Datasets:

Languages:
Japanese
ArXiv:
License:
YakugakuQA / README.md
shinnosukeono's picture
Modify the license (#1)
418a6c7 verified
metadata
license: cc-by-sa-4.0
task_categories:
  - question-answering
language:
  - ja
viewer: true
columns:
  - name: problem_id
    type: string
  - name: problem_text
    type: string
  - name: choices
    type: list[string]
  - name: text_only
    type: bool
  - name: answer
    type: list[string]
  - name: comment
    type: string
  - name: num_images
    type: int

YakugakuQA

YakugakuQA is a question answering dataset, consisting of 13 years (2012-2024) of past questions and answers from the Japanese National License Examination for Pharmacists. It contains over 4K pairs of questions, answers, and commentaries.

2025-5-29: Leaderboard added.

2025-2-17: Image data added.

2024-12-10: Dataset release.

Leaderboard

3-shot Accuracy (%)

(*) Several issues in instruction-following, e.g., think and reason too much to reach token limit.
(**) enable_thinking=False for fair evaluation.

Dataset Details

Dataset Description

  • Curated by: EQUES Inc.
  • Funded by [optional]: GENIAC Project
  • Shared by [optional]:
  • Language(s) (NLP): Japanese
  • License: cc-by-sa-4.0

Uses

Direct Use

YakugakuQA is intended to be used as a benchmark for evaluating the knowledge of large language models (LLMs) in the field of pharmacy.

Out-of-Scope Use

Any usage except above.

Dataset Structure

YakugakuQA consists of two files: data.jsonl, which contains the questions, answers, and commentaries, and metadata.jsonl, which holds supplementary information about the question categories and additional details related to the answers.

data.jsonl

  • "problem_id" : unique ID, represented by a six-digit integer. The higher three digits indicate the exam number, while the lower three digits represent the question number within that specific exam.
  • "problem_text" : problem statement.
  • "choices" : choices corresponding to each question. Note that the Japanese National License Examination for Pharmacists is a multiple-choice format examination.
  • "text_only" : whether the question includes images or tables. The corresponding images or tables are not included in this dataset, even if text_only is marked as false.
  • "answer" : list of indices of the correct choices. Note the following points:
    • the choices are 1-indexed.
    • multiple choices may be included, depending on the question format.
    • "解なし" indicates there is no correct choice. The reason for this is documented in metadata.jsonl in most cases.
  • "comment" : commentary text.
  • "num_images" : number of images included in the question.

metadata.jsonl

  • "problem_id" : see above.
  • "category" : question caterogy. One of the ["Physics", "Chemistry", "Biology", "Hygiene", "Pharmacology", "Pharmacy", "Pathology", "Law", "Practice"].
  • "note" : additional information about the question.

images

The image filenames follow the format:
problem_id_{image_id}.png

Dataset Creation

Curation Rationale

YakugakuQA aims to provide a Japanese-language evaluation benchmark for assessing the domain knowledge of LLMs.

Source Data

Data Collection and Processing

All questions, answers and commentaries for the target years have been collected. The parsing process has been performed automatically.

Who are the source data producers?

All question, answers, and commentaries have been obtained from yakugaku lab. All metadata has been obtained from the website of the Ministry of Health, Labour and Welfare. It should be noted that the original questions and answers are also sourced from materials published by the Ministry of Health, Labour and Welfare.

Citation

BibTeX:

@misc{sukeda2025japaneselanguagemodelnew,
      title={A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP}, 
      author={Issey Sukeda and Takuro Fujii and Kosei Buma and Shunsuke Sasaki and Shinnosuke Ono},
      year={2025},
      eprint={2505.16661},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.16661}, 
}

Contributions

Thanks to @shinnosukeono for adding this dataset.

Acknowledgement

本データセットは、経済産業省及び国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)による生成AI開発力強化プロジェクト「GENIAC」により支援を受けた成果の一部である。