resnet-50_rice-leaf-disease-augmented-v2_fft
This model is a fine-tuned version of microsoft/resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1313
- Accuracy: 0.6726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0639 | 1.0 | 125 | 2.0235 | 0.3393 |
1.9838 | 2.0 | 250 | 1.9041 | 0.4911 |
1.8621 | 3.0 | 375 | 1.7795 | 0.5238 |
1.7579 | 4.0 | 500 | 1.6965 | 0.5446 |
1.6945 | 5.0 | 625 | 1.6616 | 0.5625 |
1.6741 | 6.0 | 750 | 1.6497 | 0.5565 |
1.6042 | 7.0 | 875 | 1.5223 | 0.5685 |
1.4807 | 8.0 | 1000 | 1.4272 | 0.5893 |
1.3988 | 9.0 | 1125 | 1.3771 | 0.6101 |
1.3575 | 10.0 | 1250 | 1.3642 | 0.6071 |
1.3377 | 11.0 | 1375 | 1.3011 | 0.6220 |
1.2331 | 12.0 | 1500 | 1.2030 | 0.6548 |
1.1439 | 13.0 | 1625 | 1.1507 | 0.6577 |
1.0902 | 14.0 | 1750 | 1.1259 | 0.6548 |
1.0735 | 15.0 | 1875 | 1.1313 | 0.6726 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for cvmil/resnet-50_augmented-v2_fft
Base model
microsoft/resnet-50