metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 7169122
num_examples: 9042
- name: test
num_bytes: 450937
num_examples: 358
download_size: 8973442
dataset_size: 7620059
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 1924
num_examples: 65
download_size: 3837
dataset_size: 1924
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- en
reuters
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
reuters = Dataset.from_hub("AutoIntent/reuters")
Source
This dataset is taken from ucirvine/reuters21578
and formatted with our AutoIntent Library:
from collections import defaultdict
from autointent import Dataset
import datasets
# load original data
reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
# remove low-resource classes
counter = defaultdict(int)
for batch in reuters["train"].iter(batch_size=16):
for labels in batch["topics"]:
for lab in labels:
counter[lab] += 1
names_to_remove = [name for name, cnt in counter.items() if cnt < 10]
intent_names = sorted(set(name for intents in reuters["train"]["topics"] for name in intents))
for n in names_to_remove:
intent_names.remove(n)
name_to_id = {name: i for i, name in enumerate(intent_names)}
# extract only texts and labels
def transform(ds: datasets.Dataset) -> list[dict]:
def _transform(example: dict):
return {
"utterance": example["text"],
"label": [int(name in example["topics"]) for name in intent_names if name not in names_to_remove]
}
ds = ds.map(_transform, remove_columns=ds.features.keys())
return [sample for sample in ds if sum(sample["label"]) != 0]
train = transform(reuters["train"])
test = transform(reuters["test"])
# format
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
reuters_converted = Dataset.from_dict({"intents": intents, "train": train, "test": test})