Mahmoud Amiri
update readme file
308a1ac
---
dataset_name: lit2vec-subfield-classifier-dataset
pretty_name: Lit2Vec Subfield Classifier Dataset
tags:
- scientific-papers
- classification
- embeddings
- semantic-scholar
- scientific-literature
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
size_categories:
- 10K<n<100K
---
# Lit2Vec Subfield Classifier Dataset
## Summary
The **Lit2Vec Subfield Classifier Dataset** is a curated and preprocessed collection of scientific research metadata designed for **text classification** and **embedding-based machine learning** tasks.
It includes over 39,900 chemistry abstract and tldr text annotated with **domain subfields**, **dense text embeddings**, and **structured metadata**, making it suitable for:
* Scientific **document classification**
* **Subfield prediction** and semantic tagging
* **Embedding-based retrieval and similarity search**
* **Representation learning** and transfer learning on scholarly text
All records are sourced from **CC-BY licensed** publications in the Semantic Scholar corpus.
---
## Dataset Structure
### Splits
* **Train**: \~80% of records
* **Validation**: \~10% of records
* **Test**: \~10% of records
Each entry is a flat JSON object (1 per line) in `.jsonl` format.
### Example Record
```json
{
"corpus_id": 105403827,
"doi": "10.31031/PPS.2018.02.000549",
"title": "Modeling of Chemical Reacting Transport Phenomena in a PEM Fuel Cell using Finite Volume Method",
"authors": ["Mohammed Jourdani", "H. Mounir", "A. Marjani"],
"author_ids": [null, "31345194", "30962775"],
"venue": "Progress in Petrochemical Science",
"year": 2018,
"fields_of_study": ["Engineering", "Chemistry", "Environmental Science", "Materials Science"],
"publication_date": "2018-09-19",
"journal_name": "Progress in Petrochemical Science",
"license_publisher": "Crimson Publishers",
"license": "cc-by",
"oa_url": "http://crimsonpublishers.com/pps/pdf/PPS.000549.pdf",
"text": "A two-dimensional transient model using finite volume method enhances PEMFC design by simulating gas flow and solving movement and energy equations.",
"field_classification": ["Energy Chemistry", "Chemical Engineering"],
"text_type": "summary",
"embedding": [-0.0148, -0.0213, 0.0076 , -0.0111, 0.0357, 0.0141],
"label": [9, 11]
}
````
---
## Features
| Field Name | Type | Description |
| ---------------------- | -------------- | --------------------------------------------------- |
| `corpus_id` | `int` | Semantic Scholar ID |
| `doi` | `string` | DOI identifier |
| `title` | `string` | Title of the publication |
| `authors` | `list[string]` | Author names |
| `author_ids` | `list[string]` | Semantic Scholar author IDs |
| `venue` | `string` | Journal or conference name |
| `year` | `int` | Year of publication |
| `fields_of_study` | `list[string]` | Top-level categories (e.g., Engineering, Chemistry) |
| `publication_date` | `string` | ISO 8601 date |
| `journal_name` | `string` | Full journal name |
| `license_publisher` | `string` | OA license publisher |
| `license` | `string` | License type (e.g., cc-by) |
| `oa_url` | `string` | Open access link to full text |
| `text` | `string` | Abstract or summary |
| `text_type` | `string` | Indicates type of `text` field (e.g., summary) |
| `field_classification` | `list[string]` | Expert-curated subfield labels |
| `embedding` | `list[float]` | Dense vector embedding of the text |
| `label` | `list[int]` | Numeric labels for classification |
---
## Label Mapping
The dataset includes a consistent mapping between **subfield names** and **numeric labels**:
| Subfield | Label |
| ---------------------------------- | ----- |
| Catalysis | 0 |
| Organic Chemistry | 1 |
| Polymer Chemistry | 2 |
| Inorganic Chemistry | 3 |
| Materials Science | 4 |
| Analytical Chemistry | 5 |
| Physical Chemistry | 6 |
| Biochemistry | 7 |
| Environmental Chemistry | 8 |
| Energy Chemistry | 9 |
| Medicinal Chemistry | 10 |
| Chemical Engineering | 11 |
| Supramolecular Chemistry | 12 |
| Radiochemistry & Nuclear Chemistry | 13 |
| Forensic & Legal Chemistry | 14 |
| Food Chemistry | 15 |
| Chemical Education | 16 |
| Others | 17 |
For convenience, here is the `label_to_index` mapping in JSON format:
```json
{
"label_to_index": {
"Catalysis": 0,
"Organic Chemistry": 1,
"Polymer Chemistry": 2,
"Inorganic Chemistry": 3,
"Materials Science": 4,
"Analytical Chemistry": 5,
"Physical Chemistry": 6,
"Biochemistry": 7,
"Environmental Chemistry": 8,
"Energy Chemistry": 9,
"Medicinal Chemistry": 10,
"Chemical Engineering": 11,
"Supramolecular Chemistry": 12,
"Radiochemistry & Nuclear Chemistry": 13,
"Forensic & Legal Chemistry": 14,
"Food Chemistry": 15,
"Chemical Education": 16,
"Others": 17
},
"index_to_label": {
"0": "Catalysis",
"1": "Organic Chemistry",
"2": "Polymer Chemistry",
"3": "Inorganic Chemistry",
"4": "Materials Science",
"5": "Analytical Chemistry",
"6": "Physical Chemistry",
"7": "Biochemistry",
"8": "Environmental Chemistry",
"9": "Energy Chemistry",
"10": "Medicinal Chemistry",
"11": "Chemical Engineering",
"12": "Supramolecular Chemistry",
"13": "Radiochemistry & Nuclear Chemistry",
"14": "Forensic & Legal Chemistry",
"15": "Food Chemistry",
"16": "Chemical Education",
"17": "Others"
}
}
```
---
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("Bocklitz-Lab/lit2vec-subfield-classifier-dataset")
print(dataset["train"][0]["title"])
print(dataset["train"][0]["field_classification"])
```
Each entry includes:
* A machine-readable **embedding**
* A list of **labels (IDs)**
* The **original text**, metadata, and license info
---
## Applications
* 🧠 **Text classification** using BERT, RoBERTa, etc.
* 🔍 **Semantic search** with sentence-transformer or FAISS
* 🧬 **Domain adaptation** for scientific NLP tasks
* 🧭 **Clustering** and unsupervised topic modeling
* 📈 **Benchmarking** embedding models on scientific literature
---
## Licensing
* All entries are sourced from **CC BY 4.0** licensed publications.
* Each entry includes original attribution via `license_publisher`, `oa_url`, and `doi`.
* You are free to reuse, modify, and distribute the dataset under the terms of **Creative Commons Attribution 4.0 International License**.
---
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{lit2vec_classifier_2025,
author = {Mahmoud Amiri, Thomas Bocklitz},
title = {Lit2Vec Subfield Classifier Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-subfield-classifier-dataset}},
note = {Submitted to Nature Scientific Data}
}
```
---
## Acknowledgements
* Built on top of **Semantic Scholar Open Research Corpus (S2ORC)**
* Flattened and cleaned using custom preprocessing by the **Bocklitz Lab**
* Embeddings generated from proprietary or publicly available models (details forthcoming in accompanying paper)