beit-base-patch16-224_rice-leaf-disease-augmented-v2_fft

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5324
  • Accuracy: 0.9137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6553 1.0 125 0.7916 0.7530
0.481 2.0 250 0.3628 0.8810
0.1631 3.0 375 0.2895 0.8988
0.0609 4.0 500 0.3242 0.9167
0.0293 5.0 625 0.3503 0.9196
0.0223 6.0 750 0.3411 0.9226
0.0302 7.0 875 0.3786 0.9226
0.014 8.0 1000 0.4169 0.9256
0.0069 9.0 1125 0.4648 0.9137
0.006 10.0 1250 0.4697 0.9137
0.0053 11.0 1375 0.5192 0.8958
0.0093 12.0 1500 0.5058 0.9048
0.0069 13.0 1625 0.5486 0.9077
0.005 14.0 1750 0.5252 0.9167
0.004 15.0 1875 0.5324 0.9137

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cvmil/beit-base-patch16-224_augmented-v2_fft

Finetuned
(296)
this model