522 1.1444 0.5544 0.6364 0.6251 0.5520 0.6364 0.6248 0.5670 0.6364 0.6364 0.6364
0.2706 19.0 551 1.1072 0.5579 0.6439 0.6308 0.5790 0.6439 0.6404 0.5571 0.6439 0.6439 0.6439
0.2012 20.0 580 1.1353 0.5278 0.6212 0.6012 0.5433 0.6212 0.6063 0.5346 0.6212 0.6212 0.6212
0.532 21.0 609 1.2503 0.5421 0.6212 0.6079 0.5651 0.6212 0.6253 0.5488 0.6212 0.6212 0.6212
0.0963 22.0 638 1.2203 0.5702 0.6288 0.6227 0.5807 0.6288 0.6327 0.5745 0.6288 0.6288 0.6288
0.1076 23.0 667 1.3798 0.5216 0.6136 0.5894 0.5339 0.6136 0.5971 0.5370 0.6136 0.6136 0.6136
0.1773 24.0 696 1.3129 0.5422 0.6288 0.6169 0.5581 0.6288 0.6253 0.5453 0.6288 0.6288 0.6288
0.0598 25.0 725 1.2855 0.5633 0.6515 0.6381 0.5846 0.6515 0.6562 0.5713 0.6515 0.6515 0.6515
0.0632 26.0 754 1.3155 0.6414 0.6591 0.6643 0.6525 0.6591 0.6925 0.6585 0.6591 0.6591 0.6591
0.0644 27.0 783 1.3211 0.5588 0.6439 0.6315 0.5745 0.6439 0.6357 0.5595 0.6439 0.6439 0.6439
0.1495 28.0 812 1.4196 0.5539 0.6364 0.6245 0.5650 0.6364 0.6270 0.5556 0.6364 0.6364 0.6364
0.0413 29.0 841 1.4027 0.5378 0.6136 0.6102 0.5405 0.6136 0.6100 0.5380 0.6136 0.6136 0.6136
0.0323 30.0 870 1.4302 0.5641 0.6364 0.6329 0.5689 0.6364 0.6430 0.5712 0.6364 0.6364 0.6364
0.0452 31.0 899 1.4577 0.5706 0.6515 0.6412 0.5835 0.6515 0.6478 0.5738 0.6515 0.6515 0.6515
0.0285 32.0 928 1.4224 0.5597 0.6439 0.6300 0.5618 0.6439 0.6250 0.5657 0.6439 0.6439 0.6439
0.0241 33.0 957 1.4513 0.5542 0.6364 0.6252 0.5700 0.6364 0.6309 0.5533 0.6364 0.6364 0.6364
0.0224 34.0 986 1.4701 0.5795 0.6742 0.6545 0.5856 0.6742 0.6523 0.5902 0.6742 0.6742 0.6742
0.0228 35.0 1015 1.4697 0.5772 0.6591 0.6489 0.5870 0.6591 0.6497 0.5774 0.6591 0.6591 0.6591
0.0231 36.0 1044 1.5315 0.5745 0.6591 0.6491 0.5783 0.6591 0.6483 0.5788 0.6591 0.6591 0.6591
0.0457 37.0 1073 1.5210 0.5532 0.6439 0.6277 0.5641 0.6439 0.6317 0.5606 0.6439 0.6439 0.6439
0.0197 38.0 1102 1.4956 0.5636 0.6515 0.6386 0.5590 0.6515 0.6296 0.5714 0.6515 0.6515 0.6515
0.0219 39.0 1131 1.4910 0.5981 0.6591 0.6540 0.6063 0.6591 0.6554 0.5970 0.6591 0.6591 0.6591
0.0212 40.0 1160 1.5050 0.5912 0.6515 0.6462 0.5997 0.6515 0.6472 0.5898 0.6515 0.6515 0.6515
0.0212 41.0 1189 1.5091 0.5977 0.6591 0.6537 0.6080 0.6591 0.6558 0.5955 0.6591 0.6591 0.6591
0.0202 42.0 1218 1.4961 0.5655 0.6515 0.6411 0.5708 0.6515 0.6411 0.5695 0.6515 0.6515 0.6515
0.0216 43.0 1247 1.4917 0.5655 0.6515 0.6411 0.5708 0.6515 0.6411 0.5695 0.6515 0.6515 0.6515
0.0199 44.0 1276 1.4855 0.5674 0.6515 0.6423 0.5694 0.6515 0.6401 0.5717 0.6515 0.6515 0.6515
0.027 45.0 1305 1.4832 0.5674 0.6515 0.6423 0.5694 0.6515 0.6401 0.5717 0.6515 0.6515 0.6515

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
28
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/squarerun

Finetuned
(1920)
this model

Dataset used to train corranm/squarerun