|
---
|
|
dataset_name: lit2vec-subfield-classifier-dataset
|
|
pretty_name: Lit2Vec Subfield Classifier Dataset
|
|
tags:
|
|
- scientific-papers
|
|
- classification
|
|
- embeddings
|
|
- semantic-scholar
|
|
- scientific-literature
|
|
license: cc-by-4.0
|
|
task_categories:
|
|
- text-classification
|
|
language:
|
|
- en
|
|
size_categories:
|
|
- 10K<n<100K
|
|
---
|
|
|
|
# Lit2Vec Subfield Classifier Dataset
|
|
|
|
## Summary
|
|
|
|
The **Lit2Vec Subfield Classifier Dataset** is a curated and preprocessed collection of scientific research metadata designed for **text classification** and **embedding-based machine learning** tasks.
|
|
It includes over 39,900 chemistry abstract and tldr text annotated with **domain subfields**, **dense text embeddings**, and **structured metadata**, making it suitable for:
|
|
|
|
* Scientific **document classification**
|
|
* **Subfield prediction** and semantic tagging
|
|
* **Embedding-based retrieval and similarity search**
|
|
* **Representation learning** and transfer learning on scholarly text
|
|
|
|
All records are sourced from **CC-BY licensed** publications in the Semantic Scholar corpus.
|
|
|
|
---
|
|
|
|
## Dataset Structure
|
|
|
|
### Splits
|
|
|
|
* **Train**: \~80% of records
|
|
* **Validation**: \~10% of records
|
|
* **Test**: \~10% of records
|
|
|
|
Each entry is a flat JSON object (1 per line) in `.jsonl` format.
|
|
|
|
### Example Record
|
|
|
|
```json
|
|
{
|
|
"corpus_id": 105403827,
|
|
"doi": "10.31031/PPS.2018.02.000549",
|
|
"title": "Modeling of Chemical Reacting Transport Phenomena in a PEM Fuel Cell using Finite Volume Method",
|
|
"authors": ["Mohammed Jourdani", "H. Mounir", "A. Marjani"],
|
|
"author_ids": [null, "31345194", "30962775"],
|
|
"venue": "Progress in Petrochemical Science",
|
|
"year": 2018,
|
|
"fields_of_study": ["Engineering", "Chemistry", "Environmental Science", "Materials Science"],
|
|
"publication_date": "2018-09-19",
|
|
"journal_name": "Progress in Petrochemical Science",
|
|
"license_publisher": "Crimson Publishers",
|
|
"license": "cc-by",
|
|
"oa_url": "http://crimsonpublishers.com/pps/pdf/PPS.000549.pdf",
|
|
"text": "A two-dimensional transient model using finite volume method enhances PEMFC design by simulating gas flow and solving movement and energy equations.",
|
|
"field_classification": ["Energy Chemistry", "Chemical Engineering"],
|
|
"text_type": "summary",
|
|
"embedding": [-0.0148, -0.0213, 0.0076 , -0.0111, 0.0357, 0.0141],
|
|
"label": [9, 11]
|
|
}
|
|
````
|
|
|
|
---
|
|
|
|
## Features
|
|
|
|
| Field Name | Type | Description |
|
|
| ---------------------- | -------------- | --------------------------------------------------- |
|
|
| `corpus_id` | `int` | Semantic Scholar ID |
|
|
| `doi` | `string` | DOI identifier |
|
|
| `title` | `string` | Title of the publication |
|
|
| `authors` | `list[string]` | Author names |
|
|
| `author_ids` | `list[string]` | Semantic Scholar author IDs |
|
|
| `venue` | `string` | Journal or conference name |
|
|
| `year` | `int` | Year of publication |
|
|
| `fields_of_study` | `list[string]` | Top-level categories (e.g., Engineering, Chemistry) |
|
|
| `publication_date` | `string` | ISO 8601 date |
|
|
| `journal_name` | `string` | Full journal name |
|
|
| `license_publisher` | `string` | OA license publisher |
|
|
| `license` | `string` | License type (e.g., cc-by) |
|
|
| `oa_url` | `string` | Open access link to full text |
|
|
| `text` | `string` | Abstract or summary |
|
|
| `text_type` | `string` | Indicates type of `text` field (e.g., summary) |
|
|
| `field_classification` | `list[string]` | Expert-curated subfield labels |
|
|
| `embedding` | `list[float]` | Dense vector embedding of the text |
|
|
| `label` | `list[int]` | Numeric labels for classification |
|
|
|
|
---
|
|
|
|
## Label Mapping
|
|
|
|
The dataset includes a consistent mapping between **subfield names** and **numeric labels**:
|
|
|
|
| Subfield | Label |
|
|
| ---------------------------------- | ----- |
|
|
| Catalysis | 0 |
|
|
| Organic Chemistry | 1 |
|
|
| Polymer Chemistry | 2 |
|
|
| Inorganic Chemistry | 3 |
|
|
| Materials Science | 4 |
|
|
| Analytical Chemistry | 5 |
|
|
| Physical Chemistry | 6 |
|
|
| Biochemistry | 7 |
|
|
| Environmental Chemistry | 8 |
|
|
| Energy Chemistry | 9 |
|
|
| Medicinal Chemistry | 10 |
|
|
| Chemical Engineering | 11 |
|
|
| Supramolecular Chemistry | 12 |
|
|
| Radiochemistry & Nuclear Chemistry | 13 |
|
|
| Forensic & Legal Chemistry | 14 |
|
|
| Food Chemistry | 15 |
|
|
| Chemical Education | 16 |
|
|
| Others | 17 |
|
|
|
|
For convenience, here is the `label_to_index` mapping in JSON format:
|
|
|
|
```json
|
|
{
|
|
"label_to_index": {
|
|
"Catalysis": 0,
|
|
"Organic Chemistry": 1,
|
|
"Polymer Chemistry": 2,
|
|
"Inorganic Chemistry": 3,
|
|
"Materials Science": 4,
|
|
"Analytical Chemistry": 5,
|
|
"Physical Chemistry": 6,
|
|
"Biochemistry": 7,
|
|
"Environmental Chemistry": 8,
|
|
"Energy Chemistry": 9,
|
|
"Medicinal Chemistry": 10,
|
|
"Chemical Engineering": 11,
|
|
"Supramolecular Chemistry": 12,
|
|
"Radiochemistry & Nuclear Chemistry": 13,
|
|
"Forensic & Legal Chemistry": 14,
|
|
"Food Chemistry": 15,
|
|
"Chemical Education": 16,
|
|
"Others": 17
|
|
},
|
|
"index_to_label": {
|
|
"0": "Catalysis",
|
|
"1": "Organic Chemistry",
|
|
"2": "Polymer Chemistry",
|
|
"3": "Inorganic Chemistry",
|
|
"4": "Materials Science",
|
|
"5": "Analytical Chemistry",
|
|
"6": "Physical Chemistry",
|
|
"7": "Biochemistry",
|
|
"8": "Environmental Chemistry",
|
|
"9": "Energy Chemistry",
|
|
"10": "Medicinal Chemistry",
|
|
"11": "Chemical Engineering",
|
|
"12": "Supramolecular Chemistry",
|
|
"13": "Radiochemistry & Nuclear Chemistry",
|
|
"14": "Forensic & Legal Chemistry",
|
|
"15": "Food Chemistry",
|
|
"16": "Chemical Education",
|
|
"17": "Others"
|
|
}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## Usage
|
|
|
|
```python
|
|
from datasets import load_dataset
|
|
|
|
dataset = load_dataset("Bocklitz-Lab/lit2vec-subfield-classifier-dataset")
|
|
|
|
print(dataset["train"][0]["title"])
|
|
print(dataset["train"][0]["field_classification"])
|
|
```
|
|
|
|
Each entry includes:
|
|
|
|
* A machine-readable **embedding**
|
|
* A list of **labels (IDs)**
|
|
* The **original text**, metadata, and license info
|
|
|
|
---
|
|
|
|
## Applications
|
|
|
|
* 🧠 **Text classification** using BERT, RoBERTa, etc.
|
|
* 🔍 **Semantic search** with sentence-transformer or FAISS
|
|
* 🧬 **Domain adaptation** for scientific NLP tasks
|
|
* 🧭 **Clustering** and unsupervised topic modeling
|
|
* 📈 **Benchmarking** embedding models on scientific literature
|
|
|
|
---
|
|
|
|
## Licensing
|
|
|
|
* All entries are sourced from **CC BY 4.0** licensed publications.
|
|
* Each entry includes original attribution via `license_publisher`, `oa_url`, and `doi`.
|
|
* You are free to reuse, modify, and distribute the dataset under the terms of **Creative Commons Attribution 4.0 International License**.
|
|
|
|
---
|
|
|
|
## Citation
|
|
|
|
If you use this dataset in your research, please cite:
|
|
|
|
```bibtex
|
|
@dataset{lit2vec_classifier_2025,
|
|
author = {Mahmoud Amiri, Thomas Bocklitz},
|
|
title = {Lit2Vec Subfield Classifier Dataset},
|
|
year = {2025},
|
|
publisher = {Hugging Face},
|
|
howpublished = {\url{https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-subfield-classifier-dataset}},
|
|
note = {Submitted to Nature Scientific Data}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## Acknowledgements
|
|
|
|
* Built on top of **Semantic Scholar Open Research Corpus (S2ORC)**
|
|
* Flattened and cleaned using custom preprocessing by the **Bocklitz Lab**
|
|
* Embeddings generated from proprietary or publicly available models (details forthcoming in accompanying paper)
|
|
|
|
|