You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Overview Scientific machine learning (SciML) is a promising strategy for designing multiphase flow solvers, but it requires a large dataset. This paper presents a comprehensive dataset created from 11,000 simulations, both in 2D and 3D, using the Lattice Boltzmann method~(LBM). The dataset captures intricate physics by varying factors such as surface tension, density, and viscosity of fluids. These simulations, comprising 1 million time snapshots, provide extensive data on two-fluid behavior. By making this dataset publicly available, we aim to encourage SciML research and its applications in complex fluid systems, facilitating the creation of more precise and efficient SciML frameworks for multiphysics applications. Our dataset spans multiple orders of magnitude of Reynolds and Bond numbers, density, and viscosity ratios, making it exceptionally rich and valuable for understanding multiphase flows.

Dataset Information

Our library contains simulated data from both 2d and 3d simulaions. The library has four categories (with corresponding sample sizes):

2d bubble - 5000 2d drop - 5000 3d bubble - 500 3d drop - 500

Due to size of the datasets and to facilitate easier downloads, we have divided the simulations under each category into groups. Further, we have created tar files (for 2d) and splitted tar files (for 3d) to reduce the download sizes. The following steps show how to extract these into *.npz.tar.gz files.

2d

tar -xzvf dropGroup1_npz_*.tar.gz
tar -xzvf dropGroup2_npz_*.tar.gz
tar -xzvf dropGroup3_npz_*.tar.gz
tar -xzvf dropGroup4_npz_*.tar.gz
tar -xzvf dropGroup5_npz_*.tar.gz

tar -xzvf bubbleGroup1_npz_*.tar.gz
tar -xzvf bubbleGroup2_npz_*.tar.gz
tar -xzvf bubbleGroup3_npz_*.tar.gz
tar -xzvf bubbleGroup4_npz_*.tar.gz
tar -xzvf bubbleGroup5_npz_*.tar.gz

3d

Step - 1 : Merge split tarred files into tar.gz files

    cat 3DbubbleGroup1_npz_* > 3DbubbleGroup1_npz.tar.gz
    cat 3DbubbleGroup2_npz_* > 3DbubbleGroup2_npz.tar.gz
    cat 3DbubbleGroup3_npz_* > 3DbubbleGroup3_npz.tar.gz
    cat 3DbubbleGroup4_npz_* > 3DbubbleGroup4_npz.tar.gz
    cat 3DbubbleGroup5_npz_* > 3DbubbleGroup5_npz.tar.gz

    cat 3DdropGroup1_npz_* > 3DdropGroup1_npz.tar.gz
    cat 3DdropGroup2_npz_* > 3DdropGroup2_npz.tar.gz
    cat 3DdropGroup3_npz_* > 3DdropGroup3_npz.tar.gz
    cat 3DdropGroup4_npz_* > 3DdropGroup4_npz.tar.gz
    cat 3DdropGroup5_npz_* > 3DdropGroup5_npz.tar.gz

Step 2 : Create the *npz.tar.gz files

    tar -xzvf 3DdropGroup1_npz.tar.gz
    tar -xzvf 3DdropGroup2_npz.tar.gz
    tar -xzvf 3DdropGroup3_npz.tar.gz
    tar -xzvf 3DdropGroup4_npz.tar.gz
    tar -xzvf 3DdropGroup5_npz.tar.gz

    tar -xzvf 3DbubbleGroup1_npz.tar.gz
    tar -xzvf 3DbubbleGroup2_npz.tar.gz
    tar -xzvf 3DbubbleGroup3_npz.tar.gz
    tar -xzvf 3DbubbleGroup4_npz.tar.gz
    tar -xzvf 3DbubbleGroup5_npz.tar.gz

Refer to the directory structure section below to understand how these files have been staged inside huggingface.

Data Preparation

Please refer to our github page that provides codes for doing data preparation for SciML models:

https://github.com/baskargroup/mpfbench-tools/tree/master/DataPrep

License

CC-BY-NC-4.0

How to download files from Huggingface

To run the example code, you need to install the following package:

pip install huggingface_hub

The following script demonstrates how to download a directory from the Hugging Face Hub:

from huggingface_hub import HfApi, hf_hub_download
import os
import shutil

REPO_ID = "BGLab/mpf-bench"
DIRECTORY = "2Dbubble/bubbleGroup1_npz"

# Initialize the Hugging Face API
api = HfApi()

# List files in the directory
files_list = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")

# Filter the files in the specified directory
files_to_download = [f for f in files_list if f.startswith(DIRECTORY)]

# Create local directory if it doesn't exist
os.makedirs(DIRECTORY, exist_ok=True)

# Download each file
for file in files_to_download:
    file_path = hf_hub_download(repo_id=REPO_ID, filename=file, repo_type="dataset")
    # Copy the file to the local directory using shutil.copy2
    shutil.copy2(file_path, os.path.join(DIRECTORY, os.path.basename(file_path)))

print("Files downloaded successfully.")

Directory Structure

main/
β”œβ”€β”€ 2Dbubble/
β”‚   β”œβ”€β”€ bubbleGroup1_npz/
β”‚   β”‚   β”œβ”€β”€ bubbleGroup1_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ bubbleGroup1_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── bubbleGroup1_npz_10.tar.gz
β”‚   β”œβ”€β”€ bubbleGroup2_npz/
β”‚   β”‚   β”œβ”€β”€ bubbleGroup2_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ bubbleGroup2_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── bubbleGroup2_npz_10.tar.gz
.
.
.
β”‚   β”œβ”€β”€ bubbleGroup5_npz/
β”‚   β”‚   β”œβ”€β”€ bubbleGroup5_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ bubbleGroup5_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── bubbleGroup5_npz_10.tar.gz
β”œβ”€β”€ 2Ddrop/
β”‚   β”œβ”€β”€ dropGroup1_npz/
β”‚   β”‚   β”œβ”€β”€ dropGroup1_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ dropGroup1_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── dropGroup1_npz_10.tar.gz
β”‚   β”œβ”€β”€ dropGroup2_npz/
β”‚   β”‚   β”œβ”€β”€ dropGroup2_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ dropGroup2_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── dropGroup2_npz_10.tar.gz
.
.
.
β”‚   β”œβ”€β”€ dropGroup5_npz/
β”‚   β”‚   β”œβ”€β”€ dropGroup5_npz_1.tar.gz
β”‚   β”‚   β”œβ”€β”€ dropGroup5_npz_2.tar.gz
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── dropGroup5_npz_10.tar.gz
β”œβ”€β”€ 3Dbubble/
β”‚   β”œβ”€β”€ split/
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup1_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup1_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── 3DbubbleGroup1_npz_af
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup2_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup2_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └──  3DbubbleGroup2_npz_af
.
.
.
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup5_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DbubbleGroup5_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └──  3DbubbleGroup5_npz_af
β”œβ”€β”€ 3Ddrop/
β”‚   β”œβ”€β”€ split/
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup1_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup1_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └── 3DdropGroup1_npz_af
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup2_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup2_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └──  3DdropGroup2_npz_af
.
.
.
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup5_npz_aa
β”‚   β”‚   β”œβ”€β”€ 3DdropGroup5_npz_ab
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   β”œβ”€β”€ .
β”‚   β”‚   └──  3DdropGroup5_npz_af
β”œβ”€β”€ Sample Dataset/
β”‚   β”œβ”€β”€ 2D/
β”‚   β”‚   β”œβ”€β”€ bubble/
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample1/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_1.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_1.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample2/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_2.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_2.npz
.
.
.
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample10/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_10.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_10.npz
β”‚   β”‚   β”œβ”€β”€ drop/
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample1/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_1.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_1.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample2/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_2.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_2.npz
.
.
.
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample10/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_10.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_10.npz
β”‚   β”œβ”€β”€ 3D/
β”‚   β”‚   β”œβ”€β”€ bubble/
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample1/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_3d_1.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_3d_1.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample2/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_3d_2.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_3d_2.npz
.
.
.
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample10/
β”‚   β”‚   β”‚   β”‚   |── X_bubble_padded_dataset_3d_10.npz
β”‚   β”‚   β”‚   β”‚   |── Y_bubble_padded_dataset_3d_10.npz
β”‚   β”‚   β”œβ”€β”€ drop/
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample1/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_3d_1.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_3d_1.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample2/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_3d_2.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_3d_2.npz
.
.
.
β”‚   β”‚   β”‚   β”œβ”€β”€ Sample10/
β”‚   β”‚   β”‚   β”‚   |── X_drop_padded_dataset_3d_10.npz
β”‚   β”‚   β”‚   β”‚   |── Y_drop_padded_dataset_3d_10.npz
β”œβ”€β”€ README.md
β”œβ”€β”€ .gitattributes
└── info.txt

Citation If you find this dataset useful in your research, please consider citing our paper as follows:

@article{shadkhah2024MPFBench,
        title = "FlowBench: A Large Scale Benchmark for Flow Simulation             over Complex Geometries",
        author = "Shadkhah, Mehdi and Tali, Ronak and Rabeh, Ali and Yang, Cheng-Hau and Upadhyaya, Abhisek and Krishnamurthy, Adarsh and Hegde, Chinmay and Balu, Aditya and Ganapathysubramanian, Baskar"
        year = "2024"
}
Downloads last month
0