id
stringlengths
9
104
author
stringlengths
3
36
task_category
stringclasses
32 values
tags
listlengths
1
4.05k
created_time
timestamp[ns, tz=UTC]date
2022-03-02 23:29:04
2025-03-18 02:34:30
last_modified
stringdate
2021-02-13 00:06:56
2025-03-18 09:30:19
downloads
int64
0
15.6M
likes
int64
0
4.86k
README
stringlengths
44
1.01M
matched_bigbio_names
listlengths
1
8
RichardErkhov/Undi95_-_Dawn-v2-70B-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us" ]
2024-05-28T07:40:02Z
2024-05-29T03:24:59+00:00
30
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Dawn-v2-70B - GGUF - Model creator: https://huggingface.co/Undi95/ - Original model: https://huggingface.co/Undi95/Dawn-v2-70B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Dawn-v2-70B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q2_K.gguf) | Q2_K | 23.71GB | | [Dawn-v2-70B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.IQ3_XS.gguf) | IQ3_XS | 26.37GB | | [Dawn-v2-70B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.IQ3_S.gguf) | IQ3_S | 27.86GB | | [Dawn-v2-70B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q3_K_S.gguf) | Q3_K_S | 27.86GB | | [Dawn-v2-70B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.IQ3_M.gguf) | IQ3_M | 28.82GB | | [Dawn-v2-70B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q3_K.gguf) | Q3_K | 30.99GB | | [Dawn-v2-70B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q3_K_M.gguf) | Q3_K_M | 30.99GB | | [Dawn-v2-70B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q3_K_L.gguf) | Q3_K_L | 33.67GB | | [Dawn-v2-70B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.IQ4_XS.gguf) | IQ4_XS | 34.64GB | | [Dawn-v2-70B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q4_0.gguf) | Q4_0 | 36.2GB | | [Dawn-v2-70B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.IQ4_NL.gguf) | IQ4_NL | 36.55GB | | [Dawn-v2-70B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/blob/main/Dawn-v2-70B.Q4_K_S.gguf) | Q4_K_S | 36.55GB | | [Dawn-v2-70B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q4_K | 38.58GB | | [Dawn-v2-70B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q4_K_M | 38.58GB | | [Dawn-v2-70B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q4_1 | 40.2GB | | [Dawn-v2-70B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q5_0 | 44.2GB | | [Dawn-v2-70B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q5_K_S | 44.2GB | | [Dawn-v2-70B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q5_K | 45.41GB | | [Dawn-v2-70B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q5_K_M | 45.41GB | | [Dawn-v2-70B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q5_1 | 48.2GB | | [Dawn-v2-70B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q6_K | 52.7GB | | [Dawn-v2-70B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Undi95_-_Dawn-v2-70B-gguf/tree/main/) | Q8_0 | 68.26GB | Original model description: --- license: cc-by-nc-4.0 tags: - not-for-all-audiences - nsfw --- <center>[<a href="https://huggingface.co/Undi95/Dawn-v2-70B">fp16</a> - <a href="https://huggingface.co/Undi95/Dawn-v2-70B-GGUF">gguf</a> - exl2 : <a href="https://huggingface.co/Undi95/Dawn-v2-70B-2.55bpw-h6-exl2">2.55bpw</a>]</center> </br> <div style="width: 100%;"> <img src="https://hf.fast360.xyz/production/uploads/63ab1241ad514ca8d1430003/Cxcfqi4WdtXCNLnaIqSRB.png" style="width: 75%; min-width: 200px; display: block; margin: auto;"> </div> <!-- description start --> ## Description This repo contains fp16 files of Dawn-70B, a merge I have done with the new [layer shuffle](https://github.com/cg123/mergekit/blob/main/mergekit/scripts/layershuffle.py) method from mergekit. [UtopiaXL](https://huggingface.co/Undi95/UtopiaXL-13B) was a huge success for me, I really liked it, so I took the same path to do this 70B: A good base, some psychologic data, some medical data, a little bit of this, of that, and LimaRP at the end as always. NOTE: This repo contain the file [measurement.json](https://huggingface.co/Undi95/Dawn-v2-70B/blob/main/measurement.json) needed to do your own exl2 quant (I use [wikitext](https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-raw-v1/train/0000.parquet)). <!-- description end --> <!-- description start --> ## Models and loras used - [Sao10K/Euryale-1.3-L2-70B](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B) - [Xwin-LM/Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) - [ehartford/Samantha-1.11-70b](https://huggingface.co/ehartford/Samantha-1.11-70b) - [NousResearch/Nous-Hermes-Llama2-70b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b) - [augtoma/qCammel-70-x](https://huggingface.co/augtoma/qCammel-70-x) - [jondurbin/airoboros-l2-c70b-3.1.2](https://huggingface.co/jondurbin/airoboros-l2-c70b-3.1.2) - [fangloveskari/ORCA_LLaMA_70B_QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA) - [Doctor-Shotgun/limarpv3-llama2-70b-qlora](https://huggingface.co/Doctor-Shotgun/limarpv3-llama2-70b-qlora) <!-- description end --> ## The sauce ``` !mergekit-layershuffle ./Dawn-v2-70B \ --model Sao10K/Euryale-1.3-L2-70B --weight 0.3 \ --model Xwin-LM/Xwin-LM-70B-V0.1 --weight 0.2 \ --model ehartford/Samantha-1.11-70b --weight 0.1 \ --model NousResearch/Nous-Hermes-Llama2-70b --weight 0.05 \ --model augtoma/qCammel-70-x --weight 0.05 \ --model jondurbin/airoboros-l2-c70b-3.1.2 --weight 0.2 \ --model fangloveskari/ORCA_LLaMA_70B_QLoRA --weight 0.1 \ --write-yaml Dawn-v2-70B.yaml ========================= merge_method: passthrough slices: - sources: - layer_range: - 0 - 1 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 1 - 2 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 2 - 3 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 3 - 4 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 4 - 5 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 5 - 6 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 6 - 8 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 8 - 9 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 9 - 10 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 10 - 11 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 11 - 12 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 12 - 13 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 13 - 14 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 14 - 15 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 15 - 16 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 16 - 17 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 17 - 18 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 18 - 19 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 19 - 20 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 20 - 21 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 21 - 22 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 22 - 23 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 23 - 24 model: augtoma/qCammel-70-x - sources: - layer_range: - 24 - 25 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 25 - 27 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 27 - 28 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 28 - 29 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 29 - 30 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 30 - 32 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 32 - 33 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 33 - 34 model: augtoma/qCammel-70-x - sources: - layer_range: - 34 - 35 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 35 - 37 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 37 - 38 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 38 - 39 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 39 - 40 model: augtoma/qCammel-70-x - sources: - layer_range: - 40 - 41 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 41 - 42 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 42 - 43 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 43 - 44 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 44 - 45 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 45 - 46 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 46 - 48 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 48 - 49 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 49 - 50 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 50 - 51 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 51 - 54 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 54 - 55 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 55 - 56 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 56 - 58 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 58 - 59 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 59 - 60 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 60 - 62 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 62 - 63 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 63 - 64 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 64 - 65 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 65 - 66 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 66 - 67 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 67 - 68 model: augtoma/qCammel-70-x - sources: - layer_range: - 68 - 70 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 70 - 71 model: augtoma/qCammel-70-x - sources: - layer_range: - 71 - 72 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 72 - 73 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 73 - 75 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 75 - 76 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 76 - 77 model: augtoma/qCammel-70-x - sources: - layer_range: - 77 - 78 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 78 - 79 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 79 - 80 model: Xwin-LM/Xwin-LM-70B-V0.1 ========================= => Applying Doctor-Shotgun/limarpv3-llama2-70b-qlora x 0.35 ``` <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` A big thanks to [Charles](https://huggingface.co/chargoddard) for adding the layer shuffle method to his tool [mergekit](https://github.com/cg123/mergekit/tree/main) and [Henky/KoboldAI](https://koboldai.org/) for the machine he let me use. If you want to support me, you can [here](https://ko-fi.com/undiai).
[ "MEDICAL DATA" ]
sileod/deberta-v3-xsmall-tasksource-nli
sileod
zero-shot-classification
[ "transformers", "pytorch", "deberta-v2", "text-classification", "smol", "zero-shot-classification", "en", "dataset:glue", "dataset:super_glue", "dataset:anli", "dataset:metaeval/babi_nli", "dataset:sick", "dataset:stanfordnlp/snli", "dataset:scitail", "dataset:hans", "dataset:alisawuffles/WANLI", "dataset:metaeval/recast", "dataset:sileod/probability_words_nli", "dataset:joey234/nan-nli", "dataset:pietrolesci/nli_fever", "dataset:pietrolesci/breaking_nli", "dataset:pietrolesci/conj_nli", "dataset:pietrolesci/fracas", "dataset:pietrolesci/dialogue_nli", "dataset:pietrolesci/mpe", "dataset:pietrolesci/dnc", "dataset:pietrolesci/recast_white", "dataset:pietrolesci/joci", "dataset:pietrolesci/robust_nli", "dataset:pietrolesci/robust_nli_is_sd", "dataset:pietrolesci/robust_nli_li_ts", "dataset:pietrolesci/gen_debiased_nli", "dataset:pietrolesci/add_one_rte", "dataset:metaeval/imppres", "dataset:hlgd", "dataset:paws", "dataset:medical_questions_pairs", "dataset:conll2003", "dataset:Anthropic/model-written-evals", "dataset:truthful_qa", "dataset:nightingal3/fig-qa", "dataset:tasksource/bigbench", "dataset:blimp", "dataset:cos_e", "dataset:cosmos_qa", "dataset:dream", "dataset:openbookqa", "dataset:qasc", "dataset:quartz", "dataset:quail", "dataset:head_qa", "dataset:sciq", "dataset:social_i_qa", "dataset:wiki_hop", "dataset:wiqa", "dataset:piqa", "dataset:hellaswag", "dataset:pkavumba/balanced-copa", "dataset:12ml/e-CARE", "dataset:art", "dataset:tasksource/mmlu", "dataset:winogrande", "dataset:codah", "dataset:ai2_arc", "dataset:definite_pronoun_resolution", "dataset:swag", "dataset:math_qa", "dataset:metaeval/utilitarianism", "dataset:mteb/amazon_counterfactual", "dataset:SetFit/insincere-questions", "dataset:SetFit/toxic_conversations", "dataset:turingbench/TuringBench", "dataset:trec", "dataset:tals/vitaminc", "dataset:hope_edi", "dataset:strombergnlp/rumoureval_2019", "dataset:ethos", "dataset:tweet_eval", "dataset:discovery", "dataset:pragmeval", "dataset:silicone", "dataset:lex_glue", "dataset:papluca/language-identification", "dataset:imdb", "dataset:rotten_tomatoes", "dataset:ag_news", "dataset:yelp_review_full", "dataset:financial_phrasebank", "dataset:poem_sentiment", "dataset:dbpedia_14", "dataset:amazon_polarity", "dataset:app_reviews", "dataset:hate_speech18", "dataset:sms_spam", "dataset:humicroedit", "dataset:snips_built_in_intents", "dataset:hate_speech_offensive", "dataset:yahoo_answers_topics", "dataset:pacovaldez/stackoverflow-questions", "dataset:zapsdcn/hyperpartisan_news", "dataset:zapsdcn/sciie", "dataset:zapsdcn/citation_intent", "dataset:go_emotions", "dataset:allenai/scicite", "dataset:liar", "dataset:relbert/lexical_relation_classification", "dataset:tasksource/crowdflower", "dataset:metaeval/ethics", "dataset:emo", "dataset:google_wellformed_query", "dataset:tweets_hate_speech_detection", "dataset:has_part", "dataset:wnut_17", "dataset:ncbi_disease", "dataset:acronym_identification", "dataset:jnlpba", "dataset:SpeedOfMagic/ontonotes_english", "dataset:blog_authorship_corpus", "dataset:launch/open_question_type", "dataset:health_fact", "dataset:commonsense_qa", "dataset:mc_taco", "dataset:ade_corpus_v2", "dataset:prajjwal1/discosense", "dataset:circa", "dataset:PiC/phrase_similarity", "dataset:copenlu/scientific-exaggeration-detection", "dataset:quarel", "dataset:mwong/fever-evidence-related", "dataset:numer_sense", "dataset:dynabench/dynasent", "dataset:raquiba/Sarcasm_News_Headline", "dataset:sem_eval_2010_task_8", "dataset:demo-org/auditor_review", "dataset:medmcqa", "dataset:RuyuanWan/Dynasent_Disagreement", "dataset:RuyuanWan/Politeness_Disagreement", "dataset:RuyuanWan/SBIC_Disagreement", "dataset:RuyuanWan/SChem_Disagreement", "dataset:RuyuanWan/Dilemmas_Disagreement", "dataset:lucasmccabe/logiqa", "dataset:wiki_qa", "dataset:metaeval/cycic_classification", "dataset:metaeval/cycic_multiplechoice", "dataset:metaeval/sts-companion", "dataset:metaeval/commonsense_qa_2.0", "dataset:metaeval/lingnli", "dataset:metaeval/monotonicity-entailment", "dataset:metaeval/arct", "dataset:metaeval/scinli", "dataset:metaeval/naturallogic", "dataset:onestop_qa", "dataset:demelin/moral_stories", "dataset:corypaik/prost", "dataset:aps/dynahate", "dataset:metaeval/syntactic-augmentation-nli", "dataset:metaeval/autotnli", "dataset:lasha-nlp/CONDAQA", "dataset:openai/webgpt_comparisons", "dataset:Dahoas/synthetic-instruct-gptj-pairwise", "dataset:metaeval/scruples", "dataset:metaeval/wouldyourather", "dataset:metaeval/defeasible-nli", "dataset:metaeval/help-nli", "dataset:metaeval/nli-veridicality-transitivity", "dataset:metaeval/natural-language-satisfiability", "dataset:metaeval/lonli", "dataset:metaeval/dadc-limit-nli", "dataset:ColumbiaNLP/FLUTE", "dataset:metaeval/strategy-qa", "dataset:openai/summarize_from_feedback", "dataset:tasksource/folio", "dataset:metaeval/tomi-nli", "dataset:metaeval/avicenna", "dataset:stanfordnlp/SHP", "dataset:GBaker/MedQA-USMLE-4-options-hf", "dataset:sileod/wikimedqa", "dataset:declare-lab/cicero", "dataset:amydeng2000/CREAK", "dataset:metaeval/mutual", "dataset:inverse-scaling/NeQA", "dataset:inverse-scaling/quote-repetition", "dataset:inverse-scaling/redefine-math", "dataset:metaeval/puzzte", "dataset:metaeval/implicatures", "dataset:race", "dataset:metaeval/race-c", "dataset:metaeval/spartqa-yn", "dataset:metaeval/spartqa-mchoice", "dataset:metaeval/temporal-nli", "dataset:riddle_sense", "dataset:metaeval/clcd-english", "dataset:maximedb/twentyquestions", "dataset:metaeval/reclor", "dataset:metaeval/counterfactually-augmented-imdb", "dataset:metaeval/counterfactually-augmented-snli", "dataset:metaeval/cnli", "dataset:metaeval/boolq-natural-perturbations", "dataset:metaeval/acceptability-prediction", "dataset:metaeval/equate", "dataset:metaeval/ScienceQA_text_only", "dataset:Jiangjie/ekar_english", "dataset:metaeval/implicit-hate-stg1", "dataset:metaeval/chaos-mnli-ambiguity", "dataset:IlyaGusev/headline_cause", "dataset:metaeval/logiqa-2.0-nli", "dataset:tasksource/oasst2_dense_flat", "dataset:sileod/mindgames", "dataset:universal_dependencies", "dataset:metaeval/ambient", "dataset:metaeval/path-naturalness-prediction", "dataset:civil_comments", "dataset:AndyChiang/cloth", "dataset:AndyChiang/dgen", "dataset:tasksource/I2D2", "dataset:webis/args_me", "dataset:webis/Touche23-ValueEval", "dataset:tasksource/starcon", "dataset:PolyAI/banking77", "dataset:tasksource/ConTRoL-nli", "dataset:tasksource/tracie", "dataset:tasksource/sherliic", "dataset:tasksource/sen-making", "dataset:tasksource/winowhy", "dataset:mediabiasgroup/mbib-base", "dataset:tasksource/robustLR", "dataset:CLUTRR/v1", "dataset:tasksource/logical-fallacy", "dataset:tasksource/parade", "dataset:tasksource/cladder", "dataset:tasksource/subjectivity", "dataset:tasksource/MOH", "dataset:tasksource/VUAC", "dataset:tasksource/TroFi", "dataset:sharc_modified", "dataset:tasksource/conceptrules_v2", "dataset:metaeval/disrpt", "dataset:conll2000", "dataset:DFKI-SLT/few-nerd", "dataset:nlpaueb/finer-139", "dataset:tasksource/zero-shot-label-nli", "dataset:tasksource/com2sense", "dataset:tasksource/scone", "dataset:tasksource/winodict", "dataset:tasksource/fool-me-twice", "dataset:tasksource/monli", "dataset:tasksource/corr2cause", "dataset:lighteval/lsat_qa", "dataset:tasksource/apt", "dataset:zeroshot/twitter-financial-news-sentiment", "dataset:tasksource/icl-symbol-tuning-instruct", "dataset:tasksource/SpaceNLI", "dataset:sihaochen/propsegment", "dataset:HannahRoseKirk/HatemojiBuild", "dataset:tasksource/regset", "dataset:tasksource/esci", "dataset:lmsys/chatbot_arena_conversations", "dataset:neurae/dnd_style_intents", "dataset:hitachi-nlp/FLD.v2", "dataset:tasksource/SDOH-NLI", "dataset:allenai/scifact_entailment", "dataset:tasksource/feasibilityQA", "dataset:tasksource/simple_pair", "dataset:tasksource/AdjectiveScaleProbe-nli", "dataset:tasksource/resnli", "dataset:tasksource/SpaRTUN", "dataset:tasksource/ReSQ", "dataset:tasksource/semantic_fragments_nli", "dataset:MoritzLaurer/dataset_train_nli", "dataset:tasksource/stepgame", "dataset:tasksource/nlgraph", "dataset:tasksource/oasst2_pairwise_rlhf_reward", "dataset:tasksource/hh-rlhf", "dataset:tasksource/ruletaker", "dataset:qbao775/PARARULE-Plus", "dataset:tasksource/proofwriter", "dataset:tasksource/logical-entailment", "dataset:tasksource/nope", "dataset:tasksource/LogicNLI", "dataset:kiddothe2b/contract-nli", "dataset:AshtonIsNotHere/nli4ct_semeval2024", "dataset:tasksource/lsat-ar", "dataset:tasksource/lsat-rc", "dataset:AshtonIsNotHere/biosift-nli", "dataset:tasksource/brainteasers", "dataset:Anthropic/persuasion", "dataset:erbacher/AmbigNQ-clarifying-question", "dataset:tasksource/SIGA-nli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-06-03T16:19:20Z
2024-07-04T09:08:35+00:00
30
3
--- datasets: - glue - super_glue - anli - metaeval/babi_nli - sick - stanfordnlp/snli - scitail - hans - alisawuffles/WANLI - metaeval/recast - sileod/probability_words_nli - joey234/nan-nli - pietrolesci/nli_fever - pietrolesci/breaking_nli - pietrolesci/conj_nli - pietrolesci/fracas - pietrolesci/dialogue_nli - pietrolesci/mpe - pietrolesci/dnc - pietrolesci/recast_white - pietrolesci/joci - pietrolesci/robust_nli - pietrolesci/robust_nli_is_sd - pietrolesci/robust_nli_li_ts - pietrolesci/gen_debiased_nli - pietrolesci/add_one_rte - metaeval/imppres - hlgd - paws - medical_questions_pairs - conll2003 - Anthropic/model-written-evals - truthful_qa - nightingal3/fig-qa - tasksource/bigbench - blimp - cos_e - cosmos_qa - dream - openbookqa - qasc - quartz - quail - head_qa - sciq - social_i_qa - wiki_hop - wiqa - piqa - hellaswag - pkavumba/balanced-copa - 12ml/e-CARE - art - tasksource/mmlu - winogrande - codah - ai2_arc - definite_pronoun_resolution - swag - math_qa - metaeval/utilitarianism - mteb/amazon_counterfactual - SetFit/insincere-questions - SetFit/toxic_conversations - turingbench/TuringBench - trec - tals/vitaminc - hope_edi - strombergnlp/rumoureval_2019 - ethos - tweet_eval - discovery - pragmeval - silicone - lex_glue - papluca/language-identification - imdb - rotten_tomatoes - ag_news - yelp_review_full - financial_phrasebank - poem_sentiment - dbpedia_14 - amazon_polarity - app_reviews - hate_speech18 - sms_spam - humicroedit - snips_built_in_intents - hate_speech_offensive - yahoo_answers_topics - pacovaldez/stackoverflow-questions - zapsdcn/hyperpartisan_news - zapsdcn/sciie - zapsdcn/citation_intent - go_emotions - allenai/scicite - liar - relbert/lexical_relation_classification - tasksource/crowdflower - metaeval/ethics - emo - google_wellformed_query - tweets_hate_speech_detection - has_part - wnut_17 - ncbi_disease - acronym_identification - jnlpba - SpeedOfMagic/ontonotes_english - blog_authorship_corpus - launch/open_question_type - health_fact - commonsense_qa - mc_taco - ade_corpus_v2 - prajjwal1/discosense - circa - PiC/phrase_similarity - copenlu/scientific-exaggeration-detection - quarel - mwong/fever-evidence-related - numer_sense - dynabench/dynasent - raquiba/Sarcasm_News_Headline - sem_eval_2010_task_8 - demo-org/auditor_review - medmcqa - RuyuanWan/Dynasent_Disagreement - RuyuanWan/Politeness_Disagreement - RuyuanWan/SBIC_Disagreement - RuyuanWan/SChem_Disagreement - RuyuanWan/Dilemmas_Disagreement - lucasmccabe/logiqa - wiki_qa - metaeval/cycic_classification - metaeval/cycic_multiplechoice - metaeval/sts-companion - metaeval/commonsense_qa_2.0 - metaeval/lingnli - metaeval/monotonicity-entailment - metaeval/arct - metaeval/scinli - metaeval/naturallogic - onestop_qa - demelin/moral_stories - corypaik/prost - aps/dynahate - metaeval/syntactic-augmentation-nli - metaeval/autotnli - lasha-nlp/CONDAQA - openai/webgpt_comparisons - Dahoas/synthetic-instruct-gptj-pairwise - metaeval/scruples - metaeval/wouldyourather - metaeval/defeasible-nli - metaeval/help-nli - metaeval/nli-veridicality-transitivity - metaeval/natural-language-satisfiability - metaeval/lonli - metaeval/dadc-limit-nli - ColumbiaNLP/FLUTE - metaeval/strategy-qa - openai/summarize_from_feedback - tasksource/folio - metaeval/tomi-nli - metaeval/avicenna - stanfordnlp/SHP - GBaker/MedQA-USMLE-4-options-hf - sileod/wikimedqa - declare-lab/cicero - amydeng2000/CREAK - metaeval/mutual - inverse-scaling/NeQA - inverse-scaling/quote-repetition - inverse-scaling/redefine-math - metaeval/puzzte - metaeval/implicatures - race - metaeval/race-c - metaeval/spartqa-yn - metaeval/spartqa-mchoice - metaeval/temporal-nli - riddle_sense - metaeval/clcd-english - maximedb/twentyquestions - metaeval/reclor - metaeval/counterfactually-augmented-imdb - metaeval/counterfactually-augmented-snli - metaeval/cnli - metaeval/boolq-natural-perturbations - metaeval/acceptability-prediction - metaeval/equate - metaeval/ScienceQA_text_only - Jiangjie/ekar_english - metaeval/implicit-hate-stg1 - metaeval/chaos-mnli-ambiguity - IlyaGusev/headline_cause - metaeval/logiqa-2.0-nli - tasksource/oasst2_dense_flat - sileod/mindgames - universal_dependencies - metaeval/ambient - metaeval/path-naturalness-prediction - civil_comments - AndyChiang/cloth - AndyChiang/dgen - tasksource/I2D2 - webis/args_me - webis/Touche23-ValueEval - tasksource/starcon - PolyAI/banking77 - tasksource/ConTRoL-nli - tasksource/tracie - tasksource/sherliic - tasksource/sen-making - tasksource/winowhy - mediabiasgroup/mbib-base - tasksource/robustLR - CLUTRR/v1 - tasksource/logical-fallacy - tasksource/parade - tasksource/cladder - tasksource/subjectivity - tasksource/MOH - tasksource/VUAC - tasksource/TroFi - sharc_modified - tasksource/conceptrules_v2 - metaeval/disrpt - conll2000 - DFKI-SLT/few-nerd - nlpaueb/finer-139 - tasksource/zero-shot-label-nli - tasksource/com2sense - tasksource/scone - tasksource/winodict - tasksource/fool-me-twice - tasksource/monli - tasksource/corr2cause - lighteval/lsat_qa - tasksource/apt - zeroshot/twitter-financial-news-sentiment - tasksource/icl-symbol-tuning-instruct - tasksource/SpaceNLI - sihaochen/propsegment - HannahRoseKirk/HatemojiBuild - tasksource/regset - tasksource/esci - lmsys/chatbot_arena_conversations - neurae/dnd_style_intents - hitachi-nlp/FLD.v2 - tasksource/SDOH-NLI - allenai/scifact_entailment - tasksource/feasibilityQA - tasksource/simple_pair - tasksource/AdjectiveScaleProbe-nli - tasksource/resnli - tasksource/SpaRTUN - tasksource/ReSQ - tasksource/semantic_fragments_nli - MoritzLaurer/dataset_train_nli - tasksource/stepgame - tasksource/nlgraph - tasksource/oasst2_pairwise_rlhf_reward - tasksource/hh-rlhf - tasksource/ruletaker - qbao775/PARARULE-Plus - tasksource/proofwriter - tasksource/logical-entailment - tasksource/nope - tasksource/LogicNLI - kiddothe2b/contract-nli - AshtonIsNotHere/nli4ct_semeval2024 - tasksource/lsat-ar - tasksource/lsat-rc - AshtonIsNotHere/biosift-nli - tasksource/brainteasers - Anthropic/persuasion - erbacher/AmbigNQ-clarifying-question - tasksource/SIGA-nli language: - en pipeline_tag: zero-shot-classification tags: - smol --- `deberta-v3-xsmall` fine-tuned for 100k steps on the tasksource collection Model size: 22M backbone + 48M vocabulary parameters Refer to the this page for documentation :[https://huggingface.co/sileod/deberta-v3-base-tasksource-nli]
[ "HEAD-QA", "JNLPBA", "MEDQA", "NCBI DISEASE", "SCICITE", "SCIFACT", "SCIQ", "SCITAIL" ]
MohamedAhmedAE/Llama3-8B-Medical-Finetune-Merged
MohamedAhmedAE
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "medical", "mmlu", "medalpaca", "medmcqa", "conversational", "dataset:cais/mmlu", "dataset:medalpaca/medical_meadow_medqa", "dataset:medalpaca/medical_meadow_wikidoc", "dataset:openlifescienceai/medmcqa", "dataset:bigbio/med_qa", "dataset:GBaker/MedQA-USMLE-4-options", "dataset:medalpaca/medical_meadow_mmmlu", "dataset:medalpaca/medical_meadow_wikidoc_patient_information", "dataset:qiaojin/PubMedQA", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
2024-06-04T18:56:40Z
2024-06-04T22:19:23+00:00
30
1
--- datasets: - cais/mmlu - medalpaca/medical_meadow_medqa - medalpaca/medical_meadow_wikidoc - openlifescienceai/medmcqa - bigbio/med_qa - GBaker/MedQA-USMLE-4-options - medalpaca/medical_meadow_mmmlu - medalpaca/medical_meadow_wikidoc_patient_information - qiaojin/PubMedQA pipeline_tag: text-generation tags: - medical - mmlu - medalpaca - medmcqa --- ### Evaluation results | Dataset | GPT-3.5 | Tuned Llama 3 | |:-------------:|:-----:|:----:| | MMLU Clinical Knowledge | 69.8| 74.34 | | MMLU College Biology | 72.2| 72.92 | | MMLU College Medicine | 61.3| 61.85 | | MMLU Medical Genetics | 70.0| 76.0 | | MMLU Professional Medicine| 70.2| 72.43 | | MMLU Anatomy | 56.3| 61.48 |
[ "MEDQA", "PUBMEDQA" ]
RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF
RinaChen
sentence-similarity
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js", "llama-cpp", "gguf-my-repo", "en", "base_model:nomic-ai/nomic-embed-text-v1.5", "base_model:quantized:nomic-ai/nomic-embed-text-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-08-05T08:11:29Z
2024-08-05T08:11:33+00:00
30
0
--- base_model: nomic-ai/nomic-embed-text-v1.5 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - feature-extraction - sentence-similarity - mteb - transformers - transformers.js - llama-cpp - gguf-my-repo model-index: - name: epoch_0_model results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.20895522388058 - type: ap value: 38.57605549557802 - type: f1 value: 69.35586565857854 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.8144 - type: ap value: 88.65222882032363 - type: f1 value: 91.80426301643274 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.162000000000006 - type: f1 value: 46.59329642263158 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 24.253 - type: map_at_10 value: 38.962 - type: map_at_100 value: 40.081 - type: map_at_1000 value: 40.089000000000006 - type: map_at_3 value: 33.499 - type: map_at_5 value: 36.351 - type: mrr_at_1 value: 24.609 - type: mrr_at_10 value: 39.099000000000004 - type: mrr_at_100 value: 40.211000000000006 - type: mrr_at_1000 value: 40.219 - type: mrr_at_3 value: 33.677 - type: mrr_at_5 value: 36.469 - type: ndcg_at_1 value: 24.253 - type: ndcg_at_10 value: 48.010999999999996 - type: ndcg_at_100 value: 52.756 - type: ndcg_at_1000 value: 52.964999999999996 - type: ndcg_at_3 value: 36.564 - type: ndcg_at_5 value: 41.711999999999996 - type: precision_at_1 value: 24.253 - type: precision_at_10 value: 7.738 - type: precision_at_100 value: 0.98 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 15.149000000000001 - type: precision_at_5 value: 11.593 - type: recall_at_1 value: 24.253 - type: recall_at_10 value: 77.383 - type: recall_at_100 value: 98.009 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 45.448 - type: recall_at_5 value: 57.965999999999994 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.69069567851087 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.35185490976283 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 61.71274951450321 - type: mrr value: 76.06032625423207 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.73980520022269 - type: cos_sim_spearman value: 84.24649792685918 - type: euclidean_pearson value: 85.85197641158186 - type: euclidean_spearman value: 84.24649792685918 - type: manhattan_pearson value: 86.26809552711346 - type: manhattan_spearman value: 84.56397504030865 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.25324675324674 - type: f1 value: 84.17872280892557 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.770253446400886 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.94307095497281 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 32.164 - type: map_at_10 value: 42.641 - type: map_at_100 value: 43.947 - type: map_at_1000 value: 44.074999999999996 - type: map_at_3 value: 39.592 - type: map_at_5 value: 41.204 - type: mrr_at_1 value: 39.628 - type: mrr_at_10 value: 48.625 - type: mrr_at_100 value: 49.368 - type: mrr_at_1000 value: 49.413000000000004 - type: mrr_at_3 value: 46.400000000000006 - type: mrr_at_5 value: 47.68 - type: ndcg_at_1 value: 39.628 - type: ndcg_at_10 value: 48.564 - type: ndcg_at_100 value: 53.507000000000005 - type: ndcg_at_1000 value: 55.635999999999996 - type: ndcg_at_3 value: 44.471 - type: ndcg_at_5 value: 46.137 - type: precision_at_1 value: 39.628 - type: precision_at_10 value: 8.856 - type: precision_at_100 value: 1.429 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 21.268 - type: precision_at_5 value: 14.649000000000001 - type: recall_at_1 value: 32.164 - type: recall_at_10 value: 59.609 - type: recall_at_100 value: 80.521 - type: recall_at_1000 value: 94.245 - type: recall_at_3 value: 46.521 - type: recall_at_5 value: 52.083999999999996 - type: map_at_1 value: 31.526 - type: map_at_10 value: 41.581 - type: map_at_100 value: 42.815999999999995 - type: map_at_1000 value: 42.936 - type: map_at_3 value: 38.605000000000004 - type: map_at_5 value: 40.351 - type: mrr_at_1 value: 39.489999999999995 - type: mrr_at_10 value: 47.829 - type: mrr_at_100 value: 48.512 - type: mrr_at_1000 value: 48.552 - type: mrr_at_3 value: 45.754 - type: mrr_at_5 value: 46.986 - type: ndcg_at_1 value: 39.489999999999995 - type: ndcg_at_10 value: 47.269 - type: ndcg_at_100 value: 51.564 - type: ndcg_at_1000 value: 53.53099999999999 - type: ndcg_at_3 value: 43.301 - type: ndcg_at_5 value: 45.239000000000004 - type: precision_at_1 value: 39.489999999999995 - type: precision_at_10 value: 8.93 - type: precision_at_100 value: 1.415 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 20.892 - type: precision_at_5 value: 14.865999999999998 - type: recall_at_1 value: 31.526 - type: recall_at_10 value: 56.76 - type: recall_at_100 value: 75.029 - type: recall_at_1000 value: 87.491 - type: recall_at_3 value: 44.786 - type: recall_at_5 value: 50.254 - type: map_at_1 value: 40.987 - type: map_at_10 value: 52.827 - type: map_at_100 value: 53.751000000000005 - type: map_at_1000 value: 53.81 - type: map_at_3 value: 49.844 - type: map_at_5 value: 51.473 - type: mrr_at_1 value: 46.833999999999996 - type: mrr_at_10 value: 56.389 - type: mrr_at_100 value: 57.003 - type: mrr_at_1000 value: 57.034 - type: mrr_at_3 value: 54.17999999999999 - type: mrr_at_5 value: 55.486999999999995 - type: ndcg_at_1 value: 46.833999999999996 - type: ndcg_at_10 value: 58.372 - type: ndcg_at_100 value: 62.068 - type: ndcg_at_1000 value: 63.288 - type: ndcg_at_3 value: 53.400000000000006 - type: ndcg_at_5 value: 55.766000000000005 - type: precision_at_1 value: 46.833999999999996 - type: precision_at_10 value: 9.191 - type: precision_at_100 value: 1.192 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 23.448 - type: precision_at_5 value: 15.862000000000002 - type: recall_at_1 value: 40.987 - type: recall_at_10 value: 71.146 - type: recall_at_100 value: 87.035 - type: recall_at_1000 value: 95.633 - type: recall_at_3 value: 58.025999999999996 - type: recall_at_5 value: 63.815999999999995 - type: map_at_1 value: 24.587 - type: map_at_10 value: 33.114 - type: map_at_100 value: 34.043 - type: map_at_1000 value: 34.123999999999995 - type: map_at_3 value: 30.45 - type: map_at_5 value: 31.813999999999997 - type: mrr_at_1 value: 26.554 - type: mrr_at_10 value: 35.148 - type: mrr_at_100 value: 35.926 - type: mrr_at_1000 value: 35.991 - type: mrr_at_3 value: 32.599000000000004 - type: mrr_at_5 value: 33.893 - type: ndcg_at_1 value: 26.554 - type: ndcg_at_10 value: 38.132 - type: ndcg_at_100 value: 42.78 - type: ndcg_at_1000 value: 44.919 - type: ndcg_at_3 value: 32.833 - type: ndcg_at_5 value: 35.168 - type: precision_at_1 value: 26.554 - type: precision_at_10 value: 5.921 - type: precision_at_100 value: 0.8659999999999999 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 13.861 - type: precision_at_5 value: 9.605 - type: recall_at_1 value: 24.587 - type: recall_at_10 value: 51.690000000000005 - type: recall_at_100 value: 73.428 - type: recall_at_1000 value: 89.551 - type: recall_at_3 value: 37.336999999999996 - type: recall_at_5 value: 43.047000000000004 - type: map_at_1 value: 16.715 - type: map_at_10 value: 24.251 - type: map_at_100 value: 25.326999999999998 - type: map_at_1000 value: 25.455 - type: map_at_3 value: 21.912000000000003 - type: map_at_5 value: 23.257 - type: mrr_at_1 value: 20.274 - type: mrr_at_10 value: 28.552 - type: mrr_at_100 value: 29.42 - type: mrr_at_1000 value: 29.497 - type: mrr_at_3 value: 26.14 - type: mrr_at_5 value: 27.502 - type: ndcg_at_1 value: 20.274 - type: ndcg_at_10 value: 29.088 - type: ndcg_at_100 value: 34.293 - type: ndcg_at_1000 value: 37.271 - type: ndcg_at_3 value: 24.708 - type: ndcg_at_5 value: 26.809 - type: precision_at_1 value: 20.274 - type: precision_at_10 value: 5.361 - type: precision_at_100 value: 0.915 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.733 - type: precision_at_5 value: 8.556999999999999 - type: recall_at_1 value: 16.715 - type: recall_at_10 value: 39.587 - type: recall_at_100 value: 62.336000000000006 - type: recall_at_1000 value: 83.453 - type: recall_at_3 value: 27.839999999999996 - type: recall_at_5 value: 32.952999999999996 - type: map_at_1 value: 28.793000000000003 - type: map_at_10 value: 38.582 - type: map_at_100 value: 39.881 - type: map_at_1000 value: 39.987 - type: map_at_3 value: 35.851 - type: map_at_5 value: 37.289 - type: mrr_at_1 value: 34.455999999999996 - type: mrr_at_10 value: 43.909 - type: mrr_at_100 value: 44.74 - type: mrr_at_1000 value: 44.786 - type: mrr_at_3 value: 41.659 - type: mrr_at_5 value: 43.010999999999996 - type: ndcg_at_1 value: 34.455999999999996 - type: ndcg_at_10 value: 44.266 - type: ndcg_at_100 value: 49.639 - type: ndcg_at_1000 value: 51.644 - type: ndcg_at_3 value: 39.865 - type: ndcg_at_5 value: 41.887 - type: precision_at_1 value: 34.455999999999996 - type: precision_at_10 value: 7.843999999999999 - type: precision_at_100 value: 1.243 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 18.831999999999997 - type: precision_at_5 value: 13.147 - type: recall_at_1 value: 28.793000000000003 - type: recall_at_10 value: 55.68300000000001 - type: recall_at_100 value: 77.99000000000001 - type: recall_at_1000 value: 91.183 - type: recall_at_3 value: 43.293 - type: recall_at_5 value: 48.618 - type: map_at_1 value: 25.907000000000004 - type: map_at_10 value: 35.519 - type: map_at_100 value: 36.806 - type: map_at_1000 value: 36.912 - type: map_at_3 value: 32.748 - type: map_at_5 value: 34.232 - type: mrr_at_1 value: 31.621 - type: mrr_at_10 value: 40.687 - type: mrr_at_100 value: 41.583 - type: mrr_at_1000 value: 41.638999999999996 - type: mrr_at_3 value: 38.527 - type: mrr_at_5 value: 39.612 - type: ndcg_at_1 value: 31.621 - type: ndcg_at_10 value: 41.003 - type: ndcg_at_100 value: 46.617999999999995 - type: ndcg_at_1000 value: 48.82 - type: ndcg_at_3 value: 36.542 - type: ndcg_at_5 value: 38.368 - type: precision_at_1 value: 31.621 - type: precision_at_10 value: 7.396999999999999 - type: precision_at_100 value: 1.191 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 17.39 - type: precision_at_5 value: 12.1 - type: recall_at_1 value: 25.907000000000004 - type: recall_at_10 value: 52.115 - type: recall_at_100 value: 76.238 - type: recall_at_1000 value: 91.218 - type: recall_at_3 value: 39.417 - type: recall_at_5 value: 44.435 - type: map_at_1 value: 25.732166666666668 - type: map_at_10 value: 34.51616666666667 - type: map_at_100 value: 35.67241666666666 - type: map_at_1000 value: 35.78675 - type: map_at_3 value: 31.953416666666662 - type: map_at_5 value: 33.333 - type: mrr_at_1 value: 30.300166666666673 - type: mrr_at_10 value: 38.6255 - type: mrr_at_100 value: 39.46183333333334 - type: mrr_at_1000 value: 39.519999999999996 - type: mrr_at_3 value: 36.41299999999999 - type: mrr_at_5 value: 37.6365 - type: ndcg_at_1 value: 30.300166666666673 - type: ndcg_at_10 value: 39.61466666666667 - type: ndcg_at_100 value: 44.60808333333334 - type: ndcg_at_1000 value: 46.91708333333334 - type: ndcg_at_3 value: 35.26558333333333 - type: ndcg_at_5 value: 37.220000000000006 - type: precision_at_1 value: 30.300166666666673 - type: precision_at_10 value: 6.837416666666667 - type: precision_at_100 value: 1.10425 - type: precision_at_1000 value: 0.14875 - type: precision_at_3 value: 16.13716666666667 - type: precision_at_5 value: 11.2815 - type: recall_at_1 value: 25.732166666666668 - type: recall_at_10 value: 50.578916666666665 - type: recall_at_100 value: 72.42183333333334 - type: recall_at_1000 value: 88.48766666666667 - type: recall_at_3 value: 38.41325 - type: recall_at_5 value: 43.515750000000004 - type: map_at_1 value: 23.951 - type: map_at_10 value: 30.974 - type: map_at_100 value: 31.804 - type: map_at_1000 value: 31.900000000000002 - type: map_at_3 value: 28.762 - type: map_at_5 value: 29.94 - type: mrr_at_1 value: 26.534000000000002 - type: mrr_at_10 value: 33.553 - type: mrr_at_100 value: 34.297 - type: mrr_at_1000 value: 34.36 - type: mrr_at_3 value: 31.391000000000002 - type: mrr_at_5 value: 32.525999999999996 - type: ndcg_at_1 value: 26.534000000000002 - type: ndcg_at_10 value: 35.112 - type: ndcg_at_100 value: 39.28 - type: ndcg_at_1000 value: 41.723 - type: ndcg_at_3 value: 30.902 - type: ndcg_at_5 value: 32.759 - type: precision_at_1 value: 26.534000000000002 - type: precision_at_10 value: 5.445 - type: precision_at_100 value: 0.819 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 12.986 - type: precision_at_5 value: 9.049 - type: recall_at_1 value: 23.951 - type: recall_at_10 value: 45.24 - type: recall_at_100 value: 64.12299999999999 - type: recall_at_1000 value: 82.28999999999999 - type: recall_at_3 value: 33.806000000000004 - type: recall_at_5 value: 38.277 - type: map_at_1 value: 16.829 - type: map_at_10 value: 23.684 - type: map_at_100 value: 24.683 - type: map_at_1000 value: 24.81 - type: map_at_3 value: 21.554000000000002 - type: map_at_5 value: 22.768 - type: mrr_at_1 value: 20.096 - type: mrr_at_10 value: 27.230999999999998 - type: mrr_at_100 value: 28.083999999999996 - type: mrr_at_1000 value: 28.166000000000004 - type: mrr_at_3 value: 25.212 - type: mrr_at_5 value: 26.32 - type: ndcg_at_1 value: 20.096 - type: ndcg_at_10 value: 27.989000000000004 - type: ndcg_at_100 value: 32.847 - type: ndcg_at_1000 value: 35.896 - type: ndcg_at_3 value: 24.116 - type: ndcg_at_5 value: 25.964 - type: precision_at_1 value: 20.096 - type: precision_at_10 value: 5 - type: precision_at_100 value: 0.8750000000000001 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 11.207 - type: precision_at_5 value: 8.08 - type: recall_at_1 value: 16.829 - type: recall_at_10 value: 37.407000000000004 - type: recall_at_100 value: 59.101000000000006 - type: recall_at_1000 value: 81.024 - type: recall_at_3 value: 26.739 - type: recall_at_5 value: 31.524 - type: map_at_1 value: 24.138 - type: map_at_10 value: 32.275999999999996 - type: map_at_100 value: 33.416000000000004 - type: map_at_1000 value: 33.527 - type: map_at_3 value: 29.854000000000003 - type: map_at_5 value: 31.096 - type: mrr_at_1 value: 28.450999999999997 - type: mrr_at_10 value: 36.214 - type: mrr_at_100 value: 37.134 - type: mrr_at_1000 value: 37.198 - type: mrr_at_3 value: 34.001999999999995 - type: mrr_at_5 value: 35.187000000000005 - type: ndcg_at_1 value: 28.450999999999997 - type: ndcg_at_10 value: 37.166 - type: ndcg_at_100 value: 42.454 - type: ndcg_at_1000 value: 44.976 - type: ndcg_at_3 value: 32.796 - type: ndcg_at_5 value: 34.631 - type: precision_at_1 value: 28.450999999999997 - type: precision_at_10 value: 6.241 - type: precision_at_100 value: 0.9950000000000001 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 14.801 - type: precision_at_5 value: 10.280000000000001 - type: recall_at_1 value: 24.138 - type: recall_at_10 value: 48.111 - type: recall_at_100 value: 71.245 - type: recall_at_1000 value: 88.986 - type: recall_at_3 value: 36.119 - type: recall_at_5 value: 40.846 - type: map_at_1 value: 23.244 - type: map_at_10 value: 31.227 - type: map_at_100 value: 33.007 - type: map_at_1000 value: 33.223 - type: map_at_3 value: 28.924 - type: map_at_5 value: 30.017 - type: mrr_at_1 value: 27.668 - type: mrr_at_10 value: 35.524 - type: mrr_at_100 value: 36.699 - type: mrr_at_1000 value: 36.759 - type: mrr_at_3 value: 33.366 - type: mrr_at_5 value: 34.552 - type: ndcg_at_1 value: 27.668 - type: ndcg_at_10 value: 36.381 - type: ndcg_at_100 value: 43.062 - type: ndcg_at_1000 value: 45.656 - type: ndcg_at_3 value: 32.501999999999995 - type: ndcg_at_5 value: 34.105999999999995 - type: precision_at_1 value: 27.668 - type: precision_at_10 value: 6.798 - type: precision_at_100 value: 1.492 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 15.152 - type: precision_at_5 value: 10.791 - type: recall_at_1 value: 23.244 - type: recall_at_10 value: 45.979 - type: recall_at_100 value: 74.822 - type: recall_at_1000 value: 91.078 - type: recall_at_3 value: 34.925 - type: recall_at_5 value: 39.126 - type: map_at_1 value: 19.945 - type: map_at_10 value: 27.517999999999997 - type: map_at_100 value: 28.588 - type: map_at_1000 value: 28.682000000000002 - type: map_at_3 value: 25.345000000000002 - type: map_at_5 value: 26.555 - type: mrr_at_1 value: 21.996 - type: mrr_at_10 value: 29.845 - type: mrr_at_100 value: 30.775999999999996 - type: mrr_at_1000 value: 30.845 - type: mrr_at_3 value: 27.726 - type: mrr_at_5 value: 28.882 - type: ndcg_at_1 value: 21.996 - type: ndcg_at_10 value: 32.034 - type: ndcg_at_100 value: 37.185 - type: ndcg_at_1000 value: 39.645 - type: ndcg_at_3 value: 27.750999999999998 - type: ndcg_at_5 value: 29.805999999999997 - type: precision_at_1 value: 21.996 - type: precision_at_10 value: 5.065 - type: precision_at_100 value: 0.819 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 12.076 - type: precision_at_5 value: 8.392 - type: recall_at_1 value: 19.945 - type: recall_at_10 value: 43.62 - type: recall_at_100 value: 67.194 - type: recall_at_1000 value: 85.7 - type: recall_at_3 value: 32.15 - type: recall_at_5 value: 37.208999999999996 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 18.279 - type: map_at_10 value: 31.052999999999997 - type: map_at_100 value: 33.125 - type: map_at_1000 value: 33.306000000000004 - type: map_at_3 value: 26.208 - type: map_at_5 value: 28.857 - type: mrr_at_1 value: 42.671 - type: mrr_at_10 value: 54.557 - type: mrr_at_100 value: 55.142 - type: mrr_at_1000 value: 55.169000000000004 - type: mrr_at_3 value: 51.488 - type: mrr_at_5 value: 53.439 - type: ndcg_at_1 value: 42.671 - type: ndcg_at_10 value: 41.276 - type: ndcg_at_100 value: 48.376000000000005 - type: ndcg_at_1000 value: 51.318 - type: ndcg_at_3 value: 35.068 - type: ndcg_at_5 value: 37.242 - type: precision_at_1 value: 42.671 - type: precision_at_10 value: 12.638 - type: precision_at_100 value: 2.045 - type: precision_at_1000 value: 0.26 - type: precision_at_3 value: 26.08 - type: precision_at_5 value: 19.805 - type: recall_at_1 value: 18.279 - type: recall_at_10 value: 46.946 - type: recall_at_100 value: 70.97200000000001 - type: recall_at_1000 value: 87.107 - type: recall_at_3 value: 31.147999999999996 - type: recall_at_5 value: 38.099 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.573 - type: map_at_10 value: 19.747 - type: map_at_100 value: 28.205000000000002 - type: map_at_1000 value: 29.831000000000003 - type: map_at_3 value: 14.109 - type: map_at_5 value: 16.448999999999998 - type: mrr_at_1 value: 71 - type: mrr_at_10 value: 77.68599999999999 - type: mrr_at_100 value: 77.995 - type: mrr_at_1000 value: 78.00200000000001 - type: mrr_at_3 value: 76.292 - type: mrr_at_5 value: 77.029 - type: ndcg_at_1 value: 59.12500000000001 - type: ndcg_at_10 value: 43.9 - type: ndcg_at_100 value: 47.863 - type: ndcg_at_1000 value: 54.848 - type: ndcg_at_3 value: 49.803999999999995 - type: ndcg_at_5 value: 46.317 - type: precision_at_1 value: 71 - type: precision_at_10 value: 34.4 - type: precision_at_100 value: 11.063 - type: precision_at_1000 value: 1.989 - type: precision_at_3 value: 52.333 - type: precision_at_5 value: 43.7 - type: recall_at_1 value: 8.573 - type: recall_at_10 value: 25.615 - type: recall_at_100 value: 53.385000000000005 - type: recall_at_1000 value: 75.46000000000001 - type: recall_at_3 value: 15.429 - type: recall_at_5 value: 19.357 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.989999999999995 - type: f1 value: 42.776314451497555 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 74.13499999999999 - type: map_at_10 value: 82.825 - type: map_at_100 value: 83.096 - type: map_at_1000 value: 83.111 - type: map_at_3 value: 81.748 - type: map_at_5 value: 82.446 - type: mrr_at_1 value: 79.553 - type: mrr_at_10 value: 86.654 - type: mrr_at_100 value: 86.774 - type: mrr_at_1000 value: 86.778 - type: mrr_at_3 value: 85.981 - type: mrr_at_5 value: 86.462 - type: ndcg_at_1 value: 79.553 - type: ndcg_at_10 value: 86.345 - type: ndcg_at_100 value: 87.32 - type: ndcg_at_1000 value: 87.58200000000001 - type: ndcg_at_3 value: 84.719 - type: ndcg_at_5 value: 85.677 - type: precision_at_1 value: 79.553 - type: precision_at_10 value: 10.402000000000001 - type: precision_at_100 value: 1.1119999999999999 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.413 - type: precision_at_5 value: 20.138 - type: recall_at_1 value: 74.13499999999999 - type: recall_at_10 value: 93.215 - type: recall_at_100 value: 97.083 - type: recall_at_1000 value: 98.732 - type: recall_at_3 value: 88.79 - type: recall_at_5 value: 91.259 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 18.298000000000002 - type: map_at_10 value: 29.901 - type: map_at_100 value: 31.528 - type: map_at_1000 value: 31.713 - type: map_at_3 value: 25.740000000000002 - type: map_at_5 value: 28.227999999999998 - type: mrr_at_1 value: 36.728 - type: mrr_at_10 value: 45.401 - type: mrr_at_100 value: 46.27 - type: mrr_at_1000 value: 46.315 - type: mrr_at_3 value: 42.978 - type: mrr_at_5 value: 44.29 - type: ndcg_at_1 value: 36.728 - type: ndcg_at_10 value: 37.456 - type: ndcg_at_100 value: 43.832 - type: ndcg_at_1000 value: 47 - type: ndcg_at_3 value: 33.694 - type: ndcg_at_5 value: 35.085 - type: precision_at_1 value: 36.728 - type: precision_at_10 value: 10.386 - type: precision_at_100 value: 1.701 - type: precision_at_1000 value: 0.22599999999999998 - type: precision_at_3 value: 22.479 - type: precision_at_5 value: 16.605 - type: recall_at_1 value: 18.298000000000002 - type: recall_at_10 value: 44.369 - type: recall_at_100 value: 68.098 - type: recall_at_1000 value: 87.21900000000001 - type: recall_at_3 value: 30.215999999999998 - type: recall_at_5 value: 36.861 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.568 - type: map_at_10 value: 65.061 - type: map_at_100 value: 65.896 - type: map_at_1000 value: 65.95100000000001 - type: map_at_3 value: 61.831 - type: map_at_5 value: 63.849000000000004 - type: mrr_at_1 value: 79.136 - type: mrr_at_10 value: 84.58200000000001 - type: mrr_at_100 value: 84.765 - type: mrr_at_1000 value: 84.772 - type: mrr_at_3 value: 83.684 - type: mrr_at_5 value: 84.223 - type: ndcg_at_1 value: 79.136 - type: ndcg_at_10 value: 72.622 - type: ndcg_at_100 value: 75.539 - type: ndcg_at_1000 value: 76.613 - type: ndcg_at_3 value: 68.065 - type: ndcg_at_5 value: 70.58 - type: precision_at_1 value: 79.136 - type: precision_at_10 value: 15.215 - type: precision_at_100 value: 1.7500000000000002 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 44.011 - type: precision_at_5 value: 28.388999999999996 - type: recall_at_1 value: 39.568 - type: recall_at_10 value: 76.077 - type: recall_at_100 value: 87.481 - type: recall_at_1000 value: 94.56400000000001 - type: recall_at_3 value: 66.01599999999999 - type: recall_at_5 value: 70.97200000000001 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 85.312 - type: ap value: 80.36296867333715 - type: f1 value: 85.26613311552218 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.363999999999997 - type: map_at_10 value: 35.711999999999996 - type: map_at_100 value: 36.876999999999995 - type: map_at_1000 value: 36.923 - type: map_at_3 value: 32.034 - type: map_at_5 value: 34.159 - type: mrr_at_1 value: 24.04 - type: mrr_at_10 value: 36.345 - type: mrr_at_100 value: 37.441 - type: mrr_at_1000 value: 37.480000000000004 - type: mrr_at_3 value: 32.713 - type: mrr_at_5 value: 34.824 - type: ndcg_at_1 value: 24.026 - type: ndcg_at_10 value: 42.531 - type: ndcg_at_100 value: 48.081 - type: ndcg_at_1000 value: 49.213 - type: ndcg_at_3 value: 35.044 - type: ndcg_at_5 value: 38.834 - type: precision_at_1 value: 24.026 - type: precision_at_10 value: 6.622999999999999 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.909 - type: precision_at_5 value: 10.871 - type: recall_at_1 value: 23.363999999999997 - type: recall_at_10 value: 63.426 - type: recall_at_100 value: 88.96300000000001 - type: recall_at_1000 value: 97.637 - type: recall_at_3 value: 43.095 - type: recall_at_5 value: 52.178000000000004 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.0095759233926 - type: f1 value: 92.78387794667408 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.0296397628819 - type: f1 value: 58.45699589820874 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.45662407531944 - type: f1 value: 71.42364781421813 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.07800941492937 - type: f1 value: 77.22799045640845 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.531234379250606 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.941490381193802 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.3115090856725 - type: mrr value: 31.290667638675757 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.465 - type: map_at_10 value: 13.03 - type: map_at_100 value: 16.057 - type: map_at_1000 value: 17.49 - type: map_at_3 value: 9.553 - type: map_at_5 value: 11.204 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 53.269 - type: mrr_at_100 value: 53.72 - type: mrr_at_1000 value: 53.761 - type: mrr_at_3 value: 50.929 - type: mrr_at_5 value: 52.461 - type: ndcg_at_1 value: 42.26 - type: ndcg_at_10 value: 34.673 - type: ndcg_at_100 value: 30.759999999999998 - type: ndcg_at_1000 value: 39.728 - type: ndcg_at_3 value: 40.349000000000004 - type: ndcg_at_5 value: 37.915 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.789 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 2.07 - type: precision_at_3 value: 38.596000000000004 - type: precision_at_5 value: 33.251 - type: recall_at_1 value: 5.465 - type: recall_at_10 value: 17.148 - type: recall_at_100 value: 29.768 - type: recall_at_1000 value: 62.239 - type: recall_at_3 value: 10.577 - type: recall_at_5 value: 13.315 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 37.008 - type: map_at_10 value: 52.467 - type: map_at_100 value: 53.342999999999996 - type: map_at_1000 value: 53.366 - type: map_at_3 value: 48.412 - type: map_at_5 value: 50.875 - type: mrr_at_1 value: 41.541 - type: mrr_at_10 value: 54.967 - type: mrr_at_100 value: 55.611 - type: mrr_at_1000 value: 55.627 - type: mrr_at_3 value: 51.824999999999996 - type: mrr_at_5 value: 53.763000000000005 - type: ndcg_at_1 value: 41.541 - type: ndcg_at_10 value: 59.724999999999994 - type: ndcg_at_100 value: 63.38700000000001 - type: ndcg_at_1000 value: 63.883 - type: ndcg_at_3 value: 52.331 - type: ndcg_at_5 value: 56.327000000000005 - type: precision_at_1 value: 41.541 - type: precision_at_10 value: 9.447 - type: precision_at_100 value: 1.1520000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.262 - type: precision_at_5 value: 16.314999999999998 - type: recall_at_1 value: 37.008 - type: recall_at_10 value: 79.145 - type: recall_at_100 value: 94.986 - type: recall_at_1000 value: 98.607 - type: recall_at_3 value: 60.277 - type: recall_at_5 value: 69.407 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.402 - type: map_at_10 value: 84.181 - type: map_at_100 value: 84.796 - type: map_at_1000 value: 84.81400000000001 - type: map_at_3 value: 81.209 - type: map_at_5 value: 83.085 - type: mrr_at_1 value: 81.02000000000001 - type: mrr_at_10 value: 87.263 - type: mrr_at_100 value: 87.36 - type: mrr_at_1000 value: 87.36 - type: mrr_at_3 value: 86.235 - type: mrr_at_5 value: 86.945 - type: ndcg_at_1 value: 81.01 - type: ndcg_at_10 value: 87.99900000000001 - type: ndcg_at_100 value: 89.217 - type: ndcg_at_1000 value: 89.33 - type: ndcg_at_3 value: 85.053 - type: ndcg_at_5 value: 86.703 - type: precision_at_1 value: 81.01 - type: precision_at_10 value: 13.336 - type: precision_at_100 value: 1.52 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 37.14 - type: precision_at_5 value: 24.44 - type: recall_at_1 value: 70.402 - type: recall_at_10 value: 95.214 - type: recall_at_100 value: 99.438 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.75699999999999 - type: recall_at_5 value: 91.44099999999999 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.51721502758904 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.054808572333016 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.578 - type: map_at_10 value: 11.036999999999999 - type: map_at_100 value: 12.879999999999999 - type: map_at_1000 value: 13.150999999999998 - type: map_at_3 value: 8.133 - type: map_at_5 value: 9.559 - type: mrr_at_1 value: 22.6 - type: mrr_at_10 value: 32.68 - type: mrr_at_100 value: 33.789 - type: mrr_at_1000 value: 33.854 - type: mrr_at_3 value: 29.7 - type: mrr_at_5 value: 31.480000000000004 - type: ndcg_at_1 value: 22.6 - type: ndcg_at_10 value: 18.616 - type: ndcg_at_100 value: 25.883 - type: ndcg_at_1000 value: 30.944 - type: ndcg_at_3 value: 18.136 - type: ndcg_at_5 value: 15.625 - type: precision_at_1 value: 22.6 - type: precision_at_10 value: 9.48 - type: precision_at_100 value: 1.991 - type: precision_at_1000 value: 0.321 - type: precision_at_3 value: 16.8 - type: precision_at_5 value: 13.54 - type: recall_at_1 value: 4.578 - type: recall_at_10 value: 19.213 - type: recall_at_100 value: 40.397 - type: recall_at_1000 value: 65.2 - type: recall_at_3 value: 10.208 - type: recall_at_5 value: 13.718 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.44288351714071 - type: cos_sim_spearman value: 79.37995604564952 - type: euclidean_pearson value: 81.1078874670718 - type: euclidean_spearman value: 79.37995905980499 - type: manhattan_pearson value: 81.03697527288986 - type: manhattan_spearman value: 79.33490235296236 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.95557650436523 - type: cos_sim_spearman value: 78.5190672399868 - type: euclidean_pearson value: 81.58064025904707 - type: euclidean_spearman value: 78.5190672399868 - type: manhattan_pearson value: 81.52857930619889 - type: manhattan_spearman value: 78.50421361308034 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.79128416228737 - type: cos_sim_spearman value: 86.05402451477147 - type: euclidean_pearson value: 85.46280267054289 - type: euclidean_spearman value: 86.05402451477147 - type: manhattan_pearson value: 85.46278563858236 - type: manhattan_spearman value: 86.08079590861004 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.20623089568763 - type: cos_sim_spearman value: 81.53786907061009 - type: euclidean_pearson value: 82.82272250091494 - type: euclidean_spearman value: 81.53786907061009 - type: manhattan_pearson value: 82.78850494027013 - type: manhattan_spearman value: 81.5135618083407 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 85.46366618397936 - type: cos_sim_spearman value: 86.96566013336908 - type: euclidean_pearson value: 86.62651697548931 - type: euclidean_spearman value: 86.96565526364454 - type: manhattan_pearson value: 86.58812160258009 - type: manhattan_spearman value: 86.9336484321288 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.51858358641559 - type: cos_sim_spearman value: 84.7652527954999 - type: euclidean_pearson value: 84.23914783766861 - type: euclidean_spearman value: 84.7652527954999 - type: manhattan_pearson value: 84.22749648503171 - type: manhattan_spearman value: 84.74527996746386 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.28026563313065 - type: cos_sim_spearman value: 87.46928143824915 - type: euclidean_pearson value: 88.30558762000372 - type: euclidean_spearman value: 87.46928143824915 - type: manhattan_pearson value: 88.10513330809331 - type: manhattan_spearman value: 87.21069787834173 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.376497134587375 - type: cos_sim_spearman value: 65.0159550112516 - type: euclidean_pearson value: 65.64572120879598 - type: euclidean_spearman value: 65.0159550112516 - type: manhattan_pearson value: 65.88143604989976 - type: manhattan_spearman value: 65.17547297222434 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.22876368947644 - type: cos_sim_spearman value: 85.46935577445318 - type: euclidean_pearson value: 85.32830231392005 - type: euclidean_spearman value: 85.46935577445318 - type: manhattan_pearson value: 85.30353211758495 - type: manhattan_spearman value: 85.42821085956945 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 80.60986667767133 - type: mrr value: 94.29432314236236 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 54.528 - type: map_at_10 value: 65.187 - type: map_at_100 value: 65.62599999999999 - type: map_at_1000 value: 65.657 - type: map_at_3 value: 62.352 - type: map_at_5 value: 64.025 - type: mrr_at_1 value: 57.333 - type: mrr_at_10 value: 66.577 - type: mrr_at_100 value: 66.88 - type: mrr_at_1000 value: 66.908 - type: mrr_at_3 value: 64.556 - type: mrr_at_5 value: 65.739 - type: ndcg_at_1 value: 57.333 - type: ndcg_at_10 value: 70.275 - type: ndcg_at_100 value: 72.136 - type: ndcg_at_1000 value: 72.963 - type: ndcg_at_3 value: 65.414 - type: ndcg_at_5 value: 67.831 - type: precision_at_1 value: 57.333 - type: precision_at_10 value: 9.5 - type: precision_at_100 value: 1.057 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.778000000000002 - type: precision_at_5 value: 17.2 - type: recall_at_1 value: 54.528 - type: recall_at_10 value: 84.356 - type: recall_at_100 value: 92.833 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 71.283 - type: recall_at_5 value: 77.14999999999999 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74158415841585 - type: cos_sim_ap value: 92.90048959850317 - type: cos_sim_f1 value: 86.35650810245687 - type: cos_sim_precision value: 90.4709748083242 - type: cos_sim_recall value: 82.6 - type: dot_accuracy value: 99.74158415841585 - type: dot_ap value: 92.90048959850317 - type: dot_f1 value: 86.35650810245687 - type: dot_precision value: 90.4709748083242 - type: dot_recall value: 82.6 - type: euclidean_accuracy value: 99.74158415841585 - type: euclidean_ap value: 92.90048959850317 - type: euclidean_f1 value: 86.35650810245687 - type: euclidean_precision value: 90.4709748083242 - type: euclidean_recall value: 82.6 - type: manhattan_accuracy value: 99.74158415841585 - type: manhattan_ap value: 92.87344692947894 - type: manhattan_f1 value: 86.38497652582159 - type: manhattan_precision value: 90.29443838604145 - type: manhattan_recall value: 82.8 - type: max_accuracy value: 99.74158415841585 - type: max_ap value: 92.90048959850317 - type: max_f1 value: 86.38497652582159 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 63.191648770424216 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.02944668730218 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.466386167525265 - type: mrr value: 51.19071492233257 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.198022505886435 - type: cos_sim_spearman value: 30.40170257939193 - type: dot_pearson value: 30.198015316402614 - type: dot_spearman value: 30.40170257939193 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.242 - type: map_at_10 value: 2.17 - type: map_at_100 value: 12.221 - type: map_at_1000 value: 28.63 - type: map_at_3 value: 0.728 - type: map_at_5 value: 1.185 - type: mrr_at_1 value: 94 - type: mrr_at_10 value: 97 - type: mrr_at_100 value: 97 - type: mrr_at_1000 value: 97 - type: mrr_at_3 value: 97 - type: mrr_at_5 value: 97 - type: ndcg_at_1 value: 89 - type: ndcg_at_10 value: 82.30499999999999 - type: ndcg_at_100 value: 61.839999999999996 - type: ndcg_at_1000 value: 53.381 - type: ndcg_at_3 value: 88.877 - type: ndcg_at_5 value: 86.05199999999999 - type: precision_at_1 value: 94 - type: precision_at_10 value: 87 - type: precision_at_100 value: 63.38 - type: precision_at_1000 value: 23.498 - type: precision_at_3 value: 94 - type: precision_at_5 value: 92 - type: recall_at_1 value: 0.242 - type: recall_at_10 value: 2.302 - type: recall_at_100 value: 14.979000000000001 - type: recall_at_1000 value: 49.638 - type: recall_at_3 value: 0.753 - type: recall_at_5 value: 1.226 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.006 - type: map_at_10 value: 11.805 - type: map_at_100 value: 18.146 - type: map_at_1000 value: 19.788 - type: map_at_3 value: 5.914 - type: map_at_5 value: 8.801 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 56.36600000000001 - type: mrr_at_100 value: 56.721999999999994 - type: mrr_at_1000 value: 56.721999999999994 - type: mrr_at_3 value: 52.041000000000004 - type: mrr_at_5 value: 54.796 - type: ndcg_at_1 value: 37.755 - type: ndcg_at_10 value: 29.863 - type: ndcg_at_100 value: 39.571 - type: ndcg_at_1000 value: 51.385999999999996 - type: ndcg_at_3 value: 32.578 - type: ndcg_at_5 value: 32.351 - type: precision_at_1 value: 40.816 - type: precision_at_10 value: 26.531 - type: precision_at_100 value: 7.796 - type: precision_at_1000 value: 1.555 - type: precision_at_3 value: 32.653 - type: precision_at_5 value: 33.061 - type: recall_at_1 value: 3.006 - type: recall_at_10 value: 18.738 - type: recall_at_100 value: 48.058 - type: recall_at_1000 value: 83.41300000000001 - type: recall_at_3 value: 7.166 - type: recall_at_5 value: 12.102 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.4178 - type: ap value: 14.648781342150446 - type: f1 value: 55.07299194946378 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.919637804187886 - type: f1 value: 61.24122013967399 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.207896583685695 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.23114978840078 - type: cos_sim_ap value: 74.26624727825818 - type: cos_sim_f1 value: 68.72377190817083 - type: cos_sim_precision value: 64.56400742115028 - type: cos_sim_recall value: 73.45646437994723 - type: dot_accuracy value: 86.23114978840078 - type: dot_ap value: 74.26624032659652 - type: dot_f1 value: 68.72377190817083 - type: dot_precision value: 64.56400742115028 - type: dot_recall value: 73.45646437994723 - type: euclidean_accuracy value: 86.23114978840078 - type: euclidean_ap value: 74.26624714480556 - type: euclidean_f1 value: 68.72377190817083 - type: euclidean_precision value: 64.56400742115028 - type: euclidean_recall value: 73.45646437994723 - type: manhattan_accuracy value: 86.16558383501221 - type: manhattan_ap value: 74.2091943976357 - type: manhattan_f1 value: 68.64221520524654 - type: manhattan_precision value: 63.59135913591359 - type: manhattan_recall value: 74.5646437994723 - type: max_accuracy value: 86.23114978840078 - type: max_ap value: 74.26624727825818 - type: max_f1 value: 68.72377190817083 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.3681841114604 - type: cos_sim_ap value: 86.65166387498546 - type: cos_sim_f1 value: 79.02581944698774 - type: cos_sim_precision value: 75.35796605434099 - type: cos_sim_recall value: 83.06898675700647 - type: dot_accuracy value: 89.3681841114604 - type: dot_ap value: 86.65166019802056 - type: dot_f1 value: 79.02581944698774 - type: dot_precision value: 75.35796605434099 - type: dot_recall value: 83.06898675700647 - type: euclidean_accuracy value: 89.3681841114604 - type: euclidean_ap value: 86.65166462876266 - type: euclidean_f1 value: 79.02581944698774 - type: euclidean_precision value: 75.35796605434099 - type: euclidean_recall value: 83.06898675700647 - type: manhattan_accuracy value: 89.36624364497226 - type: manhattan_ap value: 86.65076471274106 - type: manhattan_f1 value: 79.07408783532733 - type: manhattan_precision value: 76.41102972856527 - type: manhattan_recall value: 81.92947336002464 - type: max_accuracy value: 89.3681841114604 - type: max_ap value: 86.65166462876266 - type: max_f1 value: 79.07408783532733 --- # RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF This model was converted to GGUF format from [`nomic-ai/nomic-embed-text-v1.5`](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF --hf-file nomic-embed-text-v1.5-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF --hf-file nomic-embed-text-v1.5-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF --hf-file nomic-embed-text-v1.5-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo RinaChen/nomic-embed-text-v1.5-Q4_K_M-GGUF --hf-file nomic-embed-text-v1.5-q4_k_m.gguf -c 2048 ```
[ "BIOSSES", "SCIFACT" ]
William2357/bearthirty
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T02:26:56Z
2024-08-23T02:32:28+00:00
30
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bearthirty This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
knowledgator/gliner-qwen-0.5B-v1.0
knowledgator
token-classification
[ "gliner", "pytorch", "NER", "GLiNER", "information extraction", "encoder", "entity recognition", "token-classification", "multilingual", "dataset:urchade/pile-mistral-v0.1", "dataset:knowledgator/GLINER-multi-task-synthetic-data", "dataset:EmergentMethods/AskNews-NER-v0", "license:apache-2.0", "region:us" ]
2024-09-01T09:29:26Z
2024-09-06T14:56:17+00:00
30
1
--- datasets: - urchade/pile-mistral-v0.1 - knowledgator/GLINER-multi-task-synthetic-data - EmergentMethods/AskNews-NER-v0 language: - multilingual library_name: gliner license: apache-2.0 pipeline_tag: token-classification tags: - NER - GLiNER - information extraction - encoder - entity recognition --- # About GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. The initial versions of GLiNER relied on older encoder architectures like BERT and DeBERTA. These models, however, were trained on smaller datasets and lacked support for modern optimization techniques such as flash attention. Additionally, their context window was typically limited to 512 tokens, which is insufficient for many practical applications. Recognizing these limitations, we began exploring alternative backbones for GLiNER. This latest model leverages the LLM2Vec approach, transforming the initial decoder model into a bidirectional encoder. We further enhanced the model by pre-training it on the masked token prediction task using the Wikipedia corpus. This approach introduces several advancements for GLiNER, including support for flash attention, an extended context window, and faster inference times. Additionally, by utilizing modern decoders trained on large, up-to-date datasets, the model exhibits improved generalization and performance. Key Advantages Over Previous GLiNER Models: * Enhanced performance and generalization capabilities * Support for Flash Attention * Extended context window (up to 32k tokens) While these models are larger and require more computational resources compared to older encoders, they are still considered relatively small given current standards and provide significant benefits for a wide range of use cases. ### Installation & Usage Install or update the gliner package: ```bash pip install gliner -U ``` And LLM2Vec package: ```bash pip install llm2vec ``` To use this particular Qwen-based model you need different `transformers` package version than llm2vec requires, so install it manually: ```bash pip install transformers==4.44.1 ``` Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`. ```python from gliner import GLiNER model = GLiNER.from_pretrained("knowledgator/gliner-qwen-0.5B-v1.0") text = """ Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time. """ labels = ["person", "award", "date", "competitions", "teams"] entities = model.predict_entities(text, labels, threshold=0.5) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Cristiano Ronaldo dos Santos Aveiro => person 5 February 1985 => date Al Nassr => teams Portugal national team => teams Ballon d'Or => award UEFA Men's Player of the Year Awards => award European Golden Shoes => award UEFA Champions Leagues => competitions UEFA European Championship => competitions UEFA Nations League => competitions Champions League => competitions European Championship => competitions ``` If you want to use flash attention or increase sequence length, please, check the following code: ```python model = GLiNER.from_pretrained("knowledgator/gliner-qwen-0.5B-v1.0", _attn_implementation = 'flash_attention_2', max_len = 2048).to('cuda:0') ``` If you have a large amount of entities and want to pre-embed them, please, refer to the following code snippet: ```python labels = ["your entities"] texts = ["your texts"] entity_embeddings = model.encode_labels(labels, batch_size = 8) outputs = model.batch_predict_with_embeds(texts, entity_embeddings, labels) ``` ### Benchmarks Below you can see the table with benchmarking results on various named entity recognition datasets: Here’s the updated table with your new data: | Dataset | Score | |-------------------------|--------| | ACE 2004 | 31.5% | | ACE 2005 | 31.5% | | AnatEM | 43.4% | | Broad Tweet Corpus | 55.6% | | CoNLL 2003 | 60.1% | | FabNER | 23.9% | | FindVehicle | 30.2% | | GENIA_NER | 50.7% | | HarveyNER | 16.9% | | MultiNERD | 53.3% | | Ontonotes | 28.1% | | PolyglotNER | 39.2% | | TweetNER7 | 35.3% | | WikiANN en | 53.2% | | WikiNeural | 65.0% | | bc2gm | 56.3% | | bc4chemd | 54.4% | | bc5cdr | 71.0% | | ncbi | 63.7% | | **Average** | **45.4%** | | | | | CrossNER_AI | 54.0% | | CrossNER_literature | 64.4% | | CrossNER_music | 63.0% | | CrossNER_politics | 69.3% | | CrossNER_science | 64.2% | | mit-movie | 52.7% | | mit-restaurant | 37.6% | | **Average (zero-shot benchmark)** | **57.9%** | ### Join Our Discord Connect with our community on Discord for news, support, and discussion about our models. Join [Discord](https://discord.gg/dkyeAgs9DG).
[ "ANATEM", "BC5CDR" ]
erichennings/EH-sentiment-finetuned-Llama-3.2-1B-Instruct
erichennings
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "dataset:mteb/amazon_polarity", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-10-26T00:38:22Z
2024-10-27T23:41:04+00:00
30
0
--- base_model: - meta-llama/Llama-3.2-1B-Instruct datasets: - mteb/amazon_polarity library_name: transformers license: llama3.2 --- # Model Card for EH-sentiment-finetuned-Llama-3.2-1B-Instruct/ This is a test project, fine tuning Llama3.1-1B-Instruct for sentiment classification, using a subset of an amazon reviews dataset [mteb/amazon_polarity](https://huggingface.co/datasets/mteb/amazon_polarity) and ORPO fine tuning. The finetuned model achieves moderate +10% improvement on sentiment classification (as measured by SST2 - which asks the model to classify sentences in a single word, either 'positive' or 'neagtive'), without general performance being impacted (as measured by hellaswag, which asks the model to complete a sentence with a sensible response, chosen from a list of choices). | Metric Category | Metric | Base Model | Finetuned Model | Change | |---------------------|--------------------|----------------|-----------------|--------| | Sentiment | SST2/acc | 0.68 | 0.75 | +10% | | | | | | | | General Completions | hellaswag/acc | 0.447 | 0.459 | +3% | | | hellaswag/acc_norm | 0.550 | 0.560 | +2% | The training dataset was the first 10k samples from mteb/amazon_polarity, and the model was trained for 5 epochs. The dataset was nearly balanced across positive and negative sentiment - ~51% of examples were negative. The finetuning training examples used an SST-like prompt format (see Prompt Formats, below). An attempt was also made to train using exactly the SST Eval format. Oddly, using the SST Eval format resulted in the SST accuracy going down (0.54 for 10k samples and 1 epoch, -20% compared to the base model.) This was unexpected, and weird, and probably would bear further investigation. The model was much worse at correctly identifying positive sentiment (57% accuracy) than it was at identifying negative sentiment (93% accuracy) - see Confusion Matrix, below. This performance on negative sentiment is good - State of the Art for SST2 overall is 97% (achieved by [T5-11B](https://huggingface.co/google-t5/t5-11b)). Since the training dataset was balanced across positive and negative examples, this mismatch seems likely to have been present in the base model, although this was not confirmed. Next steps for improvement should be to verify that the behavior is inherited, and if so probably train with a larger set of positive statements. ## Confusion Matrix <img src="confusion-matrix.png" width="500" height="500" /> ## Prompt Formats **SST Eval**: The SST Eval uses prompts like this: > A complete waste of time. Typographical errors, poor grammar, and a totally pathetic plot add up to absolutely nothing. > I'm embarrassed for this author and very disappointed I actually paid for this book. > > Question: Is this sentence positive or negative? > Answer: **SST-like**: Training examples were formulated using an SST-like prompt: > Below is an instruction that describes a task. Write a response that appropriately completes the request. > > ###Instruction: > Determine the sentiment of the input sentence. Please respond as positive or negative. > ###Input: > The best soundtrack ever to anything. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Fintuned model for sentiment classification. - **Developed by:** Eric Hennings - **Finetuned from model [optional]:** meta-llama/Llama-3.2-1B-Instruct ### Model Sources [optional]
[ "BEAR" ]
OpenGVLab/Mini-InternVL2-4B-DA-DriveLM
OpenGVLab
image-text-to-text
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "internvl", "custom_code", "image-text-to-text", "conversational", "multilingual", "arxiv:2410.16261", "arxiv:2312.14238", "arxiv:2404.16821", "arxiv:2412.05271", "base_model:OpenGVLab/InternVL2-4B", "base_model:merge:OpenGVLab/InternVL2-4B", "license:mit", "region:us" ]
2024-12-07T15:27:36Z
2024-12-09T13:45:32+00:00
30
3
--- base_model: - OpenGVLab/InternVL2-4B language: - multilingual library_name: transformers license: mit pipeline_tag: image-text-to-text tags: - internvl - custom_code base_model_relation: merge --- # Mini-InternVL2-DA-RS [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[🗨️ InternVL Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#data-preparation) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/Qp9tEtBAjbq39bJZ7od4A.png) ## Introduction We release the adaptation models for the specific domains: autonomous driving, medical images, and remote sensing. These models are built upon Mini-InternVL and fine-tuned using a unified adaptation framework, achieving good performance on tasks in specific domains. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/rlz4XL8DFWXplvp0Yx4lg.png) <table> <tr> <th>Model Name</th> <th>HF Link</th> <th>Note</th> </tr> <tr> <td>Mini-InternVL2-DA-Drivelm</td> <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Drivelm">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Drivelm">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Drivelm">🤗4B</a></td> <td> Adaptation for <a href="https://github.com/OpenDriveLab/DriveLM/tree/main/challenge"> CVPR 2024 Autonomous Driving Challenge </a></td> </tr> <tr> <td>Mini-InternVL2-DA-BDD</td> <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-BDD">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-BDD">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-BDD">🤗4B</a></td> <td> Fine-tuning with data constructed by <a href="https://tonyxuqaq.github.io/projects/DriveGPT4/"> DriveGPT4 </a></td> </tr> <tr> <td>Mini-InternVL2-DA-RS</td> <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-RS">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-RS">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-RS">🤗4B</a></td> <td> Adaptation for remote sensing domain </td> </tr> <tr> <td>Mini-InternVL2-DA-Medical</td> <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Medical">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Medical">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Medical">🤗4B</a></td> <td> Fine-tuning using our <a href="https://huggingface.co/datasets/OpenGVLab/InternVL-Domain-Adaptation-Data/blob/main/train_meta/internvl_1_2_finetune_medical.json">medical data</a>.</td> </tr> </table> The script for evaluation is in the [document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#id3). ## Training datasets - General domain dataset: ShareGPT4V, AllSeeingV2, LLaVA-Instruct-ZH, DVQA, ChartQA, AI2D, DocVQA, GeoQA+, SynthDoG-EN - Autonomous driving dataset: [DriveLM](https://github.com/OpenDriveLab/DriveLM). ## Quick Start We provide an example code to run `Mini-InternVL2-4B` using `transformers`. > Please use transformers>=4.37.2 to ensure the model works normally. ```python import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'OpenGVLab/Mini-InternVL2-4B-DA-DriveLM' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('path/to/image.jpg', max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # pure-text conversation (纯文本对话) question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Can you tell me a story?' response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # single-image single-round conversation (单图单轮对话) question = '<image>\nPlease describe the image shortly.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') # single-image multi-round conversation (单图多轮对话) question = '<image>\nPlease describe the image in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Please write a poem according to the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像) pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) question = '<image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, separate images (多图多轮对话,独立图像) pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # batch inference, single image per sample (单图批处理) pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda() num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list) responses = model.batch_chat(tokenizer, pixel_values, num_patches_list=num_patches_list, questions=questions, generation_config=generation_config) for question, response in zip(questions, responses): print(f'User: {question}\nAssistant: {response}') ``` ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{gao2024mini, title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance}, author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others}, journal={arXiv preprint arXiv:2410.16261}, year={2024} } @article{chen2024expanding, title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling}, author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others}, journal={arXiv preprint arXiv:2412.05271}, year={2024} } @article{chen2024far, title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites}, author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others}, journal={arXiv preprint arXiv:2404.16821}, year={2024} } @inproceedings{chen2024internvl, title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks}, author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={24185--24198}, year={2024} } ```
[ "MEDICAL DATA" ]
jncraton/multilingual-e5-small-ct2-int8
jncraton
sentence-similarity
[ "sentence-transformers", "mteb", "Sentence Transformers", "sentence-similarity", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2402.05672", "arxiv:2108.08787", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-16T15:39:57Z
2024-12-16T15:41:06+00:00
30
0
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: intfloat/multilingual-e5-small results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.79104477611939 - type: ap value: 36.9996434842022 - type: f1 value: 67.95453679103099 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (de) type: mteb/amazon_counterfactual config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.64882226980728 - type: ap value: 82.11942130026586 - type: f1 value: 69.87963421606715 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en-ext) type: mteb/amazon_counterfactual config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.8095952023988 - type: ap value: 24.46869495579561 - type: f1 value: 63.00108480037597 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (ja) type: mteb/amazon_counterfactual config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 64.186295503212 - type: ap value: 15.496804690197042 - type: f1 value: 52.07153895475031 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.699325 - type: ap value: 85.27039559917269 - type: f1 value: 88.65556295032513 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.69799999999999 - type: f1 value: 43.73187348654165 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (de) type: mteb/amazon_reviews_multi config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.245999999999995 - type: f1 value: 39.3863530637684 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (es) type: mteb/amazon_reviews_multi config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.394 - type: f1 value: 39.301223469483446 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (fr) type: mteb/amazon_reviews_multi config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 38.864 - type: f1 value: 37.97974261868003 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (ja) type: mteb/amazon_reviews_multi config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.682 - type: f1 value: 37.07399369768313 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.504 - type: f1 value: 36.62317273874278 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 19.061 - type: map_at_10 value: 31.703 - type: map_at_100 value: 32.967 - type: map_at_1000 value: 33.001000000000005 - type: map_at_3 value: 27.466 - type: map_at_5 value: 29.564 - type: mrr_at_1 value: 19.559 - type: mrr_at_10 value: 31.874999999999996 - type: mrr_at_100 value: 33.146 - type: mrr_at_1000 value: 33.18 - type: mrr_at_3 value: 27.667 - type: mrr_at_5 value: 29.74 - type: ndcg_at_1 value: 19.061 - type: ndcg_at_10 value: 39.062999999999995 - type: ndcg_at_100 value: 45.184000000000005 - type: ndcg_at_1000 value: 46.115 - type: ndcg_at_3 value: 30.203000000000003 - type: ndcg_at_5 value: 33.953 - type: precision_at_1 value: 19.061 - type: precision_at_10 value: 6.279999999999999 - type: precision_at_100 value: 0.9129999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 12.706999999999999 - type: precision_at_5 value: 9.431000000000001 - type: recall_at_1 value: 19.061 - type: recall_at_10 value: 62.802 - type: recall_at_100 value: 91.323 - type: recall_at_1000 value: 98.72 - type: recall_at_3 value: 38.122 - type: recall_at_5 value: 47.155 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 39.22266660528253 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 30.79980849482483 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 57.8790068352054 - type: mrr value: 71.78791276436706 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.36328364043163 - type: cos_sim_spearman value: 82.26211536195868 - type: euclidean_pearson value: 80.3183865039173 - type: euclidean_spearman value: 79.88495276296132 - type: manhattan_pearson value: 80.14484480692127 - type: manhattan_spearman value: 80.39279565980743 - task: type: BitextMining dataset: name: MTEB BUCC (de-en) type: mteb/bucc-bitext-mining config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.0375782881002 - type: f1 value: 97.86012526096033 - type: precision value: 97.77139874739039 - type: recall value: 98.0375782881002 - task: type: BitextMining dataset: name: MTEB BUCC (fr-en) type: mteb/bucc-bitext-mining config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 93.35241030156286 - type: f1 value: 92.66050333846944 - type: precision value: 92.3306919069631 - type: recall value: 93.35241030156286 - task: type: BitextMining dataset: name: MTEB BUCC (ru-en) type: mteb/bucc-bitext-mining config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 94.0699688257707 - type: f1 value: 93.50236693222492 - type: precision value: 93.22791825424315 - type: recall value: 94.0699688257707 - task: type: BitextMining dataset: name: MTEB BUCC (zh-en) type: mteb/bucc-bitext-mining config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 89.25750394944708 - type: f1 value: 88.79234684921889 - type: precision value: 88.57293312269616 - type: recall value: 89.25750394944708 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 79.41558441558442 - type: f1 value: 79.25886487487219 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.747820820329736 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 27.045143830596146 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 24.252999999999997 - type: map_at_10 value: 31.655916666666666 - type: map_at_100 value: 32.680749999999996 - type: map_at_1000 value: 32.79483333333334 - type: map_at_3 value: 29.43691666666666 - type: map_at_5 value: 30.717416666666665 - type: mrr_at_1 value: 28.602750000000004 - type: mrr_at_10 value: 35.56875 - type: mrr_at_100 value: 36.3595 - type: mrr_at_1000 value: 36.427749999999996 - type: mrr_at_3 value: 33.586166666666664 - type: mrr_at_5 value: 34.73641666666666 - type: ndcg_at_1 value: 28.602750000000004 - type: ndcg_at_10 value: 36.06933333333334 - type: ndcg_at_100 value: 40.70141666666667 - type: ndcg_at_1000 value: 43.24341666666667 - type: ndcg_at_3 value: 32.307916666666664 - type: ndcg_at_5 value: 34.129999999999995 - type: precision_at_1 value: 28.602750000000004 - type: precision_at_10 value: 6.097666666666667 - type: precision_at_100 value: 0.9809166666666668 - type: precision_at_1000 value: 0.13766666666666663 - type: precision_at_3 value: 14.628166666666667 - type: precision_at_5 value: 10.266916666666667 - type: recall_at_1 value: 24.252999999999997 - type: recall_at_10 value: 45.31916666666667 - type: recall_at_100 value: 66.03575000000001 - type: recall_at_1000 value: 83.94708333333334 - type: recall_at_3 value: 34.71941666666666 - type: recall_at_5 value: 39.46358333333333 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 9.024000000000001 - type: map_at_10 value: 15.644 - type: map_at_100 value: 17.154 - type: map_at_1000 value: 17.345 - type: map_at_3 value: 13.028 - type: map_at_5 value: 14.251 - type: mrr_at_1 value: 19.674 - type: mrr_at_10 value: 29.826999999999998 - type: mrr_at_100 value: 30.935000000000002 - type: mrr_at_1000 value: 30.987 - type: mrr_at_3 value: 26.645000000000003 - type: mrr_at_5 value: 28.29 - type: ndcg_at_1 value: 19.674 - type: ndcg_at_10 value: 22.545 - type: ndcg_at_100 value: 29.207 - type: ndcg_at_1000 value: 32.912 - type: ndcg_at_3 value: 17.952 - type: ndcg_at_5 value: 19.363 - type: precision_at_1 value: 19.674 - type: precision_at_10 value: 7.212000000000001 - type: precision_at_100 value: 1.435 - type: precision_at_1000 value: 0.212 - type: precision_at_3 value: 13.507 - type: precision_at_5 value: 10.397 - type: recall_at_1 value: 9.024000000000001 - type: recall_at_10 value: 28.077999999999996 - type: recall_at_100 value: 51.403 - type: recall_at_1000 value: 72.406 - type: recall_at_3 value: 16.768 - type: recall_at_5 value: 20.737 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.012 - type: map_at_10 value: 17.138 - type: map_at_100 value: 24.146 - type: map_at_1000 value: 25.622 - type: map_at_3 value: 12.552 - type: map_at_5 value: 14.435 - type: mrr_at_1 value: 62.25000000000001 - type: mrr_at_10 value: 71.186 - type: mrr_at_100 value: 71.504 - type: mrr_at_1000 value: 71.514 - type: mrr_at_3 value: 69.333 - type: mrr_at_5 value: 70.408 - type: ndcg_at_1 value: 49.75 - type: ndcg_at_10 value: 37.76 - type: ndcg_at_100 value: 42.071 - type: ndcg_at_1000 value: 49.309 - type: ndcg_at_3 value: 41.644 - type: ndcg_at_5 value: 39.812999999999995 - type: precision_at_1 value: 62.25000000000001 - type: precision_at_10 value: 30.15 - type: precision_at_100 value: 9.753 - type: precision_at_1000 value: 1.9189999999999998 - type: precision_at_3 value: 45.667 - type: precision_at_5 value: 39.15 - type: recall_at_1 value: 8.012 - type: recall_at_10 value: 22.599 - type: recall_at_100 value: 48.068 - type: recall_at_1000 value: 71.328 - type: recall_at_3 value: 14.043 - type: recall_at_5 value: 17.124 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 42.455 - type: f1 value: 37.59462649781862 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 58.092 - type: map_at_10 value: 69.586 - type: map_at_100 value: 69.968 - type: map_at_1000 value: 69.982 - type: map_at_3 value: 67.48100000000001 - type: map_at_5 value: 68.915 - type: mrr_at_1 value: 62.166 - type: mrr_at_10 value: 73.588 - type: mrr_at_100 value: 73.86399999999999 - type: mrr_at_1000 value: 73.868 - type: mrr_at_3 value: 71.6 - type: mrr_at_5 value: 72.99 - type: ndcg_at_1 value: 62.166 - type: ndcg_at_10 value: 75.27199999999999 - type: ndcg_at_100 value: 76.816 - type: ndcg_at_1000 value: 77.09700000000001 - type: ndcg_at_3 value: 71.36 - type: ndcg_at_5 value: 73.785 - type: precision_at_1 value: 62.166 - type: precision_at_10 value: 9.716 - type: precision_at_100 value: 1.065 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 28.278 - type: precision_at_5 value: 18.343999999999998 - type: recall_at_1 value: 58.092 - type: recall_at_10 value: 88.73400000000001 - type: recall_at_100 value: 95.195 - type: recall_at_1000 value: 97.04599999999999 - type: recall_at_3 value: 78.45 - type: recall_at_5 value: 84.316 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 16.649 - type: map_at_10 value: 26.457000000000004 - type: map_at_100 value: 28.169 - type: map_at_1000 value: 28.352 - type: map_at_3 value: 23.305 - type: map_at_5 value: 25.169000000000004 - type: mrr_at_1 value: 32.407000000000004 - type: mrr_at_10 value: 40.922 - type: mrr_at_100 value: 41.931000000000004 - type: mrr_at_1000 value: 41.983 - type: mrr_at_3 value: 38.786 - type: mrr_at_5 value: 40.205999999999996 - type: ndcg_at_1 value: 32.407000000000004 - type: ndcg_at_10 value: 33.314 - type: ndcg_at_100 value: 40.312 - type: ndcg_at_1000 value: 43.685 - type: ndcg_at_3 value: 30.391000000000002 - type: ndcg_at_5 value: 31.525 - type: precision_at_1 value: 32.407000000000004 - type: precision_at_10 value: 8.966000000000001 - type: precision_at_100 value: 1.6019999999999999 - type: precision_at_1000 value: 0.22200000000000003 - type: precision_at_3 value: 20.165 - type: precision_at_5 value: 14.722 - type: recall_at_1 value: 16.649 - type: recall_at_10 value: 39.117000000000004 - type: recall_at_100 value: 65.726 - type: recall_at_1000 value: 85.784 - type: recall_at_3 value: 27.914 - type: recall_at_5 value: 33.289 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 36.253 - type: map_at_10 value: 56.16799999999999 - type: map_at_100 value: 57.06099999999999 - type: map_at_1000 value: 57.126 - type: map_at_3 value: 52.644999999999996 - type: map_at_5 value: 54.909 - type: mrr_at_1 value: 72.505 - type: mrr_at_10 value: 79.66 - type: mrr_at_100 value: 79.869 - type: mrr_at_1000 value: 79.88 - type: mrr_at_3 value: 78.411 - type: mrr_at_5 value: 79.19800000000001 - type: ndcg_at_1 value: 72.505 - type: ndcg_at_10 value: 65.094 - type: ndcg_at_100 value: 68.219 - type: ndcg_at_1000 value: 69.515 - type: ndcg_at_3 value: 59.99 - type: ndcg_at_5 value: 62.909000000000006 - type: precision_at_1 value: 72.505 - type: precision_at_10 value: 13.749 - type: precision_at_100 value: 1.619 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 38.357 - type: precision_at_5 value: 25.313000000000002 - type: recall_at_1 value: 36.253 - type: recall_at_10 value: 68.744 - type: recall_at_100 value: 80.925 - type: recall_at_1000 value: 89.534 - type: recall_at_3 value: 57.535000000000004 - type: recall_at_5 value: 63.282000000000004 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 80.82239999999999 - type: ap value: 75.65895781725314 - type: f1 value: 80.75880969095746 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.624 - type: map_at_10 value: 34.075 - type: map_at_100 value: 35.229 - type: map_at_1000 value: 35.276999999999994 - type: map_at_3 value: 30.245 - type: map_at_5 value: 32.42 - type: mrr_at_1 value: 22.264 - type: mrr_at_10 value: 34.638000000000005 - type: mrr_at_100 value: 35.744 - type: mrr_at_1000 value: 35.787 - type: mrr_at_3 value: 30.891000000000002 - type: mrr_at_5 value: 33.042 - type: ndcg_at_1 value: 22.264 - type: ndcg_at_10 value: 40.991 - type: ndcg_at_100 value: 46.563 - type: ndcg_at_1000 value: 47.743 - type: ndcg_at_3 value: 33.198 - type: ndcg_at_5 value: 37.069 - type: precision_at_1 value: 22.264 - type: precision_at_10 value: 6.5089999999999995 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 14.216999999999999 - type: precision_at_5 value: 10.487 - type: recall_at_1 value: 21.624 - type: recall_at_10 value: 62.303 - type: recall_at_100 value: 88.124 - type: recall_at_1000 value: 97.08 - type: recall_at_3 value: 41.099999999999994 - type: recall_at_5 value: 50.381 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.06703146374831 - type: f1 value: 90.86867815863172 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (de) type: mteb/mtop_domain config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 87.46970977740209 - type: f1 value: 86.36832872036588 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (es) type: mteb/mtop_domain config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.26951300867245 - type: f1 value: 88.93561193959502 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (fr) type: mteb/mtop_domain config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 84.22799874725963 - type: f1 value: 84.30490069236556 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (hi) type: mteb/mtop_domain config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.02007888131948 - type: f1 value: 85.39376041027991 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (th) type: mteb/mtop_domain config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 85.34900542495481 - type: f1 value: 85.39859673336713 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.078431372549 - type: f1 value: 53.45071102002276 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (de) type: mteb/mtop_intent config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 65.85798816568047 - type: f1 value: 46.53112748993529 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (es) type: mteb/mtop_intent config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.96864576384256 - type: f1 value: 45.966703022829506 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (fr) type: mteb/mtop_intent config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 61.31537738803633 - type: f1 value: 45.52601712835461 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (hi) type: mteb/mtop_intent config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 66.29616349946218 - type: f1 value: 47.24166485726613 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (th) type: mteb/mtop_intent config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.51537070524412 - type: f1 value: 49.463476319014276 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (af) type: mteb/amazon_massive_intent config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.06792199058508 - type: f1 value: 54.094921857502285 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (am) type: mteb/amazon_massive_intent config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 51.960322797579025 - type: f1 value: 48.547371223370945 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ar) type: mteb/amazon_massive_intent config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.425016812373904 - type: f1 value: 50.47069202054312 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (az) type: mteb/amazon_massive_intent config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.798251513113655 - type: f1 value: 57.05013069086648 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (bn) type: mteb/amazon_massive_intent config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.37794216543376 - type: f1 value: 56.3607992649805 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (cy) type: mteb/amazon_massive_intent config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 46.56018829858777 - type: f1 value: 43.87319715715134 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (da) type: mteb/amazon_massive_intent config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.9724277067922 - type: f1 value: 59.36480066245562 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (de) type: mteb/amazon_massive_intent config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.72696704774715 - type: f1 value: 59.143595966615855 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (el) type: mteb/amazon_massive_intent config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.5971755211836 - type: f1 value: 59.169445724946726 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.29589778076665 - type: f1 value: 67.7577001808977 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (es) type: mteb/amazon_massive_intent config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.31136516476126 - type: f1 value: 64.52032955983242 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fa) type: mteb/amazon_massive_intent config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.54472091459314 - type: f1 value: 61.47903120066317 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fi) type: mteb/amazon_massive_intent config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.45595158036314 - type: f1 value: 58.0891846024637 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fr) type: mteb/amazon_massive_intent config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.47074646940149 - type: f1 value: 62.84830858877575 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (he) type: mteb/amazon_massive_intent config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.046402151983855 - type: f1 value: 55.269074430533195 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hi) type: mteb/amazon_massive_intent config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.06523201075991 - type: f1 value: 61.35339643021369 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hu) type: mteb/amazon_massive_intent config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.954942837928726 - type: f1 value: 57.07035922704846 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hy) type: mteb/amazon_massive_intent config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.404169468728995 - type: f1 value: 53.94259011839138 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (id) type: mteb/amazon_massive_intent config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.16610625420309 - type: f1 value: 61.337103431499365 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (is) type: mteb/amazon_massive_intent config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 52.262945527908535 - type: f1 value: 49.7610691598921 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (it) type: mteb/amazon_massive_intent config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.54472091459314 - type: f1 value: 63.469099018440154 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ja) type: mteb/amazon_massive_intent config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.22797579018157 - type: f1 value: 64.89098471083001 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (jv) type: mteb/amazon_massive_intent config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 50.847343644922674 - type: f1 value: 47.8536963168393 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ka) type: mteb/amazon_massive_intent config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 48.45326160053799 - type: f1 value: 46.370078045805556 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (km) type: mteb/amazon_massive_intent config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 42.83120376597175 - type: f1 value: 39.68948521599982 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (kn) type: mteb/amazon_massive_intent config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.5084061869536 - type: f1 value: 53.961876160401545 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ko) type: mteb/amazon_massive_intent config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.7895090786819 - type: f1 value: 61.134223684676 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (lv) type: mteb/amazon_massive_intent config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.98991257565569 - type: f1 value: 52.579862862826296 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ml) type: mteb/amazon_massive_intent config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.90316072629456 - type: f1 value: 58.203024538290336 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (mn) type: mteb/amazon_massive_intent config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.09818426361802 - type: f1 value: 54.22718458445455 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ms) type: mteb/amazon_massive_intent config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.991257565568255 - type: f1 value: 55.84892781767421 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (my) type: mteb/amazon_massive_intent config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 55.901143241425686 - type: f1 value: 52.25264332199797 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nb) type: mteb/amazon_massive_intent config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.96368527236047 - type: f1 value: 58.927243876153454 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nl) type: mteb/amazon_massive_intent config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.64223268325489 - type: f1 value: 62.340453718379706 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pl) type: mteb/amazon_massive_intent config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.52589105581708 - type: f1 value: 61.661113187022174 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pt) type: mteb/amazon_massive_intent config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.84599865501009 - type: f1 value: 64.59342572873005 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ro) type: mteb/amazon_massive_intent config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.81035642232684 - type: f1 value: 57.5169089806797 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ru) type: mteb/amazon_massive_intent config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.652238071815056 - type: f1 value: 53.22732406426353 - type: f1_weighted value: 57.585586737209546 - type: main_score value: 58.652238071815056 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sl) type: mteb/amazon_massive_intent config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.51647612642906 - type: f1 value: 54.33154780100043 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sq) type: mteb/amazon_massive_intent config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.985877605917956 - type: f1 value: 54.46187524463802 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sv) type: mteb/amazon_massive_intent config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.03026227303296 - type: f1 value: 62.34377392877748 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sw) type: mteb/amazon_massive_intent config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 53.567585743106925 - type: f1 value: 50.73770655983206 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ta) type: mteb/amazon_massive_intent config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.2595830531271 - type: f1 value: 53.657327291708626 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (te) type: mteb/amazon_massive_intent config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.82784129119032 - type: f1 value: 54.82518072665301 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (th) type: mteb/amazon_massive_intent config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.06859448554137 - type: f1 value: 63.00185280500495 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tl) type: mteb/amazon_massive_intent config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.91055817081371 - type: f1 value: 55.54116301224262 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tr) type: mteb/amazon_massive_intent config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.54404841963686 - type: f1 value: 59.57650946030184 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ur) type: mteb/amazon_massive_intent config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.27706792199059 - type: f1 value: 56.50010066083435 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (vi) type: mteb/amazon_massive_intent config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.0719569603228 - type: f1 value: 61.817075925647956 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.23806321452591 - type: f1 value: 65.24917026029749 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-TW) type: mteb/amazon_massive_intent config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.53530598520511 - type: f1 value: 61.71131132295768 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (af) type: mteb/amazon_massive_scenario config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.04303967720243 - type: f1 value: 60.3950085685985 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (am) type: mteb/amazon_massive_scenario config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.83591123066578 - type: f1 value: 54.95059828830849 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ar) type: mteb/amazon_massive_scenario config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.62340282447881 - type: f1 value: 59.525159996498225 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (az) type: mteb/amazon_massive_scenario config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.85406859448555 - type: f1 value: 59.129299095681276 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (bn) type: mteb/amazon_massive_scenario config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.76731674512441 - type: f1 value: 61.159560612627715 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (cy) type: mteb/amazon_massive_scenario config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.181573638197705 - type: f1 value: 46.98422176289957 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (da) type: mteb/amazon_massive_scenario config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.92737054472092 - type: f1 value: 67.69135611952979 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (de) type: mteb/amazon_massive_scenario config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.18964357767318 - type: f1 value: 68.46106138186214 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (el) type: mteb/amazon_massive_scenario config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.0712844653665 - type: f1 value: 66.75545422473901 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4754539340955 - type: f1 value: 74.38427146553252 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (es) type: mteb/amazon_massive_scenario config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.82515131136518 - type: f1 value: 69.63516462173847 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fa) type: mteb/amazon_massive_scenario config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.70880968392737 - type: f1 value: 67.45420662567926 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fi) type: mteb/amazon_massive_scenario config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.95494283792871 - type: f1 value: 65.06191009049222 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fr) type: mteb/amazon_massive_scenario config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.75924680564896 - type: f1 value: 68.30833379585945 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (he) type: mteb/amazon_massive_scenario config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.806321452589096 - type: f1 value: 63.273048243765054 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hi) type: mteb/amazon_massive_scenario config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.68997982515133 - type: f1 value: 66.54703855381324 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hu) type: mteb/amazon_massive_scenario config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.46940147948891 - type: f1 value: 65.91017343463396 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hy) type: mteb/amazon_massive_scenario config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.49899125756556 - type: f1 value: 57.90333469917769 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (id) type: mteb/amazon_massive_scenario config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.9219905850706 - type: f1 value: 67.23169403762938 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (is) type: mteb/amazon_massive_scenario config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.486213853396094 - type: f1 value: 54.85282355583758 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (it) type: mteb/amazon_massive_scenario config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.04169468728985 - type: f1 value: 68.83833333320462 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ja) type: mteb/amazon_massive_scenario config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.88702084734365 - type: f1 value: 74.04474735232299 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (jv) type: mteb/amazon_massive_scenario config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.63416274377943 - type: f1 value: 55.11332211687954 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ka) type: mteb/amazon_massive_scenario config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 52.23604572965702 - type: f1 value: 50.86529813991055 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (km) type: mteb/amazon_massive_scenario config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.62407531943511 - type: f1 value: 43.63485467164535 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (kn) type: mteb/amazon_massive_scenario config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.15601882985878 - type: f1 value: 57.522837510959924 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ko) type: mteb/amazon_massive_scenario config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.84532616005382 - type: f1 value: 69.60021127179697 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (lv) type: mteb/amazon_massive_scenario config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.65770006724949 - type: f1 value: 55.84219135523227 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ml) type: mteb/amazon_massive_scenario config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.53665097511768 - type: f1 value: 65.09087787792639 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (mn) type: mteb/amazon_massive_scenario config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.31405514458642 - type: f1 value: 58.06135303831491 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ms) type: mteb/amazon_massive_scenario config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.88231338264964 - type: f1 value: 62.751099407787926 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (my) type: mteb/amazon_massive_scenario config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.86012104909213 - type: f1 value: 56.29118323058282 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nb) type: mteb/amazon_massive_scenario config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.37390719569602 - type: f1 value: 66.27922244885102 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nl) type: mteb/amazon_massive_scenario config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.8675184936113 - type: f1 value: 70.22146529932019 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pl) type: mteb/amazon_massive_scenario config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.2212508406187 - type: f1 value: 67.77454802056282 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pt) type: mteb/amazon_massive_scenario config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.18090114324143 - type: f1 value: 68.03737625431621 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ro) type: mteb/amazon_massive_scenario config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.65030262273034 - type: f1 value: 63.792945486912856 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ru) type: mteb/amazon_massive_scenario config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.772749631087066 - type: f1 value: 63.4539101720024 - type: f1_weighted value: 62.778603897469566 - type: main_score value: 63.772749631087066 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sl) type: mteb/amazon_massive_scenario config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.17821116341627 - type: f1 value: 59.3935969827171 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sq) type: mteb/amazon_massive_scenario config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.86146603900471 - type: f1 value: 60.133692735032376 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sv) type: mteb/amazon_massive_scenario config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.89441829186282 - type: f1 value: 70.03064076194089 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sw) type: mteb/amazon_massive_scenario config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.15063887020847 - type: f1 value: 56.23326278499678 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ta) type: mteb/amazon_massive_scenario config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.43846671149966 - type: f1 value: 57.70440450281974 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (te) type: mteb/amazon_massive_scenario config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.8507061197041 - type: f1 value: 59.22916396061171 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (th) type: mteb/amazon_massive_scenario config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.65568258238063 - type: f1 value: 69.90736239440633 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tl) type: mteb/amazon_massive_scenario config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.8843308675185 - type: f1 value: 59.30332663713599 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tr) type: mteb/amazon_massive_scenario config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.05312710154674 - type: f1 value: 67.44024062594775 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ur) type: mteb/amazon_massive_scenario config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.111634162743776 - type: f1 value: 60.89083013084519 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (vi) type: mteb/amazon_massive_scenario config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.44115669132482 - type: f1 value: 67.92227541674552 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4687289845326 - type: f1 value: 74.16376793486025 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-TW) type: mteb/amazon_massive_scenario config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.31876260928043 - type: f1 value: 68.5246745215607 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.90431696479766 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 27.259158476693774 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.28445330838555 - type: mrr value: 31.15758529581164 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.353 - type: map_at_10 value: 11.565 - type: map_at_100 value: 14.097000000000001 - type: map_at_1000 value: 15.354999999999999 - type: map_at_3 value: 8.749 - type: map_at_5 value: 9.974 - type: mrr_at_1 value: 42.105 - type: mrr_at_10 value: 50.589 - type: mrr_at_100 value: 51.187000000000005 - type: mrr_at_1000 value: 51.233 - type: mrr_at_3 value: 48.246 - type: mrr_at_5 value: 49.546 - type: ndcg_at_1 value: 40.402 - type: ndcg_at_10 value: 31.009999999999998 - type: ndcg_at_100 value: 28.026 - type: ndcg_at_1000 value: 36.905 - type: ndcg_at_3 value: 35.983 - type: ndcg_at_5 value: 33.764 - type: precision_at_1 value: 42.105 - type: precision_at_10 value: 22.786 - type: precision_at_100 value: 6.916 - type: precision_at_1000 value: 1.981 - type: precision_at_3 value: 33.333 - type: precision_at_5 value: 28.731 - type: recall_at_1 value: 5.353 - type: recall_at_10 value: 15.039 - type: recall_at_100 value: 27.348 - type: recall_at_1000 value: 59.453 - type: recall_at_3 value: 9.792 - type: recall_at_5 value: 11.882 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 33.852 - type: map_at_10 value: 48.924 - type: map_at_100 value: 49.854 - type: map_at_1000 value: 49.886 - type: map_at_3 value: 44.9 - type: map_at_5 value: 47.387 - type: mrr_at_1 value: 38.035999999999994 - type: mrr_at_10 value: 51.644 - type: mrr_at_100 value: 52.339 - type: mrr_at_1000 value: 52.35999999999999 - type: mrr_at_3 value: 48.421 - type: mrr_at_5 value: 50.468999999999994 - type: ndcg_at_1 value: 38.007000000000005 - type: ndcg_at_10 value: 56.293000000000006 - type: ndcg_at_100 value: 60.167 - type: ndcg_at_1000 value: 60.916000000000004 - type: ndcg_at_3 value: 48.903999999999996 - type: ndcg_at_5 value: 52.978 - type: precision_at_1 value: 38.007000000000005 - type: precision_at_10 value: 9.041 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 22.084 - type: precision_at_5 value: 15.608 - type: recall_at_1 value: 33.852 - type: recall_at_10 value: 75.893 - type: recall_at_100 value: 92.589 - type: recall_at_1000 value: 98.153 - type: recall_at_3 value: 56.969 - type: recall_at_5 value: 66.283 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 69.174 - type: map_at_10 value: 82.891 - type: map_at_100 value: 83.545 - type: map_at_1000 value: 83.56700000000001 - type: map_at_3 value: 79.944 - type: map_at_5 value: 81.812 - type: mrr_at_1 value: 79.67999999999999 - type: mrr_at_10 value: 86.279 - type: mrr_at_100 value: 86.39 - type: mrr_at_1000 value: 86.392 - type: mrr_at_3 value: 85.21 - type: mrr_at_5 value: 85.92999999999999 - type: ndcg_at_1 value: 79.69000000000001 - type: ndcg_at_10 value: 86.929 - type: ndcg_at_100 value: 88.266 - type: ndcg_at_1000 value: 88.428 - type: ndcg_at_3 value: 83.899 - type: ndcg_at_5 value: 85.56700000000001 - type: precision_at_1 value: 79.69000000000001 - type: precision_at_10 value: 13.161000000000001 - type: precision_at_100 value: 1.513 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.603 - type: precision_at_5 value: 24.138 - type: recall_at_1 value: 69.174 - type: recall_at_10 value: 94.529 - type: recall_at_100 value: 99.15 - type: recall_at_1000 value: 99.925 - type: recall_at_3 value: 85.86200000000001 - type: recall_at_5 value: 90.501 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 39.13064340585255 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 58.97884249325877 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 3.4680000000000004 - type: map_at_10 value: 7.865 - type: map_at_100 value: 9.332 - type: map_at_1000 value: 9.587 - type: map_at_3 value: 5.800000000000001 - type: map_at_5 value: 6.8790000000000004 - type: mrr_at_1 value: 17.0 - type: mrr_at_10 value: 25.629 - type: mrr_at_100 value: 26.806 - type: mrr_at_1000 value: 26.889000000000003 - type: mrr_at_3 value: 22.8 - type: mrr_at_5 value: 24.26 - type: ndcg_at_1 value: 17.0 - type: ndcg_at_10 value: 13.895 - type: ndcg_at_100 value: 20.491999999999997 - type: ndcg_at_1000 value: 25.759999999999998 - type: ndcg_at_3 value: 13.347999999999999 - type: ndcg_at_5 value: 11.61 - type: precision_at_1 value: 17.0 - type: precision_at_10 value: 7.090000000000001 - type: precision_at_100 value: 1.669 - type: precision_at_1000 value: 0.294 - type: precision_at_3 value: 12.3 - type: precision_at_5 value: 10.02 - type: recall_at_1 value: 3.4680000000000004 - type: recall_at_10 value: 14.363000000000001 - type: recall_at_100 value: 33.875 - type: recall_at_1000 value: 59.711999999999996 - type: recall_at_3 value: 7.483 - type: recall_at_5 value: 10.173 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.04084311714061 - type: cos_sim_spearman value: 77.51342467443078 - type: euclidean_pearson value: 80.0321166028479 - type: euclidean_spearman value: 77.29249114733226 - type: manhattan_pearson value: 80.03105964262431 - type: manhattan_spearman value: 77.22373689514794 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.1680158034387 - type: cos_sim_spearman value: 76.55983344071117 - type: euclidean_pearson value: 79.75266678300143 - type: euclidean_spearman value: 75.34516823467025 - type: manhattan_pearson value: 79.75959151517357 - type: manhattan_spearman value: 75.42330344141912 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 76.48898993209346 - type: cos_sim_spearman value: 76.96954120323366 - type: euclidean_pearson value: 76.94139109279668 - type: euclidean_spearman value: 76.85860283201711 - type: manhattan_pearson value: 76.6944095091912 - type: manhattan_spearman value: 76.61096912972553 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 77.85082366246944 - type: cos_sim_spearman value: 75.52053350101731 - type: euclidean_pearson value: 77.1165845070926 - type: euclidean_spearman value: 75.31216065884388 - type: manhattan_pearson value: 77.06193941833494 - type: manhattan_spearman value: 75.31003701700112 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.36305246526497 - type: cos_sim_spearman value: 87.11704613927415 - type: euclidean_pearson value: 86.04199125810939 - type: euclidean_spearman value: 86.51117572414263 - type: manhattan_pearson value: 86.0805106816633 - type: manhattan_spearman value: 86.52798366512229 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.18536255599724 - type: cos_sim_spearman value: 83.63377151025418 - type: euclidean_pearson value: 83.24657467993141 - type: euclidean_spearman value: 84.02751481993825 - type: manhattan_pearson value: 83.11941806582371 - type: manhattan_spearman value: 83.84251281019304 - task: type: STS dataset: name: MTEB STS17 (ko-ko) type: mteb/sts17-crosslingual-sts config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 78.95816528475514 - type: cos_sim_spearman value: 78.86607380120462 - type: euclidean_pearson value: 78.51268699230545 - type: euclidean_spearman value: 79.11649316502229 - type: manhattan_pearson value: 78.32367302808157 - type: manhattan_spearman value: 78.90277699624637 - task: type: STS dataset: name: MTEB STS17 (ar-ar) type: mteb/sts17-crosslingual-sts config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.89126914997624 - type: cos_sim_spearman value: 73.0296921832678 - type: euclidean_pearson value: 71.50385903677738 - type: euclidean_spearman value: 73.13368899716289 - type: manhattan_pearson value: 71.47421463379519 - type: manhattan_spearman value: 73.03383242946575 - task: type: STS dataset: name: MTEB STS17 (en-ar) type: mteb/sts17-crosslingual-sts config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 59.22923684492637 - type: cos_sim_spearman value: 57.41013211368396 - type: euclidean_pearson value: 61.21107388080905 - type: euclidean_spearman value: 60.07620768697254 - type: manhattan_pearson value: 59.60157142786555 - type: manhattan_spearman value: 59.14069604103739 - task: type: STS dataset: name: MTEB STS17 (en-de) type: mteb/sts17-crosslingual-sts config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 76.24345978774299 - type: cos_sim_spearman value: 77.24225743830719 - type: euclidean_pearson value: 76.66226095469165 - type: euclidean_spearman value: 77.60708820493146 - type: manhattan_pearson value: 76.05303324760429 - type: manhattan_spearman value: 76.96353149912348 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.50879160160852 - type: cos_sim_spearman value: 86.43594662965224 - type: euclidean_pearson value: 86.06846012826577 - type: euclidean_spearman value: 86.02041395794136 - type: manhattan_pearson value: 86.10916255616904 - type: manhattan_spearman value: 86.07346068198953 - task: type: STS dataset: name: MTEB STS17 (en-tr) type: mteb/sts17-crosslingual-sts config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 58.39803698977196 - type: cos_sim_spearman value: 55.96910950423142 - type: euclidean_pearson value: 58.17941175613059 - type: euclidean_spearman value: 55.03019330522745 - type: manhattan_pearson value: 57.333358138183286 - type: manhattan_spearman value: 54.04614023149965 - task: type: STS dataset: name: MTEB STS17 (es-en) type: mteb/sts17-crosslingual-sts config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 70.98304089637197 - type: cos_sim_spearman value: 72.44071656215888 - type: euclidean_pearson value: 72.19224359033983 - type: euclidean_spearman value: 73.89871188913025 - type: manhattan_pearson value: 71.21098311547406 - type: manhattan_spearman value: 72.93405764824821 - task: type: STS dataset: name: MTEB STS17 (es-es) type: mteb/sts17-crosslingual-sts config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.99792397466308 - type: cos_sim_spearman value: 84.83824377879495 - type: euclidean_pearson value: 85.70043288694438 - type: euclidean_spearman value: 84.70627558703686 - type: manhattan_pearson value: 85.89570850150801 - type: manhattan_spearman value: 84.95806105313007 - task: type: STS dataset: name: MTEB STS17 (fr-en) type: mteb/sts17-crosslingual-sts config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.21850322994712 - type: cos_sim_spearman value: 72.28669398117248 - type: euclidean_pearson value: 73.40082510412948 - type: euclidean_spearman value: 73.0326539281865 - type: manhattan_pearson value: 71.8659633964841 - type: manhattan_spearman value: 71.57817425823303 - task: type: STS dataset: name: MTEB STS17 (it-en) type: mteb/sts17-crosslingual-sts config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.80921368595645 - type: cos_sim_spearman value: 77.33209091229315 - type: euclidean_pearson value: 76.53159540154829 - type: euclidean_spearman value: 78.17960842810093 - type: manhattan_pearson value: 76.13530186637601 - type: manhattan_spearman value: 78.00701437666875 - task: type: STS dataset: name: MTEB STS17 (nl-en) type: mteb/sts17-crosslingual-sts config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 74.74980608267349 - type: cos_sim_spearman value: 75.37597374318821 - type: euclidean_pearson value: 74.90506081911661 - type: euclidean_spearman value: 75.30151613124521 - type: manhattan_pearson value: 74.62642745918002 - type: manhattan_spearman value: 75.18619716592303 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.632662289205584 - type: cos_sim_spearman value: 60.938543391610914 - type: euclidean_pearson value: 62.113200529767056 - type: euclidean_spearman value: 61.410312633261164 - type: manhattan_pearson value: 61.75494698945686 - type: manhattan_spearman value: 60.92726195322362 - task: type: STS dataset: name: MTEB STS22 (de) type: mteb/sts22-crosslingual-sts config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 45.283470551557244 - type: cos_sim_spearman value: 53.44833015864201 - type: euclidean_pearson value: 41.17892011120893 - type: euclidean_spearman value: 53.81441383126767 - type: manhattan_pearson value: 41.17482200420659 - type: manhattan_spearman value: 53.82180269276363 - task: type: STS dataset: name: MTEB STS22 (es) type: mteb/sts22-crosslingual-sts config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.5069165306236 - type: cos_sim_spearman value: 66.87803259033826 - type: euclidean_pearson value: 63.5428979418236 - type: euclidean_spearman value: 66.9293576586897 - type: manhattan_pearson value: 63.59789526178922 - type: manhattan_spearman value: 66.86555009875066 - task: type: STS dataset: name: MTEB STS22 (pl) type: mteb/sts22-crosslingual-sts config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 28.23026196280264 - type: cos_sim_spearman value: 35.79397812652861 - type: euclidean_pearson value: 17.828102102767353 - type: euclidean_spearman value: 35.721501145568894 - type: manhattan_pearson value: 17.77134274219677 - type: manhattan_spearman value: 35.98107902846267 - task: type: STS dataset: name: MTEB STS22 (tr) type: mteb/sts22-crosslingual-sts config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 56.51946541393812 - type: cos_sim_spearman value: 63.714686006214485 - type: euclidean_pearson value: 58.32104651305898 - type: euclidean_spearman value: 62.237110895702216 - type: manhattan_pearson value: 58.579416468759185 - type: manhattan_spearman value: 62.459738981727 - task: type: STS dataset: name: MTEB STS22 (ar) type: mteb/sts22-crosslingual-sts config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 48.76009839569795 - type: cos_sim_spearman value: 56.65188431953149 - type: euclidean_pearson value: 50.997682160915595 - type: euclidean_spearman value: 55.99910008818135 - type: manhattan_pearson value: 50.76220659606342 - type: manhattan_spearman value: 55.517347595391456 - task: type: STS dataset: name: MTEB STS22 (ru) type: mteb/sts22-crosslingual-sts config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cosine_pearson value: 50.724322379215934 - type: cosine_spearman value: 59.90449732164651 - type: euclidean_pearson value: 50.227545226784024 - type: euclidean_spearman value: 59.898906527601085 - type: main_score value: 59.90449732164651 - type: manhattan_pearson value: 50.21762139819405 - type: manhattan_spearman value: 59.761039813759 - type: pearson value: 50.724322379215934 - type: spearman value: 59.90449732164651 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.717524559088005 - type: cos_sim_spearman value: 66.83570886252286 - type: euclidean_pearson value: 58.41338625505467 - type: euclidean_spearman value: 66.68991427704938 - type: manhattan_pearson value: 58.78638572916807 - type: manhattan_spearman value: 66.58684161046335 - task: type: STS dataset: name: MTEB STS22 (fr) type: mteb/sts22-crosslingual-sts config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 73.2962042954962 - type: cos_sim_spearman value: 76.58255504852025 - type: euclidean_pearson value: 75.70983192778257 - type: euclidean_spearman value: 77.4547684870542 - type: manhattan_pearson value: 75.75565853870485 - type: manhattan_spearman value: 76.90208974949428 - task: type: STS dataset: name: MTEB STS22 (de-en) type: mteb/sts22-crosslingual-sts config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.47396266924846 - type: cos_sim_spearman value: 56.492267162048606 - type: euclidean_pearson value: 55.998505203070195 - type: euclidean_spearman value: 56.46447012960222 - type: manhattan_pearson value: 54.873172394430995 - type: manhattan_spearman value: 56.58111534551218 - task: type: STS dataset: name: MTEB STS22 (es-en) type: mteb/sts22-crosslingual-sts config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 69.87177267688686 - type: cos_sim_spearman value: 74.57160943395763 - type: euclidean_pearson value: 70.88330406826788 - type: euclidean_spearman value: 74.29767636038422 - type: manhattan_pearson value: 71.38245248369536 - type: manhattan_spearman value: 74.53102232732175 - task: type: STS dataset: name: MTEB STS22 (it) type: mteb/sts22-crosslingual-sts config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 72.80225656959544 - type: cos_sim_spearman value: 76.52646173725735 - type: euclidean_pearson value: 73.95710720200799 - type: euclidean_spearman value: 76.54040031984111 - type: manhattan_pearson value: 73.89679971946774 - type: manhattan_spearman value: 76.60886958161574 - task: type: STS dataset: name: MTEB STS22 (pl-en) type: mteb/sts22-crosslingual-sts config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 70.70844249898789 - type: cos_sim_spearman value: 72.68571783670241 - type: euclidean_pearson value: 72.38800772441031 - type: euclidean_spearman value: 72.86804422703312 - type: manhattan_pearson value: 71.29840508203515 - type: manhattan_spearman value: 71.86264441749513 - task: type: STS dataset: name: MTEB STS22 (zh-en) type: mteb/sts22-crosslingual-sts config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 58.647478923935694 - type: cos_sim_spearman value: 63.74453623540931 - type: euclidean_pearson value: 59.60138032437505 - type: euclidean_spearman value: 63.947930832166065 - type: manhattan_pearson value: 58.59735509491861 - type: manhattan_spearman value: 62.082503844627404 - task: type: STS dataset: name: MTEB STS22 (es-it) type: mteb/sts22-crosslingual-sts config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 65.8722516867162 - type: cos_sim_spearman value: 71.81208592523012 - type: euclidean_pearson value: 67.95315252165956 - type: euclidean_spearman value: 73.00749822046009 - type: manhattan_pearson value: 68.07884688638924 - type: manhattan_spearman value: 72.34210325803069 - task: type: STS dataset: name: MTEB STS22 (de-fr) type: mteb/sts22-crosslingual-sts config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.5405814240949 - type: cos_sim_spearman value: 60.56838649023775 - type: euclidean_pearson value: 53.011731611314104 - type: euclidean_spearman value: 58.533194841668426 - type: manhattan_pearson value: 53.623067729338494 - type: manhattan_spearman value: 58.018756154446926 - task: type: STS dataset: name: MTEB STS22 (de-pl) type: mteb/sts22-crosslingual-sts config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 13.611046866216112 - type: cos_sim_spearman value: 28.238192909158492 - type: euclidean_pearson value: 22.16189199885129 - type: euclidean_spearman value: 35.012895679076564 - type: manhattan_pearson value: 21.969771178698387 - type: manhattan_spearman value: 32.456985088607475 - task: type: STS dataset: name: MTEB STS22 (fr-pl) type: mteb/sts22-crosslingual-sts config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 74.58077407011655 - type: cos_sim_spearman value: 84.51542547285167 - type: euclidean_pearson value: 74.64613843596234 - type: euclidean_spearman value: 84.51542547285167 - type: manhattan_pearson value: 75.15335973101396 - type: manhattan_spearman value: 84.51542547285167 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.0739825531578 - type: cos_sim_spearman value: 84.01057479311115 - type: euclidean_pearson value: 83.85453227433344 - type: euclidean_spearman value: 84.01630226898655 - type: manhattan_pearson value: 83.75323603028978 - type: manhattan_spearman value: 83.89677983727685 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 78.12945623123957 - type: mrr value: 93.87738713719106 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 52.983000000000004 - type: map_at_10 value: 62.946000000000005 - type: map_at_100 value: 63.514 - type: map_at_1000 value: 63.554 - type: map_at_3 value: 60.183 - type: map_at_5 value: 61.672000000000004 - type: mrr_at_1 value: 55.667 - type: mrr_at_10 value: 64.522 - type: mrr_at_100 value: 64.957 - type: mrr_at_1000 value: 64.995 - type: mrr_at_3 value: 62.388999999999996 - type: mrr_at_5 value: 63.639 - type: ndcg_at_1 value: 55.667 - type: ndcg_at_10 value: 67.704 - type: ndcg_at_100 value: 70.299 - type: ndcg_at_1000 value: 71.241 - type: ndcg_at_3 value: 62.866 - type: ndcg_at_5 value: 65.16999999999999 - type: precision_at_1 value: 55.667 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 24.444 - type: precision_at_5 value: 16.133 - type: recall_at_1 value: 52.983000000000004 - type: recall_at_10 value: 80.656 - type: recall_at_100 value: 92.5 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 67.744 - type: recall_at_5 value: 73.433 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.72772277227723 - type: cos_sim_ap value: 92.17845897992215 - type: cos_sim_f1 value: 85.9746835443038 - type: cos_sim_precision value: 87.07692307692308 - type: cos_sim_recall value: 84.89999999999999 - type: dot_accuracy value: 99.3039603960396 - type: dot_ap value: 60.70244020124878 - type: dot_f1 value: 59.92742353551063 - type: dot_precision value: 62.21743810548978 - type: dot_recall value: 57.8 - type: euclidean_accuracy value: 99.71683168316832 - type: euclidean_ap value: 91.53997039964659 - type: euclidean_f1 value: 84.88372093023257 - type: euclidean_precision value: 90.02242152466367 - type: euclidean_recall value: 80.30000000000001 - type: manhattan_accuracy value: 99.72376237623763 - type: manhattan_ap value: 91.80756777790289 - type: manhattan_f1 value: 85.48468106479157 - type: manhattan_precision value: 85.8728557013118 - type: manhattan_recall value: 85.1 - type: max_accuracy value: 99.72772277227723 - type: max_ap value: 92.17845897992215 - type: max_f1 value: 85.9746835443038 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 53.52464042600003 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.071631948736 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.19552407604654 - type: mrr value: 49.95269130379425 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.345293033095427 - type: cos_sim_spearman value: 29.976931423258403 - type: dot_pearson value: 27.047078008958408 - type: dot_spearman value: 27.75894368380218 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.706 - type: map_at_100 value: 9.634 - type: map_at_1000 value: 23.665 - type: map_at_3 value: 0.5950000000000001 - type: map_at_5 value: 0.95 - type: mrr_at_1 value: 86.0 - type: mrr_at_10 value: 91.8 - type: mrr_at_100 value: 91.8 - type: mrr_at_1000 value: 91.8 - type: mrr_at_3 value: 91.0 - type: mrr_at_5 value: 91.8 - type: ndcg_at_1 value: 80.0 - type: ndcg_at_10 value: 72.573 - type: ndcg_at_100 value: 53.954 - type: ndcg_at_1000 value: 47.760999999999996 - type: ndcg_at_3 value: 76.173 - type: ndcg_at_5 value: 75.264 - type: precision_at_1 value: 86.0 - type: precision_at_10 value: 76.4 - type: precision_at_100 value: 55.50000000000001 - type: precision_at_1000 value: 21.802 - type: precision_at_3 value: 81.333 - type: precision_at_5 value: 80.4 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 1.925 - type: recall_at_100 value: 12.762 - type: recall_at_1000 value: 44.946000000000005 - type: recall_at_3 value: 0.634 - type: recall_at_5 value: 1.051 - task: type: BitextMining dataset: name: MTEB Tatoeba (sqi-eng) type: mteb/tatoeba-bitext-mining config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.0 - type: f1 value: 88.55666666666666 - type: precision value: 87.46166666666667 - type: recall value: 91.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (fry-eng) type: mteb/tatoeba-bitext-mining config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.22543352601156 - type: f1 value: 51.03220478943021 - type: precision value: 48.8150289017341 - type: recall value: 57.22543352601156 - task: type: BitextMining dataset: name: MTEB Tatoeba (kur-eng) type: mteb/tatoeba-bitext-mining config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 46.58536585365854 - type: f1 value: 39.66870798578116 - type: precision value: 37.416085946573745 - type: recall value: 46.58536585365854 - task: type: BitextMining dataset: name: MTEB Tatoeba (tur-eng) type: mteb/tatoeba-bitext-mining config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.7 - type: f1 value: 86.77999999999999 - type: precision value: 85.45333333333332 - type: recall value: 89.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (deu-eng) type: mteb/tatoeba-bitext-mining config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.58333333333331 - type: precision value: 96.2 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (nld-eng) type: mteb/tatoeba-bitext-mining config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.4 - type: f1 value: 90.3 - type: precision value: 89.31666666666668 - type: recall value: 92.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (ron-eng) type: mteb/tatoeba-bitext-mining config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.9 - type: f1 value: 83.67190476190476 - type: precision value: 82.23333333333332 - type: recall value: 86.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (ang-eng) type: mteb/tatoeba-bitext-mining config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 50.0 - type: f1 value: 42.23229092632078 - type: precision value: 39.851634683724235 - type: recall value: 50.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (ido-eng) type: mteb/tatoeba-bitext-mining config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.3 - type: f1 value: 70.86190476190477 - type: precision value: 68.68777777777777 - type: recall value: 76.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (jav-eng) type: mteb/tatoeba-bitext-mining config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.073170731707314 - type: f1 value: 50.658958927251604 - type: precision value: 48.26480836236933 - type: recall value: 57.073170731707314 - task: type: BitextMining dataset: name: MTEB Tatoeba (isl-eng) type: mteb/tatoeba-bitext-mining config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.2 - type: f1 value: 62.156507936507936 - type: precision value: 59.84964285714286 - type: recall value: 68.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (slv-eng) type: mteb/tatoeba-bitext-mining config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.52126366950182 - type: f1 value: 72.8496210148701 - type: precision value: 70.92171498003819 - type: recall value: 77.52126366950182 - task: type: BitextMining dataset: name: MTEB Tatoeba (cym-eng) type: mteb/tatoeba-bitext-mining config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.78260869565217 - type: f1 value: 65.32422360248447 - type: precision value: 63.063067367415194 - type: recall value: 70.78260869565217 - task: type: BitextMining dataset: name: MTEB Tatoeba (kaz-eng) type: mteb/tatoeba-bitext-mining config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.43478260869566 - type: f1 value: 73.02608695652172 - type: precision value: 70.63768115942028 - type: recall value: 78.43478260869566 - task: type: BitextMining dataset: name: MTEB Tatoeba (est-eng) type: mteb/tatoeba-bitext-mining config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.9 - type: f1 value: 55.309753694581275 - type: precision value: 53.130476190476195 - type: recall value: 60.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (heb-eng) type: mteb/tatoeba-bitext-mining config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 72.89999999999999 - type: f1 value: 67.92023809523809 - type: precision value: 65.82595238095237 - type: recall value: 72.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (gla-eng) type: mteb/tatoeba-bitext-mining config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 46.80337756332931 - type: f1 value: 39.42174900558496 - type: precision value: 36.97101116280851 - type: recall value: 46.80337756332931 - task: type: BitextMining dataset: name: MTEB Tatoeba (mar-eng) type: mteb/tatoeba-bitext-mining config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.8 - type: f1 value: 86.79 - type: precision value: 85.375 - type: recall value: 89.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (lat-eng) type: mteb/tatoeba-bitext-mining config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.199999999999996 - type: f1 value: 39.95484348984349 - type: precision value: 37.561071428571424 - type: recall value: 47.199999999999996 - task: type: BitextMining dataset: name: MTEB Tatoeba (bel-eng) type: mteb/tatoeba-bitext-mining config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.8 - type: f1 value: 84.68190476190475 - type: precision value: 83.275 - type: recall value: 87.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (pms-eng) type: mteb/tatoeba-bitext-mining config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.76190476190476 - type: f1 value: 42.14965986394558 - type: precision value: 39.96743626743626 - type: recall value: 48.76190476190476 - task: type: BitextMining dataset: name: MTEB Tatoeba (gle-eng) type: mteb/tatoeba-bitext-mining config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.10000000000001 - type: f1 value: 59.58580086580086 - type: precision value: 57.150238095238095 - type: recall value: 66.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (pes-eng) type: mteb/tatoeba-bitext-mining config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.3 - type: f1 value: 84.0 - type: precision value: 82.48666666666666 - type: recall value: 87.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (nob-eng) type: mteb/tatoeba-bitext-mining config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.4 - type: f1 value: 87.79523809523809 - type: precision value: 86.6 - type: recall value: 90.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (bul-eng) type: mteb/tatoeba-bitext-mining config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.0 - type: f1 value: 83.81 - type: precision value: 82.36666666666666 - type: recall value: 87.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (cbk-eng) type: mteb/tatoeba-bitext-mining config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.9 - type: f1 value: 57.76533189033189 - type: precision value: 55.50595238095239 - type: recall value: 63.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (hun-eng) type: mteb/tatoeba-bitext-mining config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.1 - type: f1 value: 71.83690476190478 - type: precision value: 70.04928571428573 - type: recall value: 76.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (uig-eng) type: mteb/tatoeba-bitext-mining config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.3 - type: f1 value: 59.32626984126984 - type: precision value: 56.62535714285713 - type: recall value: 66.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (rus-eng) type: mteb/tatoeba-bitext-mining config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.10000000000001 - type: f1 value: 89.76666666666667 - type: main_score value: 89.76666666666667 - type: precision value: 88.64999999999999 - type: recall value: 92.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (spa-eng) type: mteb/tatoeba-bitext-mining config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.10000000000001 - type: f1 value: 91.10000000000001 - type: precision value: 90.16666666666666 - type: recall value: 93.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (hye-eng) type: mteb/tatoeba-bitext-mining config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.71428571428571 - type: f1 value: 82.29142600436403 - type: precision value: 80.8076626877166 - type: recall value: 85.71428571428571 - task: type: BitextMining dataset: name: MTEB Tatoeba (tel-eng) type: mteb/tatoeba-bitext-mining config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.88888888888889 - type: f1 value: 85.7834757834758 - type: precision value: 84.43732193732193 - type: recall value: 88.88888888888889 - task: type: BitextMining dataset: name: MTEB Tatoeba (afr-eng) type: mteb/tatoeba-bitext-mining config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.5 - type: f1 value: 85.67190476190476 - type: precision value: 84.43333333333332 - type: recall value: 88.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (mon-eng) type: mteb/tatoeba-bitext-mining config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.72727272727273 - type: f1 value: 78.21969696969695 - type: precision value: 76.18181818181819 - type: recall value: 82.72727272727273 - task: type: BitextMining dataset: name: MTEB Tatoeba (arz-eng) type: mteb/tatoeba-bitext-mining config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 61.0062893081761 - type: f1 value: 55.13976240391334 - type: precision value: 52.92112499659669 - type: recall value: 61.0062893081761 - task: type: BitextMining dataset: name: MTEB Tatoeba (hrv-eng) type: mteb/tatoeba-bitext-mining config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.5 - type: f1 value: 86.86666666666666 - type: precision value: 85.69166666666668 - type: recall value: 89.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (nov-eng) type: mteb/tatoeba-bitext-mining config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 73.54085603112841 - type: f1 value: 68.56031128404669 - type: precision value: 66.53047989623866 - type: recall value: 73.54085603112841 - task: type: BitextMining dataset: name: MTEB Tatoeba (gsw-eng) type: mteb/tatoeba-bitext-mining config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 43.58974358974359 - type: f1 value: 36.45299145299145 - type: precision value: 33.81155881155882 - type: recall value: 43.58974358974359 - task: type: BitextMining dataset: name: MTEB Tatoeba (nds-eng) type: mteb/tatoeba-bitext-mining config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.599999999999994 - type: f1 value: 53.264689754689755 - type: precision value: 50.869166666666665 - type: recall value: 59.599999999999994 - task: type: BitextMining dataset: name: MTEB Tatoeba (ukr-eng) type: mteb/tatoeba-bitext-mining config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.2 - type: f1 value: 81.61666666666665 - type: precision value: 80.02833333333335 - type: recall value: 85.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (uzb-eng) type: mteb/tatoeba-bitext-mining config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.78504672897196 - type: f1 value: 58.00029669188548 - type: precision value: 55.815809968847354 - type: recall value: 63.78504672897196 - task: type: BitextMining dataset: name: MTEB Tatoeba (lit-eng) type: mteb/tatoeba-bitext-mining config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.5 - type: f1 value: 61.518333333333345 - type: precision value: 59.622363699102834 - type: recall value: 66.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (ina-eng) type: mteb/tatoeba-bitext-mining config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.6 - type: f1 value: 85.60222222222221 - type: precision value: 84.27916666666665 - type: recall value: 88.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (lfn-eng) type: mteb/tatoeba-bitext-mining config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.699999999999996 - type: f1 value: 52.732375957375965 - type: precision value: 50.63214035964035 - type: recall value: 58.699999999999996 - task: type: BitextMining dataset: name: MTEB Tatoeba (zsm-eng) type: mteb/tatoeba-bitext-mining config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.10000000000001 - type: f1 value: 89.99666666666667 - type: precision value: 89.03333333333333 - type: recall value: 92.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (ita-eng) type: mteb/tatoeba-bitext-mining config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.10000000000001 - type: f1 value: 87.55666666666667 - type: precision value: 86.36166666666668 - type: recall value: 90.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (cmn-eng) type: mteb/tatoeba-bitext-mining config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.4 - type: f1 value: 88.89000000000001 - type: precision value: 87.71166666666666 - type: recall value: 91.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (lvs-eng) type: mteb/tatoeba-bitext-mining config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.7 - type: f1 value: 60.67427750410509 - type: precision value: 58.71785714285714 - type: recall value: 65.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (glg-eng) type: mteb/tatoeba-bitext-mining config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.39999999999999 - type: f1 value: 81.93190476190475 - type: precision value: 80.37833333333333 - type: recall value: 85.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (ceb-eng) type: mteb/tatoeba-bitext-mining config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.833333333333336 - type: f1 value: 42.006625781625786 - type: precision value: 40.077380952380956 - type: recall value: 47.833333333333336 - task: type: BitextMining dataset: name: MTEB Tatoeba (bre-eng) type: mteb/tatoeba-bitext-mining config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 10.4 - type: f1 value: 8.24465007215007 - type: precision value: 7.664597069597071 - type: recall value: 10.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (ben-eng) type: mteb/tatoeba-bitext-mining config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.6 - type: f1 value: 77.76333333333334 - type: precision value: 75.57833333333332 - type: recall value: 82.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (swg-eng) type: mteb/tatoeba-bitext-mining config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 52.67857142857143 - type: f1 value: 44.302721088435376 - type: precision value: 41.49801587301587 - type: recall value: 52.67857142857143 - task: type: BitextMining dataset: name: MTEB Tatoeba (arq-eng) type: mteb/tatoeba-bitext-mining config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 28.3205268935236 - type: f1 value: 22.426666605171157 - type: precision value: 20.685900116470915 - type: recall value: 28.3205268935236 - task: type: BitextMining dataset: name: MTEB Tatoeba (kab-eng) type: mteb/tatoeba-bitext-mining config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 22.7 - type: f1 value: 17.833970473970474 - type: precision value: 16.407335164835164 - type: recall value: 22.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (fra-eng) type: mteb/tatoeba-bitext-mining config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.2 - type: f1 value: 89.92999999999999 - type: precision value: 88.87 - type: recall value: 92.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (por-eng) type: mteb/tatoeba-bitext-mining config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.4 - type: f1 value: 89.25 - type: precision value: 88.21666666666667 - type: recall value: 91.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (tat-eng) type: mteb/tatoeba-bitext-mining config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.19999999999999 - type: f1 value: 63.38269841269841 - type: precision value: 61.14773809523809 - type: recall value: 69.19999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (oci-eng) type: mteb/tatoeba-bitext-mining config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.8 - type: f1 value: 42.839915639915645 - type: precision value: 40.770287114845935 - type: recall value: 48.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (pol-eng) type: mteb/tatoeba-bitext-mining config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.8 - type: f1 value: 85.90666666666668 - type: precision value: 84.54166666666666 - type: recall value: 88.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (war-eng) type: mteb/tatoeba-bitext-mining config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 46.6 - type: f1 value: 40.85892920804686 - type: precision value: 38.838223114604695 - type: recall value: 46.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (aze-eng) type: mteb/tatoeba-bitext-mining config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.0 - type: f1 value: 80.14190476190475 - type: precision value: 78.45333333333333 - type: recall value: 84.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (vie-eng) type: mteb/tatoeba-bitext-mining config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.5 - type: f1 value: 87.78333333333333 - type: precision value: 86.5 - type: recall value: 90.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (nno-eng) type: mteb/tatoeba-bitext-mining config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.5 - type: f1 value: 69.48397546897547 - type: precision value: 67.51869047619049 - type: recall value: 74.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (cha-eng) type: mteb/tatoeba-bitext-mining config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 32.846715328467155 - type: f1 value: 27.828177499710343 - type: precision value: 26.63451511991658 - type: recall value: 32.846715328467155 - task: type: BitextMining dataset: name: MTEB Tatoeba (mhr-eng) type: mteb/tatoeba-bitext-mining config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.0 - type: f1 value: 6.07664116764988 - type: precision value: 5.544177607179943 - type: recall value: 8.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (dan-eng) type: mteb/tatoeba-bitext-mining config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.6 - type: f1 value: 84.38555555555554 - type: precision value: 82.91583333333334 - type: recall value: 87.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (ell-eng) type: mteb/tatoeba-bitext-mining config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.5 - type: f1 value: 84.08333333333331 - type: precision value: 82.47333333333333 - type: recall value: 87.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (amh-eng) type: mteb/tatoeba-bitext-mining config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.95238095238095 - type: f1 value: 76.13095238095238 - type: precision value: 74.05753968253967 - type: recall value: 80.95238095238095 - task: type: BitextMining dataset: name: MTEB Tatoeba (pam-eng) type: mteb/tatoeba-bitext-mining config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.799999999999999 - type: f1 value: 6.971422975172975 - type: precision value: 6.557814916172301 - type: recall value: 8.799999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (hsb-eng) type: mteb/tatoeba-bitext-mining config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 44.099378881987576 - type: f1 value: 37.01649742022413 - type: precision value: 34.69420618488942 - type: recall value: 44.099378881987576 - task: type: BitextMining dataset: name: MTEB Tatoeba (srp-eng) type: mteb/tatoeba-bitext-mining config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.3 - type: f1 value: 80.32666666666667 - type: precision value: 78.60666666666665 - type: recall value: 84.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (epo-eng) type: mteb/tatoeba-bitext-mining config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.5 - type: f1 value: 90.49666666666666 - type: precision value: 89.56666666666668 - type: recall value: 92.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (kzj-eng) type: mteb/tatoeba-bitext-mining config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 10.0 - type: f1 value: 8.268423529875141 - type: precision value: 7.878118605532398 - type: recall value: 10.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (awa-eng) type: mteb/tatoeba-bitext-mining config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.22077922077922 - type: f1 value: 74.27128427128426 - type: precision value: 72.28715728715729 - type: recall value: 79.22077922077922 - task: type: BitextMining dataset: name: MTEB Tatoeba (fao-eng) type: mteb/tatoeba-bitext-mining config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.64885496183206 - type: f1 value: 58.87495456197747 - type: precision value: 55.992366412213734 - type: recall value: 65.64885496183206 - task: type: BitextMining dataset: name: MTEB Tatoeba (mal-eng) type: mteb/tatoeba-bitext-mining config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.06986899563319 - type: f1 value: 94.78408539543909 - type: precision value: 94.15332362930616 - type: recall value: 96.06986899563319 - task: type: BitextMining dataset: name: MTEB Tatoeba (ile-eng) type: mteb/tatoeba-bitext-mining config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.2 - type: f1 value: 71.72571428571428 - type: precision value: 69.41000000000001 - type: recall value: 77.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (bos-eng) type: mteb/tatoeba-bitext-mining config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.4406779661017 - type: f1 value: 83.2391713747646 - type: precision value: 81.74199623352166 - type: recall value: 86.4406779661017 - task: type: BitextMining dataset: name: MTEB Tatoeba (cor-eng) type: mteb/tatoeba-bitext-mining config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.4 - type: f1 value: 6.017828743398003 - type: precision value: 5.4829865484756795 - type: recall value: 8.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (cat-eng) type: mteb/tatoeba-bitext-mining config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.5 - type: f1 value: 79.74833333333333 - type: precision value: 78.04837662337664 - type: recall value: 83.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (eus-eng) type: mteb/tatoeba-bitext-mining config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.4 - type: f1 value: 54.467301587301584 - type: precision value: 52.23242424242424 - type: recall value: 60.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (yue-eng) type: mteb/tatoeba-bitext-mining config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.9 - type: f1 value: 69.68699134199134 - type: precision value: 67.59873015873016 - type: recall value: 74.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (swe-eng) type: mteb/tatoeba-bitext-mining config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.0 - type: f1 value: 84.9652380952381 - type: precision value: 83.66166666666666 - type: recall value: 88.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (dtp-eng) type: mteb/tatoeba-bitext-mining config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 9.1 - type: f1 value: 7.681244588744588 - type: precision value: 7.370043290043291 - type: recall value: 9.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (kat-eng) type: mteb/tatoeba-bitext-mining config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.9651474530831 - type: f1 value: 76.84220605132133 - type: precision value: 75.19606398962966 - type: recall value: 80.9651474530831 - task: type: BitextMining dataset: name: MTEB Tatoeba (jpn-eng) type: mteb/tatoeba-bitext-mining config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.9 - type: f1 value: 83.705 - type: precision value: 82.3120634920635 - type: recall value: 86.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (csb-eng) type: mteb/tatoeba-bitext-mining config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 29.64426877470356 - type: f1 value: 23.98763072676116 - type: precision value: 22.506399397703746 - type: recall value: 29.64426877470356 - task: type: BitextMining dataset: name: MTEB Tatoeba (xho-eng) type: mteb/tatoeba-bitext-mining config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.4225352112676 - type: f1 value: 62.84037558685445 - type: precision value: 59.56572769953053 - type: recall value: 70.4225352112676 - task: type: BitextMining dataset: name: MTEB Tatoeba (orv-eng) type: mteb/tatoeba-bitext-mining config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 19.64071856287425 - type: f1 value: 15.125271011207756 - type: precision value: 13.865019261197494 - type: recall value: 19.64071856287425 - task: type: BitextMining dataset: name: MTEB Tatoeba (ind-eng) type: mteb/tatoeba-bitext-mining config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.2 - type: f1 value: 87.80666666666666 - type: precision value: 86.70833333333331 - type: recall value: 90.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (tuk-eng) type: mteb/tatoeba-bitext-mining config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 23.15270935960591 - type: f1 value: 18.407224958949097 - type: precision value: 16.982385430661292 - type: recall value: 23.15270935960591 - task: type: BitextMining dataset: name: MTEB Tatoeba (max-eng) type: mteb/tatoeba-bitext-mining config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 55.98591549295775 - type: f1 value: 49.94718309859154 - type: precision value: 47.77864154624717 - type: recall value: 55.98591549295775 - task: type: BitextMining dataset: name: MTEB Tatoeba (swh-eng) type: mteb/tatoeba-bitext-mining config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 73.07692307692307 - type: f1 value: 66.74358974358974 - type: precision value: 64.06837606837607 - type: recall value: 73.07692307692307 - task: type: BitextMining dataset: name: MTEB Tatoeba (hin-eng) type: mteb/tatoeba-bitext-mining config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.25 - type: precision value: 92.43333333333332 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (dsb-eng) type: mteb/tatoeba-bitext-mining config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 37.78705636743215 - type: f1 value: 31.63899658680452 - type: precision value: 29.72264397629742 - type: recall value: 37.78705636743215 - task: type: BitextMining dataset: name: MTEB Tatoeba (ber-eng) type: mteb/tatoeba-bitext-mining config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 21.6 - type: f1 value: 16.91697302697303 - type: precision value: 15.71225147075147 - type: recall value: 21.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (tam-eng) type: mteb/tatoeba-bitext-mining config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.01628664495115 - type: f1 value: 81.38514037536838 - type: precision value: 79.83170466883823 - type: recall value: 85.01628664495115 - task: type: BitextMining dataset: name: MTEB Tatoeba (slk-eng) type: mteb/tatoeba-bitext-mining config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.39999999999999 - type: f1 value: 79.96380952380952 - type: precision value: 78.48333333333333 - type: recall value: 83.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tgl-eng) type: mteb/tatoeba-bitext-mining config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.2 - type: f1 value: 79.26190476190476 - type: precision value: 77.58833333333334 - type: recall value: 83.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (ast-eng) type: mteb/tatoeba-bitext-mining config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 75.59055118110236 - type: f1 value: 71.66854143232096 - type: precision value: 70.30183727034121 - type: recall value: 75.59055118110236 - task: type: BitextMining dataset: name: MTEB Tatoeba (mkd-eng) type: mteb/tatoeba-bitext-mining config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.5 - type: f1 value: 59.26095238095238 - type: precision value: 56.81909090909092 - type: recall value: 65.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (khm-eng) type: mteb/tatoeba-bitext-mining config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 55.26315789473685 - type: f1 value: 47.986523325858506 - type: precision value: 45.33950006595436 - type: recall value: 55.26315789473685 - task: type: BitextMining dataset: name: MTEB Tatoeba (ces-eng) type: mteb/tatoeba-bitext-mining config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.89999999999999 - type: f1 value: 78.835 - type: precision value: 77.04761904761905 - type: recall value: 82.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tzl-eng) type: mteb/tatoeba-bitext-mining config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 43.269230769230774 - type: f1 value: 36.20421245421245 - type: precision value: 33.57371794871795 - type: recall value: 43.269230769230774 - task: type: BitextMining dataset: name: MTEB Tatoeba (urd-eng) type: mteb/tatoeba-bitext-mining config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.0 - type: f1 value: 84.70666666666666 - type: precision value: 83.23166666666665 - type: recall value: 88.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (ara-eng) type: mteb/tatoeba-bitext-mining config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.4 - type: f1 value: 72.54666666666667 - type: precision value: 70.54318181818181 - type: recall value: 77.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (kor-eng) type: mteb/tatoeba-bitext-mining config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.60000000000001 - type: f1 value: 74.1588888888889 - type: precision value: 72.30250000000001 - type: recall value: 78.60000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (yid-eng) type: mteb/tatoeba-bitext-mining config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 72.40566037735849 - type: f1 value: 66.82587328813744 - type: precision value: 64.75039308176099 - type: recall value: 72.40566037735849 - task: type: BitextMining dataset: name: MTEB Tatoeba (fin-eng) type: mteb/tatoeba-bitext-mining config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 73.8 - type: f1 value: 68.56357142857144 - type: precision value: 66.3178822055138 - type: recall value: 73.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (tha-eng) type: mteb/tatoeba-bitext-mining config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.78832116788321 - type: f1 value: 89.3552311435523 - type: precision value: 88.20559610705597 - type: recall value: 91.78832116788321 - task: type: BitextMining dataset: name: MTEB Tatoeba (wuu-eng) type: mteb/tatoeba-bitext-mining config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.3 - type: f1 value: 69.05085581085581 - type: precision value: 66.955 - type: recall value: 74.3 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.896 - type: map_at_10 value: 8.993 - type: map_at_100 value: 14.133999999999999 - type: map_at_1000 value: 15.668000000000001 - type: map_at_3 value: 5.862 - type: map_at_5 value: 7.17 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 42.931000000000004 - type: mrr_at_100 value: 44.81 - type: mrr_at_1000 value: 44.81 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 41.701 - type: ndcg_at_1 value: 31.633 - type: ndcg_at_10 value: 21.163 - type: ndcg_at_100 value: 33.306000000000004 - type: ndcg_at_1000 value: 45.275999999999996 - type: ndcg_at_3 value: 25.685999999999996 - type: ndcg_at_5 value: 23.732 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 17.755000000000003 - type: precision_at_100 value: 6.938999999999999 - type: precision_at_1000 value: 1.48 - type: precision_at_3 value: 25.85 - type: precision_at_5 value: 23.265 - type: recall_at_1 value: 2.896 - type: recall_at_10 value: 13.333999999999998 - type: recall_at_100 value: 43.517 - type: recall_at_1000 value: 79.836 - type: recall_at_3 value: 6.306000000000001 - type: recall_at_5 value: 8.825 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.3874 - type: ap value: 13.829909072469423 - type: f1 value: 53.54534203543492 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.62026032823995 - type: f1 value: 62.85251350485221 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 33.21527881409797 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.97943613280086 - type: cos_sim_ap value: 70.75454316885921 - type: cos_sim_f1 value: 65.38274012676743 - type: cos_sim_precision value: 60.761214318078835 - type: cos_sim_recall value: 70.76517150395777 - type: dot_accuracy value: 79.0546581629612 - type: dot_ap value: 47.3197121792147 - type: dot_f1 value: 49.20106524633821 - type: dot_precision value: 42.45499808502489 - type: dot_recall value: 58.49604221635884 - type: euclidean_accuracy value: 85.08076533349228 - type: euclidean_ap value: 70.95016106374474 - type: euclidean_f1 value: 65.43987900176455 - type: euclidean_precision value: 62.64478764478765 - type: euclidean_recall value: 68.49604221635884 - type: manhattan_accuracy value: 84.93771234428085 - type: manhattan_ap value: 70.63668388755362 - type: manhattan_f1 value: 65.23895401262398 - type: manhattan_precision value: 56.946084218811485 - type: manhattan_recall value: 76.35883905013192 - type: max_accuracy value: 85.08076533349228 - type: max_ap value: 70.95016106374474 - type: max_f1 value: 65.43987900176455 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.69096130709822 - type: cos_sim_ap value: 84.82526278228542 - type: cos_sim_f1 value: 77.65485060585536 - type: cos_sim_precision value: 75.94582658619167 - type: cos_sim_recall value: 79.44256236526024 - type: dot_accuracy value: 80.97954748321496 - type: dot_ap value: 64.81642914145866 - type: dot_f1 value: 60.631996987229975 - type: dot_precision value: 54.5897293631712 - type: dot_recall value: 68.17831844779796 - type: euclidean_accuracy value: 88.6987231730508 - type: euclidean_ap value: 84.80003825477253 - type: euclidean_f1 value: 77.67194179854496 - type: euclidean_precision value: 75.7128235122094 - type: euclidean_recall value: 79.73514012935017 - type: manhattan_accuracy value: 88.62692591298949 - type: manhattan_ap value: 84.80451408255276 - type: manhattan_f1 value: 77.69888949572183 - type: manhattan_precision value: 73.70311528631622 - type: manhattan_recall value: 82.15275639051433 - type: max_accuracy value: 88.6987231730508 - type: max_ap value: 84.82526278228542 - type: max_f1 value: 77.69888949572183 - task: type: BitextMining dataset: name: MTEB BUCC.v2 (ru-en) type: mteb/bucc-bitext-mining config: ru-en split: test revision: 1739dc11ffe9b7bfccd7f3d585aeb4c544fc6677 metrics: - type: accuracy value: 95.72566678212678 - type: f1 value: 94.42443135896548 - type: main_score value: 94.42443135896548 - type: precision value: 93.80868260016165 - type: recall value: 95.72566678212678 - task: type: Retrieval dataset: name: MTEB BelebeleRetrieval (rus_Cyrl-rus_Cyrl) type: facebook/belebele config: rus_Cyrl-rus_Cyrl split: test revision: 75b399394a9803252cfec289d103de462763db7c metrics: - type: main_score value: 92.23599999999999 - type: map_at_1 value: 87.111 - type: map_at_10 value: 90.717 - type: map_at_100 value: 90.879 - type: map_at_1000 value: 90.881 - type: map_at_20 value: 90.849 - type: map_at_3 value: 90.074 - type: map_at_5 value: 90.535 - type: mrr_at_1 value: 87.1111111111111 - type: mrr_at_10 value: 90.7173721340388 - type: mrr_at_100 value: 90.87859682638407 - type: mrr_at_1000 value: 90.88093553612326 - type: mrr_at_20 value: 90.84863516113515 - type: mrr_at_3 value: 90.07407407407409 - type: mrr_at_5 value: 90.53518518518521 - type: nauc_map_at_1000_diff1 value: 92.37373187280554 - type: nauc_map_at_1000_max value: 79.90465445423249 - type: nauc_map_at_1000_std value: -0.6220290556185463 - type: nauc_map_at_100_diff1 value: 92.37386697345335 - type: nauc_map_at_100_max value: 79.90991577223959 - type: nauc_map_at_100_std value: -0.602247514642845 - type: nauc_map_at_10_diff1 value: 92.30907447072467 - type: nauc_map_at_10_max value: 79.86831935337598 - type: nauc_map_at_10_std value: -0.7455191860719699 - type: nauc_map_at_1_diff1 value: 93.29828518358822 - type: nauc_map_at_1_max value: 78.69539619887887 - type: nauc_map_at_1_std value: -4.097150817605763 - type: nauc_map_at_20_diff1 value: 92.38414149703077 - type: nauc_map_at_20_max value: 79.94789814504661 - type: nauc_map_at_20_std value: -0.3928031130400773 - type: nauc_map_at_3_diff1 value: 92.21688899306734 - type: nauc_map_at_3_max value: 80.34586671780885 - type: nauc_map_at_3_std value: 0.24088319695435909 - type: nauc_map_at_5_diff1 value: 92.27931726042982 - type: nauc_map_at_5_max value: 79.99198834003367 - type: nauc_map_at_5_std value: -0.6296366922840796 - type: nauc_mrr_at_1000_diff1 value: 92.37373187280554 - type: nauc_mrr_at_1000_max value: 79.90465445423249 - type: nauc_mrr_at_1000_std value: -0.6220290556185463 - type: nauc_mrr_at_100_diff1 value: 92.37386697345335 - type: nauc_mrr_at_100_max value: 79.90991577223959 - type: nauc_mrr_at_100_std value: -0.602247514642845 - type: nauc_mrr_at_10_diff1 value: 92.30907447072467 - type: nauc_mrr_at_10_max value: 79.86831935337598 - type: nauc_mrr_at_10_std value: -0.7455191860719699 - type: nauc_mrr_at_1_diff1 value: 93.29828518358822 - type: nauc_mrr_at_1_max value: 78.69539619887887 - type: nauc_mrr_at_1_std value: -4.097150817605763 - type: nauc_mrr_at_20_diff1 value: 92.38414149703077 - type: nauc_mrr_at_20_max value: 79.94789814504661 - type: nauc_mrr_at_20_std value: -0.3928031130400773 - type: nauc_mrr_at_3_diff1 value: 92.21688899306734 - type: nauc_mrr_at_3_max value: 80.34586671780885 - type: nauc_mrr_at_3_std value: 0.24088319695435909 - type: nauc_mrr_at_5_diff1 value: 92.27931726042982 - type: nauc_mrr_at_5_max value: 79.99198834003367 - type: nauc_mrr_at_5_std value: -0.6296366922840796 - type: nauc_ndcg_at_1000_diff1 value: 92.30526497646306 - type: nauc_ndcg_at_1000_max value: 80.12734537480418 - type: nauc_ndcg_at_1000_std value: 0.22849408935578744 - type: nauc_ndcg_at_100_diff1 value: 92.31347123202318 - type: nauc_ndcg_at_100_max value: 80.29207038703142 - type: nauc_ndcg_at_100_std value: 0.816825944406239 - type: nauc_ndcg_at_10_diff1 value: 92.05430189845808 - type: nauc_ndcg_at_10_max value: 80.16515667442968 - type: nauc_ndcg_at_10_std value: 0.7486447532544893 - type: nauc_ndcg_at_1_diff1 value: 93.29828518358822 - type: nauc_ndcg_at_1_max value: 78.69539619887887 - type: nauc_ndcg_at_1_std value: -4.097150817605763 - type: nauc_ndcg_at_20_diff1 value: 92.40147868825079 - type: nauc_ndcg_at_20_max value: 80.5117307181802 - type: nauc_ndcg_at_20_std value: 2.0431351539517033 - type: nauc_ndcg_at_3_diff1 value: 91.88894444422789 - type: nauc_ndcg_at_3_max value: 81.09256084196045 - type: nauc_ndcg_at_3_std value: 2.422705909643621 - type: nauc_ndcg_at_5_diff1 value: 91.99711052955728 - type: nauc_ndcg_at_5_max value: 80.46996334573979 - type: nauc_ndcg_at_5_std value: 0.9086986899040708 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 93.46405228758012 - type: nauc_precision_at_100_max value: 100.0 - type: nauc_precision_at_100_std value: 70.71661998132774 - type: nauc_precision_at_10_diff1 value: 90.13938908896874 - type: nauc_precision_at_10_max value: 82.21121782046167 - type: nauc_precision_at_10_std value: 13.075230092036083 - type: nauc_precision_at_1_diff1 value: 93.29828518358822 - type: nauc_precision_at_1_max value: 78.69539619887887 - type: nauc_precision_at_1_std value: -4.097150817605763 - type: nauc_precision_at_20_diff1 value: 94.9723479135242 - type: nauc_precision_at_20_max value: 91.04000574588684 - type: nauc_precision_at_20_std value: 48.764634058749586 - type: nauc_precision_at_3_diff1 value: 90.52690041533852 - type: nauc_precision_at_3_max value: 84.35075179497126 - type: nauc_precision_at_3_std value: 12.036768730480507 - type: nauc_precision_at_5_diff1 value: 90.44234360410769 - type: nauc_precision_at_5_max value: 83.21895424836558 - type: nauc_precision_at_5_std value: 9.974323062558037 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 93.46405228758294 - type: nauc_recall_at_100_max value: 100.0 - type: nauc_recall_at_100_std value: 70.71661998132666 - type: nauc_recall_at_10_diff1 value: 90.13938908896864 - type: nauc_recall_at_10_max value: 82.21121782046124 - type: nauc_recall_at_10_std value: 13.075230092036506 - type: nauc_recall_at_1_diff1 value: 93.29828518358822 - type: nauc_recall_at_1_max value: 78.69539619887887 - type: nauc_recall_at_1_std value: -4.097150817605763 - type: nauc_recall_at_20_diff1 value: 94.97234791352489 - type: nauc_recall_at_20_max value: 91.04000574588774 - type: nauc_recall_at_20_std value: 48.764634058752065 - type: nauc_recall_at_3_diff1 value: 90.52690041533845 - type: nauc_recall_at_3_max value: 84.35075179497079 - type: nauc_recall_at_3_std value: 12.036768730480583 - type: nauc_recall_at_5_diff1 value: 90.44234360410861 - type: nauc_recall_at_5_max value: 83.21895424836595 - type: nauc_recall_at_5_std value: 9.974323062558147 - type: ndcg_at_1 value: 87.111 - type: ndcg_at_10 value: 92.23599999999999 - type: ndcg_at_100 value: 92.87100000000001 - type: ndcg_at_1000 value: 92.928 - type: ndcg_at_20 value: 92.67699999999999 - type: ndcg_at_3 value: 90.973 - type: ndcg_at_5 value: 91.801 - type: precision_at_1 value: 87.111 - type: precision_at_10 value: 9.689 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.928 - type: precision_at_3 value: 31.185000000000002 - type: precision_at_5 value: 19.111 - type: recall_at_1 value: 87.111 - type: recall_at_10 value: 96.88900000000001 - type: recall_at_100 value: 99.556 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 98.556 - type: recall_at_3 value: 93.556 - type: recall_at_5 value: 95.556 - task: type: Retrieval dataset: name: MTEB BelebeleRetrieval (rus_Cyrl-eng_Latn) type: facebook/belebele config: rus_Cyrl-eng_Latn split: test revision: 75b399394a9803252cfec289d103de462763db7c metrics: - type: main_score value: 86.615 - type: map_at_1 value: 78.0 - type: map_at_10 value: 83.822 - type: map_at_100 value: 84.033 - type: map_at_1000 value: 84.03500000000001 - type: map_at_20 value: 83.967 - type: map_at_3 value: 82.315 - type: map_at_5 value: 83.337 - type: mrr_at_1 value: 78.0 - type: mrr_at_10 value: 83.82213403880073 - type: mrr_at_100 value: 84.03281327810801 - type: mrr_at_1000 value: 84.03460051000452 - type: mrr_at_20 value: 83.9673773122303 - type: mrr_at_3 value: 82.31481481481484 - type: mrr_at_5 value: 83.33703703703708 - type: nauc_map_at_1000_diff1 value: 80.78467576987832 - type: nauc_map_at_1000_max value: 51.41718334647604 - type: nauc_map_at_1000_std value: -16.23873782768812 - type: nauc_map_at_100_diff1 value: 80.78490931240695 - type: nauc_map_at_100_max value: 51.41504597713061 - type: nauc_map_at_100_std value: -16.23538559475366 - type: nauc_map_at_10_diff1 value: 80.73989245374868 - type: nauc_map_at_10_max value: 51.43026079433827 - type: nauc_map_at_10_std value: -16.13414330905897 - type: nauc_map_at_1_diff1 value: 82.36966971144186 - type: nauc_map_at_1_max value: 52.988877039509916 - type: nauc_map_at_1_std value: -15.145824639495546 - type: nauc_map_at_20_diff1 value: 80.75923781626145 - type: nauc_map_at_20_max value: 51.40181079374639 - type: nauc_map_at_20_std value: -16.260566097377165 - type: nauc_map_at_3_diff1 value: 80.65242627065471 - type: nauc_map_at_3_max value: 50.623980338841214 - type: nauc_map_at_3_std value: -16.818343442794294 - type: nauc_map_at_5_diff1 value: 80.45976387021862 - type: nauc_map_at_5_max value: 51.533621728445866 - type: nauc_map_at_5_std value: -16.279891536945815 - type: nauc_mrr_at_1000_diff1 value: 80.78467576987832 - type: nauc_mrr_at_1000_max value: 51.41718334647604 - type: nauc_mrr_at_1000_std value: -16.23873782768812 - type: nauc_mrr_at_100_diff1 value: 80.78490931240695 - type: nauc_mrr_at_100_max value: 51.41504597713061 - type: nauc_mrr_at_100_std value: -16.23538559475366 - type: nauc_mrr_at_10_diff1 value: 80.73989245374868 - type: nauc_mrr_at_10_max value: 51.43026079433827 - type: nauc_mrr_at_10_std value: -16.13414330905897 - type: nauc_mrr_at_1_diff1 value: 82.36966971144186 - type: nauc_mrr_at_1_max value: 52.988877039509916 - type: nauc_mrr_at_1_std value: -15.145824639495546 - type: nauc_mrr_at_20_diff1 value: 80.75923781626145 - type: nauc_mrr_at_20_max value: 51.40181079374639 - type: nauc_mrr_at_20_std value: -16.260566097377165 - type: nauc_mrr_at_3_diff1 value: 80.65242627065471 - type: nauc_mrr_at_3_max value: 50.623980338841214 - type: nauc_mrr_at_3_std value: -16.818343442794294 - type: nauc_mrr_at_5_diff1 value: 80.45976387021862 - type: nauc_mrr_at_5_max value: 51.533621728445866 - type: nauc_mrr_at_5_std value: -16.279891536945815 - type: nauc_ndcg_at_1000_diff1 value: 80.60009446938174 - type: nauc_ndcg_at_1000_max value: 51.381708043594166 - type: nauc_ndcg_at_1000_std value: -16.054256944160848 - type: nauc_ndcg_at_100_diff1 value: 80.58971462930421 - type: nauc_ndcg_at_100_max value: 51.25436917735444 - type: nauc_ndcg_at_100_std value: -15.862944972269894 - type: nauc_ndcg_at_10_diff1 value: 80.37967179454489 - type: nauc_ndcg_at_10_max value: 51.590394257251006 - type: nauc_ndcg_at_10_std value: -15.489799384799591 - type: nauc_ndcg_at_1_diff1 value: 82.36966971144186 - type: nauc_ndcg_at_1_max value: 52.988877039509916 - type: nauc_ndcg_at_1_std value: -15.145824639495546 - type: nauc_ndcg_at_20_diff1 value: 80.40299527470081 - type: nauc_ndcg_at_20_max value: 51.395132284307074 - type: nauc_ndcg_at_20_std value: -15.906165526937203 - type: nauc_ndcg_at_3_diff1 value: 80.10347913649302 - type: nauc_ndcg_at_3_max value: 50.018431855573844 - type: nauc_ndcg_at_3_std value: -17.12743750163884 - type: nauc_ndcg_at_5_diff1 value: 79.65918647776613 - type: nauc_ndcg_at_5_max value: 51.76710880330806 - type: nauc_ndcg_at_5_std value: -16.071901882035945 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 77.41596638655459 - type: nauc_precision_at_100_max value: 22.572362278246565 - type: nauc_precision_at_100_std value: 26.890756302525716 - type: nauc_precision_at_10_diff1 value: 77.82112845138009 - type: nauc_precision_at_10_max value: 54.2550353474723 - type: nauc_precision_at_10_std value: -7.492997198879646 - type: nauc_precision_at_1_diff1 value: 82.36966971144186 - type: nauc_precision_at_1_max value: 52.988877039509916 - type: nauc_precision_at_1_std value: -15.145824639495546 - type: nauc_precision_at_20_diff1 value: 75.89091192032318 - type: nauc_precision_at_20_max value: 52.03275754746293 - type: nauc_precision_at_20_std value: -7.8411920323686175 - type: nauc_precision_at_3_diff1 value: 78.0256020644638 - type: nauc_precision_at_3_max value: 47.80353641248523 - type: nauc_precision_at_3_std value: -18.181625255723503 - type: nauc_precision_at_5_diff1 value: 75.21583976056174 - type: nauc_precision_at_5_max value: 53.716281032960765 - type: nauc_precision_at_5_std value: -14.411700753360812 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 77.4159663865523 - type: nauc_recall_at_100_max value: 22.57236227824646 - type: nauc_recall_at_100_std value: 26.89075630252133 - type: nauc_recall_at_10_diff1 value: 77.82112845138037 - type: nauc_recall_at_10_max value: 54.25503534747204 - type: nauc_recall_at_10_std value: -7.492997198879666 - type: nauc_recall_at_1_diff1 value: 82.36966971144186 - type: nauc_recall_at_1_max value: 52.988877039509916 - type: nauc_recall_at_1_std value: -15.145824639495546 - type: nauc_recall_at_20_diff1 value: 75.89091192032362 - type: nauc_recall_at_20_max value: 52.032757547463184 - type: nauc_recall_at_20_std value: -7.84119203236888 - type: nauc_recall_at_3_diff1 value: 78.02560206446354 - type: nauc_recall_at_3_max value: 47.80353641248526 - type: nauc_recall_at_3_std value: -18.181625255723656 - type: nauc_recall_at_5_diff1 value: 75.21583976056185 - type: nauc_recall_at_5_max value: 53.71628103296118 - type: nauc_recall_at_5_std value: -14.411700753360634 - type: ndcg_at_1 value: 78.0 - type: ndcg_at_10 value: 86.615 - type: ndcg_at_100 value: 87.558 - type: ndcg_at_1000 value: 87.613 - type: ndcg_at_20 value: 87.128 - type: ndcg_at_3 value: 83.639 - type: ndcg_at_5 value: 85.475 - type: precision_at_1 value: 78.0 - type: precision_at_10 value: 9.533 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.867 - type: precision_at_3 value: 29.148000000000003 - type: precision_at_5 value: 18.378 - type: recall_at_1 value: 78.0 - type: recall_at_10 value: 95.333 - type: recall_at_100 value: 99.556 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 97.333 - type: recall_at_3 value: 87.444 - type: recall_at_5 value: 91.889 - task: type: Retrieval dataset: name: MTEB BelebeleRetrieval (eng_Latn-rus_Cyrl) type: facebook/belebele config: eng_Latn-rus_Cyrl split: test revision: 75b399394a9803252cfec289d103de462763db7c metrics: - type: main_score value: 82.748 - type: map_at_1 value: 73.444 - type: map_at_10 value: 79.857 - type: map_at_100 value: 80.219 - type: map_at_1000 value: 80.22500000000001 - type: map_at_20 value: 80.10300000000001 - type: map_at_3 value: 78.593 - type: map_at_5 value: 79.515 - type: mrr_at_1 value: 73.44444444444444 - type: mrr_at_10 value: 79.85705467372136 - type: mrr_at_100 value: 80.21942320422542 - type: mrr_at_1000 value: 80.2245364027152 - type: mrr_at_20 value: 80.10273201266493 - type: mrr_at_3 value: 78.59259259259258 - type: mrr_at_5 value: 79.51481481481483 - type: nauc_map_at_1000_diff1 value: 83.69682652271125 - type: nauc_map_at_1000_max value: 61.70131708044767 - type: nauc_map_at_1000_std value: 9.345825405274955 - type: nauc_map_at_100_diff1 value: 83.68924820523492 - type: nauc_map_at_100_max value: 61.6965735573098 - type: nauc_map_at_100_std value: 9.366132859525775 - type: nauc_map_at_10_diff1 value: 83.61802964269985 - type: nauc_map_at_10_max value: 61.74274476167882 - type: nauc_map_at_10_std value: 9.504060995819101 - type: nauc_map_at_1_diff1 value: 86.37079221403225 - type: nauc_map_at_1_max value: 61.856861655370686 - type: nauc_map_at_1_std value: 4.708911881992707 - type: nauc_map_at_20_diff1 value: 83.62920965453047 - type: nauc_map_at_20_max value: 61.761029350326965 - type: nauc_map_at_20_std value: 9.572978651118351 - type: nauc_map_at_3_diff1 value: 83.66665673154306 - type: nauc_map_at_3_max value: 61.13597610587937 - type: nauc_map_at_3_std value: 9.309596395240598 - type: nauc_map_at_5_diff1 value: 83.52307226455358 - type: nauc_map_at_5_max value: 61.59405758027573 - type: nauc_map_at_5_std value: 9.320025423287671 - type: nauc_mrr_at_1000_diff1 value: 83.69682652271125 - type: nauc_mrr_at_1000_max value: 61.70131708044767 - type: nauc_mrr_at_1000_std value: 9.345825405274955 - type: nauc_mrr_at_100_diff1 value: 83.68924820523492 - type: nauc_mrr_at_100_max value: 61.6965735573098 - type: nauc_mrr_at_100_std value: 9.366132859525775 - type: nauc_mrr_at_10_diff1 value: 83.61802964269985 - type: nauc_mrr_at_10_max value: 61.74274476167882 - type: nauc_mrr_at_10_std value: 9.504060995819101 - type: nauc_mrr_at_1_diff1 value: 86.37079221403225 - type: nauc_mrr_at_1_max value: 61.856861655370686 - type: nauc_mrr_at_1_std value: 4.708911881992707 - type: nauc_mrr_at_20_diff1 value: 83.62920965453047 - type: nauc_mrr_at_20_max value: 61.761029350326965 - type: nauc_mrr_at_20_std value: 9.572978651118351 - type: nauc_mrr_at_3_diff1 value: 83.66665673154306 - type: nauc_mrr_at_3_max value: 61.13597610587937 - type: nauc_mrr_at_3_std value: 9.309596395240598 - type: nauc_mrr_at_5_diff1 value: 83.52307226455358 - type: nauc_mrr_at_5_max value: 61.59405758027573 - type: nauc_mrr_at_5_std value: 9.320025423287671 - type: nauc_ndcg_at_1000_diff1 value: 83.24213186482201 - type: nauc_ndcg_at_1000_max value: 61.77629841787496 - type: nauc_ndcg_at_1000_std value: 10.332527869705851 - type: nauc_ndcg_at_100_diff1 value: 83.06815820441027 - type: nauc_ndcg_at_100_max value: 61.6947181864579 - type: nauc_ndcg_at_100_std value: 10.888922975877316 - type: nauc_ndcg_at_10_diff1 value: 82.58238431386295 - type: nauc_ndcg_at_10_max value: 62.10333663935709 - type: nauc_ndcg_at_10_std value: 11.746030330958174 - type: nauc_ndcg_at_1_diff1 value: 86.37079221403225 - type: nauc_ndcg_at_1_max value: 61.856861655370686 - type: nauc_ndcg_at_1_std value: 4.708911881992707 - type: nauc_ndcg_at_20_diff1 value: 82.67888324480154 - type: nauc_ndcg_at_20_max value: 62.28124917486516 - type: nauc_ndcg_at_20_std value: 12.343058917563914 - type: nauc_ndcg_at_3_diff1 value: 82.71277373710663 - type: nauc_ndcg_at_3_max value: 60.66677922989939 - type: nauc_ndcg_at_3_std value: 10.843633736296528 - type: nauc_ndcg_at_5_diff1 value: 82.34691124846786 - type: nauc_ndcg_at_5_max value: 61.605961382062716 - type: nauc_ndcg_at_5_std value: 11.129011077702602 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 60.93103908230194 - type: nauc_precision_at_100_max value: 52.621048419370695 - type: nauc_precision_at_100_std value: 85.60090702947922 - type: nauc_precision_at_10_diff1 value: 76.26517273576093 - type: nauc_precision_at_10_max value: 65.2013694366636 - type: nauc_precision_at_10_std value: 26.50357920946173 - type: nauc_precision_at_1_diff1 value: 86.37079221403225 - type: nauc_precision_at_1_max value: 61.856861655370686 - type: nauc_precision_at_1_std value: 4.708911881992707 - type: nauc_precision_at_20_diff1 value: 73.47946930710295 - type: nauc_precision_at_20_max value: 70.19520986689217 - type: nauc_precision_at_20_std value: 45.93186111653967 - type: nauc_precision_at_3_diff1 value: 79.02026879450186 - type: nauc_precision_at_3_max value: 58.75074624692399 - type: nauc_precision_at_3_std value: 16.740684654251037 - type: nauc_precision_at_5_diff1 value: 76.47585662281637 - type: nauc_precision_at_5_max value: 61.86270922013127 - type: nauc_precision_at_5_std value: 20.1833625455035 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 60.93103908229921 - type: nauc_recall_at_100_max value: 52.62104841936668 - type: nauc_recall_at_100_std value: 85.60090702947748 - type: nauc_recall_at_10_diff1 value: 76.26517273576097 - type: nauc_recall_at_10_max value: 65.20136943666347 - type: nauc_recall_at_10_std value: 26.50357920946174 - type: nauc_recall_at_1_diff1 value: 86.37079221403225 - type: nauc_recall_at_1_max value: 61.856861655370686 - type: nauc_recall_at_1_std value: 4.708911881992707 - type: nauc_recall_at_20_diff1 value: 73.47946930710269 - type: nauc_recall_at_20_max value: 70.19520986689254 - type: nauc_recall_at_20_std value: 45.93186111653943 - type: nauc_recall_at_3_diff1 value: 79.02026879450173 - type: nauc_recall_at_3_max value: 58.750746246923924 - type: nauc_recall_at_3_std value: 16.740684654251076 - type: nauc_recall_at_5_diff1 value: 76.4758566228162 - type: nauc_recall_at_5_max value: 61.862709220131386 - type: nauc_recall_at_5_std value: 20.18336254550361 - type: ndcg_at_1 value: 73.444 - type: ndcg_at_10 value: 82.748 - type: ndcg_at_100 value: 84.416 - type: ndcg_at_1000 value: 84.52300000000001 - type: ndcg_at_20 value: 83.646 - type: ndcg_at_3 value: 80.267 - type: ndcg_at_5 value: 81.922 - type: precision_at_1 value: 73.444 - type: precision_at_10 value: 9.167 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.761 - type: precision_at_3 value: 28.37 - type: precision_at_5 value: 17.822 - type: recall_at_1 value: 73.444 - type: recall_at_10 value: 91.667 - type: recall_at_100 value: 99.222 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 95.222 - type: recall_at_3 value: 85.111 - type: recall_at_5 value: 89.11099999999999 - task: type: BitextMining dataset: name: MTEB BibleNLPBitextMining (eng_Latn-rus_Cyrl) type: davidstap/biblenlp-corpus-mmteb config: eng_Latn-rus_Cyrl split: train revision: 264a18480c529d9e922483839b4b9758e690b762 metrics: - type: accuracy value: 96.875 - type: f1 value: 95.83333333333333 - type: main_score value: 95.83333333333333 - type: precision value: 95.3125 - type: recall value: 96.875 - task: type: BitextMining dataset: name: MTEB BibleNLPBitextMining (rus_Cyrl-eng_Latn) type: davidstap/biblenlp-corpus-mmteb config: rus_Cyrl-eng_Latn split: train revision: 264a18480c529d9e922483839b4b9758e690b762 metrics: - type: accuracy value: 88.671875 - type: f1 value: 85.3515625 - type: main_score value: 85.3515625 - type: precision value: 83.85416666666667 - type: recall value: 88.671875 - task: type: MultilabelClassification dataset: name: MTEB CEDRClassification (default) type: ai-forever/cedr-classification config: default split: test revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 metrics: - type: accuracy value: 40.06907545164719 - type: f1 value: 26.285000550712407 - type: lrap value: 64.4280021253997 - type: main_score value: 40.06907545164719 - task: type: Classification dataset: name: MTEB CyrillicTurkicLangClassification (default) type: tatiana-merz/cyrillic_turkic_langs config: default split: test revision: e42d330f33d65b7b72dfd408883daf1661f06f18 metrics: - type: accuracy value: 43.3447265625 - type: f1 value: 40.08400146827895 - type: f1_weighted value: 40.08499428040896 - type: main_score value: 43.3447265625 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ace_Arab-rus_Cyrl) type: mteb/flores config: ace_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 6.225296442687747 - type: f1 value: 5.5190958860075 - type: main_score value: 5.5190958860075 - type: precision value: 5.3752643758000005 - type: recall value: 6.225296442687747 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bam_Latn-rus_Cyrl) type: mteb/flores config: bam_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.37944664031622 - type: f1 value: 64.54819836666252 - type: main_score value: 64.54819836666252 - type: precision value: 63.07479233454916 - type: recall value: 68.37944664031622 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (dzo_Tibt-rus_Cyrl) type: mteb/flores config: dzo_Tibt-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 0.09881422924901186 - type: f1 value: 0.00019509225912934226 - type: main_score value: 0.00019509225912934226 - type: precision value: 9.76425190207627e-05 - type: recall value: 0.09881422924901186 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hin_Deva-rus_Cyrl) type: mteb/flores config: hin_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.47299077733861 - type: main_score value: 99.47299077733861 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (khm_Khmr-rus_Cyrl) type: mteb/flores config: khm_Khmr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.83399209486166 - type: f1 value: 87.71151056318254 - type: main_score value: 87.71151056318254 - type: precision value: 87.32012500709193 - type: recall value: 88.83399209486166 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mag_Deva-rus_Cyrl) type: mteb/flores config: mag_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.7239789196311 - type: main_score value: 97.7239789196311 - type: precision value: 97.61904761904762 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pap_Latn-rus_Cyrl) type: mteb/flores config: pap_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.0711462450593 - type: f1 value: 93.68187806922984 - type: main_score value: 93.68187806922984 - type: precision value: 93.58925452707051 - type: recall value: 94.0711462450593 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sot_Latn-rus_Cyrl) type: mteb/flores config: sot_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 90.9090909090909 - type: f1 value: 89.23171936758892 - type: main_score value: 89.23171936758892 - type: precision value: 88.51790014083866 - type: recall value: 90.9090909090909 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tur_Latn-rus_Cyrl) type: mteb/flores config: tur_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ace_Latn-rus_Cyrl) type: mteb/flores config: ace_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 66.10671936758892 - type: f1 value: 63.81888256297873 - type: main_score value: 63.81888256297873 - type: precision value: 63.01614067933451 - type: recall value: 66.10671936758892 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ban_Latn-rus_Cyrl) type: mteb/flores config: ban_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 79.44664031620553 - type: f1 value: 77.6311962082713 - type: main_score value: 77.6311962082713 - type: precision value: 76.93977931929739 - type: recall value: 79.44664031620553 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ell_Grek-rus_Cyrl) type: mteb/flores config: ell_Grek-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hne_Deva-rus_Cyrl) type: mteb/flores config: hne_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.83794466403161 - type: f1 value: 96.25352907961603 - type: main_score value: 96.25352907961603 - type: precision value: 96.02155091285526 - type: recall value: 96.83794466403161 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kik_Latn-rus_Cyrl) type: mteb/flores config: kik_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 76.28458498023716 - type: f1 value: 73.5596919895859 - type: main_score value: 73.5596919895859 - type: precision value: 72.40900759055246 - type: recall value: 76.28458498023716 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mai_Deva-rus_Cyrl) type: mteb/flores config: mai_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.72727272727273 - type: f1 value: 97.37812911725956 - type: main_score value: 97.37812911725956 - type: precision value: 97.26002258610953 - type: recall value: 97.72727272727273 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pbt_Arab-rus_Cyrl) type: mteb/flores config: pbt_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.0711462450593 - type: f1 value: 93.34700387331966 - type: main_score value: 93.34700387331966 - type: precision value: 93.06920556920556 - type: recall value: 94.0711462450593 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (spa_Latn-rus_Cyrl) type: mteb/flores config: spa_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (twi_Latn-rus_Cyrl) type: mteb/flores config: twi_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.73122529644269 - type: f1 value: 77.77434363246721 - type: main_score value: 77.77434363246721 - type: precision value: 76.54444287596462 - type: recall value: 80.73122529644269 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (acm_Arab-rus_Cyrl) type: mteb/flores config: acm_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.56521739130434 - type: f1 value: 92.92490118577075 - type: main_score value: 92.92490118577075 - type: precision value: 92.16897233201581 - type: recall value: 94.56521739130434 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bel_Cyrl-rus_Cyrl) type: mteb/flores config: bel_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.98550724637681 - type: main_score value: 98.98550724637681 - type: precision value: 98.88833992094862 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (eng_Latn-rus_Cyrl) type: mteb/flores config: eng_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.4729907773386 - type: main_score value: 99.4729907773386 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hrv_Latn-rus_Cyrl) type: mteb/flores config: hrv_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 99.05138339920948 - type: main_score value: 99.05138339920948 - type: precision value: 99.00691699604744 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kin_Latn-rus_Cyrl) type: mteb/flores config: kin_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.2411067193676 - type: f1 value: 86.5485246227658 - type: main_score value: 86.5485246227658 - type: precision value: 85.90652101521667 - type: recall value: 88.2411067193676 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mal_Mlym-rus_Cyrl) type: mteb/flores config: mal_Mlym-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.51778656126481 - type: f1 value: 98.07971014492753 - type: main_score value: 98.07971014492753 - type: precision value: 97.88372859025033 - type: recall value: 98.51778656126481 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pes_Arab-rus_Cyrl) type: mteb/flores config: pes_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.51778656126481 - type: f1 value: 98.0566534914361 - type: main_score value: 98.0566534914361 - type: precision value: 97.82608695652173 - type: recall value: 98.51778656126481 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (srd_Latn-rus_Cyrl) type: mteb/flores config: srd_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.6086956521739 - type: f1 value: 80.9173470979821 - type: main_score value: 80.9173470979821 - type: precision value: 80.24468672882627 - type: recall value: 82.6086956521739 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tzm_Tfng-rus_Cyrl) type: mteb/flores config: tzm_Tfng-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 7.41106719367589 - type: f1 value: 6.363562740945329 - type: main_score value: 6.363562740945329 - type: precision value: 6.090373175353411 - type: recall value: 7.41106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (acq_Arab-rus_Cyrl) type: mteb/flores config: acq_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.25691699604744 - type: f1 value: 93.81422924901187 - type: main_score value: 93.81422924901187 - type: precision value: 93.14064558629775 - type: recall value: 95.25691699604744 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bem_Latn-rus_Cyrl) type: mteb/flores config: bem_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.08300395256917 - type: f1 value: 65.01368772860867 - type: main_score value: 65.01368772860867 - type: precision value: 63.91052337510628 - type: recall value: 68.08300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (epo_Latn-rus_Cyrl) type: mteb/flores config: epo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.41897233201581 - type: f1 value: 98.17193675889328 - type: main_score value: 98.17193675889328 - type: precision value: 98.08210564139418 - type: recall value: 98.41897233201581 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hun_Latn-rus_Cyrl) type: mteb/flores config: hun_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.1106719367589 - type: main_score value: 99.1106719367589 - type: precision value: 99.01185770750988 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kir_Cyrl-rus_Cyrl) type: mteb/flores config: kir_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.5296442687747 - type: f1 value: 97.07549806364035 - type: main_score value: 97.07549806364035 - type: precision value: 96.90958498023716 - type: recall value: 97.5296442687747 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mar_Deva-rus_Cyrl) type: mteb/flores config: mar_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.44400527009222 - type: main_score value: 97.44400527009222 - type: precision value: 97.28966685488425 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (plt_Latn-rus_Cyrl) type: mteb/flores config: plt_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 79.9407114624506 - type: f1 value: 78.3154177760691 - type: main_score value: 78.3154177760691 - type: precision value: 77.69877344877344 - type: recall value: 79.9407114624506 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (srp_Cyrl-rus_Cyrl) type: mteb/flores config: srp_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.70355731225297 - type: f1 value: 99.60474308300395 - type: main_score value: 99.60474308300395 - type: precision value: 99.55533596837944 - type: recall value: 99.70355731225297 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (uig_Arab-rus_Cyrl) type: mteb/flores config: uig_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.20158102766798 - type: f1 value: 81.44381923034585 - type: main_score value: 81.44381923034585 - type: precision value: 80.78813411582477 - type: recall value: 83.20158102766798 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (aeb_Arab-rus_Cyrl) type: mteb/flores config: aeb_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.20553359683794 - type: f1 value: 88.75352907961603 - type: main_score value: 88.75352907961603 - type: precision value: 87.64328063241106 - type: recall value: 91.20553359683794 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ben_Beng-rus_Cyrl) type: mteb/flores config: ben_Beng-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.60671936758894 - type: main_score value: 98.60671936758894 - type: precision value: 98.4766139657444 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (est_Latn-rus_Cyrl) type: mteb/flores config: est_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.24505928853755 - type: f1 value: 95.27417027417027 - type: main_score value: 95.27417027417027 - type: precision value: 94.84107378129117 - type: recall value: 96.24505928853755 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hye_Armn-rus_Cyrl) type: mteb/flores config: hye_Armn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.67786561264822 - type: main_score value: 97.67786561264822 - type: precision value: 97.55839022637441 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kmb_Latn-rus_Cyrl) type: mteb/flores config: kmb_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 46.047430830039524 - type: f1 value: 42.94464804804471 - type: main_score value: 42.94464804804471 - type: precision value: 41.9851895607238 - type: recall value: 46.047430830039524 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (min_Arab-rus_Cyrl) type: mteb/flores config: min_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 3.9525691699604746 - type: f1 value: 3.402665192725756 - type: main_score value: 3.402665192725756 - type: precision value: 3.303787557740127 - type: recall value: 3.9525691699604746 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pol_Latn-rus_Cyrl) type: mteb/flores config: pol_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.4729907773386 - type: main_score value: 99.4729907773386 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ssw_Latn-rus_Cyrl) type: mteb/flores config: ssw_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 73.22134387351778 - type: f1 value: 70.43086049508975 - type: main_score value: 70.43086049508975 - type: precision value: 69.35312022355656 - type: recall value: 73.22134387351778 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ukr_Cyrl-rus_Cyrl) type: mteb/flores config: ukr_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.90118577075098 - type: f1 value: 99.86824769433464 - type: main_score value: 99.86824769433464 - type: precision value: 99.85177865612648 - type: recall value: 99.90118577075098 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (afr_Latn-rus_Cyrl) type: mteb/flores config: afr_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bho_Deva-rus_Cyrl) type: mteb/flores config: bho_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.0711462450593 - type: f1 value: 93.12182382834557 - type: main_score value: 93.12182382834557 - type: precision value: 92.7523453232338 - type: recall value: 94.0711462450593 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (eus_Latn-rus_Cyrl) type: mteb/flores config: eus_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.19367588932806 - type: f1 value: 91.23604975587072 - type: main_score value: 91.23604975587072 - type: precision value: 90.86697443588663 - type: recall value: 92.19367588932806 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ibo_Latn-rus_Cyrl) type: mteb/flores config: ibo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.21343873517787 - type: f1 value: 80.17901604858126 - type: main_score value: 80.17901604858126 - type: precision value: 79.3792284780028 - type: recall value: 82.21343873517787 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kmr_Latn-rus_Cyrl) type: mteb/flores config: kmr_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.67588932806325 - type: f1 value: 66.72311714750278 - type: main_score value: 66.72311714750278 - type: precision value: 66.00178401554004 - type: recall value: 68.67588932806325 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (min_Latn-rus_Cyrl) type: mteb/flores config: min_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 78.65612648221344 - type: f1 value: 76.26592719972166 - type: main_score value: 76.26592719972166 - type: precision value: 75.39980459997484 - type: recall value: 78.65612648221344 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (por_Latn-rus_Cyrl) type: mteb/flores config: por_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.83794466403161 - type: f1 value: 95.9669678147939 - type: main_score value: 95.9669678147939 - type: precision value: 95.59453227931488 - type: recall value: 96.83794466403161 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sun_Latn-rus_Cyrl) type: mteb/flores config: sun_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.4901185770751 - type: f1 value: 91.66553983773662 - type: main_score value: 91.66553983773662 - type: precision value: 91.34530928009188 - type: recall value: 92.4901185770751 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (umb_Latn-rus_Cyrl) type: mteb/flores config: umb_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 41.00790513833992 - type: f1 value: 38.21319326004483 - type: main_score value: 38.21319326004483 - type: precision value: 37.200655467675546 - type: recall value: 41.00790513833992 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ajp_Arab-rus_Cyrl) type: mteb/flores config: ajp_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.35573122529645 - type: f1 value: 93.97233201581028 - type: main_score value: 93.97233201581028 - type: precision value: 93.33333333333333 - type: recall value: 95.35573122529645 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bjn_Arab-rus_Cyrl) type: mteb/flores config: bjn_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 3.6561264822134385 - type: f1 value: 3.1071978056336484 - type: main_score value: 3.1071978056336484 - type: precision value: 3.0039741229718215 - type: recall value: 3.6561264822134385 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ewe_Latn-rus_Cyrl) type: mteb/flores config: ewe_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 62.845849802371546 - type: f1 value: 59.82201175670472 - type: main_score value: 59.82201175670472 - type: precision value: 58.72629236362003 - type: recall value: 62.845849802371546 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ilo_Latn-rus_Cyrl) type: mteb/flores config: ilo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.10276679841897 - type: f1 value: 80.75065288987582 - type: main_score value: 80.75065288987582 - type: precision value: 79.80726451662179 - type: recall value: 83.10276679841897 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (knc_Arab-rus_Cyrl) type: mteb/flores config: knc_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 10.079051383399209 - type: f1 value: 8.759282456080921 - type: main_score value: 8.759282456080921 - type: precision value: 8.474735138956142 - type: recall value: 10.079051383399209 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mkd_Cyrl-rus_Cyrl) type: mteb/flores config: mkd_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.55072463768116 - type: main_score value: 98.55072463768116 - type: precision value: 98.36956521739131 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (prs_Arab-rus_Cyrl) type: mteb/flores config: prs_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (swe_Latn-rus_Cyrl) type: mteb/flores config: swe_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.22595520421606 - type: main_score value: 99.22595520421606 - type: precision value: 99.14361001317523 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (urd_Arab-rus_Cyrl) type: mteb/flores config: urd_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.25625823451911 - type: main_score value: 97.25625823451911 - type: precision value: 97.03063241106719 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (aka_Latn-rus_Cyrl) type: mteb/flores config: aka_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.22529644268775 - type: f1 value: 77.94307687941227 - type: main_score value: 77.94307687941227 - type: precision value: 76.58782793293665 - type: recall value: 81.22529644268775 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bjn_Latn-rus_Cyrl) type: mteb/flores config: bjn_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.27667984189723 - type: f1 value: 83.6869192829922 - type: main_score value: 83.6869192829922 - type: precision value: 83.08670670691656 - type: recall value: 85.27667984189723 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fao_Latn-rus_Cyrl) type: mteb/flores config: fao_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.9288537549407 - type: f1 value: 79.29806087454745 - type: main_score value: 79.29806087454745 - type: precision value: 78.71445871526987 - type: recall value: 80.9288537549407 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ind_Latn-rus_Cyrl) type: mteb/flores config: ind_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.5296442687747 - type: main_score value: 97.5296442687747 - type: precision value: 97.23320158102767 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (knc_Latn-rus_Cyrl) type: mteb/flores config: knc_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 33.49802371541502 - type: f1 value: 32.02378215033989 - type: main_score value: 32.02378215033989 - type: precision value: 31.511356103747406 - type: recall value: 33.49802371541502 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mlt_Latn-rus_Cyrl) type: mteb/flores config: mlt_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.40316205533597 - type: f1 value: 90.35317684386006 - type: main_score value: 90.35317684386006 - type: precision value: 89.94845939633488 - type: recall value: 91.40316205533597 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (quy_Latn-rus_Cyrl) type: mteb/flores config: quy_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 40.612648221343875 - type: f1 value: 38.74337544712602 - type: main_score value: 38.74337544712602 - type: precision value: 38.133716022178575 - type: recall value: 40.612648221343875 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (swh_Latn-rus_Cyrl) type: mteb/flores config: swh_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.13438735177866 - type: f1 value: 96.47435897435898 - type: main_score value: 96.47435897435898 - type: precision value: 96.18741765480895 - type: recall value: 97.13438735177866 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (uzn_Latn-rus_Cyrl) type: mteb/flores config: uzn_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.83794466403161 - type: f1 value: 96.26355528529442 - type: main_score value: 96.26355528529442 - type: precision value: 96.0501756697409 - type: recall value: 96.83794466403161 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (als_Latn-rus_Cyrl) type: mteb/flores config: als_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.6907114624506 - type: main_score value: 98.6907114624506 - type: precision value: 98.6142480707698 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bod_Tibt-rus_Cyrl) type: mteb/flores config: bod_Tibt-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 1.0869565217391304 - type: f1 value: 0.9224649610442628 - type: main_score value: 0.9224649610442628 - type: precision value: 0.8894275740459898 - type: recall value: 1.0869565217391304 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fij_Latn-rus_Cyrl) type: mteb/flores config: fij_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 63.24110671936759 - type: f1 value: 60.373189068189525 - type: main_score value: 60.373189068189525 - type: precision value: 59.32326368115546 - type: recall value: 63.24110671936759 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (isl_Latn-rus_Cyrl) type: mteb/flores config: isl_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.03162055335969 - type: f1 value: 87.3102634715907 - type: main_score value: 87.3102634715907 - type: precision value: 86.65991814698712 - type: recall value: 89.03162055335969 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kon_Latn-rus_Cyrl) type: mteb/flores config: kon_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 73.91304347826086 - type: f1 value: 71.518235523573 - type: main_score value: 71.518235523573 - type: precision value: 70.58714102449801 - type: recall value: 73.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mni_Beng-rus_Cyrl) type: mteb/flores config: mni_Beng-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 29.545454545454547 - type: f1 value: 27.59513619889114 - type: main_score value: 27.59513619889114 - type: precision value: 26.983849851025344 - type: recall value: 29.545454545454547 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ron_Latn-rus_Cyrl) type: mteb/flores config: ron_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (szl_Latn-rus_Cyrl) type: mteb/flores config: szl_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.26482213438736 - type: f1 value: 85.18912031587512 - type: main_score value: 85.18912031587512 - type: precision value: 84.77199409959775 - type: recall value: 86.26482213438736 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (vec_Latn-rus_Cyrl) type: mteb/flores config: vec_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.67193675889328 - type: f1 value: 84.62529734716581 - type: main_score value: 84.62529734716581 - type: precision value: 84.2611422440705 - type: recall value: 85.67193675889328 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (amh_Ethi-rus_Cyrl) type: mteb/flores config: amh_Ethi-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.76284584980237 - type: f1 value: 93.91735076517685 - type: main_score value: 93.91735076517685 - type: precision value: 93.57553798858147 - type: recall value: 94.76284584980237 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bos_Latn-rus_Cyrl) type: mteb/flores config: bos_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 99.05655938264634 - type: main_score value: 99.05655938264634 - type: precision value: 99.01185770750988 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fin_Latn-rus_Cyrl) type: mteb/flores config: fin_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.43741765480895 - type: main_score value: 97.43741765480895 - type: precision value: 97.1590909090909 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ita_Latn-rus_Cyrl) type: mteb/flores config: ita_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.70355731225297 - type: f1 value: 99.60474308300395 - type: main_score value: 99.60474308300395 - type: precision value: 99.55533596837944 - type: recall value: 99.70355731225297 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kor_Hang-rus_Cyrl) type: mteb/flores config: kor_Hang-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.33201581027669 - type: f1 value: 96.49868247694334 - type: main_score value: 96.49868247694334 - type: precision value: 96.10507246376811 - type: recall value: 97.33201581027669 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mos_Latn-rus_Cyrl) type: mteb/flores config: mos_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 34.683794466403164 - type: f1 value: 32.766819308009076 - type: main_score value: 32.766819308009076 - type: precision value: 32.1637493670237 - type: recall value: 34.683794466403164 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (run_Latn-rus_Cyrl) type: mteb/flores config: run_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.399209486166 - type: f1 value: 81.10578750604326 - type: main_score value: 81.10578750604326 - type: precision value: 80.16763162673529 - type: recall value: 83.399209486166 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tam_Taml-rus_Cyrl) type: mteb/flores config: tam_Taml-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.41897233201581 - type: f1 value: 98.01548089591567 - type: main_score value: 98.01548089591567 - type: precision value: 97.84020327498588 - type: recall value: 98.41897233201581 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (vie_Latn-rus_Cyrl) type: mteb/flores config: vie_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.81422924901186 - type: main_score value: 98.81422924901186 - type: precision value: 98.66600790513834 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (apc_Arab-rus_Cyrl) type: mteb/flores config: apc_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.87351778656127 - type: f1 value: 92.10803689064558 - type: main_score value: 92.10803689064558 - type: precision value: 91.30434782608695 - type: recall value: 93.87351778656127 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bug_Latn-rus_Cyrl) type: mteb/flores config: bug_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 57.608695652173914 - type: f1 value: 54.95878654927162 - type: main_score value: 54.95878654927162 - type: precision value: 54.067987427805654 - type: recall value: 57.608695652173914 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fon_Latn-rus_Cyrl) type: mteb/flores config: fon_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 61.95652173913043 - type: f1 value: 58.06537275812945 - type: main_score value: 58.06537275812945 - type: precision value: 56.554057596959204 - type: recall value: 61.95652173913043 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (jav_Latn-rus_Cyrl) type: mteb/flores config: jav_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.47826086956522 - type: f1 value: 92.4784405318002 - type: main_score value: 92.4784405318002 - type: precision value: 92.09168143201127 - type: recall value: 93.47826086956522 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lao_Laoo-rus_Cyrl) type: mteb/flores config: lao_Laoo-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.10671936758892 - type: f1 value: 89.76104922745239 - type: main_score value: 89.76104922745239 - type: precision value: 89.24754593232855 - type: recall value: 91.10671936758892 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mri_Latn-rus_Cyrl) type: mteb/flores config: mri_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 71.14624505928853 - type: f1 value: 68.26947125119062 - type: main_score value: 68.26947125119062 - type: precision value: 67.15942311051006 - type: recall value: 71.14624505928853 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ace_Arab) type: mteb/flores config: rus_Cyrl-ace_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 19.565217391304348 - type: f1 value: 16.321465000323805 - type: main_score value: 16.321465000323805 - type: precision value: 15.478527409347508 - type: recall value: 19.565217391304348 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bam_Latn) type: mteb/flores config: rus_Cyrl-bam_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 73.41897233201581 - type: f1 value: 68.77366228182746 - type: main_score value: 68.77366228182746 - type: precision value: 66.96012924273795 - type: recall value: 73.41897233201581 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-dzo_Tibt) type: mteb/flores config: rus_Cyrl-dzo_Tibt split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 0.592885375494071 - type: f1 value: 0.02458062426370458 - type: main_score value: 0.02458062426370458 - type: precision value: 0.012824114724683876 - type: recall value: 0.592885375494071 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hin_Deva) type: mteb/flores config: rus_Cyrl-hin_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.90118577075098 - type: f1 value: 99.86824769433464 - type: main_score value: 99.86824769433464 - type: precision value: 99.85177865612648 - type: recall value: 99.90118577075098 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-khm_Khmr) type: mteb/flores config: rus_Cyrl-khm_Khmr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.13438735177866 - type: f1 value: 96.24505928853755 - type: main_score value: 96.24505928853755 - type: precision value: 95.81686429512516 - type: recall value: 97.13438735177866 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mag_Deva) type: mteb/flores config: rus_Cyrl-mag_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.50592885375494 - type: f1 value: 99.35770750988142 - type: main_score value: 99.35770750988142 - type: precision value: 99.29183135704875 - type: recall value: 99.50592885375494 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pap_Latn) type: mteb/flores config: rus_Cyrl-pap_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.93675889328063 - type: f1 value: 96.05072463768116 - type: main_score value: 96.05072463768116 - type: precision value: 95.66040843214758 - type: recall value: 96.93675889328063 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sot_Latn) type: mteb/flores config: rus_Cyrl-sot_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.67588932806325 - type: f1 value: 91.7786561264822 - type: main_score value: 91.7786561264822 - type: precision value: 90.91238471673255 - type: recall value: 93.67588932806325 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tur_Latn) type: mteb/flores config: rus_Cyrl-tur_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ace_Latn) type: mteb/flores config: rus_Cyrl-ace_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 74.1106719367589 - type: f1 value: 70.21737923911836 - type: main_score value: 70.21737923911836 - type: precision value: 68.7068791410511 - type: recall value: 74.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ban_Latn) type: mteb/flores config: rus_Cyrl-ban_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.7193675889328 - type: f1 value: 78.76470334510617 - type: main_score value: 78.76470334510617 - type: precision value: 77.76208475761422 - type: recall value: 81.7193675889328 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ell_Grek) type: mteb/flores config: rus_Cyrl-ell_Grek split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.3201581027668 - type: f1 value: 97.76021080368908 - type: main_score value: 97.76021080368908 - type: precision value: 97.48023715415019 - type: recall value: 98.3201581027668 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hne_Deva) type: mteb/flores config: rus_Cyrl-hne_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.51778656126481 - type: f1 value: 98.0566534914361 - type: main_score value: 98.0566534914361 - type: precision value: 97.82608695652173 - type: recall value: 98.51778656126481 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kik_Latn) type: mteb/flores config: rus_Cyrl-kik_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.73122529644269 - type: f1 value: 76.42689244220864 - type: main_score value: 76.42689244220864 - type: precision value: 74.63877909530083 - type: recall value: 80.73122529644269 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mai_Deva) type: mteb/flores config: rus_Cyrl-mai_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.56719367588933 - type: main_score value: 98.56719367588933 - type: precision value: 98.40250329380763 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pbt_Arab) type: mteb/flores config: rus_Cyrl-pbt_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.5296442687747 - type: f1 value: 96.73913043478261 - type: main_score value: 96.73913043478261 - type: precision value: 96.36034255599473 - type: recall value: 97.5296442687747 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-spa_Latn) type: mteb/flores config: rus_Cyrl-spa_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.20948616600789 - type: main_score value: 99.20948616600789 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-twi_Latn) type: mteb/flores config: rus_Cyrl-twi_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.01581027667984 - type: f1 value: 78.064787822953 - type: main_score value: 78.064787822953 - type: precision value: 76.43272186750448 - type: recall value: 82.01581027667984 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-acm_Arab) type: mteb/flores config: rus_Cyrl-acm_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.3201581027668 - type: f1 value: 97.76021080368908 - type: main_score value: 97.76021080368908 - type: precision value: 97.48023715415019 - type: recall value: 98.3201581027668 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bel_Cyrl) type: mteb/flores config: rus_Cyrl-bel_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.22134387351778 - type: f1 value: 97.67786561264822 - type: main_score value: 97.67786561264822 - type: precision value: 97.4308300395257 - type: recall value: 98.22134387351778 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-eng_Latn) type: mteb/flores config: rus_Cyrl-eng_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.70355731225297 - type: f1 value: 99.60474308300395 - type: main_score value: 99.60474308300395 - type: precision value: 99.55533596837944 - type: recall value: 99.70355731225297 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hrv_Latn) type: mteb/flores config: rus_Cyrl-hrv_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.83069828722002 - type: main_score value: 98.83069828722002 - type: precision value: 98.69894598155466 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kin_Latn) type: mteb/flores config: rus_Cyrl-kin_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.37944664031622 - type: f1 value: 91.53162055335969 - type: main_score value: 91.53162055335969 - type: precision value: 90.71475625823452 - type: recall value: 93.37944664031622 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mal_Mlym) type: mteb/flores config: rus_Cyrl-mal_Mlym split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.07773386034255 - type: main_score value: 99.07773386034255 - type: precision value: 98.96245059288538 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pes_Arab) type: mteb/flores config: rus_Cyrl-pes_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.30368906455863 - type: main_score value: 98.30368906455863 - type: precision value: 98.10606060606061 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-srd_Latn) type: mteb/flores config: rus_Cyrl-srd_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.03162055335969 - type: f1 value: 86.11048371917937 - type: main_score value: 86.11048371917937 - type: precision value: 84.86001317523056 - type: recall value: 89.03162055335969 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tzm_Tfng) type: mteb/flores config: rus_Cyrl-tzm_Tfng split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 12.351778656126482 - type: f1 value: 10.112177999067715 - type: main_score value: 10.112177999067715 - type: precision value: 9.53495885438645 - type: recall value: 12.351778656126482 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-acq_Arab) type: mteb/flores config: rus_Cyrl-acq_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.55072463768116 - type: main_score value: 98.55072463768116 - type: precision value: 98.36956521739131 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bem_Latn) type: mteb/flores config: rus_Cyrl-bem_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 73.22134387351778 - type: f1 value: 68.30479412989295 - type: main_score value: 68.30479412989295 - type: precision value: 66.40073447632736 - type: recall value: 73.22134387351778 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-epo_Latn) type: mteb/flores config: rus_Cyrl-epo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.81422924901186 - type: main_score value: 98.81422924901186 - type: precision value: 98.66600790513834 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hun_Latn) type: mteb/flores config: rus_Cyrl-hun_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.83794466403161 - type: f1 value: 95.88274044795784 - type: main_score value: 95.88274044795784 - type: precision value: 95.45454545454545 - type: recall value: 96.83794466403161 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kir_Cyrl) type: mteb/flores config: rus_Cyrl-kir_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.34387351778656 - type: f1 value: 95.49280429715212 - type: main_score value: 95.49280429715212 - type: precision value: 95.14163372859026 - type: recall value: 96.34387351778656 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mar_Deva) type: mteb/flores config: rus_Cyrl-mar_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.28722002635047 - type: main_score value: 98.28722002635047 - type: precision value: 98.07312252964427 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-plt_Latn) type: mteb/flores config: rus_Cyrl-plt_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.04347826086956 - type: f1 value: 85.14328063241106 - type: main_score value: 85.14328063241106 - type: precision value: 83.96339168078298 - type: recall value: 88.04347826086956 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-srp_Cyrl) type: mteb/flores config: rus_Cyrl-srp_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-uig_Arab) type: mteb/flores config: rus_Cyrl-uig_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.19367588932806 - type: f1 value: 89.98541313758706 - type: main_score value: 89.98541313758706 - type: precision value: 89.01021080368906 - type: recall value: 92.19367588932806 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-aeb_Arab) type: mteb/flores config: rus_Cyrl-aeb_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.8498023715415 - type: f1 value: 94.63109354413703 - type: main_score value: 94.63109354413703 - type: precision value: 94.05467720685111 - type: recall value: 95.8498023715415 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ben_Beng) type: mteb/flores config: rus_Cyrl-ben_Beng split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-est_Latn) type: mteb/flores config: rus_Cyrl-est_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.55335968379447 - type: f1 value: 94.2588932806324 - type: main_score value: 94.2588932806324 - type: precision value: 93.65118577075098 - type: recall value: 95.55335968379447 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hye_Armn) type: mteb/flores config: rus_Cyrl-hye_Armn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.28722002635045 - type: main_score value: 98.28722002635045 - type: precision value: 98.07312252964427 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kmb_Latn) type: mteb/flores config: rus_Cyrl-kmb_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 54.24901185770751 - type: f1 value: 49.46146674116913 - type: main_score value: 49.46146674116913 - type: precision value: 47.81033799314432 - type: recall value: 54.24901185770751 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-min_Arab) type: mteb/flores config: rus_Cyrl-min_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 15.810276679841898 - type: f1 value: 13.271207641419332 - type: main_score value: 13.271207641419332 - type: precision value: 12.510673148766033 - type: recall value: 15.810276679841898 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pol_Latn) type: mteb/flores config: rus_Cyrl-pol_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.32674571805006 - type: main_score value: 98.32674571805006 - type: precision value: 98.14723320158103 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ssw_Latn) type: mteb/flores config: rus_Cyrl-ssw_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.8300395256917 - type: f1 value: 76.51717847370023 - type: main_score value: 76.51717847370023 - type: precision value: 74.74143610013175 - type: recall value: 80.8300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ukr_Cyrl) type: mteb/flores config: rus_Cyrl-ukr_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.4729907773386 - type: main_score value: 99.4729907773386 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-afr_Latn) type: mteb/flores config: rus_Cyrl-afr_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.81422924901186 - type: main_score value: 98.81422924901186 - type: precision value: 98.66600790513834 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bho_Deva) type: mteb/flores config: rus_Cyrl-bho_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.6403162055336 - type: f1 value: 95.56982872200265 - type: main_score value: 95.56982872200265 - type: precision value: 95.0592885375494 - type: recall value: 96.6403162055336 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-eus_Latn) type: mteb/flores config: rus_Cyrl-eus_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.62845849802372 - type: f1 value: 96.9038208168643 - type: main_score value: 96.9038208168643 - type: precision value: 96.55797101449275 - type: recall value: 97.62845849802372 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ibo_Latn) type: mteb/flores config: rus_Cyrl-ibo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.2292490118577 - type: f1 value: 86.35234330886506 - type: main_score value: 86.35234330886506 - type: precision value: 85.09881422924902 - type: recall value: 89.2292490118577 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kmr_Latn) type: mteb/flores config: rus_Cyrl-kmr_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.49802371541502 - type: f1 value: 79.23630717108978 - type: main_score value: 79.23630717108978 - type: precision value: 77.48188405797102 - type: recall value: 83.49802371541502 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-min_Latn) type: mteb/flores config: rus_Cyrl-min_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 79.34782608695652 - type: f1 value: 75.31689928429059 - type: main_score value: 75.31689928429059 - type: precision value: 73.91519410541149 - type: recall value: 79.34782608695652 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-por_Latn) type: mteb/flores config: rus_Cyrl-por_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.54150197628458 - type: f1 value: 95.53218520609825 - type: main_score value: 95.53218520609825 - type: precision value: 95.07575757575756 - type: recall value: 96.54150197628458 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sun_Latn) type: mteb/flores config: rus_Cyrl-sun_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.2806324110672 - type: f1 value: 91.56973461321287 - type: main_score value: 91.56973461321287 - type: precision value: 90.84396334890405 - type: recall value: 93.2806324110672 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-umb_Latn) type: mteb/flores config: rus_Cyrl-umb_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 51.87747035573123 - type: f1 value: 46.36591778884269 - type: main_score value: 46.36591778884269 - type: precision value: 44.57730391234227 - type: recall value: 51.87747035573123 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ajp_Arab) type: mteb/flores config: rus_Cyrl-ajp_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.30368906455863 - type: main_score value: 98.30368906455863 - type: precision value: 98.10606060606061 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bjn_Arab) type: mteb/flores config: rus_Cyrl-bjn_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 14.82213438735178 - type: f1 value: 12.365434276616856 - type: main_score value: 12.365434276616856 - type: precision value: 11.802079517180589 - type: recall value: 14.82213438735178 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ewe_Latn) type: mteb/flores config: rus_Cyrl-ewe_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 71.44268774703558 - type: f1 value: 66.74603174603175 - type: main_score value: 66.74603174603175 - type: precision value: 64.99933339607253 - type: recall value: 71.44268774703558 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ilo_Latn) type: mteb/flores config: rus_Cyrl-ilo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.86956521739131 - type: f1 value: 83.00139015960917 - type: main_score value: 83.00139015960917 - type: precision value: 81.91411396574439 - type: recall value: 85.86956521739131 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-knc_Arab) type: mteb/flores config: rus_Cyrl-knc_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 14.525691699604742 - type: f1 value: 12.618283715726806 - type: main_score value: 12.618283715726806 - type: precision value: 12.048458493742352 - type: recall value: 14.525691699604742 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mkd_Cyrl) type: mteb/flores config: rus_Cyrl-mkd_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.22595520421606 - type: main_score value: 99.22595520421606 - type: precision value: 99.14361001317523 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-prs_Arab) type: mteb/flores config: rus_Cyrl-prs_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.07773386034255 - type: main_score value: 99.07773386034255 - type: precision value: 98.96245059288538 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-swe_Latn) type: mteb/flores config: rus_Cyrl-swe_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.07773386034256 - type: main_score value: 99.07773386034256 - type: precision value: 98.96245059288538 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-urd_Arab) type: mteb/flores config: rus_Cyrl-urd_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.61660079051383 - type: f1 value: 98.15546772068511 - type: main_score value: 98.15546772068511 - type: precision value: 97.92490118577075 - type: recall value: 98.61660079051383 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-aka_Latn) type: mteb/flores config: rus_Cyrl-aka_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.02766798418972 - type: f1 value: 76.73277809147375 - type: main_score value: 76.73277809147375 - type: precision value: 74.97404165882426 - type: recall value: 81.02766798418972 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bjn_Latn) type: mteb/flores config: rus_Cyrl-bjn_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.7588932806324 - type: f1 value: 83.92064566965753 - type: main_score value: 83.92064566965753 - type: precision value: 82.83734079929732 - type: recall value: 86.7588932806324 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fao_Latn) type: mteb/flores config: rus_Cyrl-fao_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.43873517786561 - type: f1 value: 85.48136645962732 - type: main_score value: 85.48136645962732 - type: precision value: 84.23418972332016 - type: recall value: 88.43873517786561 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ind_Latn) type: mteb/flores config: rus_Cyrl-ind_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-knc_Latn) type: mteb/flores config: rus_Cyrl-knc_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 45.8498023715415 - type: f1 value: 40.112030865489366 - type: main_score value: 40.112030865489366 - type: precision value: 38.28262440050776 - type: recall value: 45.8498023715415 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mlt_Latn) type: mteb/flores config: rus_Cyrl-mlt_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.18181818181817 - type: f1 value: 91.30787690570298 - type: main_score value: 91.30787690570298 - type: precision value: 90.4983060417843 - type: recall value: 93.18181818181817 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-quy_Latn) type: mteb/flores config: rus_Cyrl-quy_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 62.450592885375485 - type: f1 value: 57.28742975628178 - type: main_score value: 57.28742975628178 - type: precision value: 55.56854987623269 - type: recall value: 62.450592885375485 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-swh_Latn) type: mteb/flores config: rus_Cyrl-swh_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.3201581027668 - type: f1 value: 97.77667984189723 - type: main_score value: 97.77667984189723 - type: precision value: 97.51317523056655 - type: recall value: 98.3201581027668 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-uzn_Latn) type: mteb/flores config: rus_Cyrl-uzn_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.59081498211933 - type: main_score value: 97.59081498211933 - type: precision value: 97.34848484848484 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-als_Latn) type: mteb/flores config: rus_Cyrl-als_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.09420289855073 - type: main_score value: 99.09420289855073 - type: precision value: 98.99538866930172 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bod_Tibt) type: mteb/flores config: rus_Cyrl-bod_Tibt split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 11.561264822134387 - type: f1 value: 8.121312045385636 - type: main_score value: 8.121312045385636 - type: precision value: 7.350577020893972 - type: recall value: 11.561264822134387 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fij_Latn) type: mteb/flores config: rus_Cyrl-fij_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 72.23320158102767 - type: f1 value: 67.21000233846082 - type: main_score value: 67.21000233846082 - type: precision value: 65.3869439739005 - type: recall value: 72.23320158102767 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-isl_Latn) type: mteb/flores config: rus_Cyrl-isl_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.99604743083005 - type: f1 value: 89.75955204216073 - type: main_score value: 89.75955204216073 - type: precision value: 88.7598814229249 - type: recall value: 91.99604743083005 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kon_Latn) type: mteb/flores config: rus_Cyrl-kon_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.81818181818183 - type: f1 value: 77.77800098452272 - type: main_score value: 77.77800098452272 - type: precision value: 76.1521268586486 - type: recall value: 81.81818181818183 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mni_Beng) type: mteb/flores config: rus_Cyrl-mni_Beng split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 54.74308300395256 - type: f1 value: 48.97285299254615 - type: main_score value: 48.97285299254615 - type: precision value: 46.95125742968299 - type: recall value: 54.74308300395256 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ron_Latn) type: mteb/flores config: rus_Cyrl-ron_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.22134387351778 - type: f1 value: 97.64492753623189 - type: main_score value: 97.64492753623189 - type: precision value: 97.36495388669302 - type: recall value: 98.22134387351778 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-szl_Latn) type: mteb/flores config: rus_Cyrl-szl_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.09486166007905 - type: f1 value: 90.10375494071147 - type: main_score value: 90.10375494071147 - type: precision value: 89.29606625258798 - type: recall value: 92.09486166007905 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-vec_Latn) type: mteb/flores config: rus_Cyrl-vec_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.4901185770751 - type: f1 value: 90.51430453604365 - type: main_score value: 90.51430453604365 - type: precision value: 89.69367588932808 - type: recall value: 92.4901185770751 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-amh_Ethi) type: mteb/flores config: rus_Cyrl-amh_Ethi split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.11791831357048 - type: main_score value: 97.11791831357048 - type: precision value: 96.77206851119894 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bos_Latn) type: mteb/flores config: rus_Cyrl-bos_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.55072463768116 - type: main_score value: 98.55072463768116 - type: precision value: 98.36956521739131 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fin_Latn) type: mteb/flores config: rus_Cyrl-fin_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.65217391304348 - type: f1 value: 94.4235836627141 - type: main_score value: 94.4235836627141 - type: precision value: 93.84881422924902 - type: recall value: 95.65217391304348 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ita_Latn) type: mteb/flores config: rus_Cyrl-ita_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.55072463768117 - type: main_score value: 98.55072463768117 - type: precision value: 98.36956521739131 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kor_Hang) type: mteb/flores config: rus_Cyrl-kor_Hang split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.55335968379447 - type: f1 value: 94.15349143610013 - type: main_score value: 94.15349143610013 - type: precision value: 93.49472990777339 - type: recall value: 95.55335968379447 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mos_Latn) type: mteb/flores config: rus_Cyrl-mos_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 43.67588932806324 - type: f1 value: 38.84849721190082 - type: main_score value: 38.84849721190082 - type: precision value: 37.43294462099682 - type: recall value: 43.67588932806324 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-run_Latn) type: mteb/flores config: rus_Cyrl-run_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 90.21739130434783 - type: f1 value: 87.37483530961792 - type: main_score value: 87.37483530961792 - type: precision value: 86.07872200263506 - type: recall value: 90.21739130434783 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tam_Taml) type: mteb/flores config: rus_Cyrl-tam_Taml split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-vie_Latn) type: mteb/flores config: rus_Cyrl-vie_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.03557312252964 - type: f1 value: 96.13636363636364 - type: main_score value: 96.13636363636364 - type: precision value: 95.70981554677206 - type: recall value: 97.03557312252964 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-apc_Arab) type: mteb/flores config: rus_Cyrl-apc_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.49670619235836 - type: main_score value: 97.49670619235836 - type: precision value: 97.18379446640316 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bug_Latn) type: mteb/flores config: rus_Cyrl-bug_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 67.29249011857708 - type: f1 value: 62.09268717667927 - type: main_score value: 62.09268717667927 - type: precision value: 60.28554009748714 - type: recall value: 67.29249011857708 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fon_Latn) type: mteb/flores config: rus_Cyrl-fon_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 63.43873517786561 - type: f1 value: 57.66660107569199 - type: main_score value: 57.66660107569199 - type: precision value: 55.66676396919363 - type: recall value: 63.43873517786561 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-jav_Latn) type: mteb/flores config: rus_Cyrl-jav_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.46640316205533 - type: f1 value: 92.89384528514964 - type: main_score value: 92.89384528514964 - type: precision value: 92.19367588932806 - type: recall value: 94.46640316205533 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lao_Laoo) type: mteb/flores config: rus_Cyrl-lao_Laoo split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.23320158102767 - type: f1 value: 96.40974967061922 - type: main_score value: 96.40974967061922 - type: precision value: 96.034255599473 - type: recall value: 97.23320158102767 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mri_Latn) type: mteb/flores config: rus_Cyrl-mri_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 76.77865612648222 - type: f1 value: 73.11286539547409 - type: main_score value: 73.11286539547409 - type: precision value: 71.78177214337046 - type: recall value: 76.77865612648222 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-taq_Latn) type: mteb/flores config: rus_Cyrl-taq_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 41.99604743083004 - type: f1 value: 37.25127063318763 - type: main_score value: 37.25127063318763 - type: precision value: 35.718929186985726 - type: recall value: 41.99604743083004 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-war_Latn) type: mteb/flores config: rus_Cyrl-war_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.55335968379447 - type: f1 value: 94.1699604743083 - type: main_score value: 94.1699604743083 - type: precision value: 93.52766798418972 - type: recall value: 95.55335968379447 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-arb_Arab) type: mteb/flores config: rus_Cyrl-arb_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.4729907773386 - type: main_score value: 99.4729907773386 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bul_Cyrl) type: mteb/flores config: rus_Cyrl-bul_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.70355731225297 - type: f1 value: 99.60474308300395 - type: main_score value: 99.60474308300395 - type: precision value: 99.55533596837944 - type: recall value: 99.70355731225297 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fra_Latn) type: mteb/flores config: rus_Cyrl-fra_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.47299077733861 - type: main_score value: 99.47299077733861 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-jpn_Jpan) type: mteb/flores config: rus_Cyrl-jpn_Jpan split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.44268774703558 - type: f1 value: 95.30632411067194 - type: main_score value: 95.30632411067194 - type: precision value: 94.76284584980237 - type: recall value: 96.44268774703558 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lij_Latn) type: mteb/flores config: rus_Cyrl-lij_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 90.21739130434783 - type: f1 value: 87.4703557312253 - type: main_score value: 87.4703557312253 - type: precision value: 86.29611330698287 - type: recall value: 90.21739130434783 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-mya_Mymr) type: mteb/flores config: rus_Cyrl-mya_Mymr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.364953886693 - type: main_score value: 97.364953886693 - type: precision value: 97.03557312252964 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sag_Latn) type: mteb/flores config: rus_Cyrl-sag_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 54.841897233201585 - type: f1 value: 49.61882037503349 - type: main_score value: 49.61882037503349 - type: precision value: 47.831968755881796 - type: recall value: 54.841897233201585 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-taq_Tfng) type: mteb/flores config: rus_Cyrl-taq_Tfng split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 15.316205533596838 - type: f1 value: 11.614836360389717 - type: main_score value: 11.614836360389717 - type: precision value: 10.741446193235223 - type: recall value: 15.316205533596838 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-wol_Latn) type: mteb/flores config: rus_Cyrl-wol_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 67.88537549407114 - type: f1 value: 62.2536417249856 - type: main_score value: 62.2536417249856 - type: precision value: 60.27629128666678 - type: recall value: 67.88537549407114 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-arb_Latn) type: mteb/flores config: rus_Cyrl-arb_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 27.766798418972332 - type: f1 value: 23.39674889624077 - type: main_score value: 23.39674889624077 - type: precision value: 22.28521155585345 - type: recall value: 27.766798418972332 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-cat_Latn) type: mteb/flores config: rus_Cyrl-cat_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.23320158102767 - type: f1 value: 96.42151326933936 - type: main_score value: 96.42151326933936 - type: precision value: 96.04743083003953 - type: recall value: 97.23320158102767 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fur_Latn) type: mteb/flores config: rus_Cyrl-fur_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.63636363636364 - type: f1 value: 85.80792396009788 - type: main_score value: 85.80792396009788 - type: precision value: 84.61508901726293 - type: recall value: 88.63636363636364 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kab_Latn) type: mteb/flores config: rus_Cyrl-kab_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 48.12252964426877 - type: f1 value: 43.05387582971066 - type: main_score value: 43.05387582971066 - type: precision value: 41.44165117538212 - type: recall value: 48.12252964426877 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lim_Latn) type: mteb/flores config: rus_Cyrl-lim_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.81818181818183 - type: f1 value: 77.81676163099087 - type: main_score value: 77.81676163099087 - type: precision value: 76.19565217391305 - type: recall value: 81.81818181818183 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nld_Latn) type: mteb/flores config: rus_Cyrl-nld_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.33201581027669 - type: f1 value: 96.4756258234519 - type: main_score value: 96.4756258234519 - type: precision value: 96.06389986824769 - type: recall value: 97.33201581027669 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-san_Deva) type: mteb/flores config: rus_Cyrl-san_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.47826086956522 - type: f1 value: 91.70289855072463 - type: main_score value: 91.70289855072463 - type: precision value: 90.9370882740448 - type: recall value: 93.47826086956522 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tat_Cyrl) type: mteb/flores config: rus_Cyrl-tat_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.72727272727273 - type: f1 value: 97.00263504611331 - type: main_score value: 97.00263504611331 - type: precision value: 96.65678524374177 - type: recall value: 97.72727272727273 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-xho_Latn) type: mteb/flores config: rus_Cyrl-xho_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.08300395256917 - type: f1 value: 91.12977602108036 - type: main_score value: 91.12977602108036 - type: precision value: 90.22562582345192 - type: recall value: 93.08300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ars_Arab) type: mteb/flores config: rus_Cyrl-ars_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.40711462450594 - type: f1 value: 99.2094861660079 - type: main_score value: 99.2094861660079 - type: precision value: 99.1106719367589 - type: recall value: 99.40711462450594 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ceb_Latn) type: mteb/flores config: rus_Cyrl-ceb_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.65217391304348 - type: f1 value: 94.3544137022398 - type: main_score value: 94.3544137022398 - type: precision value: 93.76646903820817 - type: recall value: 95.65217391304348 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-fuv_Latn) type: mteb/flores config: rus_Cyrl-fuv_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 51.18577075098815 - type: f1 value: 44.5990252610806 - type: main_score value: 44.5990252610806 - type: precision value: 42.34331599450177 - type: recall value: 51.18577075098815 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kac_Latn) type: mteb/flores config: rus_Cyrl-kac_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 46.93675889328063 - type: f1 value: 41.79004018701787 - type: main_score value: 41.79004018701787 - type: precision value: 40.243355662392624 - type: recall value: 46.93675889328063 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lin_Latn) type: mteb/flores config: rus_Cyrl-lin_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.50197628458498 - type: f1 value: 89.1205533596838 - type: main_score value: 89.1205533596838 - type: precision value: 88.07147562582345 - type: recall value: 91.50197628458498 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nno_Latn) type: mteb/flores config: rus_Cyrl-nno_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.81422924901186 - type: f1 value: 98.41897233201581 - type: main_score value: 98.41897233201581 - type: precision value: 98.22134387351778 - type: recall value: 98.81422924901186 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sat_Olck) type: mteb/flores config: rus_Cyrl-sat_Olck split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 2.371541501976284 - type: f1 value: 1.0726274943087382 - type: main_score value: 1.0726274943087382 - type: precision value: 0.875279634748803 - type: recall value: 2.371541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tel_Telu) type: mteb/flores config: rus_Cyrl-tel_Telu split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ydd_Hebr) type: mteb/flores config: rus_Cyrl-ydd_Hebr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.42687747035573 - type: f1 value: 86.47609636740073 - type: main_score value: 86.47609636740073 - type: precision value: 85.13669301712781 - type: recall value: 89.42687747035573 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ary_Arab) type: mteb/flores config: rus_Cyrl-ary_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.82213438735178 - type: f1 value: 87.04545454545456 - type: main_score value: 87.04545454545456 - type: precision value: 85.76910408432148 - type: recall value: 89.82213438735178 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ces_Latn) type: mteb/flores config: rus_Cyrl-ces_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-gaz_Latn) type: mteb/flores config: rus_Cyrl-gaz_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 64.9209486166008 - type: f1 value: 58.697458119394874 - type: main_score value: 58.697458119394874 - type: precision value: 56.43402189597842 - type: recall value: 64.9209486166008 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kam_Latn) type: mteb/flores config: rus_Cyrl-kam_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 59.18972332015811 - type: f1 value: 53.19031511966295 - type: main_score value: 53.19031511966295 - type: precision value: 51.08128357343655 - type: recall value: 59.18972332015811 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lit_Latn) type: mteb/flores config: rus_Cyrl-lit_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.54150197628458 - type: f1 value: 95.5368906455863 - type: main_score value: 95.5368906455863 - type: precision value: 95.0592885375494 - type: recall value: 96.54150197628458 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nob_Latn) type: mteb/flores config: rus_Cyrl-nob_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.51317523056655 - type: main_score value: 97.51317523056655 - type: precision value: 97.2167325428195 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-scn_Latn) type: mteb/flores config: rus_Cyrl-scn_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 84.0909090909091 - type: f1 value: 80.37000439174352 - type: main_score value: 80.37000439174352 - type: precision value: 78.83994628559846 - type: recall value: 84.0909090909091 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tgk_Cyrl) type: mteb/flores config: rus_Cyrl-tgk_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.68774703557312 - type: f1 value: 90.86344814605684 - type: main_score value: 90.86344814605684 - type: precision value: 90.12516469038208 - type: recall value: 92.68774703557312 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-yor_Latn) type: mteb/flores config: rus_Cyrl-yor_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 72.13438735177866 - type: f1 value: 66.78759646150951 - type: main_score value: 66.78759646150951 - type: precision value: 64.85080192096002 - type: recall value: 72.13438735177866 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-arz_Arab) type: mteb/flores config: rus_Cyrl-arz_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.364953886693 - type: main_score value: 97.364953886693 - type: precision value: 97.03557312252964 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-cjk_Latn) type: mteb/flores config: rus_Cyrl-cjk_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 51.976284584980235 - type: f1 value: 46.468762353149714 - type: main_score value: 46.468762353149714 - type: precision value: 44.64073366247278 - type: recall value: 51.976284584980235 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-gla_Latn) type: mteb/flores config: rus_Cyrl-gla_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 79.74308300395256 - type: f1 value: 75.55611165294958 - type: main_score value: 75.55611165294958 - type: precision value: 73.95033408620365 - type: recall value: 79.74308300395256 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kan_Knda) type: mteb/flores config: rus_Cyrl-kan_Knda split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.96245059288538 - type: main_score value: 98.96245059288538 - type: precision value: 98.84716732542819 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lmo_Latn) type: mteb/flores config: rus_Cyrl-lmo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.41106719367589 - type: f1 value: 78.56413514022209 - type: main_score value: 78.56413514022209 - type: precision value: 77.15313068573938 - type: recall value: 82.41106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-npi_Deva) type: mteb/flores config: rus_Cyrl-npi_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.3201581027668 - type: main_score value: 98.3201581027668 - type: precision value: 98.12252964426878 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-shn_Mymr) type: mteb/flores config: rus_Cyrl-shn_Mymr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 57.11462450592886 - type: f1 value: 51.51361369197337 - type: main_score value: 51.51361369197337 - type: precision value: 49.71860043649573 - type: recall value: 57.11462450592886 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tgl_Latn) type: mteb/flores config: rus_Cyrl-tgl_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.18379446640316 - type: main_score value: 97.18379446640316 - type: precision value: 96.88735177865613 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-yue_Hant) type: mteb/flores config: rus_Cyrl-yue_Hant split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.09420289855072 - type: main_score value: 99.09420289855072 - type: precision value: 98.9953886693017 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-asm_Beng) type: mteb/flores config: rus_Cyrl-asm_Beng split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.55335968379447 - type: f1 value: 94.16007905138339 - type: main_score value: 94.16007905138339 - type: precision value: 93.50296442687747 - type: recall value: 95.55335968379447 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ckb_Arab) type: mteb/flores config: rus_Cyrl-ckb_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.88537549407114 - type: f1 value: 90.76745718050066 - type: main_score value: 90.76745718050066 - type: precision value: 89.80072463768116 - type: recall value: 92.88537549407114 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-gle_Latn) type: mteb/flores config: rus_Cyrl-gle_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.699604743083 - type: f1 value: 89.40899680030115 - type: main_score value: 89.40899680030115 - type: precision value: 88.40085638998683 - type: recall value: 91.699604743083 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kas_Arab) type: mteb/flores config: rus_Cyrl-kas_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 88.3399209486166 - type: f1 value: 85.14351590438548 - type: main_score value: 85.14351590438548 - type: precision value: 83.72364953886692 - type: recall value: 88.3399209486166 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ltg_Latn) type: mteb/flores config: rus_Cyrl-ltg_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.399209486166 - type: f1 value: 79.88408934061107 - type: main_score value: 79.88408934061107 - type: precision value: 78.53794509179885 - type: recall value: 83.399209486166 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nso_Latn) type: mteb/flores config: rus_Cyrl-nso_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.20553359683794 - type: f1 value: 88.95406635525212 - type: main_score value: 88.95406635525212 - type: precision value: 88.01548089591567 - type: recall value: 91.20553359683794 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sin_Sinh) type: mteb/flores config: rus_Cyrl-sin_Sinh split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.56719367588933 - type: main_score value: 98.56719367588933 - type: precision value: 98.40250329380763 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tha_Thai) type: mteb/flores config: rus_Cyrl-tha_Thai split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.94861660079052 - type: f1 value: 94.66403162055336 - type: main_score value: 94.66403162055336 - type: precision value: 94.03820816864295 - type: recall value: 95.94861660079052 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-zho_Hans) type: mteb/flores config: rus_Cyrl-zho_Hans split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.4308300395257 - type: f1 value: 96.5909090909091 - type: main_score value: 96.5909090909091 - type: precision value: 96.17918313570487 - type: recall value: 97.4308300395257 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ast_Latn) type: mteb/flores config: rus_Cyrl-ast_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.46640316205533 - type: f1 value: 92.86890645586297 - type: main_score value: 92.86890645586297 - type: precision value: 92.14756258234519 - type: recall value: 94.46640316205533 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-crh_Latn) type: mteb/flores config: rus_Cyrl-crh_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.66403162055336 - type: f1 value: 93.2663592446201 - type: main_score value: 93.2663592446201 - type: precision value: 92.66716073781292 - type: recall value: 94.66403162055336 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-glg_Latn) type: mteb/flores config: rus_Cyrl-glg_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.81422924901186 - type: f1 value: 98.46837944664031 - type: main_score value: 98.46837944664031 - type: precision value: 98.3201581027668 - type: recall value: 98.81422924901186 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kas_Deva) type: mteb/flores config: rus_Cyrl-kas_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 69.1699604743083 - type: f1 value: 63.05505292906477 - type: main_score value: 63.05505292906477 - type: precision value: 60.62594108789761 - type: recall value: 69.1699604743083 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ltz_Latn) type: mteb/flores config: rus_Cyrl-ltz_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.40316205533597 - type: f1 value: 89.26571616789009 - type: main_score value: 89.26571616789009 - type: precision value: 88.40179747788443 - type: recall value: 91.40316205533597 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nus_Latn) type: mteb/flores config: rus_Cyrl-nus_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 38.93280632411067 - type: f1 value: 33.98513032905371 - type: main_score value: 33.98513032905371 - type: precision value: 32.56257884802308 - type: recall value: 38.93280632411067 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-slk_Latn) type: mteb/flores config: rus_Cyrl-slk_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.42094861660078 - type: main_score value: 97.42094861660078 - type: precision value: 97.14262187088273 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tir_Ethi) type: mteb/flores config: rus_Cyrl-tir_Ethi split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.30434782608695 - type: f1 value: 88.78129117259552 - type: main_score value: 88.78129117259552 - type: precision value: 87.61528326745717 - type: recall value: 91.30434782608695 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-zho_Hant) type: mteb/flores config: rus_Cyrl-zho_Hant split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.81422924901186 - type: main_score value: 98.81422924901186 - type: precision value: 98.66600790513834 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-awa_Deva) type: mteb/flores config: rus_Cyrl-awa_Deva split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.70092226613966 - type: main_score value: 97.70092226613966 - type: precision value: 97.50494071146245 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-cym_Latn) type: mteb/flores config: rus_Cyrl-cym_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.94861660079052 - type: f1 value: 94.74308300395256 - type: main_score value: 94.74308300395256 - type: precision value: 94.20289855072464 - type: recall value: 95.94861660079052 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-grn_Latn) type: mteb/flores config: rus_Cyrl-grn_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 77.96442687747036 - type: f1 value: 73.64286789187975 - type: main_score value: 73.64286789187975 - type: precision value: 71.99324893260821 - type: recall value: 77.96442687747036 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kat_Geor) type: mteb/flores config: rus_Cyrl-kat_Geor split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.56719367588933 - type: main_score value: 98.56719367588933 - type: precision value: 98.40250329380764 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lua_Latn) type: mteb/flores config: rus_Cyrl-lua_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 72.03557312252964 - type: f1 value: 67.23928163404449 - type: main_score value: 67.23928163404449 - type: precision value: 65.30797101449275 - type: recall value: 72.03557312252964 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-nya_Latn) type: mteb/flores config: rus_Cyrl-nya_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.29249011857708 - type: f1 value: 90.0494071146245 - type: main_score value: 90.0494071146245 - type: precision value: 89.04808959156786 - type: recall value: 92.29249011857708 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-slv_Latn) type: mteb/flores config: rus_Cyrl-slv_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.30368906455863 - type: main_score value: 98.30368906455863 - type: precision value: 98.10606060606061 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tpi_Latn) type: mteb/flores config: rus_Cyrl-tpi_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.53359683794467 - type: f1 value: 76.59481822525301 - type: main_score value: 76.59481822525301 - type: precision value: 75.12913223140497 - type: recall value: 80.53359683794467 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-zsm_Latn) type: mteb/flores config: rus_Cyrl-zsm_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.33201581027669 - type: f1 value: 96.58620365142104 - type: main_score value: 96.58620365142104 - type: precision value: 96.26152832674572 - type: recall value: 97.33201581027669 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ayr_Latn) type: mteb/flores config: rus_Cyrl-ayr_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 45.55335968379446 - type: f1 value: 40.13076578531388 - type: main_score value: 40.13076578531388 - type: precision value: 38.398064362362355 - type: recall value: 45.55335968379446 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-dan_Latn) type: mteb/flores config: rus_Cyrl-dan_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-guj_Gujr) type: mteb/flores config: rus_Cyrl-guj_Gujr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kaz_Cyrl) type: mteb/flores config: rus_Cyrl-kaz_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.81422924901186 - type: f1 value: 98.43544137022398 - type: main_score value: 98.43544137022398 - type: precision value: 98.25428194993412 - type: recall value: 98.81422924901186 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lug_Latn) type: mteb/flores config: rus_Cyrl-lug_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.21343873517787 - type: f1 value: 77.97485726833554 - type: main_score value: 77.97485726833554 - type: precision value: 76.22376717485415 - type: recall value: 82.21343873517787 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-oci_Latn) type: mteb/flores config: rus_Cyrl-oci_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.87351778656127 - type: f1 value: 92.25319969885187 - type: main_score value: 92.25319969885187 - type: precision value: 91.5638528138528 - type: recall value: 93.87351778656127 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-smo_Latn) type: mteb/flores config: rus_Cyrl-smo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 84.88142292490119 - type: f1 value: 81.24364765669114 - type: main_score value: 81.24364765669114 - type: precision value: 79.69991416137661 - type: recall value: 84.88142292490119 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tsn_Latn) type: mteb/flores config: rus_Cyrl-tsn_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.05533596837944 - type: f1 value: 83.90645586297761 - type: main_score value: 83.90645586297761 - type: precision value: 82.56752305665349 - type: recall value: 87.05533596837944 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-zul_Latn) type: mteb/flores config: rus_Cyrl-zul_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.15810276679841 - type: f1 value: 93.77140974967062 - type: main_score value: 93.77140974967062 - type: precision value: 93.16534914361002 - type: recall value: 95.15810276679841 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-azb_Arab) type: mteb/flores config: rus_Cyrl-azb_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.91699604743083 - type: f1 value: 77.18050065876152 - type: main_score value: 77.18050065876152 - type: precision value: 75.21519543258673 - type: recall value: 81.91699604743083 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-deu_Latn) type: mteb/flores config: rus_Cyrl-deu_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.50592885375494 - type: f1 value: 99.34123847167325 - type: main_score value: 99.34123847167325 - type: precision value: 99.2588932806324 - type: recall value: 99.50592885375494 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hat_Latn) type: mteb/flores config: rus_Cyrl-hat_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.00790513833992 - type: f1 value: 88.69126043039086 - type: main_score value: 88.69126043039086 - type: precision value: 87.75774044795784 - type: recall value: 91.00790513833992 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kbp_Latn) type: mteb/flores config: rus_Cyrl-kbp_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 47.233201581027664 - type: f1 value: 43.01118618096943 - type: main_score value: 43.01118618096943 - type: precision value: 41.739069205043556 - type: recall value: 47.233201581027664 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-luo_Latn) type: mteb/flores config: rus_Cyrl-luo_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 60.47430830039525 - type: f1 value: 54.83210565429816 - type: main_score value: 54.83210565429816 - type: precision value: 52.81630744284779 - type: recall value: 60.47430830039525 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-ory_Orya) type: mteb/flores config: rus_Cyrl-ory_Orya split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.1106719367589 - type: f1 value: 98.83069828722003 - type: main_score value: 98.83069828722003 - type: precision value: 98.69894598155467 - type: recall value: 99.1106719367589 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-sna_Latn) type: mteb/flores config: rus_Cyrl-sna_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.72332015810277 - type: f1 value: 87.30013645774514 - type: main_score value: 87.30013645774514 - type: precision value: 86.25329380764163 - type: recall value: 89.72332015810277 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tso_Latn) type: mteb/flores config: rus_Cyrl-tso_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 84.38735177865613 - type: f1 value: 80.70424744337788 - type: main_score value: 80.70424744337788 - type: precision value: 79.18560606060606 - type: recall value: 84.38735177865613 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-azj_Latn) type: mteb/flores config: rus_Cyrl-azj_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.33201581027669 - type: f1 value: 96.56455862977602 - type: main_score value: 96.56455862977602 - type: precision value: 96.23682476943345 - type: recall value: 97.33201581027669 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-dik_Latn) type: mteb/flores config: rus_Cyrl-dik_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 46.047430830039524 - type: f1 value: 40.05513069495283 - type: main_score value: 40.05513069495283 - type: precision value: 38.072590197096126 - type: recall value: 46.047430830039524 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-hau_Latn) type: mteb/flores config: rus_Cyrl-hau_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.94466403162056 - type: f1 value: 84.76943346508563 - type: main_score value: 84.76943346508563 - type: precision value: 83.34486166007905 - type: recall value: 87.94466403162056 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-kea_Latn) type: mteb/flores config: rus_Cyrl-kea_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.42687747035573 - type: f1 value: 86.83803021747684 - type: main_score value: 86.83803021747684 - type: precision value: 85.78416149068323 - type: recall value: 89.42687747035573 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lus_Latn) type: mteb/flores config: rus_Cyrl-lus_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.97233201581028 - type: f1 value: 64.05480726292745 - type: main_score value: 64.05480726292745 - type: precision value: 62.42670749487858 - type: recall value: 68.97233201581028 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pag_Latn) type: mteb/flores config: rus_Cyrl-pag_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 78.75494071146245 - type: f1 value: 74.58573558401933 - type: main_score value: 74.58573558401933 - type: precision value: 73.05532028358115 - type: recall value: 78.75494071146245 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-snd_Arab) type: mteb/flores config: rus_Cyrl-snd_Arab split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.8498023715415 - type: f1 value: 94.56521739130434 - type: main_score value: 94.56521739130434 - type: precision value: 93.97233201581028 - type: recall value: 95.8498023715415 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tuk_Latn) type: mteb/flores config: rus_Cyrl-tuk_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.08300395256917 - type: f1 value: 62.93565240205557 - type: main_score value: 62.93565240205557 - type: precision value: 61.191590257043934 - type: recall value: 68.08300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-bak_Cyrl) type: mteb/flores config: rus_Cyrl-bak_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.04743083003953 - type: f1 value: 94.86824769433464 - type: main_score value: 94.86824769433464 - type: precision value: 94.34288537549406 - type: recall value: 96.04743083003953 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-dyu_Latn) type: mteb/flores config: rus_Cyrl-dyu_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 37.45059288537549 - type: f1 value: 31.670482312800807 - type: main_score value: 31.670482312800807 - type: precision value: 29.99928568357422 - type: recall value: 37.45059288537549 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-heb_Hebr) type: mteb/flores config: rus_Cyrl-heb_Hebr split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.23320158102767 - type: f1 value: 96.38998682476942 - type: main_score value: 96.38998682476942 - type: precision value: 95.99802371541502 - type: recall value: 97.23320158102767 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-khk_Cyrl) type: mteb/flores config: rus_Cyrl-khk_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.41897233201581 - type: f1 value: 98.00724637681158 - type: main_score value: 98.00724637681158 - type: precision value: 97.82938076416336 - type: recall value: 98.41897233201581 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-lvs_Latn) type: mteb/flores config: rus_Cyrl-lvs_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.4308300395257 - type: f1 value: 96.61396574440053 - type: main_score value: 96.61396574440053 - type: precision value: 96.2203557312253 - type: recall value: 97.4308300395257 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-pan_Guru) type: mteb/flores config: rus_Cyrl-pan_Guru split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.07773386034256 - type: main_score value: 99.07773386034256 - type: precision value: 98.96245059288538 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-som_Latn) type: mteb/flores config: rus_Cyrl-som_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.74703557312253 - type: f1 value: 84.52898550724638 - type: main_score value: 84.52898550724638 - type: precision value: 83.09288537549409 - type: recall value: 87.74703557312253 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (rus_Cyrl-tum_Latn) type: mteb/flores config: rus_Cyrl-tum_Latn split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.15415019762845 - type: f1 value: 83.85069640504425 - type: main_score value: 83.85069640504425 - type: precision value: 82.43671183888576 - type: recall value: 87.15415019762845 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (taq_Latn-rus_Cyrl) type: mteb/flores config: taq_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 28.55731225296443 - type: f1 value: 26.810726360049568 - type: main_score value: 26.810726360049568 - type: precision value: 26.260342858265577 - type: recall value: 28.55731225296443 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (war_Latn-rus_Cyrl) type: mteb/flores config: war_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.86166007905138 - type: f1 value: 94.03147083483051 - type: main_score value: 94.03147083483051 - type: precision value: 93.70653606003322 - type: recall value: 94.86166007905138 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (arb_Arab-rus_Cyrl) type: mteb/flores config: arb_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.34387351778656 - type: f1 value: 95.23056653491436 - type: main_score value: 95.23056653491436 - type: precision value: 94.70520421607378 - type: recall value: 96.34387351778656 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bul_Cyrl-rus_Cyrl) type: mteb/flores config: bul_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.90118577075098 - type: f1 value: 99.86824769433464 - type: main_score value: 99.86824769433464 - type: precision value: 99.85177865612648 - type: recall value: 99.90118577075098 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fra_Latn-rus_Cyrl) type: mteb/flores config: fra_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (jpn_Jpan-rus_Cyrl) type: mteb/flores config: jpn_Jpan-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.3201581027668 - type: f1 value: 97.76021080368905 - type: main_score value: 97.76021080368905 - type: precision value: 97.48023715415019 - type: recall value: 98.3201581027668 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lij_Latn-rus_Cyrl) type: mteb/flores config: lij_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 83.49802371541502 - type: f1 value: 81.64800059239636 - type: main_score value: 81.64800059239636 - type: precision value: 80.9443055878478 - type: recall value: 83.49802371541502 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (mya_Mymr-rus_Cyrl) type: mteb/flores config: mya_Mymr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 90.21739130434783 - type: f1 value: 88.76776366313682 - type: main_score value: 88.76776366313682 - type: precision value: 88.18370446119435 - type: recall value: 90.21739130434783 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sag_Latn-rus_Cyrl) type: mteb/flores config: sag_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 41.699604743083 - type: f1 value: 39.53066322643847 - type: main_score value: 39.53066322643847 - type: precision value: 38.822876239229274 - type: recall value: 41.699604743083 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (taq_Tfng-rus_Cyrl) type: mteb/flores config: taq_Tfng-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 10.67193675889328 - type: f1 value: 9.205744965817951 - type: main_score value: 9.205744965817951 - type: precision value: 8.85195219073817 - type: recall value: 10.67193675889328 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (wol_Latn-rus_Cyrl) type: mteb/flores config: wol_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 63.537549407114625 - type: f1 value: 60.65190727391827 - type: main_score value: 60.65190727391827 - type: precision value: 59.61144833427442 - type: recall value: 63.537549407114625 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (arb_Latn-rus_Cyrl) type: mteb/flores config: arb_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 13.142292490118576 - type: f1 value: 12.372910318176764 - type: main_score value: 12.372910318176764 - type: precision value: 12.197580895919188 - type: recall value: 13.142292490118576 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (cat_Latn-rus_Cyrl) type: mteb/flores config: cat_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.80599472990777 - type: main_score value: 98.80599472990777 - type: precision value: 98.72953133822698 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fur_Latn-rus_Cyrl) type: mteb/flores config: fur_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.02766798418972 - type: f1 value: 79.36184294084613 - type: main_score value: 79.36184294084613 - type: precision value: 78.69187826527705 - type: recall value: 81.02766798418972 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kab_Latn-rus_Cyrl) type: mteb/flores config: kab_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 34.387351778656125 - type: f1 value: 32.02306921576947 - type: main_score value: 32.02306921576947 - type: precision value: 31.246670347137467 - type: recall value: 34.387351778656125 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lim_Latn-rus_Cyrl) type: mteb/flores config: lim_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 78.26086956521739 - type: f1 value: 75.90239449214359 - type: main_score value: 75.90239449214359 - type: precision value: 75.02211430745493 - type: recall value: 78.26086956521739 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nld_Latn-rus_Cyrl) type: mteb/flores config: nld_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.9459815546772 - type: main_score value: 98.9459815546772 - type: precision value: 98.81422924901186 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (san_Deva-rus_Cyrl) type: mteb/flores config: san_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.94466403162056 - type: f1 value: 86.68928897189767 - type: main_score value: 86.68928897189767 - type: precision value: 86.23822997079216 - type: recall value: 87.94466403162056 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tat_Cyrl-rus_Cyrl) type: mteb/flores config: tat_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.03557312252964 - type: f1 value: 96.4167365353136 - type: main_score value: 96.4167365353136 - type: precision value: 96.16847826086958 - type: recall value: 97.03557312252964 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (xho_Latn-rus_Cyrl) type: mteb/flores config: xho_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.95652173913044 - type: f1 value: 85.5506497283435 - type: main_score value: 85.5506497283435 - type: precision value: 84.95270479733395 - type: recall value: 86.95652173913044 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ars_Arab-rus_Cyrl) type: mteb/flores config: ars_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 96.6403162055336 - type: f1 value: 95.60935441370223 - type: main_score value: 95.60935441370223 - type: precision value: 95.13339920948617 - type: recall value: 96.6403162055336 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ceb_Latn-rus_Cyrl) type: mteb/flores config: ceb_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.7509881422925 - type: f1 value: 95.05209198303827 - type: main_score value: 95.05209198303827 - type: precision value: 94.77662283368805 - type: recall value: 95.7509881422925 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (fuv_Latn-rus_Cyrl) type: mteb/flores config: fuv_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 45.25691699604743 - type: f1 value: 42.285666666742365 - type: main_score value: 42.285666666742365 - type: precision value: 41.21979853402283 - type: recall value: 45.25691699604743 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kac_Latn-rus_Cyrl) type: mteb/flores config: kac_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 34.683794466403164 - type: f1 value: 33.3235346229031 - type: main_score value: 33.3235346229031 - type: precision value: 32.94673924616852 - type: recall value: 34.683794466403164 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lin_Latn-rus_Cyrl) type: mteb/flores config: lin_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.85770750988142 - type: f1 value: 85.1867110799439 - type: main_score value: 85.1867110799439 - type: precision value: 84.53038212173273 - type: recall value: 86.85770750988142 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nno_Latn-rus_Cyrl) type: mteb/flores config: nno_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.4308300395257 - type: f1 value: 96.78383210991906 - type: main_score value: 96.78383210991906 - type: precision value: 96.51185770750989 - type: recall value: 97.4308300395257 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sat_Olck-rus_Cyrl) type: mteb/flores config: sat_Olck-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 1.185770750988142 - type: f1 value: 1.0279253129117258 - type: main_score value: 1.0279253129117258 - type: precision value: 1.0129746819135175 - type: recall value: 1.185770750988142 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tel_Telu-rus_Cyrl) type: mteb/flores config: tel_Telu-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.12252964426878 - type: f1 value: 97.61198945981555 - type: main_score value: 97.61198945981555 - type: precision value: 97.401185770751 - type: recall value: 98.12252964426878 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ydd_Hebr-rus_Cyrl) type: mteb/flores config: ydd_Hebr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 75.8893280632411 - type: f1 value: 74.00244008018511 - type: main_score value: 74.00244008018511 - type: precision value: 73.25683020960382 - type: recall value: 75.8893280632411 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ary_Arab-rus_Cyrl) type: mteb/flores config: ary_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.56126482213439 - type: f1 value: 83.72796285839765 - type: main_score value: 83.72796285839765 - type: precision value: 82.65014273166447 - type: recall value: 86.56126482213439 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ces_Latn-rus_Cyrl) type: mteb/flores config: ces_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.60474308300395 - type: f1 value: 99.4729907773386 - type: main_score value: 99.4729907773386 - type: precision value: 99.40711462450594 - type: recall value: 99.60474308300395 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (gaz_Latn-rus_Cyrl) type: mteb/flores config: gaz_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 42.58893280632411 - type: f1 value: 40.75832866805978 - type: main_score value: 40.75832866805978 - type: precision value: 40.14285046917723 - type: recall value: 42.58893280632411 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kam_Latn-rus_Cyrl) type: mteb/flores config: kam_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 45.25691699604743 - type: f1 value: 42.6975518029456 - type: main_score value: 42.6975518029456 - type: precision value: 41.87472710984596 - type: recall value: 45.25691699604743 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lit_Latn-rus_Cyrl) type: mteb/flores config: lit_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.33201581027669 - type: f1 value: 96.62384716732542 - type: main_score value: 96.62384716732542 - type: precision value: 96.3175230566535 - type: recall value: 97.33201581027669 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nob_Latn-rus_Cyrl) type: mteb/flores config: nob_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.30368906455863 - type: main_score value: 98.30368906455863 - type: precision value: 98.10606060606061 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (scn_Latn-rus_Cyrl) type: mteb/flores config: scn_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 70.45454545454545 - type: f1 value: 68.62561022640075 - type: main_score value: 68.62561022640075 - type: precision value: 67.95229103411222 - type: recall value: 70.45454545454545 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tgk_Cyrl-rus_Cyrl) type: mteb/flores config: tgk_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.4901185770751 - type: f1 value: 91.58514492753623 - type: main_score value: 91.58514492753623 - type: precision value: 91.24759298672342 - type: recall value: 92.4901185770751 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (yor_Latn-rus_Cyrl) type: mteb/flores config: yor_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 67.98418972332016 - type: f1 value: 64.72874247330768 - type: main_score value: 64.72874247330768 - type: precision value: 63.450823399938685 - type: recall value: 67.98418972332016 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (arz_Arab-rus_Cyrl) type: mteb/flores config: arz_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 94.56521739130434 - type: f1 value: 93.07971014492755 - type: main_score value: 93.07971014492755 - type: precision value: 92.42753623188406 - type: recall value: 94.56521739130434 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (cjk_Latn-rus_Cyrl) type: mteb/flores config: cjk_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 38.63636363636363 - type: f1 value: 36.25747140862938 - type: main_score value: 36.25747140862938 - type: precision value: 35.49101355074723 - type: recall value: 38.63636363636363 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (gla_Latn-rus_Cyrl) type: mteb/flores config: gla_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 69.26877470355731 - type: f1 value: 66.11797423328613 - type: main_score value: 66.11797423328613 - type: precision value: 64.89369649409694 - type: recall value: 69.26877470355731 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kan_Knda-rus_Cyrl) type: mteb/flores config: kan_Knda-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.51505740636176 - type: main_score value: 97.51505740636176 - type: precision value: 97.30731225296442 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lmo_Latn-rus_Cyrl) type: mteb/flores config: lmo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 73.3201581027668 - type: f1 value: 71.06371608677273 - type: main_score value: 71.06371608677273 - type: precision value: 70.26320288266223 - type: recall value: 73.3201581027668 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (npi_Deva-rus_Cyrl) type: mteb/flores config: npi_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.36645107198466 - type: main_score value: 97.36645107198466 - type: precision value: 97.1772068511199 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (shn_Mymr-rus_Cyrl) type: mteb/flores config: shn_Mymr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 39.426877470355734 - type: f1 value: 37.16728785513024 - type: main_score value: 37.16728785513024 - type: precision value: 36.56918548278505 - type: recall value: 39.426877470355734 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tgl_Latn-rus_Cyrl) type: mteb/flores config: tgl_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.92490118577075 - type: f1 value: 97.6378693769998 - type: main_score value: 97.6378693769998 - type: precision value: 97.55371440154047 - type: recall value: 97.92490118577075 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (yue_Hant-rus_Cyrl) type: mteb/flores config: yue_Hant-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.92490118577075 - type: f1 value: 97.3833051006964 - type: main_score value: 97.3833051006964 - type: precision value: 97.1590909090909 - type: recall value: 97.92490118577075 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (asm_Beng-rus_Cyrl) type: mteb/flores config: asm_Beng-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.78656126482213 - type: f1 value: 91.76917395296842 - type: main_score value: 91.76917395296842 - type: precision value: 91.38292866553736 - type: recall value: 92.78656126482213 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ckb_Arab-rus_Cyrl) type: mteb/flores config: ckb_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.8300395256917 - type: f1 value: 79.17664345468799 - type: main_score value: 79.17664345468799 - type: precision value: 78.5622171683459 - type: recall value: 80.8300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (gle_Latn-rus_Cyrl) type: mteb/flores config: gle_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.86956521739131 - type: f1 value: 84.45408265372492 - type: main_score value: 84.45408265372492 - type: precision value: 83.8774340026703 - type: recall value: 85.86956521739131 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kas_Arab-rus_Cyrl) type: mteb/flores config: kas_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 76.28458498023716 - type: f1 value: 74.11216313578267 - type: main_score value: 74.11216313578267 - type: precision value: 73.2491277759584 - type: recall value: 76.28458498023716 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ltg_Latn-rus_Cyrl) type: mteb/flores config: ltg_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 71.14624505928853 - type: f1 value: 68.69245357723618 - type: main_score value: 68.69245357723618 - type: precision value: 67.8135329666459 - type: recall value: 71.14624505928853 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nso_Latn-rus_Cyrl) type: mteb/flores config: nso_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.64822134387352 - type: f1 value: 85.98419219986725 - type: main_score value: 85.98419219986725 - type: precision value: 85.32513873917036 - type: recall value: 87.64822134387352 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sin_Sinh-rus_Cyrl) type: mteb/flores config: sin_Sinh-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.62845849802372 - type: f1 value: 97.10144927536231 - type: main_score value: 97.10144927536231 - type: precision value: 96.87986585219788 - type: recall value: 97.62845849802372 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tha_Thai-rus_Cyrl) type: mteb/flores config: tha_Thai-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.71541501976284 - type: f1 value: 98.28722002635045 - type: main_score value: 98.28722002635045 - type: precision value: 98.07312252964427 - type: recall value: 98.71541501976284 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (zho_Hans-rus_Cyrl) type: mteb/flores config: zho_Hans-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.68247694334651 - type: main_score value: 98.68247694334651 - type: precision value: 98.51778656126481 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ast_Latn-rus_Cyrl) type: mteb/flores config: ast_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.65217391304348 - type: f1 value: 94.90649683857505 - type: main_score value: 94.90649683857505 - type: precision value: 94.61352657004831 - type: recall value: 95.65217391304348 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (crh_Latn-rus_Cyrl) type: mteb/flores config: crh_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 93.08300395256917 - type: f1 value: 92.20988998886428 - type: main_score value: 92.20988998886428 - type: precision value: 91.85631013694254 - type: recall value: 93.08300395256917 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (glg_Latn-rus_Cyrl) type: mteb/flores config: glg_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.55335968379447 - type: f1 value: 95.18006148440931 - type: main_score value: 95.18006148440931 - type: precision value: 95.06540560888386 - type: recall value: 95.55335968379447 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kas_Deva-rus_Cyrl) type: mteb/flores config: kas_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 55.03952569169961 - type: f1 value: 52.19871938895554 - type: main_score value: 52.19871938895554 - type: precision value: 51.17660971469557 - type: recall value: 55.03952569169961 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ltz_Latn-rus_Cyrl) type: mteb/flores config: ltz_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 87.64822134387352 - type: f1 value: 86.64179841897234 - type: main_score value: 86.64179841897234 - type: precision value: 86.30023235431587 - type: recall value: 87.64822134387352 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nus_Latn-rus_Cyrl) type: mteb/flores config: nus_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 27.4703557312253 - type: f1 value: 25.703014277858088 - type: main_score value: 25.703014277858088 - type: precision value: 25.194105476917315 - type: recall value: 27.4703557312253 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (slk_Latn-rus_Cyrl) type: mteb/flores config: slk_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.1106719367589 - type: main_score value: 99.1106719367589 - type: precision value: 99.02832674571805 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tir_Ethi-rus_Cyrl) type: mteb/flores config: tir_Ethi-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 80.73122529644269 - type: f1 value: 78.66903754775608 - type: main_score value: 78.66903754775608 - type: precision value: 77.86431694163612 - type: recall value: 80.73122529644269 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (zho_Hant-rus_Cyrl) type: mteb/flores config: zho_Hant-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.22134387351778 - type: f1 value: 97.66798418972333 - type: main_score value: 97.66798418972333 - type: precision value: 97.40612648221344 - type: recall value: 98.22134387351778 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (awa_Deva-rus_Cyrl) type: mteb/flores config: awa_Deva-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.5296442687747 - type: f1 value: 96.94224857268335 - type: main_score value: 96.94224857268335 - type: precision value: 96.68560606060606 - type: recall value: 97.5296442687747 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (cym_Latn-rus_Cyrl) type: mteb/flores config: cym_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 92.68774703557312 - type: f1 value: 91.69854302097961 - type: main_score value: 91.69854302097961 - type: precision value: 91.31236846157795 - type: recall value: 92.68774703557312 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (grn_Latn-rus_Cyrl) type: mteb/flores config: grn_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 64.13043478260869 - type: f1 value: 61.850586118740004 - type: main_score value: 61.850586118740004 - type: precision value: 61.0049495186209 - type: recall value: 64.13043478260869 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kat_Geor-rus_Cyrl) type: mteb/flores config: kat_Geor-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.59881422924902 - type: main_score value: 97.59881422924902 - type: precision value: 97.42534036012296 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lua_Latn-rus_Cyrl) type: mteb/flores config: lua_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 63.63636363636363 - type: f1 value: 60.9709122526128 - type: main_score value: 60.9709122526128 - type: precision value: 60.03915902282226 - type: recall value: 63.63636363636363 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (nya_Latn-rus_Cyrl) type: mteb/flores config: nya_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 89.2292490118577 - type: f1 value: 87.59723824473149 - type: main_score value: 87.59723824473149 - type: precision value: 86.90172707867349 - type: recall value: 89.2292490118577 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (slv_Latn-rus_Cyrl) type: mteb/flores config: slv_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.01185770750988 - type: f1 value: 98.74835309617917 - type: main_score value: 98.74835309617917 - type: precision value: 98.63636363636364 - type: recall value: 99.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tpi_Latn-rus_Cyrl) type: mteb/flores config: tpi_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 77.37154150197628 - type: f1 value: 75.44251611276084 - type: main_score value: 75.44251611276084 - type: precision value: 74.78103665109595 - type: recall value: 77.37154150197628 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (zsm_Latn-rus_Cyrl) type: mteb/flores config: zsm_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.2094861660079 - type: f1 value: 98.96245059288538 - type: main_score value: 98.96245059288538 - type: precision value: 98.8471673254282 - type: recall value: 99.2094861660079 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ayr_Latn-rus_Cyrl) type: mteb/flores config: ayr_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 27.766798418972332 - type: f1 value: 26.439103195281312 - type: main_score value: 26.439103195281312 - type: precision value: 26.052655604573964 - type: recall value: 27.766798418972332 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (dan_Latn-rus_Cyrl) type: mteb/flores config: dan_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.30830039525692 - type: f1 value: 99.07773386034255 - type: main_score value: 99.07773386034255 - type: precision value: 98.96245059288538 - type: recall value: 99.30830039525692 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (guj_Gujr-rus_Cyrl) type: mteb/flores config: guj_Gujr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.26449275362317 - type: main_score value: 97.26449275362317 - type: precision value: 97.02498588368154 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kaz_Cyrl-rus_Cyrl) type: mteb/flores config: kaz_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.5296442687747 - type: f1 value: 97.03557312252964 - type: main_score value: 97.03557312252964 - type: precision value: 96.85022158342316 - type: recall value: 97.5296442687747 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lug_Latn-rus_Cyrl) type: mteb/flores config: lug_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 68.57707509881423 - type: f1 value: 65.93361605820395 - type: main_score value: 65.93361605820395 - type: precision value: 64.90348248593789 - type: recall value: 68.57707509881423 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (oci_Latn-rus_Cyrl) type: mteb/flores config: oci_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.26482213438736 - type: f1 value: 85.33176417155623 - type: main_score value: 85.33176417155623 - type: precision value: 85.00208833384637 - type: recall value: 86.26482213438736 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (smo_Latn-rus_Cyrl) type: mteb/flores config: smo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 77.96442687747036 - type: f1 value: 75.70960450188885 - type: main_score value: 75.70960450188885 - type: precision value: 74.8312632736777 - type: recall value: 77.96442687747036 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tsn_Latn-rus_Cyrl) type: mteb/flores config: tsn_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 84.38735177865613 - type: f1 value: 82.13656376349225 - type: main_score value: 82.13656376349225 - type: precision value: 81.16794543904518 - type: recall value: 84.38735177865613 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (zul_Latn-rus_Cyrl) type: mteb/flores config: zul_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 90.21739130434783 - type: f1 value: 88.77570602050753 - type: main_score value: 88.77570602050753 - type: precision value: 88.15978104021582 - type: recall value: 90.21739130434783 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (azb_Arab-rus_Cyrl) type: mteb/flores config: azb_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 65.71146245059289 - type: f1 value: 64.18825390221271 - type: main_score value: 64.18825390221271 - type: precision value: 63.66811154793568 - type: recall value: 65.71146245059289 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (deu_Latn-rus_Cyrl) type: mteb/flores config: deu_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 99.70355731225297 - type: f1 value: 99.60474308300395 - type: main_score value: 99.60474308300395 - type: precision value: 99.55533596837944 - type: recall value: 99.70355731225297 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hat_Latn-rus_Cyrl) type: mteb/flores config: hat_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 86.7588932806324 - type: f1 value: 85.86738623695146 - type: main_score value: 85.86738623695146 - type: precision value: 85.55235467420822 - type: recall value: 86.7588932806324 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kbp_Latn-rus_Cyrl) type: mteb/flores config: kbp_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 34.88142292490119 - type: f1 value: 32.16511669463015 - type: main_score value: 32.16511669463015 - type: precision value: 31.432098549546318 - type: recall value: 34.88142292490119 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (luo_Latn-rus_Cyrl) type: mteb/flores config: luo_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 52.27272727272727 - type: f1 value: 49.60489626836975 - type: main_score value: 49.60489626836975 - type: precision value: 48.69639631803339 - type: recall value: 52.27272727272727 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (ory_Orya-rus_Cyrl) type: mteb/flores config: ory_Orya-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.82608695652173 - type: f1 value: 97.27437417654808 - type: main_score value: 97.27437417654808 - type: precision value: 97.04968944099377 - type: recall value: 97.82608695652173 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (sna_Latn-rus_Cyrl) type: mteb/flores config: sna_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.37549407114624 - type: f1 value: 83.09911316305177 - type: main_score value: 83.09911316305177 - type: precision value: 82.1284950958864 - type: recall value: 85.37549407114624 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tso_Latn-rus_Cyrl) type: mteb/flores config: tso_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 82.90513833992095 - type: f1 value: 80.28290385503824 - type: main_score value: 80.28290385503824 - type: precision value: 79.23672543237761 - type: recall value: 82.90513833992095 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (azj_Latn-rus_Cyrl) type: mteb/flores config: azj_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.02371541501977 - type: f1 value: 97.49200075287031 - type: main_score value: 97.49200075287031 - type: precision value: 97.266139657444 - type: recall value: 98.02371541501977 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (dik_Latn-rus_Cyrl) type: mteb/flores config: dik_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 38.43873517786561 - type: f1 value: 35.78152442955223 - type: main_score value: 35.78152442955223 - type: precision value: 34.82424325078237 - type: recall value: 38.43873517786561 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (hau_Latn-rus_Cyrl) type: mteb/flores config: hau_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.42292490118577 - type: f1 value: 79.24612283124593 - type: main_score value: 79.24612283124593 - type: precision value: 78.34736070751448 - type: recall value: 81.42292490118577 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (kea_Latn-rus_Cyrl) type: mteb/flores config: kea_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 81.62055335968378 - type: f1 value: 80.47015182884748 - type: main_score value: 80.47015182884748 - type: precision value: 80.02671028885862 - type: recall value: 81.62055335968378 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lus_Latn-rus_Cyrl) type: mteb/flores config: lus_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 62.74703557312253 - type: f1 value: 60.53900079111122 - type: main_score value: 60.53900079111122 - type: precision value: 59.80024202850289 - type: recall value: 62.74703557312253 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pag_Latn-rus_Cyrl) type: mteb/flores config: pag_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 74.01185770750988 - type: f1 value: 72.57280648279529 - type: main_score value: 72.57280648279529 - type: precision value: 71.99952968456789 - type: recall value: 74.01185770750988 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (snd_Arab-rus_Cyrl) type: mteb/flores config: snd_Arab-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 91.30434782608695 - type: f1 value: 90.24653499445358 - type: main_score value: 90.24653499445358 - type: precision value: 89.83134068200232 - type: recall value: 91.30434782608695 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tuk_Latn-rus_Cyrl) type: mteb/flores config: tuk_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 47.62845849802372 - type: f1 value: 45.812928836644254 - type: main_score value: 45.812928836644254 - type: precision value: 45.23713833170355 - type: recall value: 47.62845849802372 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (bak_Cyrl-rus_Cyrl) type: mteb/flores config: bak_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.8498023715415 - type: f1 value: 95.18904459615922 - type: main_score value: 95.18904459615922 - type: precision value: 94.92812441182006 - type: recall value: 95.8498023715415 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (dyu_Latn-rus_Cyrl) type: mteb/flores config: dyu_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 29.64426877470356 - type: f1 value: 27.287335193938166 - type: main_score value: 27.287335193938166 - type: precision value: 26.583996026587492 - type: recall value: 29.64426877470356 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (heb_Hebr-rus_Cyrl) type: mteb/flores config: heb_Hebr-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 98.91304347826086 - type: f1 value: 98.55072463768116 - type: main_score value: 98.55072463768116 - type: precision value: 98.36956521739131 - type: recall value: 98.91304347826086 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (khk_Cyrl-rus_Cyrl) type: mteb/flores config: khk_Cyrl-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 95.15810276679841 - type: f1 value: 94.44009547764487 - type: main_score value: 94.44009547764487 - type: precision value: 94.16579797014579 - type: recall value: 95.15810276679841 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (lvs_Latn-rus_Cyrl) type: mteb/flores config: lvs_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.92490118577075 - type: f1 value: 97.51467241585817 - type: main_score value: 97.51467241585817 - type: precision value: 97.36166007905138 - type: recall value: 97.92490118577075 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (pan_Guru-rus_Cyrl) type: mteb/flores config: pan_Guru-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 97.92490118577075 - type: f1 value: 97.42918313570486 - type: main_score value: 97.42918313570486 - type: precision value: 97.22261434217955 - type: recall value: 97.92490118577075 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (som_Latn-rus_Cyrl) type: mteb/flores config: som_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 75.69169960474308 - type: f1 value: 73.7211667065916 - type: main_score value: 73.7211667065916 - type: precision value: 72.95842401892384 - type: recall value: 75.69169960474308 - task: type: BitextMining dataset: name: MTEB FloresBitextMining (tum_Latn-rus_Cyrl) type: mteb/flores config: tum_Latn-rus_Cyrl split: devtest revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e metrics: - type: accuracy value: 85.67193675889328 - type: f1 value: 82.9296066252588 - type: main_score value: 82.9296066252588 - type: precision value: 81.77330225447936 - type: recall value: 85.67193675889328 - task: type: Classification dataset: name: MTEB GeoreviewClassification (default) type: ai-forever/georeview-classification config: default split: test revision: 3765c0d1de6b7d264bc459433c45e5a75513839c metrics: - type: accuracy value: 44.6630859375 - type: f1 value: 42.607425073610536 - type: f1_weighted value: 42.60639474586065 - type: main_score value: 44.6630859375 - task: type: Clustering dataset: name: MTEB GeoreviewClusteringP2P (default) type: ai-forever/georeview-clustering-p2p config: default split: test revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec metrics: - type: main_score value: 58.15951247070825 - type: v_measure value: 58.15951247070825 - type: v_measure_std value: 0.6739615788288809 - task: type: Classification dataset: name: MTEB HeadlineClassification (default) type: ai-forever/headline-classification config: default split: test revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb metrics: - type: accuracy value: 73.935546875 - type: f1 value: 73.8654872186846 - type: f1_weighted value: 73.86733122685095 - type: main_score value: 73.935546875 - task: type: Classification dataset: name: MTEB InappropriatenessClassification (default) type: ai-forever/inappropriateness-classification config: default split: test revision: 601651fdc45ef243751676e62dd7a19f491c0285 metrics: - type: accuracy value: 59.16015624999999 - type: ap value: 55.52276605836938 - type: ap_weighted value: 55.52276605836938 - type: f1 value: 58.614248199637956 - type: f1_weighted value: 58.614248199637956 - type: main_score value: 59.16015624999999 - task: type: Classification dataset: name: MTEB KinopoiskClassification (default) type: ai-forever/kinopoisk-sentiment-classification config: default split: test revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 metrics: - type: accuracy value: 49.959999999999994 - type: f1 value: 48.4900332316098 - type: f1_weighted value: 48.4900332316098 - type: main_score value: 49.959999999999994 - task: type: Classification dataset: name: MTEB LanguageClassification (default) type: papluca/language-identification config: default split: test revision: aa56583bf2bc52b0565770607d6fc3faebecf9e2 metrics: - type: accuracy value: 71.005859375 - type: f1 value: 69.63481100303348 - type: f1_weighted value: 69.64640413409529 - type: main_score value: 71.005859375 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P (ru) type: reciTAL/mlsum config: ru split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: main_score value: 42.11280087032343 - type: v_measure value: 42.11280087032343 - type: v_measure_std value: 6.7619971723605135 - type: main_score value: 43.00112546945811 - type: v_measure value: 43.00112546945811 - type: v_measure_std value: 1.4740560414835675 - type: main_score value: 39.81446080575161 - type: v_measure value: 39.81446080575161 - type: v_measure_std value: 7.125661320308298 - type: main_score value: 39.29659668980239 - type: v_measure value: 39.29659668980239 - type: v_measure_std value: 2.6570502923023094 - task: type: Retrieval dataset: name: MTEB MultiLongDocRetrieval (ru) type: Shitao/MLDR config: ru split: dev revision: d67138e705d963e346253a80e59676ddb418810a metrics: - type: main_score value: 38.671 - type: map_at_1 value: 30.0 - type: map_at_10 value: 36.123 - type: map_at_100 value: 36.754999999999995 - type: map_at_1000 value: 36.806 - type: map_at_20 value: 36.464 - type: map_at_3 value: 35.25 - type: map_at_5 value: 35.8 - type: mrr_at_1 value: 30.0 - type: mrr_at_10 value: 36.122817460317464 - type: mrr_at_100 value: 36.75467016625293 - type: mrr_at_1000 value: 36.80612724920882 - type: mrr_at_20 value: 36.46359681984682 - type: mrr_at_3 value: 35.25 - type: mrr_at_5 value: 35.800000000000004 - type: nauc_map_at_1000_diff1 value: 55.61987610843598 - type: nauc_map_at_1000_max value: 52.506795017152186 - type: nauc_map_at_1000_std value: 2.95487192066911 - type: nauc_map_at_100_diff1 value: 55.598419532054734 - type: nauc_map_at_100_max value: 52.48192017040307 - type: nauc_map_at_100_std value: 2.930120252521189 - type: nauc_map_at_10_diff1 value: 56.02309155375198 - type: nauc_map_at_10_max value: 52.739573233234424 - type: nauc_map_at_10_std value: 2.4073432421641545 - type: nauc_map_at_1_diff1 value: 52.57059856776112 - type: nauc_map_at_1_max value: 50.55668152952304 - type: nauc_map_at_1_std value: 1.6572084853398048 - type: nauc_map_at_20_diff1 value: 55.75769029917031 - type: nauc_map_at_20_max value: 52.53663737242853 - type: nauc_map_at_20_std value: 2.8489192879814 - type: nauc_map_at_3_diff1 value: 56.90294128342709 - type: nauc_map_at_3_max value: 53.10608389782041 - type: nauc_map_at_3_std value: 1.4909731657889491 - type: nauc_map_at_5_diff1 value: 56.1258315436073 - type: nauc_map_at_5_max value: 52.398078357541564 - type: nauc_map_at_5_std value: 1.8256862015101467 - type: nauc_mrr_at_1000_diff1 value: 55.61987610843598 - type: nauc_mrr_at_1000_max value: 52.506795017152186 - type: nauc_mrr_at_1000_std value: 2.95487192066911 - type: nauc_mrr_at_100_diff1 value: 55.598419532054734 - type: nauc_mrr_at_100_max value: 52.48192017040307 - type: nauc_mrr_at_100_std value: 2.930120252521189 - type: nauc_mrr_at_10_diff1 value: 56.02309155375198 - type: nauc_mrr_at_10_max value: 52.739573233234424 - type: nauc_mrr_at_10_std value: 2.4073432421641545 - type: nauc_mrr_at_1_diff1 value: 52.57059856776112 - type: nauc_mrr_at_1_max value: 50.55668152952304 - type: nauc_mrr_at_1_std value: 1.6572084853398048 - type: nauc_mrr_at_20_diff1 value: 55.75769029917031 - type: nauc_mrr_at_20_max value: 52.53663737242853 - type: nauc_mrr_at_20_std value: 2.8489192879814 - type: nauc_mrr_at_3_diff1 value: 56.90294128342709 - type: nauc_mrr_at_3_max value: 53.10608389782041 - type: nauc_mrr_at_3_std value: 1.4909731657889491 - type: nauc_mrr_at_5_diff1 value: 56.1258315436073 - type: nauc_mrr_at_5_max value: 52.398078357541564 - type: nauc_mrr_at_5_std value: 1.8256862015101467 - type: nauc_ndcg_at_1000_diff1 value: 55.30733548408918 - type: nauc_ndcg_at_1000_max value: 53.51143366189318 - type: nauc_ndcg_at_1000_std value: 7.133789405525702 - type: nauc_ndcg_at_100_diff1 value: 54.32209039488095 - type: nauc_ndcg_at_100_max value: 52.67499334461009 - type: nauc_ndcg_at_100_std value: 6.878823275077807 - type: nauc_ndcg_at_10_diff1 value: 56.266780806997716 - type: nauc_ndcg_at_10_max value: 53.52837255793743 - type: nauc_ndcg_at_10_std value: 3.756832592964262 - type: nauc_ndcg_at_1_diff1 value: 52.57059856776112 - type: nauc_ndcg_at_1_max value: 50.55668152952304 - type: nauc_ndcg_at_1_std value: 1.6572084853398048 - type: nauc_ndcg_at_20_diff1 value: 55.39255420432796 - type: nauc_ndcg_at_20_max value: 52.946114684072235 - type: nauc_ndcg_at_20_std value: 5.414933414031693 - type: nauc_ndcg_at_3_diff1 value: 57.92826624996289 - type: nauc_ndcg_at_3_max value: 53.89907760306972 - type: nauc_ndcg_at_3_std value: 1.6661401245309218 - type: nauc_ndcg_at_5_diff1 value: 56.47508936029308 - type: nauc_ndcg_at_5_max value: 52.66800998045517 - type: nauc_ndcg_at_5_std value: 2.4127296184140423 - type: nauc_precision_at_1000_diff1 value: 57.25924020238401 - type: nauc_precision_at_1000_max value: 65.1132590931922 - type: nauc_precision_at_1000_std value: 40.60788709618145 - type: nauc_precision_at_100_diff1 value: 46.49620002554606 - type: nauc_precision_at_100_max value: 53.02960148167071 - type: nauc_precision_at_100_std value: 28.206028867032863 - type: nauc_precision_at_10_diff1 value: 56.562744749606765 - type: nauc_precision_at_10_max value: 56.00594967783547 - type: nauc_precision_at_10_std value: 8.368379831645163 - type: nauc_precision_at_1_diff1 value: 52.57059856776112 - type: nauc_precision_at_1_max value: 50.55668152952304 - type: nauc_precision_at_1_std value: 1.6572084853398048 - type: nauc_precision_at_20_diff1 value: 53.25915754614111 - type: nauc_precision_at_20_max value: 54.03255118937036 - type: nauc_precision_at_20_std value: 15.161611674272718 - type: nauc_precision_at_3_diff1 value: 60.726785748943854 - type: nauc_precision_at_3_max value: 56.139896875869354 - type: nauc_precision_at_3_std value: 2.2306901035769893 - type: nauc_precision_at_5_diff1 value: 57.1201127525187 - type: nauc_precision_at_5_max value: 53.28665761862506 - type: nauc_precision_at_5_std value: 4.358720050112237 - type: nauc_recall_at_1000_diff1 value: 57.259240202383964 - type: nauc_recall_at_1000_max value: 65.11325909319218 - type: nauc_recall_at_1000_std value: 40.60788709618142 - type: nauc_recall_at_100_diff1 value: 46.49620002554603 - type: nauc_recall_at_100_max value: 53.02960148167071 - type: nauc_recall_at_100_std value: 28.206028867032835 - type: nauc_recall_at_10_diff1 value: 56.562744749606765 - type: nauc_recall_at_10_max value: 56.00594967783549 - type: nauc_recall_at_10_std value: 8.368379831645147 - type: nauc_recall_at_1_diff1 value: 52.57059856776112 - type: nauc_recall_at_1_max value: 50.55668152952304 - type: nauc_recall_at_1_std value: 1.6572084853398048 - type: nauc_recall_at_20_diff1 value: 53.259157546141154 - type: nauc_recall_at_20_max value: 54.03255118937038 - type: nauc_recall_at_20_std value: 15.16161167427274 - type: nauc_recall_at_3_diff1 value: 60.72678574894387 - type: nauc_recall_at_3_max value: 56.13989687586933 - type: nauc_recall_at_3_std value: 2.2306901035770066 - type: nauc_recall_at_5_diff1 value: 57.12011275251864 - type: nauc_recall_at_5_max value: 53.28665761862502 - type: nauc_recall_at_5_std value: 4.3587200501122245 - type: ndcg_at_1 value: 30.0 - type: ndcg_at_10 value: 38.671 - type: ndcg_at_100 value: 42.173 - type: ndcg_at_1000 value: 44.016 - type: ndcg_at_20 value: 39.845000000000006 - type: ndcg_at_3 value: 36.863 - type: ndcg_at_5 value: 37.874 - type: precision_at_1 value: 30.0 - type: precision_at_10 value: 4.65 - type: precision_at_100 value: 0.64 - type: precision_at_1000 value: 0.08 - type: precision_at_20 value: 2.55 - type: precision_at_3 value: 13.833 - type: precision_at_5 value: 8.799999999999999 - type: recall_at_1 value: 30.0 - type: recall_at_10 value: 46.5 - type: recall_at_100 value: 64.0 - type: recall_at_1000 value: 79.5 - type: recall_at_20 value: 51.0 - type: recall_at_3 value: 41.5 - type: recall_at_5 value: 44.0 - task: type: Classification dataset: name: MTEB MultilingualSentimentClassification (rus) type: mteb/multilingual-sentiment-classification config: rus split: test revision: 2b9b4d10fc589af67794141fe8cbd3739de1eb33 metrics: - type: accuracy value: 79.52710495963092 - type: ap value: 84.5713457178972 - type: ap_weighted value: 84.5713457178972 - type: f1 value: 77.88661181524105 - type: f1_weighted value: 79.87563079922718 - type: main_score value: 79.52710495963092 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (arb_Arab-rus_Cyrl) type: mteb/NTREX config: arb_Arab-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 86.47971957936905 - type: f1 value: 82.79864240805654 - type: main_score value: 82.79864240805654 - type: precision value: 81.21485800128767 - type: recall value: 86.47971957936905 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (bel_Cyrl-rus_Cyrl) type: mteb/NTREX config: bel_Cyrl-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.84226339509264 - type: f1 value: 93.56399067465667 - type: main_score value: 93.56399067465667 - type: precision value: 93.01619095309631 - type: recall value: 94.84226339509264 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (ben_Beng-rus_Cyrl) type: mteb/NTREX config: ben_Beng-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.18828242363544 - type: f1 value: 90.42393889620612 - type: main_score value: 90.42393889620612 - type: precision value: 89.67904925153297 - type: recall value: 92.18828242363544 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (bos_Latn-rus_Cyrl) type: mteb/NTREX config: bos_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.69203805708563 - type: f1 value: 93.37172425304624 - type: main_score value: 93.37172425304624 - type: precision value: 92.79204521067315 - type: recall value: 94.69203805708563 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (bul_Cyrl-rus_Cyrl) type: mteb/NTREX config: bul_Cyrl-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.99549323985978 - type: f1 value: 96.13086296110833 - type: main_score value: 96.13086296110833 - type: precision value: 95.72441996327827 - type: recall value: 96.99549323985978 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (ces_Latn-rus_Cyrl) type: mteb/NTREX config: ces_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.94391587381071 - type: f1 value: 94.90680465142157 - type: main_score value: 94.90680465142157 - type: precision value: 94.44541812719079 - type: recall value: 95.94391587381071 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (deu_Latn-rus_Cyrl) type: mteb/NTREX config: deu_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.09414121181773 - type: f1 value: 94.94408279085295 - type: main_score value: 94.94408279085295 - type: precision value: 94.41245201135037 - type: recall value: 96.09414121181773 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (ell_Grek-rus_Cyrl) type: mteb/NTREX config: ell_Grek-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.19429143715573 - type: f1 value: 95.12101485561676 - type: main_score value: 95.12101485561676 - type: precision value: 94.60440660991488 - type: recall value: 96.19429143715573 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (eng_Latn-rus_Cyrl) type: mteb/NTREX config: eng_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.49474211316975 - type: f1 value: 95.46581777428045 - type: main_score value: 95.46581777428045 - type: precision value: 94.98414288098814 - type: recall value: 96.49474211316975 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (fas_Arab-rus_Cyrl) type: mteb/NTREX config: fas_Arab-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.44166249374061 - type: f1 value: 92.92383018972905 - type: main_score value: 92.92383018972905 - type: precision value: 92.21957936905358 - type: recall value: 94.44166249374061 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (fin_Latn-rus_Cyrl) type: mteb/NTREX config: fin_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.18828242363544 - type: f1 value: 90.2980661468393 - type: main_score value: 90.2980661468393 - type: precision value: 89.42580537472877 - type: recall value: 92.18828242363544 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (fra_Latn-rus_Cyrl) type: mteb/NTREX config: fra_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.84376564847271 - type: f1 value: 94.81054915706895 - type: main_score value: 94.81054915706895 - type: precision value: 94.31369276136427 - type: recall value: 95.84376564847271 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (heb_Hebr-rus_Cyrl) type: mteb/NTREX config: heb_Hebr-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.89233850776164 - type: f1 value: 93.42513770655985 - type: main_score value: 93.42513770655985 - type: precision value: 92.73493573693875 - type: recall value: 94.89233850776164 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (hin_Deva-rus_Cyrl) type: mteb/NTREX config: hin_Deva-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.23985978968453 - type: f1 value: 91.52816526376867 - type: main_score value: 91.52816526376867 - type: precision value: 90.76745946425466 - type: recall value: 93.23985978968453 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (hrv_Latn-rus_Cyrl) type: mteb/NTREX config: hrv_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.99098647971958 - type: f1 value: 92.36354531797697 - type: main_score value: 92.36354531797697 - type: precision value: 91.63228970439788 - type: recall value: 93.99098647971958 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (hun_Latn-rus_Cyrl) type: mteb/NTREX config: hun_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.64046069103655 - type: f1 value: 92.05224503421799 - type: main_score value: 92.05224503421799 - type: precision value: 91.33998616973079 - type: recall value: 93.64046069103655 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (ind_Latn-rus_Cyrl) type: mteb/NTREX config: ind_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 91.68753129694541 - type: f1 value: 89.26222667334335 - type: main_score value: 89.26222667334335 - type: precision value: 88.14638624603572 - type: recall value: 91.68753129694541 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (jpn_Jpan-rus_Cyrl) type: mteb/NTREX config: jpn_Jpan-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 91.28693039559339 - type: f1 value: 89.21161763348957 - type: main_score value: 89.21161763348957 - type: precision value: 88.31188340952988 - type: recall value: 91.28693039559339 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (kor_Hang-rus_Cyrl) type: mteb/NTREX config: kor_Hang-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 89.53430145217827 - type: f1 value: 86.88322165788365 - type: main_score value: 86.88322165788365 - type: precision value: 85.73950211030831 - type: recall value: 89.53430145217827 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (lit_Latn-rus_Cyrl) type: mteb/NTREX config: lit_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 90.28542814221332 - type: f1 value: 88.10249103814452 - type: main_score value: 88.10249103814452 - type: precision value: 87.17689323973752 - type: recall value: 90.28542814221332 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (mkd_Cyrl-rus_Cyrl) type: mteb/NTREX config: mkd_Cyrl-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.04256384576865 - type: f1 value: 93.65643703650713 - type: main_score value: 93.65643703650713 - type: precision value: 93.02036387915207 - type: recall value: 95.04256384576865 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (nld_Latn-rus_Cyrl) type: mteb/NTREX config: nld_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.39308963445168 - type: f1 value: 94.16207644800535 - type: main_score value: 94.16207644800535 - type: precision value: 93.582516632091 - type: recall value: 95.39308963445168 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (pol_Latn-rus_Cyrl) type: mteb/NTREX config: pol_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.7436154231347 - type: f1 value: 94.5067601402103 - type: main_score value: 94.5067601402103 - type: precision value: 93.91587381071608 - type: recall value: 95.7436154231347 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (por_Latn-rus_Cyrl) type: mteb/NTREX config: por_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 65.89884827240861 - type: f1 value: 64.61805459419219 - type: main_score value: 64.61805459419219 - type: precision value: 64.07119451106485 - type: recall value: 65.89884827240861 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-arb_Arab) type: mteb/NTREX config: rus_Cyrl-arb_Arab split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.2413620430646 - type: f1 value: 92.67663399861698 - type: main_score value: 92.67663399861698 - type: precision value: 91.94625271240193 - type: recall value: 94.2413620430646 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-bel_Cyrl) type: mteb/NTREX config: rus_Cyrl-bel_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.89233850776164 - type: f1 value: 93.40343849106993 - type: main_score value: 93.40343849106993 - type: precision value: 92.74077783341679 - type: recall value: 94.89233850776164 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-ben_Beng) type: mteb/NTREX config: rus_Cyrl-ben_Beng split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.2914371557336 - type: f1 value: 92.62226673343348 - type: main_score value: 92.62226673343348 - type: precision value: 91.84610248706393 - type: recall value: 94.2914371557336 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-bos_Latn) type: mteb/NTREX config: rus_Cyrl-bos_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.69354031046569 - type: f1 value: 94.50418051319403 - type: main_score value: 94.50418051319403 - type: precision value: 93.95843765648473 - type: recall value: 95.69354031046569 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-bul_Cyrl) type: mteb/NTREX config: rus_Cyrl-bul_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.89384076114172 - type: f1 value: 94.66199298948423 - type: main_score value: 94.66199298948423 - type: precision value: 94.08028709731263 - type: recall value: 95.89384076114172 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-ces_Latn) type: mteb/NTREX config: rus_Cyrl-ces_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.94091136705057 - type: f1 value: 92.3746731207923 - type: main_score value: 92.3746731207923 - type: precision value: 91.66207644800535 - type: recall value: 93.94091136705057 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-deu_Latn) type: mteb/NTREX config: rus_Cyrl-deu_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.94391587381071 - type: f1 value: 94.76214321482223 - type: main_score value: 94.76214321482223 - type: precision value: 94.20380570856285 - type: recall value: 95.94391587381071 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-ell_Grek) type: mteb/NTREX config: rus_Cyrl-ell_Grek split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.44316474712068 - type: f1 value: 94.14788849941579 - type: main_score value: 94.14788849941579 - type: precision value: 93.54197963612084 - type: recall value: 95.44316474712068 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-eng_Latn) type: mteb/NTREX config: rus_Cyrl-eng_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 98.14722083124687 - type: f1 value: 97.57135703555333 - type: main_score value: 97.57135703555333 - type: precision value: 97.2959439158738 - type: recall value: 98.14722083124687 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-fas_Arab) type: mteb/NTREX config: rus_Cyrl-fas_Arab split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.64196294441662 - type: f1 value: 93.24653647137372 - type: main_score value: 93.24653647137372 - type: precision value: 92.60724419963279 - type: recall value: 94.64196294441662 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-fin_Latn) type: mteb/NTREX config: rus_Cyrl-fin_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 87.98197295943916 - type: f1 value: 85.23368385912201 - type: main_score value: 85.23368385912201 - type: precision value: 84.08159858835873 - type: recall value: 87.98197295943916 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-fra_Latn) type: mteb/NTREX config: rus_Cyrl-fra_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.24436654982473 - type: f1 value: 95.07093974294774 - type: main_score value: 95.07093974294774 - type: precision value: 94.49591053246536 - type: recall value: 96.24436654982473 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-heb_Hebr) type: mteb/NTREX config: rus_Cyrl-heb_Hebr split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 91.08662994491738 - type: f1 value: 88.5161074945752 - type: main_score value: 88.5161074945752 - type: precision value: 87.36187614755467 - type: recall value: 91.08662994491738 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-hin_Deva) type: mteb/NTREX config: rus_Cyrl-hin_Deva split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.04256384576865 - type: f1 value: 93.66382907694876 - type: main_score value: 93.66382907694876 - type: precision value: 93.05291270238692 - type: recall value: 95.04256384576865 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-hrv_Latn) type: mteb/NTREX config: rus_Cyrl-hrv_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.14271407110667 - type: f1 value: 93.7481221832749 - type: main_score value: 93.7481221832749 - type: precision value: 93.10930681736892 - type: recall value: 95.14271407110667 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-hun_Latn) type: mteb/NTREX config: rus_Cyrl-hun_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 90.18527791687532 - type: f1 value: 87.61415933423946 - type: main_score value: 87.61415933423946 - type: precision value: 86.5166400394242 - type: recall value: 90.18527791687532 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-ind_Latn) type: mteb/NTREX config: rus_Cyrl-ind_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.69053580370556 - type: f1 value: 91.83608746453012 - type: main_score value: 91.83608746453012 - type: precision value: 90.97145718577868 - type: recall value: 93.69053580370556 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-jpn_Jpan) type: mteb/NTREX config: rus_Cyrl-jpn_Jpan split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 89.48422633950926 - type: f1 value: 86.91271033534429 - type: main_score value: 86.91271033534429 - type: precision value: 85.82671626487351 - type: recall value: 89.48422633950926 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-kor_Hang) type: mteb/NTREX config: rus_Cyrl-kor_Hang split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 88.4827240861292 - type: f1 value: 85.35080398375342 - type: main_score value: 85.35080398375342 - type: precision value: 83.9588549490903 - type: recall value: 88.4827240861292 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-lit_Latn) type: mteb/NTREX config: rus_Cyrl-lit_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 90.33550325488233 - type: f1 value: 87.68831819157307 - type: main_score value: 87.68831819157307 - type: precision value: 86.51524906407231 - type: recall value: 90.33550325488233 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-mkd_Cyrl) type: mteb/NTREX config: rus_Cyrl-mkd_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.94391587381071 - type: f1 value: 94.90402270071775 - type: main_score value: 94.90402270071775 - type: precision value: 94.43915873810715 - type: recall value: 95.94391587381071 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-nld_Latn) type: mteb/NTREX config: rus_Cyrl-nld_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.98948422633951 - type: f1 value: 91.04323151393756 - type: main_score value: 91.04323151393756 - type: precision value: 90.14688699716241 - type: recall value: 92.98948422633951 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-pol_Latn) type: mteb/NTREX config: rus_Cyrl-pol_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.34151226840261 - type: f1 value: 92.8726422967785 - type: main_score value: 92.8726422967785 - type: precision value: 92.19829744616925 - type: recall value: 94.34151226840261 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-por_Latn) type: mteb/NTREX config: rus_Cyrl-por_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 86.17926890335504 - type: f1 value: 82.7304882287356 - type: main_score value: 82.7304882287356 - type: precision value: 81.28162481817964 - type: recall value: 86.17926890335504 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-slk_Latn) type: mteb/NTREX config: rus_Cyrl-slk_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.7391086629945 - type: f1 value: 90.75112669003506 - type: main_score value: 90.75112669003506 - type: precision value: 89.8564513436822 - type: recall value: 92.7391086629945 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-slv_Latn) type: mteb/NTREX config: rus_Cyrl-slv_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.8893340010015 - type: f1 value: 91.05992321816058 - type: main_score value: 91.05992321816058 - type: precision value: 90.22589439715128 - type: recall value: 92.8893340010015 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-spa_Latn) type: mteb/NTREX config: rus_Cyrl-spa_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.49474211316975 - type: f1 value: 95.4715406442998 - type: main_score value: 95.4715406442998 - type: precision value: 94.9799699549324 - type: recall value: 96.49474211316975 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-srp_Cyrl) type: mteb/NTREX config: rus_Cyrl-srp_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 81.07160741111667 - type: f1 value: 76.55687285507015 - type: main_score value: 76.55687285507015 - type: precision value: 74.71886401030116 - type: recall value: 81.07160741111667 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-srp_Latn) type: mteb/NTREX config: rus_Cyrl-srp_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.14271407110667 - type: f1 value: 93.73302377809138 - type: main_score value: 93.73302377809138 - type: precision value: 93.06960440660991 - type: recall value: 95.14271407110667 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-swa_Latn) type: mteb/NTREX config: rus_Cyrl-swa_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.79218828242364 - type: f1 value: 93.25988983475212 - type: main_score value: 93.25988983475212 - type: precision value: 92.53463528626273 - type: recall value: 94.79218828242364 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-swe_Latn) type: mteb/NTREX config: rus_Cyrl-swe_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.04256384576865 - type: f1 value: 93.58704723752295 - type: main_score value: 93.58704723752295 - type: precision value: 92.91437155733601 - type: recall value: 95.04256384576865 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-tam_Taml) type: mteb/NTREX config: rus_Cyrl-tam_Taml split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.28993490235354 - type: f1 value: 91.63912535469872 - type: main_score value: 91.63912535469872 - type: precision value: 90.87738750983617 - type: recall value: 93.28993490235354 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-tur_Latn) type: mteb/NTREX config: rus_Cyrl-tur_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.74061091637456 - type: f1 value: 91.96628275746953 - type: main_score value: 91.96628275746953 - type: precision value: 91.15923885828742 - type: recall value: 93.74061091637456 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-ukr_Cyrl) type: mteb/NTREX config: rus_Cyrl-ukr_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.99399098647972 - type: f1 value: 94.89567684860624 - type: main_score value: 94.89567684860624 - type: precision value: 94.37072275079286 - type: recall value: 95.99399098647972 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-vie_Latn) type: mteb/NTREX config: rus_Cyrl-vie_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 91.4371557336004 - type: f1 value: 88.98681355366382 - type: main_score value: 88.98681355366382 - type: precision value: 87.89183775663496 - type: recall value: 91.4371557336004 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-zho_Hant) type: mteb/NTREX config: rus_Cyrl-zho_Hant split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.7891837756635 - type: f1 value: 90.79047142141783 - type: main_score value: 90.79047142141783 - type: precision value: 89.86980470706058 - type: recall value: 92.7891837756635 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (rus_Cyrl-zul_Latn) type: mteb/NTREX config: rus_Cyrl-zul_Latn split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 87.43114672008012 - type: f1 value: 84.04618833011422 - type: main_score value: 84.04618833011422 - type: precision value: 82.52259341393041 - type: recall value: 87.43114672008012 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (slk_Latn-rus_Cyrl) type: mteb/NTREX config: slk_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.34301452178268 - type: f1 value: 94.20392493502158 - type: main_score value: 94.20392493502158 - type: precision value: 93.67384409948257 - type: recall value: 95.34301452178268 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (slv_Latn-rus_Cyrl) type: mteb/NTREX config: slv_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 92.23835753630446 - type: f1 value: 90.5061759305625 - type: main_score value: 90.5061759305625 - type: precision value: 89.74231188051918 - type: recall value: 92.23835753630446 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (spa_Latn-rus_Cyrl) type: mteb/NTREX config: spa_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.54481722583876 - type: f1 value: 95.54665331330328 - type: main_score value: 95.54665331330328 - type: precision value: 95.06342847604739 - type: recall value: 96.54481722583876 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (srp_Cyrl-rus_Cyrl) type: mteb/NTREX config: srp_Cyrl-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 83.62543815723585 - type: f1 value: 80.77095672699816 - type: main_score value: 80.77095672699816 - type: precision value: 79.74674313056886 - type: recall value: 83.62543815723585 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (srp_Latn-rus_Cyrl) type: mteb/NTREX config: srp_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 94.44166249374061 - type: f1 value: 93.00733206591994 - type: main_score value: 93.00733206591994 - type: precision value: 92.37203026762366 - type: recall value: 94.44166249374061 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (swa_Latn-rus_Cyrl) type: mteb/NTREX config: swa_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 90.23535302954431 - type: f1 value: 87.89596482636041 - type: main_score value: 87.89596482636041 - type: precision value: 86.87060227370694 - type: recall value: 90.23535302954431 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (swe_Latn-rus_Cyrl) type: mteb/NTREX config: swe_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 95.44316474712068 - type: f1 value: 94.1896177599733 - type: main_score value: 94.1896177599733 - type: precision value: 93.61542313470206 - type: recall value: 95.44316474712068 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (tam_Taml-rus_Cyrl) type: mteb/NTREX config: tam_Taml-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 89.68452679018529 - type: f1 value: 87.37341160650037 - type: main_score value: 87.37341160650037 - type: precision value: 86.38389402285247 - type: recall value: 89.68452679018529 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (tur_Latn-rus_Cyrl) type: mteb/NTREX config: tur_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.89083625438157 - type: f1 value: 92.33892505424804 - type: main_score value: 92.33892505424804 - type: precision value: 91.63125640842216 - type: recall value: 93.89083625438157 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (ukr_Cyrl-rus_Cyrl) type: mteb/NTREX config: ukr_Cyrl-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 96.14421632448673 - type: f1 value: 95.11028447433054 - type: main_score value: 95.11028447433054 - type: precision value: 94.62944416624937 - type: recall value: 96.14421632448673 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (vie_Latn-rus_Cyrl) type: mteb/NTREX config: vie_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 93.79068602904357 - type: f1 value: 92.14989150392256 - type: main_score value: 92.14989150392256 - type: precision value: 91.39292271740945 - type: recall value: 93.79068602904357 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (zho_Hant-rus_Cyrl) type: mteb/NTREX config: zho_Hant-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 89.13370055082625 - type: f1 value: 86.51514618639217 - type: main_score value: 86.51514618639217 - type: precision value: 85.383920035898 - type: recall value: 89.13370055082625 - task: type: BitextMining dataset: name: MTEB NTREXBitextMining (zul_Latn-rus_Cyrl) type: mteb/NTREX config: zul_Latn-rus_Cyrl split: test revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 metrics: - type: accuracy value: 81.17175763645467 - type: f1 value: 77.72331766047338 - type: main_score value: 77.72331766047338 - type: precision value: 76.24629555848075 - type: recall value: 81.17175763645467 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (ru) type: GEM/opusparcus config: ru split: test.full revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cosine_accuracy value: 73.09136420525657 - type: cosine_accuracy_threshold value: 87.70400881767273 - type: cosine_ap value: 86.51938550599533 - type: cosine_f1 value: 80.84358523725834 - type: cosine_f1_threshold value: 86.90648078918457 - type: cosine_precision value: 73.24840764331209 - type: cosine_recall value: 90.19607843137256 - type: dot_accuracy value: 73.09136420525657 - type: dot_accuracy_threshold value: 87.7040147781372 - type: dot_ap value: 86.51934769946833 - type: dot_f1 value: 80.84358523725834 - type: dot_f1_threshold value: 86.90648078918457 - type: dot_precision value: 73.24840764331209 - type: dot_recall value: 90.19607843137256 - type: euclidean_accuracy value: 73.09136420525657 - type: euclidean_accuracy_threshold value: 49.590304493904114 - type: euclidean_ap value: 86.51934769946833 - type: euclidean_f1 value: 80.84358523725834 - type: euclidean_f1_threshold value: 51.173269748687744 - type: euclidean_precision value: 73.24840764331209 - type: euclidean_recall value: 90.19607843137256 - type: main_score value: 86.51976811057995 - type: manhattan_accuracy value: 73.40425531914893 - type: manhattan_accuracy_threshold value: 757.8278541564941 - type: manhattan_ap value: 86.51976811057995 - type: manhattan_f1 value: 80.92898615453328 - type: manhattan_f1_threshold value: 778.3821105957031 - type: manhattan_precision value: 74.32321575061526 - type: manhattan_recall value: 88.8235294117647 - type: max_ap value: 86.51976811057995 - type: max_f1 value: 80.92898615453328 - type: max_precision value: 74.32321575061526 - type: max_recall value: 90.19607843137256 - type: similarity_accuracy value: 73.09136420525657 - type: similarity_accuracy_threshold value: 87.70400881767273 - type: similarity_ap value: 86.51938550599533 - type: similarity_f1 value: 80.84358523725834 - type: similarity_f1_threshold value: 86.90648078918457 - type: similarity_precision value: 73.24840764331209 - type: similarity_recall value: 90.19607843137256 - task: type: Retrieval dataset: name: MTEB PublicHealthQA (russian) type: xhluca/publichealth-qa config: russian split: test revision: main metrics: - type: main_score value: 79.303 - type: map_at_1 value: 61.538000000000004 - type: map_at_10 value: 74.449 - type: map_at_100 value: 74.687 - type: map_at_1000 value: 74.687 - type: map_at_20 value: 74.589 - type: map_at_3 value: 73.333 - type: map_at_5 value: 74.256 - type: mrr_at_1 value: 61.53846153846154 - type: mrr_at_10 value: 74.44871794871794 - type: mrr_at_100 value: 74.68730304304074 - type: mrr_at_1000 value: 74.68730304304074 - type: mrr_at_20 value: 74.58857808857809 - type: mrr_at_3 value: 73.33333333333333 - type: mrr_at_5 value: 74.25641025641025 - type: nauc_map_at_1000_diff1 value: 61.375798048778506 - type: nauc_map_at_1000_max value: 51.37093181241067 - type: nauc_map_at_1000_std value: 41.735794471409015 - type: nauc_map_at_100_diff1 value: 61.375798048778506 - type: nauc_map_at_100_max value: 51.37093181241067 - type: nauc_map_at_100_std value: 41.735794471409015 - type: nauc_map_at_10_diff1 value: 61.12796039757213 - type: nauc_map_at_10_max value: 51.843445267118014 - type: nauc_map_at_10_std value: 42.243121474939365 - type: nauc_map_at_1_diff1 value: 66.39100974909151 - type: nauc_map_at_1_max value: 44.77165601342703 - type: nauc_map_at_1_std value: 32.38542979413408 - type: nauc_map_at_20_diff1 value: 61.16611123434347 - type: nauc_map_at_20_max value: 51.52605092407306 - type: nauc_map_at_20_std value: 41.94787773313971 - type: nauc_map_at_3_diff1 value: 61.40157474408937 - type: nauc_map_at_3_max value: 51.47230077853947 - type: nauc_map_at_3_std value: 42.63540269440141 - type: nauc_map_at_5_diff1 value: 61.07631147583098 - type: nauc_map_at_5_max value: 52.02626939341523 - type: nauc_map_at_5_std value: 42.511607332150334 - type: nauc_mrr_at_1000_diff1 value: 61.375798048778506 - type: nauc_mrr_at_1000_max value: 51.37093181241067 - type: nauc_mrr_at_1000_std value: 41.735794471409015 - type: nauc_mrr_at_100_diff1 value: 61.375798048778506 - type: nauc_mrr_at_100_max value: 51.37093181241067 - type: nauc_mrr_at_100_std value: 41.735794471409015 - type: nauc_mrr_at_10_diff1 value: 61.12796039757213 - type: nauc_mrr_at_10_max value: 51.843445267118014 - type: nauc_mrr_at_10_std value: 42.243121474939365 - type: nauc_mrr_at_1_diff1 value: 66.39100974909151 - type: nauc_mrr_at_1_max value: 44.77165601342703 - type: nauc_mrr_at_1_std value: 32.38542979413408 - type: nauc_mrr_at_20_diff1 value: 61.16611123434347 - type: nauc_mrr_at_20_max value: 51.52605092407306 - type: nauc_mrr_at_20_std value: 41.94787773313971 - type: nauc_mrr_at_3_diff1 value: 61.40157474408937 - type: nauc_mrr_at_3_max value: 51.47230077853947 - type: nauc_mrr_at_3_std value: 42.63540269440141 - type: nauc_mrr_at_5_diff1 value: 61.07631147583098 - type: nauc_mrr_at_5_max value: 52.02626939341523 - type: nauc_mrr_at_5_std value: 42.511607332150334 - type: nauc_ndcg_at_1000_diff1 value: 60.54821630436157 - type: nauc_ndcg_at_1000_max value: 52.584328363863634 - type: nauc_ndcg_at_1000_std value: 43.306961101645946 - type: nauc_ndcg_at_100_diff1 value: 60.54821630436157 - type: nauc_ndcg_at_100_max value: 52.584328363863634 - type: nauc_ndcg_at_100_std value: 43.306961101645946 - type: nauc_ndcg_at_10_diff1 value: 58.800340278109886 - type: nauc_ndcg_at_10_max value: 55.31050771670664 - type: nauc_ndcg_at_10_std value: 46.40931672942848 - type: nauc_ndcg_at_1_diff1 value: 66.39100974909151 - type: nauc_ndcg_at_1_max value: 44.77165601342703 - type: nauc_ndcg_at_1_std value: 32.38542979413408 - type: nauc_ndcg_at_20_diff1 value: 58.88690479697946 - type: nauc_ndcg_at_20_max value: 54.19269661177923 - type: nauc_ndcg_at_20_std value: 45.39305589413174 - type: nauc_ndcg_at_3_diff1 value: 59.61866351451574 - type: nauc_ndcg_at_3_max value: 54.23992718744033 - type: nauc_ndcg_at_3_std value: 46.997379274101 - type: nauc_ndcg_at_5_diff1 value: 58.70739588066225 - type: nauc_ndcg_at_5_max value: 55.76766902539152 - type: nauc_ndcg_at_5_std value: 47.10553115762958 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_100_diff1 value: .nan - type: nauc_precision_at_100_max value: .nan - type: nauc_precision_at_100_std value: .nan - type: nauc_precision_at_10_diff1 value: 35.72622112397501 - type: nauc_precision_at_10_max value: 89.84297108673948 - type: nauc_precision_at_10_std value: 86.60269192422707 - type: nauc_precision_at_1_diff1 value: 66.39100974909151 - type: nauc_precision_at_1_max value: 44.77165601342703 - type: nauc_precision_at_1_std value: 32.38542979413408 - type: nauc_precision_at_20_diff1 value: 29.188449183726433 - type: nauc_precision_at_20_max value: 86.45729478231968 - type: nauc_precision_at_20_std value: 86.45729478231968 - type: nauc_precision_at_3_diff1 value: 50.294126629236224 - type: nauc_precision_at_3_max value: 68.98223127174579 - type: nauc_precision_at_3_std value: 70.31195520376356 - type: nauc_precision_at_5_diff1 value: 39.648884288124385 - type: nauc_precision_at_5_max value: 86.3409770687935 - type: nauc_precision_at_5_std value: 83.74875373878356 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: 35.72622112397516 - type: nauc_recall_at_10_max value: 89.84297108673968 - type: nauc_recall_at_10_std value: 86.60269192422749 - type: nauc_recall_at_1_diff1 value: 66.39100974909151 - type: nauc_recall_at_1_max value: 44.77165601342703 - type: nauc_recall_at_1_std value: 32.38542979413408 - type: nauc_recall_at_20_diff1 value: 29.188449183726323 - type: nauc_recall_at_20_max value: 86.45729478231985 - type: nauc_recall_at_20_std value: 86.45729478231985 - type: nauc_recall_at_3_diff1 value: 50.29412662923603 - type: nauc_recall_at_3_max value: 68.98223127174562 - type: nauc_recall_at_3_std value: 70.31195520376346 - type: nauc_recall_at_5_diff1 value: 39.64888428812445 - type: nauc_recall_at_5_max value: 86.34097706879359 - type: nauc_recall_at_5_std value: 83.74875373878366 - type: ndcg_at_1 value: 61.538000000000004 - type: ndcg_at_10 value: 79.303 - type: ndcg_at_100 value: 80.557 - type: ndcg_at_1000 value: 80.557 - type: ndcg_at_20 value: 79.732 - type: ndcg_at_3 value: 77.033 - type: ndcg_at_5 value: 78.818 - type: precision_at_1 value: 61.538000000000004 - type: precision_at_10 value: 9.385 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.769 - type: precision_at_3 value: 29.231 - type: precision_at_5 value: 18.462 - type: recall_at_1 value: 61.538000000000004 - type: recall_at_10 value: 93.84599999999999 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 95.38499999999999 - type: recall_at_3 value: 87.69200000000001 - type: recall_at_5 value: 92.308 - task: type: STS dataset: name: MTEB RUParaPhraserSTS (default) type: merionum/ru_paraphraser config: default split: test revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 metrics: - type: cosine_pearson value: 64.73554596215753 - type: cosine_spearman value: 70.45849652271855 - type: euclidean_pearson value: 68.08069844834267 - type: euclidean_spearman value: 70.45854872959124 - type: main_score value: 70.45849652271855 - type: manhattan_pearson value: 67.88325986519624 - type: manhattan_spearman value: 70.21131896834542 - type: pearson value: 64.73554596215753 - type: spearman value: 70.45849652271855 - task: type: Retrieval dataset: name: MTEB RiaNewsRetrieval (default) type: ai-forever/ria-news-retrieval config: default split: test revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 metrics: - type: main_score value: 70.00999999999999 - type: map_at_1 value: 55.97 - type: map_at_10 value: 65.59700000000001 - type: map_at_100 value: 66.057 - type: map_at_1000 value: 66.074 - type: map_at_20 value: 65.892 - type: map_at_3 value: 63.74999999999999 - type: map_at_5 value: 64.84299999999999 - type: mrr_at_1 value: 55.88999999999999 - type: mrr_at_10 value: 65.55873015872977 - type: mrr_at_100 value: 66.01891495129716 - type: mrr_at_1000 value: 66.03538391493299 - type: mrr_at_20 value: 65.85351193431555 - type: mrr_at_3 value: 63.7133333333329 - type: mrr_at_5 value: 64.80483333333268 - type: nauc_map_at_1000_diff1 value: 65.95332946436318 - type: nauc_map_at_1000_max value: 28.21204156197811 - type: nauc_map_at_1000_std value: -13.139245767083743 - type: nauc_map_at_100_diff1 value: 65.94763105024367 - type: nauc_map_at_100_max value: 28.212832170078205 - type: nauc_map_at_100_std value: -13.131425849370665 - type: nauc_map_at_10_diff1 value: 65.88455089448388 - type: nauc_map_at_10_max value: 28.13555838776792 - type: nauc_map_at_10_std value: -13.326989827081023 - type: nauc_map_at_1_diff1 value: 69.31275711813979 - type: nauc_map_at_1_max value: 26.386708520283758 - type: nauc_map_at_1_std value: -14.434616447245464 - type: nauc_map_at_20_diff1 value: 65.91227032605677 - type: nauc_map_at_20_max value: 28.20538655600886 - type: nauc_map_at_20_std value: -13.191148834410274 - type: nauc_map_at_3_diff1 value: 66.0051677952641 - type: nauc_map_at_3_max value: 28.25443420019022 - type: nauc_map_at_3_std value: -13.893284109029558 - type: nauc_map_at_5_diff1 value: 65.89784348297898 - type: nauc_map_at_5_max value: 28.26449765184183 - type: nauc_map_at_5_std value: -13.506692912805008 - type: nauc_mrr_at_1000_diff1 value: 66.06599513750889 - type: nauc_mrr_at_1000_max value: 28.191556650722287 - type: nauc_mrr_at_1000_std value: -13.098487982930276 - type: nauc_mrr_at_100_diff1 value: 66.0602307977725 - type: nauc_mrr_at_100_max value: 28.19235936624514 - type: nauc_mrr_at_100_std value: -13.09069677716269 - type: nauc_mrr_at_10_diff1 value: 65.99546819079403 - type: nauc_mrr_at_10_max value: 28.11556170120022 - type: nauc_mrr_at_10_std value: -13.286711073897553 - type: nauc_mrr_at_1_diff1 value: 69.49541040517995 - type: nauc_mrr_at_1_max value: 26.354622707276153 - type: nauc_mrr_at_1_std value: -14.358839778104695 - type: nauc_mrr_at_20_diff1 value: 66.02427154257936 - type: nauc_mrr_at_20_max value: 28.18509383563462 - type: nauc_mrr_at_20_std value: -13.150543398429 - type: nauc_mrr_at_3_diff1 value: 66.11258119082618 - type: nauc_mrr_at_3_max value: 28.239510722224004 - type: nauc_mrr_at_3_std value: -13.857249251136269 - type: nauc_mrr_at_5_diff1 value: 66.00633786765626 - type: nauc_mrr_at_5_max value: 28.244875152193032 - type: nauc_mrr_at_5_std value: -13.467206028704434 - type: nauc_ndcg_at_1000_diff1 value: 65.02876183314446 - type: nauc_ndcg_at_1000_max value: 29.109368390197194 - type: nauc_ndcg_at_1000_std value: -11.56514359821697 - type: nauc_ndcg_at_100_diff1 value: 64.85837726893713 - type: nauc_ndcg_at_100_max value: 29.19990133137256 - type: nauc_ndcg_at_100_std value: -11.17450348161257 - type: nauc_ndcg_at_10_diff1 value: 64.53842705024796 - type: nauc_ndcg_at_10_max value: 28.748734006088526 - type: nauc_ndcg_at_10_std value: -12.331395505957063 - type: nauc_ndcg_at_1_diff1 value: 69.31275711813979 - type: nauc_ndcg_at_1_max value: 26.386708520283758 - type: nauc_ndcg_at_1_std value: -14.434616447245464 - type: nauc_ndcg_at_20_diff1 value: 64.59017606740504 - type: nauc_ndcg_at_20_max value: 29.047332048898017 - type: nauc_ndcg_at_20_std value: -11.746548770195954 - type: nauc_ndcg_at_3_diff1 value: 64.87900935713822 - type: nauc_ndcg_at_3_max value: 28.953157521204403 - type: nauc_ndcg_at_3_std value: -13.639947228880942 - type: nauc_ndcg_at_5_diff1 value: 64.61466953479034 - type: nauc_ndcg_at_5_max value: 29.01899321868392 - type: nauc_ndcg_at_5_std value: -12.85356404799802 - type: nauc_precision_at_1000_diff1 value: 48.85481417002382 - type: nauc_precision_at_1000_max value: 57.129837326696375 - type: nauc_precision_at_1000_std value: 37.889524999906435 - type: nauc_precision_at_100_diff1 value: 53.374672326788264 - type: nauc_precision_at_100_max value: 43.819333062207974 - type: nauc_precision_at_100_std value: 21.387064885769362 - type: nauc_precision_at_10_diff1 value: 57.66571169774445 - type: nauc_precision_at_10_max value: 31.779694837242033 - type: nauc_precision_at_10_std value: -6.6248399147180255 - type: nauc_precision_at_1_diff1 value: 69.31275711813979 - type: nauc_precision_at_1_max value: 26.386708520283758 - type: nauc_precision_at_1_std value: -14.434616447245464 - type: nauc_precision_at_20_diff1 value: 55.93570036001682 - type: nauc_precision_at_20_max value: 34.98640173388743 - type: nauc_precision_at_20_std value: -0.36518465159326174 - type: nauc_precision_at_3_diff1 value: 60.94100093991508 - type: nauc_precision_at_3_max value: 31.422239034357673 - type: nauc_precision_at_3_std value: -12.72576556537896 - type: nauc_precision_at_5_diff1 value: 59.450505195434054 - type: nauc_precision_at_5_max value: 32.07638712418377 - type: nauc_precision_at_5_std value: -10.024459103498598 - type: nauc_recall_at_1000_diff1 value: 48.854814170024184 - type: nauc_recall_at_1000_max value: 57.129837326697164 - type: nauc_recall_at_1000_std value: 37.88952499990672 - type: nauc_recall_at_100_diff1 value: 53.37467232678822 - type: nauc_recall_at_100_max value: 43.8193330622079 - type: nauc_recall_at_100_std value: 21.387064885769398 - type: nauc_recall_at_10_diff1 value: 57.66571169774447 - type: nauc_recall_at_10_max value: 31.779694837242133 - type: nauc_recall_at_10_std value: -6.62483991471789 - type: nauc_recall_at_1_diff1 value: 69.31275711813979 - type: nauc_recall_at_1_max value: 26.386708520283758 - type: nauc_recall_at_1_std value: -14.434616447245464 - type: nauc_recall_at_20_diff1 value: 55.93570036001682 - type: nauc_recall_at_20_max value: 34.986401733887554 - type: nauc_recall_at_20_std value: -0.3651846515931506 - type: nauc_recall_at_3_diff1 value: 60.94100093991499 - type: nauc_recall_at_3_max value: 31.422239034357606 - type: nauc_recall_at_3_std value: -12.725765565378966 - type: nauc_recall_at_5_diff1 value: 59.450505195434125 - type: nauc_recall_at_5_max value: 32.07638712418387 - type: nauc_recall_at_5_std value: -10.024459103498472 - type: ndcg_at_1 value: 55.97 - type: ndcg_at_10 value: 70.00999999999999 - type: ndcg_at_100 value: 72.20100000000001 - type: ndcg_at_1000 value: 72.65599999999999 - type: ndcg_at_20 value: 71.068 - type: ndcg_at_3 value: 66.228 - type: ndcg_at_5 value: 68.191 - type: precision_at_1 value: 55.97 - type: precision_at_10 value: 8.373999999999999 - type: precision_at_100 value: 0.9390000000000001 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 4.3950000000000005 - type: precision_at_3 value: 24.46 - type: precision_at_5 value: 15.626000000000001 - type: recall_at_1 value: 55.97 - type: recall_at_10 value: 83.74000000000001 - type: recall_at_100 value: 93.87 - type: recall_at_1000 value: 97.49 - type: recall_at_20 value: 87.89 - type: recall_at_3 value: 73.38 - type: recall_at_5 value: 78.13 - task: type: Reranking dataset: name: MTEB RuBQReranking (default) type: ai-forever/rubq-reranking config: default split: test revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 metrics: - type: main_score value: 71.44929565043827 - type: map value: 71.44929565043827 - type: mrr value: 77.78391820945014 - type: nAUC_map_diff1 value: 38.140840668080244 - type: nAUC_map_max value: 27.54328688105381 - type: nAUC_map_std value: 16.81572082284672 - type: nAUC_mrr_diff1 value: 44.51350415961509 - type: nAUC_mrr_max value: 36.491182016669754 - type: nAUC_mrr_std value: 22.47139593052269 - task: type: Retrieval dataset: name: MTEB RuBQRetrieval (default) type: ai-forever/rubq-retrieval config: default split: test revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b metrics: - type: main_score value: 68.529 - type: map_at_1 value: 42.529 - type: map_at_10 value: 60.864 - type: map_at_100 value: 61.868 - type: map_at_1000 value: 61.907000000000004 - type: map_at_20 value: 61.596 - type: map_at_3 value: 55.701 - type: map_at_5 value: 58.78 - type: mrr_at_1 value: 60.57919621749409 - type: mrr_at_10 value: 70.55614188149649 - type: mrr_at_100 value: 70.88383816664494 - type: mrr_at_1000 value: 70.89719252668833 - type: mrr_at_20 value: 70.79839750105347 - type: mrr_at_3 value: 68.4594168636722 - type: mrr_at_5 value: 69.67100078802214 - type: nauc_map_at_1000_diff1 value: 40.67438785660885 - type: nauc_map_at_1000_max value: 32.79981738507424 - type: nauc_map_at_1000_std value: -6.873402600044831 - type: nauc_map_at_100_diff1 value: 40.65643664443284 - type: nauc_map_at_100_max value: 32.81594799919249 - type: nauc_map_at_100_std value: -6.8473246794498195 - type: nauc_map_at_10_diff1 value: 40.39048268484908 - type: nauc_map_at_10_max value: 32.403242161479525 - type: nauc_map_at_10_std value: -7.344413799841244 - type: nauc_map_at_1_diff1 value: 44.36306892906905 - type: nauc_map_at_1_max value: 25.61348630699028 - type: nauc_map_at_1_std value: -8.713074613333902 - type: nauc_map_at_20_diff1 value: 40.530326570124615 - type: nauc_map_at_20_max value: 32.74028319323205 - type: nauc_map_at_20_std value: -7.008180779820569 - type: nauc_map_at_3_diff1 value: 40.764924859364044 - type: nauc_map_at_3_max value: 29.809671682025336 - type: nauc_map_at_3_std value: -9.205620202725564 - type: nauc_map_at_5_diff1 value: 40.88599496021476 - type: nauc_map_at_5_max value: 32.1701894666848 - type: nauc_map_at_5_std value: -7.801251849010623 - type: nauc_mrr_at_1000_diff1 value: 48.64181373540728 - type: nauc_mrr_at_1000_max value: 40.136947990653546 - type: nauc_mrr_at_1000_std value: -7.250260497468805 - type: nauc_mrr_at_100_diff1 value: 48.63349902496212 - type: nauc_mrr_at_100_max value: 40.14510559704008 - type: nauc_mrr_at_100_std value: -7.228702374801103 - type: nauc_mrr_at_10_diff1 value: 48.58580560194813 - type: nauc_mrr_at_10_max value: 40.15075599433366 - type: nauc_mrr_at_10_std value: -7.267928771548688 - type: nauc_mrr_at_1_diff1 value: 51.47535097164919 - type: nauc_mrr_at_1_max value: 38.23579750430856 - type: nauc_mrr_at_1_std value: -9.187785187137633 - type: nauc_mrr_at_20_diff1 value: 48.58688378336222 - type: nauc_mrr_at_20_max value: 40.13408744088299 - type: nauc_mrr_at_20_std value: -7.283132775160146 - type: nauc_mrr_at_3_diff1 value: 48.66833005454742 - type: nauc_mrr_at_3_max value: 40.07987333638038 - type: nauc_mrr_at_3_std value: -7.738819947521418 - type: nauc_mrr_at_5_diff1 value: 48.76536305941537 - type: nauc_mrr_at_5_max value: 40.381929739522185 - type: nauc_mrr_at_5_std value: -7.592858318378928 - type: nauc_ndcg_at_1000_diff1 value: 41.67304442004693 - type: nauc_ndcg_at_1000_max value: 35.84126926253235 - type: nauc_ndcg_at_1000_std value: -4.78971011604655 - type: nauc_ndcg_at_100_diff1 value: 41.16918850185783 - type: nauc_ndcg_at_100_max value: 36.082461962326505 - type: nauc_ndcg_at_100_std value: -4.092442251697269 - type: nauc_ndcg_at_10_diff1 value: 40.300065598615205 - type: nauc_ndcg_at_10_max value: 34.87866296788365 - type: nauc_ndcg_at_10_std value: -5.866529277842453 - type: nauc_ndcg_at_1_diff1 value: 51.74612915209495 - type: nauc_ndcg_at_1_max value: 37.71907067970078 - type: nauc_ndcg_at_1_std value: -9.064124266098696 - type: nauc_ndcg_at_20_diff1 value: 40.493949850214584 - type: nauc_ndcg_at_20_max value: 35.69331503650286 - type: nauc_ndcg_at_20_std value: -4.995310342975443 - type: nauc_ndcg_at_3_diff1 value: 41.269443212112364 - type: nauc_ndcg_at_3_max value: 32.572844460953334 - type: nauc_ndcg_at_3_std value: -9.063015396458791 - type: nauc_ndcg_at_5_diff1 value: 41.37039652522888 - type: nauc_ndcg_at_5_max value: 34.67416011393571 - type: nauc_ndcg_at_5_std value: -7.106845569862319 - type: nauc_precision_at_1000_diff1 value: -9.571769961090155 - type: nauc_precision_at_1000_max value: 5.574782583417188 - type: nauc_precision_at_1000_std value: 7.28333847923847 - type: nauc_precision_at_100_diff1 value: -7.7405012003383735 - type: nauc_precision_at_100_max value: 9.67745355070353 - type: nauc_precision_at_100_std value: 9.327890294080992 - type: nauc_precision_at_10_diff1 value: -1.006879647532931 - type: nauc_precision_at_10_max value: 15.899825481231064 - type: nauc_precision_at_10_std value: 4.2284084852153105 - type: nauc_precision_at_1_diff1 value: 51.74612915209495 - type: nauc_precision_at_1_max value: 37.71907067970078 - type: nauc_precision_at_1_std value: -9.064124266098696 - type: nauc_precision_at_20_diff1 value: -4.982301544401409 - type: nauc_precision_at_20_max value: 13.241674471380568 - type: nauc_precision_at_20_std value: 7.052280133821539 - type: nauc_precision_at_3_diff1 value: 15.442614376387374 - type: nauc_precision_at_3_max value: 25.12695418083 - type: nauc_precision_at_3_std value: -3.1150066697920638 - type: nauc_precision_at_5_diff1 value: 8.381026072692444 - type: nauc_precision_at_5_max value: 22.839056540604822 - type: nauc_precision_at_5_std value: 1.5126905486524331 - type: nauc_recall_at_1000_diff1 value: -0.8869709920433502 - type: nauc_recall_at_1000_max value: 45.092324433377264 - type: nauc_recall_at_1000_std value: 62.21264093315108 - type: nauc_recall_at_100_diff1 value: 16.036715011075714 - type: nauc_recall_at_100_max value: 39.79963411771158 - type: nauc_recall_at_100_std value: 28.41850069503361 - type: nauc_recall_at_10_diff1 value: 25.189622794479998 - type: nauc_recall_at_10_max value: 30.82355277039427 - type: nauc_recall_at_10_std value: 0.0964544736531047 - type: nauc_recall_at_1_diff1 value: 44.36306892906905 - type: nauc_recall_at_1_max value: 25.61348630699028 - type: nauc_recall_at_1_std value: -8.713074613333902 - type: nauc_recall_at_20_diff1 value: 20.43424504746087 - type: nauc_recall_at_20_max value: 33.96010554649377 - type: nauc_recall_at_20_std value: 6.900984030301936 - type: nauc_recall_at_3_diff1 value: 33.86531858793492 - type: nauc_recall_at_3_max value: 27.725692256711188 - type: nauc_recall_at_3_std value: -8.533124289305709 - type: nauc_recall_at_5_diff1 value: 32.006964557701686 - type: nauc_recall_at_5_max value: 31.493370659289806 - type: nauc_recall_at_5_std value: -4.8639793547793255 - type: ndcg_at_1 value: 60.461 - type: ndcg_at_10 value: 68.529 - type: ndcg_at_100 value: 71.664 - type: ndcg_at_1000 value: 72.396 - type: ndcg_at_20 value: 70.344 - type: ndcg_at_3 value: 61.550000000000004 - type: ndcg_at_5 value: 64.948 - type: precision_at_1 value: 60.461 - type: precision_at_10 value: 13.28 - type: precision_at_100 value: 1.555 - type: precision_at_1000 value: 0.164 - type: precision_at_20 value: 7.216 - type: precision_at_3 value: 33.077 - type: precision_at_5 value: 23.014000000000003 - type: recall_at_1 value: 42.529 - type: recall_at_10 value: 81.169 - type: recall_at_100 value: 93.154 - type: recall_at_1000 value: 98.18299999999999 - type: recall_at_20 value: 87.132 - type: recall_at_3 value: 63.905 - type: recall_at_5 value: 71.967 - task: type: Classification dataset: name: MTEB RuReviewsClassification (default) type: ai-forever/ru-reviews-classification config: default split: test revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a metrics: - type: accuracy value: 61.17675781250001 - type: f1 value: 60.354535346041374 - type: f1_weighted value: 60.35437313166116 - type: main_score value: 61.17675781250001 - task: type: STS dataset: name: MTEB RuSTSBenchmarkSTS (default) type: ai-forever/ru-stsbenchmark-sts config: default split: test revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 metrics: - type: cosine_pearson value: 78.1301041727274 - type: cosine_spearman value: 78.08238025421747 - type: euclidean_pearson value: 77.35224254583635 - type: euclidean_spearman value: 78.08235336582496 - type: main_score value: 78.08238025421747 - type: manhattan_pearson value: 77.24138550052075 - type: manhattan_spearman value: 77.98199107904142 - type: pearson value: 78.1301041727274 - type: spearman value: 78.08238025421747 - task: type: Classification dataset: name: MTEB RuSciBenchGRNTIClassification (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: accuracy value: 54.990234375 - type: f1 value: 53.537019057131374 - type: f1_weighted value: 53.552745354520766 - type: main_score value: 54.990234375 - task: type: Clustering dataset: name: MTEB RuSciBenchGRNTIClusteringP2P (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: main_score value: 50.775228895355106 - type: v_measure value: 50.775228895355106 - type: v_measure_std value: 0.9533571150165796 - task: type: Classification dataset: name: MTEB RuSciBenchOECDClassification (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: accuracy value: 41.71875 - type: f1 value: 39.289100975858304 - type: f1_weighted value: 39.29257829217775 - type: main_score value: 41.71875 - task: type: Clustering dataset: name: MTEB RuSciBenchOECDClusteringP2P (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: main_score value: 45.10904808834516 - type: v_measure value: 45.10904808834516 - type: v_measure_std value: 1.0572643410157534 - task: type: Classification dataset: name: MTEB SIB200Classification (rus_Cyrl) type: mteb/sib200 config: rus_Cyrl split: test revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b metrics: - type: accuracy value: 66.36363636363637 - type: f1 value: 64.6940336621617 - type: f1_weighted value: 66.43317771876966 - type: main_score value: 66.36363636363637 - task: type: Clustering dataset: name: MTEB SIB200ClusteringS2S (rus_Cyrl) type: mteb/sib200 config: rus_Cyrl split: test revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b metrics: - type: main_score value: 33.99178497314711 - type: v_measure value: 33.99178497314711 - type: v_measure_std value: 4.036337464043786 - task: type: STS dataset: name: MTEB STS22.v2 (ru) type: mteb/sts22-crosslingual-sts config: ru split: test revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd metrics: - type: cosine_pearson value: 50.724322379215934 - type: cosine_spearman value: 59.90449732164651 - type: euclidean_pearson value: 50.227545226784024 - type: euclidean_spearman value: 59.898906527601085 - type: main_score value: 59.90449732164651 - type: manhattan_pearson value: 50.21762139819405 - type: manhattan_spearman value: 59.761039813759 - type: pearson value: 50.724322379215934 - type: spearman value: 59.90449732164651 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (ru) type: mteb/stsb_multi_mt config: ru split: dev revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 78.43928769569945 - type: cosine_spearman value: 78.23961768018884 - type: euclidean_pearson value: 77.4718694027985 - type: euclidean_spearman value: 78.23887044760475 - type: main_score value: 78.23961768018884 - type: manhattan_pearson value: 77.34517128089547 - type: manhattan_spearman value: 78.1146477340426 - type: pearson value: 78.43928769569945 - type: spearman value: 78.23961768018884 - task: type: MultilabelClassification dataset: name: MTEB SensitiveTopicsClassification (default) type: ai-forever/sensitive-topics-classification config: default split: test revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 metrics: - type: accuracy value: 22.8125 - type: f1 value: 17.31969589593409 - type: lrap value: 33.82412380642287 - type: main_score value: 22.8125 - task: type: PairClassification dataset: name: MTEB TERRa (default) type: ai-forever/terra-pairclassification config: default split: dev revision: 7b58f24536063837d644aab9a023c62199b2a612 metrics: - type: cosine_accuracy value: 57.32899022801303 - type: cosine_accuracy_threshold value: 85.32201051712036 - type: cosine_ap value: 55.14264553720072 - type: cosine_f1 value: 66.83544303797468 - type: cosine_f1_threshold value: 85.32201051712036 - type: cosine_precision value: 54.54545454545454 - type: cosine_recall value: 86.27450980392157 - type: dot_accuracy value: 57.32899022801303 - type: dot_accuracy_threshold value: 85.32201051712036 - type: dot_ap value: 55.14264553720072 - type: dot_f1 value: 66.83544303797468 - type: dot_f1_threshold value: 85.32201051712036 - type: dot_precision value: 54.54545454545454 - type: dot_recall value: 86.27450980392157 - type: euclidean_accuracy value: 57.32899022801303 - type: euclidean_accuracy_threshold value: 54.18117046356201 - type: euclidean_ap value: 55.14264553720072 - type: euclidean_f1 value: 66.83544303797468 - type: euclidean_f1_threshold value: 54.18117046356201 - type: euclidean_precision value: 54.54545454545454 - type: euclidean_recall value: 86.27450980392157 - type: main_score value: 55.14264553720072 - type: manhattan_accuracy value: 57.32899022801303 - type: manhattan_accuracy_threshold value: 828.8480758666992 - type: manhattan_ap value: 55.077974053622555 - type: manhattan_f1 value: 66.82352941176471 - type: manhattan_f1_threshold value: 885.6784820556641 - type: manhattan_precision value: 52.20588235294118 - type: manhattan_recall value: 92.81045751633987 - type: max_ap value: 55.14264553720072 - type: max_f1 value: 66.83544303797468 - type: max_precision value: 54.54545454545454 - type: max_recall value: 92.81045751633987 - type: similarity_accuracy value: 57.32899022801303 - type: similarity_accuracy_threshold value: 85.32201051712036 - type: similarity_ap value: 55.14264553720072 - type: similarity_f1 value: 66.83544303797468 - type: similarity_f1_threshold value: 85.32201051712036 - type: similarity_precision value: 54.54545454545454 - type: similarity_recall value: 86.27450980392157 - task: type: PairClassification dataset: name: MTEB XNLI (ru) type: mteb/xnli config: ru split: test revision: 09698e0180d87dc247ca447d3a1248b931ac0cdb metrics: - type: cosine_accuracy value: 67.6923076923077 - type: cosine_accuracy_threshold value: 87.6681923866272 - type: cosine_ap value: 73.18693800863593 - type: cosine_f1 value: 70.40641099026904 - type: cosine_f1_threshold value: 85.09706258773804 - type: cosine_precision value: 57.74647887323944 - type: cosine_recall value: 90.17595307917888 - type: dot_accuracy value: 67.6923076923077 - type: dot_accuracy_threshold value: 87.66818642616272 - type: dot_ap value: 73.18693800863593 - type: dot_f1 value: 70.40641099026904 - type: dot_f1_threshold value: 85.09706258773804 - type: dot_precision value: 57.74647887323944 - type: dot_recall value: 90.17595307917888 - type: euclidean_accuracy value: 67.6923076923077 - type: euclidean_accuracy_threshold value: 49.662476778030396 - type: euclidean_ap value: 73.18693800863593 - type: euclidean_f1 value: 70.40641099026904 - type: euclidean_f1_threshold value: 54.59475517272949 - type: euclidean_precision value: 57.74647887323944 - type: euclidean_recall value: 90.17595307917888 - type: main_score value: 73.18693800863593 - type: manhattan_accuracy value: 67.54578754578755 - type: manhattan_accuracy_threshold value: 777.1001815795898 - type: manhattan_ap value: 72.98861474758783 - type: manhattan_f1 value: 70.6842435655995 - type: manhattan_f1_threshold value: 810.3782653808594 - type: manhattan_precision value: 61.80021953896817 - type: manhattan_recall value: 82.55131964809385 - type: max_ap value: 73.18693800863593 - type: max_f1 value: 70.6842435655995 - type: max_precision value: 61.80021953896817 - type: max_recall value: 90.17595307917888 - type: similarity_accuracy value: 67.6923076923077 - type: similarity_accuracy_threshold value: 87.6681923866272 - type: similarity_ap value: 73.18693800863593 - type: similarity_f1 value: 70.40641099026904 - type: similarity_f1_threshold value: 85.09706258773804 - type: similarity_precision value: 57.74647887323944 - type: similarity_recall value: 90.17595307917888 - task: type: PairClassification dataset: name: MTEB XNLIV2 (russian) type: mteb/xnli2.0-multi-pair config: russian split: test revision: 5b7d477a8c62cdd18e2fed7e015497c20b4371ad metrics: - type: cosine_accuracy value: 68.35164835164835 - type: cosine_accuracy_threshold value: 88.48621845245361 - type: cosine_ap value: 73.10205506215699 - type: cosine_f1 value: 71.28712871287128 - type: cosine_f1_threshold value: 87.00399398803711 - type: cosine_precision value: 61.67023554603854 - type: cosine_recall value: 84.4574780058651 - type: dot_accuracy value: 68.35164835164835 - type: dot_accuracy_threshold value: 88.48622441291809 - type: dot_ap value: 73.10191110714706 - type: dot_f1 value: 71.28712871287128 - type: dot_f1_threshold value: 87.00399398803711 - type: dot_precision value: 61.67023554603854 - type: dot_recall value: 84.4574780058651 - type: euclidean_accuracy value: 68.35164835164835 - type: euclidean_accuracy_threshold value: 47.98704385757446 - type: euclidean_ap value: 73.10205506215699 - type: euclidean_f1 value: 71.28712871287128 - type: euclidean_f1_threshold value: 50.982362031936646 - type: euclidean_precision value: 61.67023554603854 - type: euclidean_recall value: 84.4574780058651 - type: main_score value: 73.10205506215699 - type: manhattan_accuracy value: 67.91208791208791 - type: manhattan_accuracy_threshold value: 746.1360931396484 - type: manhattan_ap value: 72.8954736175069 - type: manhattan_f1 value: 71.1297071129707 - type: manhattan_f1_threshold value: 808.0789566040039 - type: manhattan_precision value: 60.04036326942482 - type: manhattan_recall value: 87.2434017595308 - type: max_ap value: 73.10205506215699 - type: max_f1 value: 71.28712871287128 - type: max_precision value: 61.67023554603854 - type: max_recall value: 87.2434017595308 - type: similarity_accuracy value: 68.35164835164835 - type: similarity_accuracy_threshold value: 88.48621845245361 - type: similarity_ap value: 73.10205506215699 - type: similarity_f1 value: 71.28712871287128 - type: similarity_f1_threshold value: 87.00399398803711 - type: similarity_precision value: 61.67023554603854 - type: similarity_recall value: 84.4574780058651 - task: type: Retrieval dataset: name: MTEB XQuADRetrieval (ru) type: google/xquad config: ru split: validation revision: 51adfef1c1287aab1d2d91b5bead9bcfb9c68583 metrics: - type: main_score value: 95.705 - type: map_at_1 value: 90.802 - type: map_at_10 value: 94.427 - type: map_at_100 value: 94.451 - type: map_at_1000 value: 94.451 - type: map_at_20 value: 94.446 - type: map_at_3 value: 94.121 - type: map_at_5 value: 94.34 - type: mrr_at_1 value: 90.80168776371308 - type: mrr_at_10 value: 94.42659567343111 - type: mrr_at_100 value: 94.45099347521871 - type: mrr_at_1000 value: 94.45099347521871 - type: mrr_at_20 value: 94.44574530017569 - type: mrr_at_3 value: 94.12095639943743 - type: mrr_at_5 value: 94.34036568213786 - type: nauc_map_at_1000_diff1 value: 87.40573202946949 - type: nauc_map_at_1000_max value: 65.56220344468791 - type: nauc_map_at_1000_std value: 8.865583291735863 - type: nauc_map_at_100_diff1 value: 87.40573202946949 - type: nauc_map_at_100_max value: 65.56220344468791 - type: nauc_map_at_100_std value: 8.865583291735863 - type: nauc_map_at_10_diff1 value: 87.43657080570291 - type: nauc_map_at_10_max value: 65.71295628534446 - type: nauc_map_at_10_std value: 9.055399339099655 - type: nauc_map_at_1_diff1 value: 88.08395824560428 - type: nauc_map_at_1_max value: 62.92813192908893 - type: nauc_map_at_1_std value: 6.738987385482432 - type: nauc_map_at_20_diff1 value: 87.40979818966589 - type: nauc_map_at_20_max value: 65.59474346926105 - type: nauc_map_at_20_std value: 8.944420599300914 - type: nauc_map_at_3_diff1 value: 86.97771892161035 - type: nauc_map_at_3_max value: 66.14330030122467 - type: nauc_map_at_3_std value: 8.62516327793521 - type: nauc_map_at_5_diff1 value: 87.30273362211798 - type: nauc_map_at_5_max value: 66.1522476584607 - type: nauc_map_at_5_std value: 9.780940862679724 - type: nauc_mrr_at_1000_diff1 value: 87.40573202946949 - type: nauc_mrr_at_1000_max value: 65.56220344468791 - type: nauc_mrr_at_1000_std value: 8.865583291735863 - type: nauc_mrr_at_100_diff1 value: 87.40573202946949 - type: nauc_mrr_at_100_max value: 65.56220344468791 - type: nauc_mrr_at_100_std value: 8.865583291735863 - type: nauc_mrr_at_10_diff1 value: 87.43657080570291 - type: nauc_mrr_at_10_max value: 65.71295628534446 - type: nauc_mrr_at_10_std value: 9.055399339099655 - type: nauc_mrr_at_1_diff1 value: 88.08395824560428 - type: nauc_mrr_at_1_max value: 62.92813192908893 - type: nauc_mrr_at_1_std value: 6.738987385482432 - type: nauc_mrr_at_20_diff1 value: 87.40979818966589 - type: nauc_mrr_at_20_max value: 65.59474346926105 - type: nauc_mrr_at_20_std value: 8.944420599300914 - type: nauc_mrr_at_3_diff1 value: 86.97771892161035 - type: nauc_mrr_at_3_max value: 66.14330030122467 - type: nauc_mrr_at_3_std value: 8.62516327793521 - type: nauc_mrr_at_5_diff1 value: 87.30273362211798 - type: nauc_mrr_at_5_max value: 66.1522476584607 - type: nauc_mrr_at_5_std value: 9.780940862679724 - type: nauc_ndcg_at_1000_diff1 value: 87.37823158814116 - type: nauc_ndcg_at_1000_max value: 66.00874244792789 - type: nauc_ndcg_at_1000_std value: 9.479929342875067 - type: nauc_ndcg_at_100_diff1 value: 87.37823158814116 - type: nauc_ndcg_at_100_max value: 66.00874244792789 - type: nauc_ndcg_at_100_std value: 9.479929342875067 - type: nauc_ndcg_at_10_diff1 value: 87.54508467181488 - type: nauc_ndcg_at_10_max value: 66.88756470312894 - type: nauc_ndcg_at_10_std value: 10.812624405397022 - type: nauc_ndcg_at_1_diff1 value: 88.08395824560428 - type: nauc_ndcg_at_1_max value: 62.92813192908893 - type: nauc_ndcg_at_1_std value: 6.738987385482432 - type: nauc_ndcg_at_20_diff1 value: 87.42097894104597 - type: nauc_ndcg_at_20_max value: 66.37031898778943 - type: nauc_ndcg_at_20_std value: 10.34862538094813 - type: nauc_ndcg_at_3_diff1 value: 86.50039907157999 - type: nauc_ndcg_at_3_max value: 67.97798288917929 - type: nauc_ndcg_at_3_std value: 10.162410286746852 - type: nauc_ndcg_at_5_diff1 value: 87.13322094568531 - type: nauc_ndcg_at_5_max value: 68.08576118683821 - type: nauc_ndcg_at_5_std value: 12.639637379592855 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_100_diff1 value: 100.0 - type: nauc_precision_at_100_max value: 100.0 - type: nauc_precision_at_100_std value: 100.0 - type: nauc_precision_at_10_diff1 value: 93.46711505595813 - type: nauc_precision_at_10_max value: 100.0 - type: nauc_precision_at_10_std value: 65.42573557179935 - type: nauc_precision_at_1_diff1 value: 88.08395824560428 - type: nauc_precision_at_1_max value: 62.92813192908893 - type: nauc_precision_at_1_std value: 6.738987385482432 - type: nauc_precision_at_20_diff1 value: 91.28948674127133 - type: nauc_precision_at_20_max value: 100.0 - type: nauc_precision_at_20_std value: 90.74278258632364 - type: nauc_precision_at_3_diff1 value: 82.64606115071832 - type: nauc_precision_at_3_max value: 83.26201582412921 - type: nauc_precision_at_3_std value: 23.334013491433762 - type: nauc_precision_at_5_diff1 value: 85.0867539350284 - type: nauc_precision_at_5_max value: 96.57011448655484 - type: nauc_precision_at_5_std value: 56.46869543426768 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: 93.46711505595623 - type: nauc_recall_at_10_max value: 100.0 - type: nauc_recall_at_10_std value: 65.42573557180279 - type: nauc_recall_at_1_diff1 value: 88.08395824560428 - type: nauc_recall_at_1_max value: 62.92813192908893 - type: nauc_recall_at_1_std value: 6.738987385482432 - type: nauc_recall_at_20_diff1 value: 91.28948674127474 - type: nauc_recall_at_20_max value: 100.0 - type: nauc_recall_at_20_std value: 90.74278258632704 - type: nauc_recall_at_3_diff1 value: 82.64606115071967 - type: nauc_recall_at_3_max value: 83.26201582413023 - type: nauc_recall_at_3_std value: 23.334013491434007 - type: nauc_recall_at_5_diff1 value: 85.08675393502854 - type: nauc_recall_at_5_max value: 96.57011448655487 - type: nauc_recall_at_5_std value: 56.46869543426658 - type: ndcg_at_1 value: 90.802 - type: ndcg_at_10 value: 95.705 - type: ndcg_at_100 value: 95.816 - type: ndcg_at_1000 value: 95.816 - type: ndcg_at_20 value: 95.771 - type: ndcg_at_3 value: 95.11699999999999 - type: ndcg_at_5 value: 95.506 - type: precision_at_1 value: 90.802 - type: precision_at_10 value: 9.949 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.987 - type: precision_at_3 value: 32.658 - type: precision_at_5 value: 19.781000000000002 - type: recall_at_1 value: 90.802 - type: recall_at_10 value: 99.494 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 99.747 - type: recall_at_3 value: 97.975 - type: recall_at_5 value: 98.90299999999999 --- ## Multilingual-E5-small [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672). Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024 This model has 12 layers and the embedding size is 384. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ", even for non-English texts. # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-small') model = AutoModel.from_pretrained('intfloat/multilingual-e5-small') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Supported Languages This model is initialized from [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) and continually trained on a mixture of multilingual datasets. It supports 100 languages from xlm-roberta, but low-resource languages may see performance degradation. ## Training Details **Initialization**: [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) **First stage**: contrastive pre-training with weak supervision | Dataset | Weak supervision | # of text pairs | |--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------| | Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B | | [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M | | [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B | | [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M | | Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M | | [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M | | [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M | | [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M | | [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M | **Second stage**: supervised fine-tuning | Dataset | Language | # of text pairs | |----------------------------------------------------------------------------------------|--------------|-----------------| | [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k | | [NQ](https://github.com/facebookresearch/DPR) | English | 70k | | [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k | | [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k | | [ELI5](https://huggingface.co/datasets/eli5) | English | 500k | | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k | | [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [SQuAD](https://huggingface.co/datasets/squad) | English | 87k | | [Quora](https://huggingface.co/datasets/quora) | English | 150k | | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k | | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k | For all labeled datasets, we only use its training set for fine-tuning. For other training details, please refer to our paper at [https://arxiv.org/pdf/2402.05672](https://arxiv.org/pdf/2402.05672). ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787) | Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th | |-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- | | BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 | | mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 | | BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 | | | | | multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 | | multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 | | multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 | ## MTEB Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/multilingual-e5-small') input_texts = [ 'query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2024multilingual, title={Multilingual E5 Text Embeddings: A Technical Report}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2402.05672}, year={2024} } ``` ## Limitations Long texts will be truncated to at most 512 tokens.
[ "BIOSSES", "SCIFACT" ]
Daxtra/jina-embeddings-v3
Daxtra
feature-extraction
[ "transformers", "pytorch", "onnx", "safetensors", "feature-extraction", "sentence-similarity", "mteb", "sentence-transformers", "custom_code", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2409.10173", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
2025-01-28T13:03:36Z
2025-01-28T14:37:28+00:00
30
1
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - false - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh library_name: transformers license: cc-by-nc-4.0 tags: - feature-extraction - sentence-similarity - mteb - sentence-transformers inference: false model-index: - name: jina-embeddings-v3 results: - task: type: STS dataset: name: MTEB AFQMC (default) type: C-MTEB/AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cosine_pearson value: 41.74237700998808 - type: cosine_spearman value: 43.4726782647566 - type: euclidean_pearson value: 42.244585459479964 - type: euclidean_spearman value: 43.525070045169606 - type: main_score value: 43.4726782647566 - type: manhattan_pearson value: 42.04616728224863 - type: manhattan_spearman value: 43.308828270754645 - type: pearson value: 41.74237700998808 - type: spearman value: 43.4726782647566 - task: type: Retrieval dataset: name: MTEB ArguAna-PL (default) type: clarin-knext/arguana-pl config: default split: test revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 metrics: - type: main_score value: 50.117999999999995 - type: map_at_1 value: 24.253 - type: map_at_10 value: 40.725 - type: map_at_100 value: 41.699999999999996 - type: map_at_1000 value: 41.707 - type: map_at_20 value: 41.467999999999996 - type: map_at_3 value: 35.467 - type: map_at_5 value: 38.291 - type: mrr_at_1 value: 24.751066856330013 - type: mrr_at_10 value: 40.91063808169072 - type: mrr_at_100 value: 41.885497923928675 - type: mrr_at_1000 value: 41.89301098419842 - type: mrr_at_20 value: 41.653552355442514 - type: mrr_at_3 value: 35.656709340919775 - type: mrr_at_5 value: 38.466097676623946 - type: nauc_map_at_1000_diff1 value: 7.503000359807567 - type: nauc_map_at_1000_max value: -11.030405164830546 - type: nauc_map_at_1000_std value: -8.902792782585117 - type: nauc_map_at_100_diff1 value: 7.509899249593199 - type: nauc_map_at_100_max value: -11.023581259404406 - type: nauc_map_at_100_std value: -8.892241185067272 - type: nauc_map_at_10_diff1 value: 7.24369711881512 - type: nauc_map_at_10_max value: -10.810000200433278 - type: nauc_map_at_10_std value: -8.987230542165776 - type: nauc_map_at_1_diff1 value: 11.37175831832417 - type: nauc_map_at_1_max value: -13.315221903223055 - type: nauc_map_at_1_std value: -9.398199605510275 - type: nauc_map_at_20_diff1 value: 7.477364530860648 - type: nauc_map_at_20_max value: -10.901251218105566 - type: nauc_map_at_20_std value: -8.868148116405925 - type: nauc_map_at_3_diff1 value: 6.555548802174882 - type: nauc_map_at_3_max value: -12.247274800542934 - type: nauc_map_at_3_std value: -9.879475250984811 - type: nauc_map_at_5_diff1 value: 7.426588563355882 - type: nauc_map_at_5_max value: -11.347695686001805 - type: nauc_map_at_5_std value: -9.34441892203972 - type: nauc_mrr_at_1000_diff1 value: 5.99737552143614 - type: nauc_mrr_at_1000_max value: -11.327205136505727 - type: nauc_mrr_at_1000_std value: -8.791079115519503 - type: nauc_mrr_at_100_diff1 value: 6.004622525255784 - type: nauc_mrr_at_100_max value: -11.320336759899723 - type: nauc_mrr_at_100_std value: -8.780602249831777 - type: nauc_mrr_at_10_diff1 value: 5.783623516930227 - type: nauc_mrr_at_10_max value: -11.095971693467078 - type: nauc_mrr_at_10_std value: -8.877242032013582 - type: nauc_mrr_at_1_diff1 value: 9.694937537703797 - type: nauc_mrr_at_1_max value: -12.531905083727912 - type: nauc_mrr_at_1_std value: -8.903992940100146 - type: nauc_mrr_at_20_diff1 value: 5.984841206233873 - type: nauc_mrr_at_20_max value: -11.195236951048969 - type: nauc_mrr_at_20_std value: -8.757266039186018 - type: nauc_mrr_at_3_diff1 value: 5.114333824261379 - type: nauc_mrr_at_3_max value: -12.64809799843464 - type: nauc_mrr_at_3_std value: -9.791146138025184 - type: nauc_mrr_at_5_diff1 value: 5.88941606224512 - type: nauc_mrr_at_5_max value: -11.763903418071918 - type: nauc_mrr_at_5_std value: -9.279175712709446 - type: nauc_ndcg_at_1000_diff1 value: 7.076950652226086 - type: nauc_ndcg_at_1000_max value: -10.386482092087371 - type: nauc_ndcg_at_1000_std value: -8.309190917074046 - type: nauc_ndcg_at_100_diff1 value: 7.2329220284865245 - type: nauc_ndcg_at_100_max value: -10.208048403220337 - type: nauc_ndcg_at_100_std value: -7.997975874274613 - type: nauc_ndcg_at_10_diff1 value: 6.065391100006953 - type: nauc_ndcg_at_10_max value: -9.046164377601153 - type: nauc_ndcg_at_10_std value: -8.34724889697153 - type: nauc_ndcg_at_1_diff1 value: 11.37175831832417 - type: nauc_ndcg_at_1_max value: -13.315221903223055 - type: nauc_ndcg_at_1_std value: -9.398199605510275 - type: nauc_ndcg_at_20_diff1 value: 6.949389989202601 - type: nauc_ndcg_at_20_max value: -9.35740451760307 - type: nauc_ndcg_at_20_std value: -7.761295171828212 - type: nauc_ndcg_at_3_diff1 value: 5.051471796151364 - type: nauc_ndcg_at_3_max value: -12.158763333711653 - type: nauc_ndcg_at_3_std value: -10.078902544421926 - type: nauc_ndcg_at_5_diff1 value: 6.527454512611454 - type: nauc_ndcg_at_5_max value: -10.525118233848586 - type: nauc_ndcg_at_5_std value: -9.120055125584031 - type: nauc_precision_at_1000_diff1 value: -10.6495668199151 - type: nauc_precision_at_1000_max value: 12.070656425217841 - type: nauc_precision_at_1000_std value: 55.844551709649004 - type: nauc_precision_at_100_diff1 value: 19.206967129266285 - type: nauc_precision_at_100_max value: 16.296851020813456 - type: nauc_precision_at_100_std value: 45.60378984257811 - type: nauc_precision_at_10_diff1 value: 0.6490335354304879 - type: nauc_precision_at_10_max value: 0.5757198255366447 - type: nauc_precision_at_10_std value: -4.875847131691451 - type: nauc_precision_at_1_diff1 value: 11.37175831832417 - type: nauc_precision_at_1_max value: -13.315221903223055 - type: nauc_precision_at_1_std value: -9.398199605510275 - type: nauc_precision_at_20_diff1 value: 4.899369866929203 - type: nauc_precision_at_20_max value: 5.988537297189552 - type: nauc_precision_at_20_std value: 4.830900387582837 - type: nauc_precision_at_3_diff1 value: 0.8791156910997744 - type: nauc_precision_at_3_max value: -11.983373635905993 - type: nauc_precision_at_3_std value: -10.646185111581257 - type: nauc_precision_at_5_diff1 value: 3.9314486166548432 - type: nauc_precision_at_5_max value: -7.798591396895839 - type: nauc_precision_at_5_std value: -8.293043407234125 - type: nauc_recall_at_1000_diff1 value: -10.649566819918673 - type: nauc_recall_at_1000_max value: 12.070656425214647 - type: nauc_recall_at_1000_std value: 55.84455170965023 - type: nauc_recall_at_100_diff1 value: 19.206967129265127 - type: nauc_recall_at_100_max value: 16.296851020813722 - type: nauc_recall_at_100_std value: 45.60378984257728 - type: nauc_recall_at_10_diff1 value: 0.6490335354304176 - type: nauc_recall_at_10_max value: 0.5757198255366095 - type: nauc_recall_at_10_std value: -4.875847131691468 - type: nauc_recall_at_1_diff1 value: 11.37175831832417 - type: nauc_recall_at_1_max value: -13.315221903223055 - type: nauc_recall_at_1_std value: -9.398199605510275 - type: nauc_recall_at_20_diff1 value: 4.899369866929402 - type: nauc_recall_at_20_max value: 5.98853729718968 - type: nauc_recall_at_20_std value: 4.830900387582967 - type: nauc_recall_at_3_diff1 value: 0.8791156910997652 - type: nauc_recall_at_3_max value: -11.983373635905997 - type: nauc_recall_at_3_std value: -10.64618511158124 - type: nauc_recall_at_5_diff1 value: 3.9314486166548472 - type: nauc_recall_at_5_max value: -7.7985913968958585 - type: nauc_recall_at_5_std value: -8.293043407234132 - type: ndcg_at_1 value: 24.253 - type: ndcg_at_10 value: 50.117999999999995 - type: ndcg_at_100 value: 54.291999999999994 - type: ndcg_at_1000 value: 54.44799999999999 - type: ndcg_at_20 value: 52.771 - type: ndcg_at_3 value: 39.296 - type: ndcg_at_5 value: 44.373000000000005 - type: precision_at_1 value: 24.253 - type: precision_at_10 value: 8.016 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.527 - type: precision_at_3 value: 16.808999999999997 - type: precision_at_5 value: 12.546 - type: recall_at_1 value: 24.253 - type: recall_at_10 value: 80.156 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_20 value: 90.54100000000001 - type: recall_at_3 value: 50.427 - type: recall_at_5 value: 62.731 - task: type: Retrieval dataset: name: MTEB DBPedia-PL (default) type: clarin-knext/dbpedia-pl config: default split: test revision: 76afe41d9af165cc40999fcaa92312b8b012064a metrics: - type: main_score value: 34.827000000000005 - type: map_at_1 value: 7.049999999999999 - type: map_at_10 value: 14.982999999999999 - type: map_at_100 value: 20.816000000000003 - type: map_at_1000 value: 22.33 - type: map_at_20 value: 17.272000000000002 - type: map_at_3 value: 10.661 - type: map_at_5 value: 12.498 - type: mrr_at_1 value: 57.25 - type: mrr_at_10 value: 65.81934523809524 - type: mrr_at_100 value: 66.2564203928212 - type: mrr_at_1000 value: 66.27993662923856 - type: mrr_at_20 value: 66.0732139130649 - type: mrr_at_3 value: 64.08333333333333 - type: mrr_at_5 value: 65.27083333333333 - type: nauc_map_at_1000_diff1 value: 16.41780871174038 - type: nauc_map_at_1000_max value: 30.193946325654654 - type: nauc_map_at_1000_std value: 31.46095497039037 - type: nauc_map_at_100_diff1 value: 18.57903165498531 - type: nauc_map_at_100_max value: 29.541476938623262 - type: nauc_map_at_100_std value: 28.228604103301052 - type: nauc_map_at_10_diff1 value: 24.109434489748946 - type: nauc_map_at_10_max value: 21.475954208048968 - type: nauc_map_at_10_std value: 9.964464537806988 - type: nauc_map_at_1_diff1 value: 38.67437644802124 - type: nauc_map_at_1_max value: 14.52136658726491 - type: nauc_map_at_1_std value: -2.8981666782088755 - type: nauc_map_at_20_diff1 value: 21.42547228801935 - type: nauc_map_at_20_max value: 25.04510402960458 - type: nauc_map_at_20_std value: 16.533079346431155 - type: nauc_map_at_3_diff1 value: 26.63648858245477 - type: nauc_map_at_3_max value: 13.632235789780415 - type: nauc_map_at_3_std value: -0.40129174577700716 - type: nauc_map_at_5_diff1 value: 24.513861031197933 - type: nauc_map_at_5_max value: 16.599888813946688 - type: nauc_map_at_5_std value: 3.4448514739556346 - type: nauc_mrr_at_1000_diff1 value: 36.57353464537154 - type: nauc_mrr_at_1000_max value: 55.34763483979515 - type: nauc_mrr_at_1000_std value: 40.3722796438533 - type: nauc_mrr_at_100_diff1 value: 36.555989566513134 - type: nauc_mrr_at_100_max value: 55.347805216808396 - type: nauc_mrr_at_100_std value: 40.38465945075711 - type: nauc_mrr_at_10_diff1 value: 36.771572999261984 - type: nauc_mrr_at_10_max value: 55.41239897909165 - type: nauc_mrr_at_10_std value: 40.52058934624793 - type: nauc_mrr_at_1_diff1 value: 38.2472828531032 - type: nauc_mrr_at_1_max value: 51.528473828685705 - type: nauc_mrr_at_1_std value: 33.03676467942882 - type: nauc_mrr_at_20_diff1 value: 36.642602571889036 - type: nauc_mrr_at_20_max value: 55.3763342076553 - type: nauc_mrr_at_20_std value: 40.41520090500838 - type: nauc_mrr_at_3_diff1 value: 36.79451847426628 - type: nauc_mrr_at_3_max value: 54.59778581826193 - type: nauc_mrr_at_3_std value: 39.48392075873095 - type: nauc_mrr_at_5_diff1 value: 36.92150807529304 - type: nauc_mrr_at_5_max value: 55.03553978718272 - type: nauc_mrr_at_5_std value: 40.20147745489917 - type: nauc_ndcg_at_1000_diff1 value: 21.843092744321268 - type: nauc_ndcg_at_1000_max value: 44.93275990394279 - type: nauc_ndcg_at_1000_std value: 47.09186225236347 - type: nauc_ndcg_at_100_diff1 value: 25.180282568979095 - type: nauc_ndcg_at_100_max value: 41.737709709508394 - type: nauc_ndcg_at_100_std value: 38.80950644139446 - type: nauc_ndcg_at_10_diff1 value: 24.108368037214046 - type: nauc_ndcg_at_10_max value: 41.29298370689967 - type: nauc_ndcg_at_10_std value: 35.06450769738732 - type: nauc_ndcg_at_1_diff1 value: 35.51010679525079 - type: nauc_ndcg_at_1_max value: 42.40790024212412 - type: nauc_ndcg_at_1_std value: 26.696412036243157 - type: nauc_ndcg_at_20_diff1 value: 23.909989673256195 - type: nauc_ndcg_at_20_max value: 39.78444647091927 - type: nauc_ndcg_at_20_std value: 33.39544470364529 - type: nauc_ndcg_at_3_diff1 value: 22.50484297956035 - type: nauc_ndcg_at_3_max value: 39.14551926034168 - type: nauc_ndcg_at_3_std value: 30.330135925392014 - type: nauc_ndcg_at_5_diff1 value: 21.7798872028265 - type: nauc_ndcg_at_5_max value: 40.23856975248015 - type: nauc_ndcg_at_5_std value: 32.438381067440396 - type: nauc_precision_at_1000_diff1 value: -21.62692442272279 - type: nauc_precision_at_1000_max value: 0.9689046974430882 - type: nauc_precision_at_1000_std value: 18.54001058230465 - type: nauc_precision_at_100_diff1 value: -10.132258779856192 - type: nauc_precision_at_100_max value: 23.74516110444681 - type: nauc_precision_at_100_std value: 47.03416663319965 - type: nauc_precision_at_10_diff1 value: 1.543656509571949 - type: nauc_precision_at_10_max value: 36.98864812757555 - type: nauc_precision_at_10_std value: 46.56427199077426 - type: nauc_precision_at_1_diff1 value: 38.2472828531032 - type: nauc_precision_at_1_max value: 51.528473828685705 - type: nauc_precision_at_1_std value: 33.03676467942882 - type: nauc_precision_at_20_diff1 value: -4.612864872734335 - type: nauc_precision_at_20_max value: 34.03565449182125 - type: nauc_precision_at_20_std value: 48.880727648349534 - type: nauc_precision_at_3_diff1 value: 6.360850444467829 - type: nauc_precision_at_3_max value: 36.25816942368427 - type: nauc_precision_at_3_std value: 34.48882647419187 - type: nauc_precision_at_5_diff1 value: 2.6445596936740037 - type: nauc_precision_at_5_max value: 37.174463388899056 - type: nauc_precision_at_5_std value: 40.25254370626113 - type: nauc_recall_at_1000_diff1 value: 13.041227176748077 - type: nauc_recall_at_1000_max value: 39.722336427072094 - type: nauc_recall_at_1000_std value: 52.04032890059214 - type: nauc_recall_at_100_diff1 value: 18.286096899139153 - type: nauc_recall_at_100_max value: 34.072389201930314 - type: nauc_recall_at_100_std value: 37.73637623416653 - type: nauc_recall_at_10_diff1 value: 22.35560419280504 - type: nauc_recall_at_10_max value: 19.727247199595197 - type: nauc_recall_at_10_std value: 8.58498575109203 - type: nauc_recall_at_1_diff1 value: 38.67437644802124 - type: nauc_recall_at_1_max value: 14.52136658726491 - type: nauc_recall_at_1_std value: -2.8981666782088755 - type: nauc_recall_at_20_diff1 value: 19.026320886902916 - type: nauc_recall_at_20_max value: 22.753562309469867 - type: nauc_recall_at_20_std value: 14.89994263882445 - type: nauc_recall_at_3_diff1 value: 23.428129702129684 - type: nauc_recall_at_3_max value: 10.549153954790542 - type: nauc_recall_at_3_std value: -1.7590608997055206 - type: nauc_recall_at_5_diff1 value: 21.27448645803921 - type: nauc_recall_at_5_max value: 13.620279707461677 - type: nauc_recall_at_5_std value: 2.0577962208292675 - type: ndcg_at_1 value: 46.75 - type: ndcg_at_10 value: 34.827000000000005 - type: ndcg_at_100 value: 38.157999999999994 - type: ndcg_at_1000 value: 44.816 - type: ndcg_at_20 value: 34.152 - type: ndcg_at_3 value: 39.009 - type: ndcg_at_5 value: 36.826 - type: precision_at_1 value: 57.25 - type: precision_at_10 value: 27.575 - type: precision_at_100 value: 8.84 - type: precision_at_1000 value: 1.949 - type: precision_at_20 value: 20.724999999999998 - type: precision_at_3 value: 41.167 - type: precision_at_5 value: 35.199999999999996 - type: recall_at_1 value: 7.049999999999999 - type: recall_at_10 value: 19.817999999999998 - type: recall_at_100 value: 42.559999999999995 - type: recall_at_1000 value: 63.744 - type: recall_at_20 value: 25.968000000000004 - type: recall_at_3 value: 11.959 - type: recall_at_5 value: 14.939 - task: type: Retrieval dataset: name: MTEB FiQA-PL (default) type: clarin-knext/fiqa-pl config: default split: test revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e metrics: - type: main_score value: 38.828 - type: map_at_1 value: 19.126 - type: map_at_10 value: 31.002000000000002 - type: map_at_100 value: 32.736 - type: map_at_1000 value: 32.933 - type: map_at_20 value: 31.894 - type: map_at_3 value: 26.583000000000002 - type: map_at_5 value: 28.904000000000003 - type: mrr_at_1 value: 37.808641975308646 - type: mrr_at_10 value: 46.36745541838134 - type: mrr_at_100 value: 47.14140915794908 - type: mrr_at_1000 value: 47.190701435388846 - type: mrr_at_20 value: 46.81387776440309 - type: mrr_at_3 value: 43.750000000000014 - type: mrr_at_5 value: 45.23919753086418 - type: nauc_map_at_1000_diff1 value: 38.5532285881503 - type: nauc_map_at_1000_max value: 34.44383884813453 - type: nauc_map_at_1000_std value: -1.3963497949476722 - type: nauc_map_at_100_diff1 value: 38.49292464176943 - type: nauc_map_at_100_max value: 34.33752755618645 - type: nauc_map_at_100_std value: -1.4794032905848582 - type: nauc_map_at_10_diff1 value: 38.26061536370962 - type: nauc_map_at_10_max value: 33.16977912721411 - type: nauc_map_at_10_std value: -2.3853370604730393 - type: nauc_map_at_1_diff1 value: 46.288767289528344 - type: nauc_map_at_1_max value: 25.67706785013364 - type: nauc_map_at_1_std value: -6.989769609924645 - type: nauc_map_at_20_diff1 value: 38.507270129330685 - type: nauc_map_at_20_max value: 33.70963328055982 - type: nauc_map_at_20_std value: -1.9835510011554272 - type: nauc_map_at_3_diff1 value: 39.81061518646884 - type: nauc_map_at_3_max value: 30.101186374147748 - type: nauc_map_at_3_std value: -4.027120247237715 - type: nauc_map_at_5_diff1 value: 38.55602589746512 - type: nauc_map_at_5_max value: 31.515174267015983 - type: nauc_map_at_5_std value: -3.4064239358570303 - type: nauc_mrr_at_1000_diff1 value: 45.030514454725726 - type: nauc_mrr_at_1000_max value: 43.878919881666164 - type: nauc_mrr_at_1000_std value: 2.517594250297626 - type: nauc_mrr_at_100_diff1 value: 45.00868212878687 - type: nauc_mrr_at_100_max value: 43.87437011120001 - type: nauc_mrr_at_100_std value: 2.5257874265014966 - type: nauc_mrr_at_10_diff1 value: 44.855044606754056 - type: nauc_mrr_at_10_max value: 43.946617058785186 - type: nauc_mrr_at_10_std value: 2.5173751662794044 - type: nauc_mrr_at_1_diff1 value: 49.441510997817346 - type: nauc_mrr_at_1_max value: 43.08547383044357 - type: nauc_mrr_at_1_std value: -1.8747770703324347 - type: nauc_mrr_at_20_diff1 value: 45.019880416584215 - type: nauc_mrr_at_20_max value: 43.85691473662242 - type: nauc_mrr_at_20_std value: 2.4625487605091303 - type: nauc_mrr_at_3_diff1 value: 45.322041658604036 - type: nauc_mrr_at_3_max value: 43.95079293074395 - type: nauc_mrr_at_3_std value: 2.4644274393435737 - type: nauc_mrr_at_5_diff1 value: 44.99461837803437 - type: nauc_mrr_at_5_max value: 43.97934275090601 - type: nauc_mrr_at_5_std value: 2.5353091695125096 - type: nauc_ndcg_at_1000_diff1 value: 39.38449023275524 - type: nauc_ndcg_at_1000_max value: 39.48382767312788 - type: nauc_ndcg_at_1000_std value: 3.414789408343409 - type: nauc_ndcg_at_100_diff1 value: 38.29675861135578 - type: nauc_ndcg_at_100_max value: 38.2674786507297 - type: nauc_ndcg_at_100_std value: 2.7094055381218207 - type: nauc_ndcg_at_10_diff1 value: 38.09514955708717 - type: nauc_ndcg_at_10_max value: 36.664923238906525 - type: nauc_ndcg_at_10_std value: 0.6901410544967921 - type: nauc_ndcg_at_1_diff1 value: 49.441510997817346 - type: nauc_ndcg_at_1_max value: 43.08547383044357 - type: nauc_ndcg_at_1_std value: -1.8747770703324347 - type: nauc_ndcg_at_20_diff1 value: 38.44967736231759 - type: nauc_ndcg_at_20_max value: 36.871179313622584 - type: nauc_ndcg_at_20_std value: 1.157560360065234 - type: nauc_ndcg_at_3_diff1 value: 39.02419271805571 - type: nauc_ndcg_at_3_max value: 37.447669442586324 - type: nauc_ndcg_at_3_std value: 0.41502589779297794 - type: nauc_ndcg_at_5_diff1 value: 38.10233452742001 - type: nauc_ndcg_at_5_max value: 35.816381905465676 - type: nauc_ndcg_at_5_std value: -0.3704499913387088 - type: nauc_precision_at_1000_diff1 value: 2.451267097838658 - type: nauc_precision_at_1000_max value: 29.116394969085306 - type: nauc_precision_at_1000_std value: 14.85900786538363 - type: nauc_precision_at_100_diff1 value: 8.10919082251277 - type: nauc_precision_at_100_max value: 36.28388256191417 - type: nauc_precision_at_100_std value: 14.830039904317657 - type: nauc_precision_at_10_diff1 value: 15.02446609920477 - type: nauc_precision_at_10_max value: 41.008463775454054 - type: nauc_precision_at_10_std value: 10.431403152334486 - type: nauc_precision_at_1_diff1 value: 49.441510997817346 - type: nauc_precision_at_1_max value: 43.08547383044357 - type: nauc_precision_at_1_std value: -1.8747770703324347 - type: nauc_precision_at_20_diff1 value: 14.222022201169926 - type: nauc_precision_at_20_max value: 40.10189643835305 - type: nauc_precision_at_20_std value: 12.204443815975527 - type: nauc_precision_at_3_diff1 value: 25.41905395341234 - type: nauc_precision_at_3_max value: 41.56133905339819 - type: nauc_precision_at_3_std value: 5.575516915590082 - type: nauc_precision_at_5_diff1 value: 20.20081221089351 - type: nauc_precision_at_5_max value: 40.95218555916681 - type: nauc_precision_at_5_std value: 7.2040745500708745 - type: nauc_recall_at_1000_diff1 value: 28.021198234033395 - type: nauc_recall_at_1000_max value: 36.165148684597504 - type: nauc_recall_at_1000_std value: 28.28852356008973 - type: nauc_recall_at_100_diff1 value: 21.882447802741897 - type: nauc_recall_at_100_max value: 26.979684607567222 - type: nauc_recall_at_100_std value: 9.783658817010082 - type: nauc_recall_at_10_diff1 value: 28.493097951178818 - type: nauc_recall_at_10_max value: 29.40937476550134 - type: nauc_recall_at_10_std value: 2.7593763576979353 - type: nauc_recall_at_1_diff1 value: 46.288767289528344 - type: nauc_recall_at_1_max value: 25.67706785013364 - type: nauc_recall_at_1_std value: -6.989769609924645 - type: nauc_recall_at_20_diff1 value: 27.638381299425234 - type: nauc_recall_at_20_max value: 27.942035836106328 - type: nauc_recall_at_20_std value: 3.489835161380808 - type: nauc_recall_at_3_diff1 value: 33.90054781392646 - type: nauc_recall_at_3_max value: 27.778812533030322 - type: nauc_recall_at_3_std value: -0.03054068020022706 - type: nauc_recall_at_5_diff1 value: 30.279060732221346 - type: nauc_recall_at_5_max value: 27.49854749597931 - type: nauc_recall_at_5_std value: 0.5434664581939099 - type: ndcg_at_1 value: 37.809 - type: ndcg_at_10 value: 38.828 - type: ndcg_at_100 value: 45.218 - type: ndcg_at_1000 value: 48.510999999999996 - type: ndcg_at_20 value: 41.11 - type: ndcg_at_3 value: 34.466 - type: ndcg_at_5 value: 35.843 - type: precision_at_1 value: 37.809 - type: precision_at_10 value: 11.157 - type: precision_at_100 value: 1.762 - type: precision_at_1000 value: 0.233 - type: precision_at_20 value: 6.497 - type: precision_at_3 value: 23.044999999999998 - type: precision_at_5 value: 17.284 - type: recall_at_1 value: 19.126 - type: recall_at_10 value: 46.062 - type: recall_at_100 value: 70.22800000000001 - type: recall_at_1000 value: 89.803 - type: recall_at_20 value: 53.217999999999996 - type: recall_at_3 value: 30.847 - type: recall_at_5 value: 37.11 - task: type: Retrieval dataset: name: MTEB HotpotQA-PL (default) type: clarin-knext/hotpotqa-pl config: default split: test revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 metrics: - type: main_score value: 60.27 - type: map_at_1 value: 35.199000000000005 - type: map_at_10 value: 51.369 - type: map_at_100 value: 52.212 - type: map_at_1000 value: 52.28 - type: map_at_20 value: 51.864 - type: map_at_3 value: 48.446 - type: map_at_5 value: 50.302 - type: mrr_at_1 value: 70.39837947332883 - type: mrr_at_10 value: 76.8346141067273 - type: mrr_at_100 value: 77.10724392048137 - type: mrr_at_1000 value: 77.12037412892865 - type: mrr_at_20 value: 77.01061532947222 - type: mrr_at_3 value: 75.5908170155299 - type: mrr_at_5 value: 76.39095205941899 - type: nauc_map_at_1000_diff1 value: 24.701387884989117 - type: nauc_map_at_1000_max value: 23.25553235642178 - type: nauc_map_at_1000_std value: 7.1803506915661774 - type: nauc_map_at_100_diff1 value: 24.674498622483103 - type: nauc_map_at_100_max value: 23.234948525052175 - type: nauc_map_at_100_std value: 7.168677997105447 - type: nauc_map_at_10_diff1 value: 24.676025039755626 - type: nauc_map_at_10_max value: 23.171971872726964 - type: nauc_map_at_10_std value: 6.485610909852058 - type: nauc_map_at_1_diff1 value: 68.90178464319715 - type: nauc_map_at_1_max value: 46.05537868917558 - type: nauc_map_at_1_std value: 1.7658552480698708 - type: nauc_map_at_20_diff1 value: 24.69297151842494 - type: nauc_map_at_20_max value: 23.213064691673637 - type: nauc_map_at_20_std value: 6.9357946556849 - type: nauc_map_at_3_diff1 value: 26.279128947950507 - type: nauc_map_at_3_max value: 23.929537354117922 - type: nauc_map_at_3_std value: 4.625061565714759 - type: nauc_map_at_5_diff1 value: 25.04448959482816 - type: nauc_map_at_5_max value: 23.432012857899338 - type: nauc_map_at_5_std value: 5.845744681998008 - type: nauc_mrr_at_1000_diff1 value: 66.7503918108276 - type: nauc_mrr_at_1000_max value: 48.42897342336844 - type: nauc_mrr_at_1000_std value: 5.3097517971144415 - type: nauc_mrr_at_100_diff1 value: 66.74645215862695 - type: nauc_mrr_at_100_max value: 48.4368663009989 - type: nauc_mrr_at_100_std value: 5.322297898555188 - type: nauc_mrr_at_10_diff1 value: 66.69310166180729 - type: nauc_mrr_at_10_max value: 48.475437698330225 - type: nauc_mrr_at_10_std value: 5.258183461631702 - type: nauc_mrr_at_1_diff1 value: 68.90178464319715 - type: nauc_mrr_at_1_max value: 46.05537868917558 - type: nauc_mrr_at_1_std value: 1.7658552480698708 - type: nauc_mrr_at_20_diff1 value: 66.72000262431975 - type: nauc_mrr_at_20_max value: 48.45593642981319 - type: nauc_mrr_at_20_std value: 5.353665929072101 - type: nauc_mrr_at_3_diff1 value: 66.84936676396276 - type: nauc_mrr_at_3_max value: 48.466611276778295 - type: nauc_mrr_at_3_std value: 4.485810398557475 - type: nauc_mrr_at_5_diff1 value: 66.62362565394174 - type: nauc_mrr_at_5_max value: 48.456431835482014 - type: nauc_mrr_at_5_std value: 5.08482458391903 - type: nauc_ndcg_at_1000_diff1 value: 29.984825173719443 - type: nauc_ndcg_at_1000_max value: 27.289179238639893 - type: nauc_ndcg_at_1000_std value: 10.661480455527526 - type: nauc_ndcg_at_100_diff1 value: 29.322074257047877 - type: nauc_ndcg_at_100_max value: 26.850650276220605 - type: nauc_ndcg_at_100_std value: 10.599247982501902 - type: nauc_ndcg_at_10_diff1 value: 29.659909113886094 - type: nauc_ndcg_at_10_max value: 26.836139599331005 - type: nauc_ndcg_at_10_std value: 8.12844399452719 - type: nauc_ndcg_at_1_diff1 value: 68.90178464319715 - type: nauc_ndcg_at_1_max value: 46.05537868917558 - type: nauc_ndcg_at_1_std value: 1.7658552480698708 - type: nauc_ndcg_at_20_diff1 value: 29.510802214854294 - type: nauc_ndcg_at_20_max value: 26.775562637730722 - type: nauc_ndcg_at_20_std value: 9.341342661702363 - type: nauc_ndcg_at_3_diff1 value: 32.741885846292966 - type: nauc_ndcg_at_3_max value: 28.44225108761343 - type: nauc_ndcg_at_3_std value: 5.204440768465042 - type: nauc_ndcg_at_5_diff1 value: 30.57856348635919 - type: nauc_ndcg_at_5_max value: 27.475007474301698 - type: nauc_ndcg_at_5_std value: 6.961546044312487 - type: nauc_precision_at_1000_diff1 value: 0.002113156309413332 - type: nauc_precision_at_1000_max value: 11.198242419541286 - type: nauc_precision_at_1000_std value: 28.69676419166541 - type: nauc_precision_at_100_diff1 value: 3.6049575557782627 - type: nauc_precision_at_100_max value: 12.499173524574791 - type: nauc_precision_at_100_std value: 23.3755281004721 - type: nauc_precision_at_10_diff1 value: 10.922574784853193 - type: nauc_precision_at_10_max value: 16.23221529562036 - type: nauc_precision_at_10_std value: 12.45014808813857 - type: nauc_precision_at_1_diff1 value: 68.90178464319715 - type: nauc_precision_at_1_max value: 46.05537868917558 - type: nauc_precision_at_1_std value: 1.7658552480698708 - type: nauc_precision_at_20_diff1 value: 8.840710781302827 - type: nauc_precision_at_20_max value: 14.804644554205524 - type: nauc_precision_at_20_std value: 16.245009770815237 - type: nauc_precision_at_3_diff1 value: 19.447291487137573 - type: nauc_precision_at_3_max value: 21.47123471597057 - type: nauc_precision_at_3_std value: 6.441862800128802 - type: nauc_precision_at_5_diff1 value: 14.078545719721108 - type: nauc_precision_at_5_max value: 18.468288046016387 - type: nauc_precision_at_5_std value: 9.58650641691393 - type: nauc_recall_at_1000_diff1 value: 0.0021131563095336584 - type: nauc_recall_at_1000_max value: 11.198242419541558 - type: nauc_recall_at_1000_std value: 28.6967641916655 - type: nauc_recall_at_100_diff1 value: 3.6049575557781393 - type: nauc_recall_at_100_max value: 12.499173524574765 - type: nauc_recall_at_100_std value: 23.375528100472074 - type: nauc_recall_at_10_diff1 value: 10.922574784853168 - type: nauc_recall_at_10_max value: 16.2322152956203 - type: nauc_recall_at_10_std value: 12.450148088138535 - type: nauc_recall_at_1_diff1 value: 68.90178464319715 - type: nauc_recall_at_1_max value: 46.05537868917558 - type: nauc_recall_at_1_std value: 1.7658552480698708 - type: nauc_recall_at_20_diff1 value: 8.840710781302905 - type: nauc_recall_at_20_max value: 14.804644554205515 - type: nauc_recall_at_20_std value: 16.245009770815273 - type: nauc_recall_at_3_diff1 value: 19.447291487137498 - type: nauc_recall_at_3_max value: 21.47123471597054 - type: nauc_recall_at_3_std value: 6.441862800128763 - type: nauc_recall_at_5_diff1 value: 14.07854571972115 - type: nauc_recall_at_5_max value: 18.468288046016337 - type: nauc_recall_at_5_std value: 9.586506416913904 - type: ndcg_at_1 value: 70.39800000000001 - type: ndcg_at_10 value: 60.27 - type: ndcg_at_100 value: 63.400999999999996 - type: ndcg_at_1000 value: 64.847 - type: ndcg_at_20 value: 61.571 - type: ndcg_at_3 value: 55.875 - type: ndcg_at_5 value: 58.36599999999999 - type: precision_at_1 value: 70.39800000000001 - type: precision_at_10 value: 12.46 - type: precision_at_100 value: 1.493 - type: precision_at_1000 value: 0.169 - type: precision_at_20 value: 6.65 - type: precision_at_3 value: 35.062 - type: precision_at_5 value: 23.009 - type: recall_at_1 value: 35.199000000000005 - type: recall_at_10 value: 62.302 - type: recall_at_100 value: 74.666 - type: recall_at_1000 value: 84.355 - type: recall_at_20 value: 66.496 - type: recall_at_3 value: 52.593 - type: recall_at_5 value: 57.522 - task: type: Retrieval dataset: name: MTEB MSMARCO-PL (default) type: clarin-knext/msmarco-pl config: default split: test revision: 8634c07806d5cce3a6138e260e59b81760a0a640 metrics: - type: main_score value: 64.886 - type: map_at_1 value: 1.644 - type: map_at_10 value: 12.24 - type: map_at_100 value: 28.248 - type: map_at_1000 value: 33.506 - type: map_at_20 value: 17.497 - type: map_at_3 value: 4.9399999999999995 - type: map_at_5 value: 8.272 - type: mrr_at_1 value: 83.72093023255815 - type: mrr_at_10 value: 91.08527131782945 - type: mrr_at_100 value: 91.08527131782945 - type: mrr_at_1000 value: 91.08527131782945 - type: mrr_at_20 value: 91.08527131782945 - type: mrr_at_3 value: 91.08527131782945 - type: mrr_at_5 value: 91.08527131782945 - type: nauc_map_at_1000_diff1 value: -36.428271627303424 - type: nauc_map_at_1000_max value: 44.87615127218638 - type: nauc_map_at_1000_std value: 67.92696808824724 - type: nauc_map_at_100_diff1 value: -28.11674206786188 - type: nauc_map_at_100_max value: 36.422779766334955 - type: nauc_map_at_100_std value: 49.99876313755116 - type: nauc_map_at_10_diff1 value: -5.838593619806058 - type: nauc_map_at_10_max value: 11.026519190509742 - type: nauc_map_at_10_std value: 2.5268752263522045 - type: nauc_map_at_1_diff1 value: 17.897907271073016 - type: nauc_map_at_1_max value: 12.229062762540844 - type: nauc_map_at_1_std value: -4.088830895573149 - type: nauc_map_at_20_diff1 value: -13.871097716255626 - type: nauc_map_at_20_max value: 19.291271635609533 - type: nauc_map_at_20_std value: 16.745335606507826 - type: nauc_map_at_3_diff1 value: 4.425238457033843 - type: nauc_map_at_3_max value: 4.611864744680824 - type: nauc_map_at_3_std value: -8.986916608582863 - type: nauc_map_at_5_diff1 value: -6.254849256920095 - type: nauc_map_at_5_max value: 2.729437079919823 - type: nauc_map_at_5_std value: -7.235906279913092 - type: nauc_mrr_at_1000_diff1 value: 52.18669104947672 - type: nauc_mrr_at_1000_max value: 68.26259125411818 - type: nauc_mrr_at_1000_std value: 56.345086428353575 - type: nauc_mrr_at_100_diff1 value: 52.18669104947672 - type: nauc_mrr_at_100_max value: 68.26259125411818 - type: nauc_mrr_at_100_std value: 56.345086428353575 - type: nauc_mrr_at_10_diff1 value: 52.18669104947672 - type: nauc_mrr_at_10_max value: 68.26259125411818 - type: nauc_mrr_at_10_std value: 56.345086428353575 - type: nauc_mrr_at_1_diff1 value: 56.55126663944154 - type: nauc_mrr_at_1_max value: 66.37014285522565 - type: nauc_mrr_at_1_std value: 53.2508271389779 - type: nauc_mrr_at_20_diff1 value: 52.18669104947672 - type: nauc_mrr_at_20_max value: 68.26259125411818 - type: nauc_mrr_at_20_std value: 56.345086428353575 - type: nauc_mrr_at_3_diff1 value: 52.18669104947672 - type: nauc_mrr_at_3_max value: 68.26259125411818 - type: nauc_mrr_at_3_std value: 56.345086428353575 - type: nauc_mrr_at_5_diff1 value: 52.18669104947672 - type: nauc_mrr_at_5_max value: 68.26259125411818 - type: nauc_mrr_at_5_std value: 56.345086428353575 - type: nauc_ndcg_at_1000_diff1 value: -19.06422926483731 - type: nauc_ndcg_at_1000_max value: 56.30853514590265 - type: nauc_ndcg_at_1000_std value: 70.30810947505557 - type: nauc_ndcg_at_100_diff1 value: -25.72587586459692 - type: nauc_ndcg_at_100_max value: 51.433781241604194 - type: nauc_ndcg_at_100_std value: 68.37678512652792 - type: nauc_ndcg_at_10_diff1 value: -23.21198108212602 - type: nauc_ndcg_at_10_max value: 43.5450720846516 - type: nauc_ndcg_at_10_std value: 48.78307907005605 - type: nauc_ndcg_at_1_diff1 value: 44.00179301267447 - type: nauc_ndcg_at_1_max value: 48.202370455680395 - type: nauc_ndcg_at_1_std value: 25.69655992704088 - type: nauc_ndcg_at_20_diff1 value: -33.88168753446507 - type: nauc_ndcg_at_20_max value: 45.16199742613164 - type: nauc_ndcg_at_20_std value: 61.87098383164902 - type: nauc_ndcg_at_3_diff1 value: 11.19174449544048 - type: nauc_ndcg_at_3_max value: 44.34069860560555 - type: nauc_ndcg_at_3_std value: 27.451258369798115 - type: nauc_ndcg_at_5_diff1 value: -7.186520929432436 - type: nauc_ndcg_at_5_max value: 43.41869981139378 - type: nauc_ndcg_at_5_std value: 34.89898115995178 - type: nauc_precision_at_1000_diff1 value: -34.43998154563451 - type: nauc_precision_at_1000_max value: 29.172655907480372 - type: nauc_precision_at_1000_std value: 65.15824469614837 - type: nauc_precision_at_100_diff1 value: -37.82409643259692 - type: nauc_precision_at_100_max value: 38.24986991317909 - type: nauc_precision_at_100_std value: 72.74768183105327 - type: nauc_precision_at_10_diff1 value: -32.21556182780535 - type: nauc_precision_at_10_max value: 34.27170432382651 - type: nauc_precision_at_10_std value: 58.358255004394664 - type: nauc_precision_at_1_diff1 value: 56.55126663944154 - type: nauc_precision_at_1_max value: 66.37014285522565 - type: nauc_precision_at_1_std value: 53.2508271389779 - type: nauc_precision_at_20_diff1 value: -40.18751579026395 - type: nauc_precision_at_20_max value: 33.960783153758896 - type: nauc_precision_at_20_std value: 65.42918390184195 - type: nauc_precision_at_3_diff1 value: -7.073870209006578 - type: nauc_precision_at_3_max value: 50.81535269862325 - type: nauc_precision_at_3_std value: 59.248681565955685 - type: nauc_precision_at_5_diff1 value: -31.136580596983876 - type: nauc_precision_at_5_max value: 45.88147792380426 - type: nauc_precision_at_5_std value: 67.46814230928243 - type: nauc_recall_at_1000_diff1 value: -23.15699999594577 - type: nauc_recall_at_1000_max value: 39.77277799761876 - type: nauc_recall_at_1000_std value: 60.326168012901114 - type: nauc_recall_at_100_diff1 value: -21.636664823598498 - type: nauc_recall_at_100_max value: 31.104969346131583 - type: nauc_recall_at_100_std value: 38.811686891592096 - type: nauc_recall_at_10_diff1 value: -10.542765625053569 - type: nauc_recall_at_10_max value: 2.043876058107446 - type: nauc_recall_at_10_std value: -5.578449908984766 - type: nauc_recall_at_1_diff1 value: 17.897907271073016 - type: nauc_recall_at_1_max value: 12.229062762540844 - type: nauc_recall_at_1_std value: -4.088830895573149 - type: nauc_recall_at_20_diff1 value: -15.132909355710103 - type: nauc_recall_at_20_max value: 12.659765287241065 - type: nauc_recall_at_20_std value: 8.277887800815819 - type: nauc_recall_at_3_diff1 value: -3.1975017812715016 - type: nauc_recall_at_3_max value: -3.5539857085038538 - type: nauc_recall_at_3_std value: -14.712102851318118 - type: nauc_recall_at_5_diff1 value: -14.040507717380743 - type: nauc_recall_at_5_max value: -6.126912150131701 - type: nauc_recall_at_5_std value: -13.821624015640355 - type: ndcg_at_1 value: 71.318 - type: ndcg_at_10 value: 64.886 - type: ndcg_at_100 value: 53.187 - type: ndcg_at_1000 value: 59.897999999999996 - type: ndcg_at_20 value: 58.96 - type: ndcg_at_3 value: 69.736 - type: ndcg_at_5 value: 70.14099999999999 - type: precision_at_1 value: 83.721 - type: precision_at_10 value: 71.163 - type: precision_at_100 value: 29.465000000000003 - type: precision_at_1000 value: 5.665 - type: precision_at_20 value: 57.791000000000004 - type: precision_at_3 value: 82.171 - type: precision_at_5 value: 81.86 - type: recall_at_1 value: 1.644 - type: recall_at_10 value: 14.238000000000001 - type: recall_at_100 value: 39.831 - type: recall_at_1000 value: 64.057 - type: recall_at_20 value: 21.021 - type: recall_at_3 value: 5.53 - type: recall_at_5 value: 9.623 - task: type: Retrieval dataset: name: MTEB NFCorpus-PL (default) type: clarin-knext/nfcorpus-pl config: default split: test revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 metrics: - type: main_score value: 31.391000000000002 - type: map_at_1 value: 4.163 - type: map_at_10 value: 10.744 - type: map_at_100 value: 14.038999999999998 - type: map_at_1000 value: 15.434999999999999 - type: map_at_20 value: 12.16 - type: map_at_3 value: 7.614999999999999 - type: map_at_5 value: 9.027000000000001 - type: mrr_at_1 value: 39.0092879256966 - type: mrr_at_10 value: 48.69809327239668 - type: mrr_at_100 value: 49.20788148442068 - type: mrr_at_1000 value: 49.25509336494706 - type: mrr_at_20 value: 48.99606551850896 - type: mrr_at_3 value: 46.284829721362236 - type: mrr_at_5 value: 47.77089783281735 - type: nauc_map_at_1000_diff1 value: 22.75421477116417 - type: nauc_map_at_1000_max value: 49.242283787799046 - type: nauc_map_at_1000_std value: 29.056888272331832 - type: nauc_map_at_100_diff1 value: 23.585977398585594 - type: nauc_map_at_100_max value: 48.25845199409498 - type: nauc_map_at_100_std value: 24.944264511223693 - type: nauc_map_at_10_diff1 value: 27.386613094780255 - type: nauc_map_at_10_max value: 41.52415346691586 - type: nauc_map_at_10_std value: 12.93872448563755 - type: nauc_map_at_1_diff1 value: 46.78688143865053 - type: nauc_map_at_1_max value: 37.20408843995871 - type: nauc_map_at_1_std value: 4.383444959401098 - type: nauc_map_at_20_diff1 value: 25.590969047740288 - type: nauc_map_at_20_max value: 44.57109307999418 - type: nauc_map_at_20_std value: 16.45855141821407 - type: nauc_map_at_3_diff1 value: 36.30017108362863 - type: nauc_map_at_3_max value: 34.66149613991648 - type: nauc_map_at_3_std value: 5.67985905078467 - type: nauc_map_at_5_diff1 value: 31.157644795417223 - type: nauc_map_at_5_max value: 37.274738661636825 - type: nauc_map_at_5_std value: 8.70088872394168 - type: nauc_mrr_at_1000_diff1 value: 25.638564218157384 - type: nauc_mrr_at_1000_max value: 57.77788270285353 - type: nauc_mrr_at_1000_std value: 43.507586592911274 - type: nauc_mrr_at_100_diff1 value: 25.662002580561584 - type: nauc_mrr_at_100_max value: 57.80578394278584 - type: nauc_mrr_at_100_std value: 43.543905743986635 - type: nauc_mrr_at_10_diff1 value: 25.426034796339835 - type: nauc_mrr_at_10_max value: 57.68443186258669 - type: nauc_mrr_at_10_std value: 43.438009108331215 - type: nauc_mrr_at_1_diff1 value: 26.073028156311075 - type: nauc_mrr_at_1_max value: 52.11817916720053 - type: nauc_mrr_at_1_std value: 37.41073893153695 - type: nauc_mrr_at_20_diff1 value: 25.548645553336147 - type: nauc_mrr_at_20_max value: 57.78552760401915 - type: nauc_mrr_at_20_std value: 43.521687428822325 - type: nauc_mrr_at_3_diff1 value: 25.72662577397805 - type: nauc_mrr_at_3_max value: 56.891263536265605 - type: nauc_mrr_at_3_std value: 41.384872305390104 - type: nauc_mrr_at_5_diff1 value: 25.552211551655386 - type: nauc_mrr_at_5_max value: 57.976813828353926 - type: nauc_mrr_at_5_std value: 43.504564461855544 - type: nauc_ndcg_at_1000_diff1 value: 23.456158044182757 - type: nauc_ndcg_at_1000_max value: 60.05411773552709 - type: nauc_ndcg_at_1000_std value: 47.857510017262584 - type: nauc_ndcg_at_100_diff1 value: 19.711635700390772 - type: nauc_ndcg_at_100_max value: 56.178746740470665 - type: nauc_ndcg_at_100_std value: 42.36829180286942 - type: nauc_ndcg_at_10_diff1 value: 18.364428967788413 - type: nauc_ndcg_at_10_max value: 54.38372506578223 - type: nauc_ndcg_at_10_std value: 41.75765411340369 - type: nauc_ndcg_at_1_diff1 value: 26.571093272640773 - type: nauc_ndcg_at_1_max value: 51.061788341958284 - type: nauc_ndcg_at_1_std value: 36.514987974075986 - type: nauc_ndcg_at_20_diff1 value: 18.345487193027697 - type: nauc_ndcg_at_20_max value: 54.62621882656994 - type: nauc_ndcg_at_20_std value: 41.42835554714241 - type: nauc_ndcg_at_3_diff1 value: 23.260105658139025 - type: nauc_ndcg_at_3_max value: 52.07747385334546 - type: nauc_ndcg_at_3_std value: 36.91985577837284 - type: nauc_ndcg_at_5_diff1 value: 20.40428109665566 - type: nauc_ndcg_at_5_max value: 53.52015347884604 - type: nauc_ndcg_at_5_std value: 39.46008849580017 - type: nauc_precision_at_1000_diff1 value: -7.3487344916380035 - type: nauc_precision_at_1000_max value: 16.58045221394852 - type: nauc_precision_at_1000_std value: 38.94030932397075 - type: nauc_precision_at_100_diff1 value: -5.257743986683922 - type: nauc_precision_at_100_max value: 34.43071687475306 - type: nauc_precision_at_100_std value: 53.499519170670474 - type: nauc_precision_at_10_diff1 value: 2.385136433119139 - type: nauc_precision_at_10_max value: 47.210743878631064 - type: nauc_precision_at_10_std value: 47.22767704186548 - type: nauc_precision_at_1_diff1 value: 26.073028156311075 - type: nauc_precision_at_1_max value: 52.11817916720053 - type: nauc_precision_at_1_std value: 37.41073893153695 - type: nauc_precision_at_20_diff1 value: -0.3531531127238474 - type: nauc_precision_at_20_max value: 44.78044604856974 - type: nauc_precision_at_20_std value: 49.532804150743615 - type: nauc_precision_at_3_diff1 value: 15.350050569991447 - type: nauc_precision_at_3_max value: 51.01572315596549 - type: nauc_precision_at_3_std value: 38.801125728413155 - type: nauc_precision_at_5_diff1 value: 9.109003666144694 - type: nauc_precision_at_5_max value: 50.935269774898494 - type: nauc_precision_at_5_std value: 43.323548180559676 - type: nauc_recall_at_1000_diff1 value: 16.64743647648886 - type: nauc_recall_at_1000_max value: 38.46012283772285 - type: nauc_recall_at_1000_std value: 36.02016164796441 - type: nauc_recall_at_100_diff1 value: 14.005834785186744 - type: nauc_recall_at_100_max value: 37.70026105513647 - type: nauc_recall_at_100_std value: 27.085222642129697 - type: nauc_recall_at_10_diff1 value: 21.204106627422632 - type: nauc_recall_at_10_max value: 36.737624881893424 - type: nauc_recall_at_10_std value: 13.755054514272702 - type: nauc_recall_at_1_diff1 value: 46.78688143865053 - type: nauc_recall_at_1_max value: 37.20408843995871 - type: nauc_recall_at_1_std value: 4.383444959401098 - type: nauc_recall_at_20_diff1 value: 19.740977611421933 - type: nauc_recall_at_20_max value: 39.21908969539783 - type: nauc_recall_at_20_std value: 16.560269670318494 - type: nauc_recall_at_3_diff1 value: 32.189359545367815 - type: nauc_recall_at_3_max value: 31.693634445562758 - type: nauc_recall_at_3_std value: 6.246326281543587 - type: nauc_recall_at_5_diff1 value: 25.51586860499901 - type: nauc_recall_at_5_max value: 33.15934725342885 - type: nauc_recall_at_5_std value: 9.677778511696705 - type: ndcg_at_1 value: 37.307 - type: ndcg_at_10 value: 31.391000000000002 - type: ndcg_at_100 value: 28.877999999999997 - type: ndcg_at_1000 value: 37.16 - type: ndcg_at_20 value: 29.314 - type: ndcg_at_3 value: 35.405 - type: ndcg_at_5 value: 33.922999999999995 - type: precision_at_1 value: 39.009 - type: precision_at_10 value: 24.52 - type: precision_at_100 value: 7.703 - type: precision_at_1000 value: 2.04 - type: precision_at_20 value: 18.08 - type: precision_at_3 value: 34.469 - type: precision_at_5 value: 30.712 - type: recall_at_1 value: 4.163 - type: recall_at_10 value: 15.015999999999998 - type: recall_at_100 value: 30.606 - type: recall_at_1000 value: 59.606 - type: recall_at_20 value: 19.09 - type: recall_at_3 value: 9.139 - type: recall_at_5 value: 11.477 - task: type: Retrieval dataset: name: MTEB NQ-PL (default) type: clarin-knext/nq-pl config: default split: test revision: f171245712cf85dd4700b06bef18001578d0ca8d metrics: - type: main_score value: 54.017 - type: map_at_1 value: 34.193 - type: map_at_10 value: 47.497 - type: map_at_100 value: 48.441 - type: map_at_1000 value: 48.481 - type: map_at_20 value: 48.093 - type: map_at_3 value: 44.017 - type: map_at_5 value: 46.111000000000004 - type: mrr_at_1 value: 37.949015063731174 - type: mrr_at_10 value: 49.915772315105954 - type: mrr_at_100 value: 50.62841255829997 - type: mrr_at_1000 value: 50.656773027666745 - type: mrr_at_20 value: 50.37785276657083 - type: mrr_at_3 value: 46.98725376593267 - type: mrr_at_5 value: 48.763035921205066 - type: nauc_map_at_1000_diff1 value: 39.5632191792873 - type: nauc_map_at_1000_max value: 37.4728247053629 - type: nauc_map_at_1000_std value: 5.742498414663762 - type: nauc_map_at_100_diff1 value: 39.555570352061906 - type: nauc_map_at_100_max value: 37.497880976847334 - type: nauc_map_at_100_std value: 5.7798021019465375 - type: nauc_map_at_10_diff1 value: 39.5423723444454 - type: nauc_map_at_10_max value: 37.41661971723365 - type: nauc_map_at_10_std value: 5.2378002164144695 - type: nauc_map_at_1_diff1 value: 41.52697034146981 - type: nauc_map_at_1_max value: 28.558995576942863 - type: nauc_map_at_1_std value: 0.13094542859192052 - type: nauc_map_at_20_diff1 value: 39.55484628943701 - type: nauc_map_at_20_max value: 37.5247794933719 - type: nauc_map_at_20_std value: 5.702881342279231 - type: nauc_map_at_3_diff1 value: 39.949323925425325 - type: nauc_map_at_3_max value: 35.770298168901924 - type: nauc_map_at_3_std value: 2.9127112432479874 - type: nauc_map_at_5_diff1 value: 39.768310617004545 - type: nauc_map_at_5_max value: 37.1549191664796 - type: nauc_map_at_5_std value: 4.4681285748269515 - type: nauc_mrr_at_1000_diff1 value: 39.14001746706457 - type: nauc_mrr_at_1000_max value: 37.477376518267775 - type: nauc_mrr_at_1000_std value: 6.8088891531621565 - type: nauc_mrr_at_100_diff1 value: 39.13054707413684 - type: nauc_mrr_at_100_max value: 37.498126443766274 - type: nauc_mrr_at_100_std value: 6.839411380129971 - type: nauc_mrr_at_10_diff1 value: 39.09764730048156 - type: nauc_mrr_at_10_max value: 37.58593798217306 - type: nauc_mrr_at_10_std value: 6.713795164982413 - type: nauc_mrr_at_1_diff1 value: 41.581599918664075 - type: nauc_mrr_at_1_max value: 31.500589231378722 - type: nauc_mrr_at_1_std value: 2.059116370339438 - type: nauc_mrr_at_20_diff1 value: 39.09011023988447 - type: nauc_mrr_at_20_max value: 37.55856008791344 - type: nauc_mrr_at_20_std value: 6.847165397615844 - type: nauc_mrr_at_3_diff1 value: 39.382542043738 - type: nauc_mrr_at_3_max value: 36.49265363659468 - type: nauc_mrr_at_3_std value: 4.759157976438336 - type: nauc_mrr_at_5_diff1 value: 39.304826333759976 - type: nauc_mrr_at_5_max value: 37.46326016736024 - type: nauc_mrr_at_5_std value: 6.122608305766621 - type: nauc_ndcg_at_1000_diff1 value: 38.568500038453266 - type: nauc_ndcg_at_1000_max value: 39.799710882413166 - type: nauc_ndcg_at_1000_std value: 9.357010223096639 - type: nauc_ndcg_at_100_diff1 value: 38.38026091343228 - type: nauc_ndcg_at_100_max value: 40.48398173542486 - type: nauc_ndcg_at_100_std value: 10.373054013302214 - type: nauc_ndcg_at_10_diff1 value: 38.27340980909964 - type: nauc_ndcg_at_10_max value: 40.35241649744093 - type: nauc_ndcg_at_10_std value: 8.579139930345168 - type: nauc_ndcg_at_1_diff1 value: 41.581599918664075 - type: nauc_ndcg_at_1_max value: 31.500589231378722 - type: nauc_ndcg_at_1_std value: 2.059116370339438 - type: nauc_ndcg_at_20_diff1 value: 38.26453028884807 - type: nauc_ndcg_at_20_max value: 40.70517858426641 - type: nauc_ndcg_at_20_std value: 9.987693876137905 - type: nauc_ndcg_at_3_diff1 value: 39.2078971733273 - type: nauc_ndcg_at_3_max value: 37.48672195565316 - type: nauc_ndcg_at_3_std value: 4.051464994659221 - type: nauc_ndcg_at_5_diff1 value: 38.883693595665285 - type: nauc_ndcg_at_5_max value: 39.763115634437135 - type: nauc_ndcg_at_5_std value: 6.738980451582073 - type: nauc_precision_at_1000_diff1 value: -7.223215910619012 - type: nauc_precision_at_1000_max value: 13.075844604892161 - type: nauc_precision_at_1000_std value: 19.864336920890107 - type: nauc_precision_at_100_diff1 value: 1.3305994810812418 - type: nauc_precision_at_100_max value: 25.9219108557104 - type: nauc_precision_at_100_std value: 27.5076605928207 - type: nauc_precision_at_10_diff1 value: 18.441551484970326 - type: nauc_precision_at_10_max value: 39.85995330437054 - type: nauc_precision_at_10_std value: 20.561269077428914 - type: nauc_precision_at_1_diff1 value: 41.581599918664075 - type: nauc_precision_at_1_max value: 31.500589231378722 - type: nauc_precision_at_1_std value: 2.059116370339438 - type: nauc_precision_at_20_diff1 value: 12.579593891480531 - type: nauc_precision_at_20_max value: 36.620221830588775 - type: nauc_precision_at_20_std value: 26.40364876775059 - type: nauc_precision_at_3_diff1 value: 30.158859294487073 - type: nauc_precision_at_3_max value: 41.168215766389174 - type: nauc_precision_at_3_std value: 9.44345004450809 - type: nauc_precision_at_5_diff1 value: 25.438624678672785 - type: nauc_precision_at_5_max value: 42.72802023518524 - type: nauc_precision_at_5_std value: 15.357657388511099 - type: nauc_recall_at_1000_diff1 value: 24.987564782718003 - type: nauc_recall_at_1000_max value: 70.508416373353 - type: nauc_recall_at_1000_std value: 69.75092280398808 - type: nauc_recall_at_100_diff1 value: 29.504202856421397 - type: nauc_recall_at_100_max value: 63.41356585545318 - type: nauc_recall_at_100_std value: 50.09250954437847 - type: nauc_recall_at_10_diff1 value: 32.355776022971774 - type: nauc_recall_at_10_max value: 49.47121901667283 - type: nauc_recall_at_10_std value: 19.418439406631244 - type: nauc_recall_at_1_diff1 value: 41.52697034146981 - type: nauc_recall_at_1_max value: 28.558995576942863 - type: nauc_recall_at_1_std value: 0.13094542859192052 - type: nauc_recall_at_20_diff1 value: 31.57334731023589 - type: nauc_recall_at_20_max value: 54.06567225197383 - type: nauc_recall_at_20_std value: 29.222029720570468 - type: nauc_recall_at_3_diff1 value: 36.45033533275773 - type: nauc_recall_at_3_max value: 40.39529713780803 - type: nauc_recall_at_3_std value: 5.21893897772794 - type: nauc_recall_at_5_diff1 value: 35.18471678478859 - type: nauc_recall_at_5_max value: 46.20100816867823 - type: nauc_recall_at_5_std value: 11.94481894633221 - type: ndcg_at_1 value: 37.949 - type: ndcg_at_10 value: 54.017 - type: ndcg_at_100 value: 58.126 - type: ndcg_at_1000 value: 59.073 - type: ndcg_at_20 value: 55.928 - type: ndcg_at_3 value: 47.494 - type: ndcg_at_5 value: 50.975 - type: precision_at_1 value: 37.949 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.117 - type: precision_at_20 value: 4.689 - type: precision_at_3 value: 21.051000000000002 - type: precision_at_5 value: 14.664 - type: recall_at_1 value: 34.193 - type: recall_at_10 value: 71.357 - type: recall_at_100 value: 89.434 - type: recall_at_1000 value: 96.536 - type: recall_at_20 value: 78.363 - type: recall_at_3 value: 54.551 - type: recall_at_5 value: 62.543000000000006 - task: type: Retrieval dataset: name: MTEB Quora-PL (default) type: clarin-knext/quora-pl config: default split: test revision: 0be27e93455051e531182b85e85e425aba12e9d4 metrics: - type: main_score value: 84.114 - type: map_at_1 value: 65.848 - type: map_at_10 value: 79.85900000000001 - type: map_at_100 value: 80.582 - type: map_at_1000 value: 80.60300000000001 - type: map_at_20 value: 80.321 - type: map_at_3 value: 76.741 - type: map_at_5 value: 78.72200000000001 - type: mrr_at_1 value: 75.97 - type: mrr_at_10 value: 83.04630158730119 - type: mrr_at_100 value: 83.22785731032968 - type: mrr_at_1000 value: 83.23123717623899 - type: mrr_at_20 value: 83.17412021320565 - type: mrr_at_3 value: 81.83333333333287 - type: mrr_at_5 value: 82.61933333333275 - type: nauc_map_at_1000_diff1 value: 73.26316553371083 - type: nauc_map_at_1000_max value: 27.92567859085245 - type: nauc_map_at_1000_std value: -47.477909533360446 - type: nauc_map_at_100_diff1 value: 73.2690602807223 - type: nauc_map_at_100_max value: 27.915868327849996 - type: nauc_map_at_100_std value: -47.525777766107595 - type: nauc_map_at_10_diff1 value: 73.45464428464894 - type: nauc_map_at_10_max value: 27.451611487246296 - type: nauc_map_at_10_std value: -49.35818715843809 - type: nauc_map_at_1_diff1 value: 77.29690208952982 - type: nauc_map_at_1_max value: 19.839875762282293 - type: nauc_map_at_1_std value: -45.355684654708284 - type: nauc_map_at_20_diff1 value: 73.35102731979796 - type: nauc_map_at_20_max value: 27.741506490134583 - type: nauc_map_at_20_std value: -48.22006207310331 - type: nauc_map_at_3_diff1 value: 73.94878241064137 - type: nauc_map_at_3_max value: 24.761321386766728 - type: nauc_map_at_3_std value: -51.20638883618126 - type: nauc_map_at_5_diff1 value: 73.66143558047698 - type: nauc_map_at_5_max value: 26.53483405013543 - type: nauc_map_at_5_std value: -50.697541279640056 - type: nauc_mrr_at_1000_diff1 value: 73.84632320009759 - type: nauc_mrr_at_1000_max value: 30.50182733610048 - type: nauc_mrr_at_1000_std value: -44.3021647995251 - type: nauc_mrr_at_100_diff1 value: 73.84480792662302 - type: nauc_mrr_at_100_max value: 30.50749424571614 - type: nauc_mrr_at_100_std value: -44.29615086388113 - type: nauc_mrr_at_10_diff1 value: 73.79442772949346 - type: nauc_mrr_at_10_max value: 30.55724252219984 - type: nauc_mrr_at_10_std value: -44.50997069462057 - type: nauc_mrr_at_1_diff1 value: 75.23369827945945 - type: nauc_mrr_at_1_max value: 29.20073967447664 - type: nauc_mrr_at_1_std value: -43.1920147658285 - type: nauc_mrr_at_20_diff1 value: 73.82731678072307 - type: nauc_mrr_at_20_max value: 30.566328605497667 - type: nauc_mrr_at_20_std value: -44.24683607643705 - type: nauc_mrr_at_3_diff1 value: 73.61997576749954 - type: nauc_mrr_at_3_max value: 30.150393853381917 - type: nauc_mrr_at_3_std value: -44.96847297506626 - type: nauc_mrr_at_5_diff1 value: 73.69084310616132 - type: nauc_mrr_at_5_max value: 30.578033703441125 - type: nauc_mrr_at_5_std value: -44.74920746066566 - type: nauc_ndcg_at_1000_diff1 value: 72.89349862557452 - type: nauc_ndcg_at_1000_max value: 29.824725190462086 - type: nauc_ndcg_at_1000_std value: -44.96284395063211 - type: nauc_ndcg_at_100_diff1 value: 72.85212753715273 - type: nauc_ndcg_at_100_max value: 29.933114207845605 - type: nauc_ndcg_at_100_std value: -44.944225570663754 - type: nauc_ndcg_at_10_diff1 value: 72.80576740454528 - type: nauc_ndcg_at_10_max value: 29.16829118320828 - type: nauc_ndcg_at_10_std value: -48.149473740079614 - type: nauc_ndcg_at_1_diff1 value: 75.00032534968587 - type: nauc_ndcg_at_1_max value: 29.61849062038547 - type: nauc_ndcg_at_1_std value: -42.560207043864054 - type: nauc_ndcg_at_20_diff1 value: 72.88440406302502 - type: nauc_ndcg_at_20_max value: 29.65496676092656 - type: nauc_ndcg_at_20_std value: -46.21238462167732 - type: nauc_ndcg_at_3_diff1 value: 72.37916962766987 - type: nauc_ndcg_at_3_max value: 27.125094834547586 - type: nauc_ndcg_at_3_std value: -48.62942991399391 - type: nauc_ndcg_at_5_diff1 value: 72.57017330527658 - type: nauc_ndcg_at_5_max value: 28.470485561757254 - type: nauc_ndcg_at_5_std value: -49.07593345591059 - type: nauc_precision_at_1000_diff1 value: -41.67915575853946 - type: nauc_precision_at_1000_max value: 1.2012264478568844 - type: nauc_precision_at_1000_std value: 44.723834559400466 - type: nauc_precision_at_100_diff1 value: -40.45196679236971 - type: nauc_precision_at_100_max value: 2.3525450401714894 - type: nauc_precision_at_100_std value: 43.7092529413952 - type: nauc_precision_at_10_diff1 value: -30.256026923068767 - type: nauc_precision_at_10_max value: 8.313422052132559 - type: nauc_precision_at_10_std value: 25.929372356449694 - type: nauc_precision_at_1_diff1 value: 75.00032534968587 - type: nauc_precision_at_1_max value: 29.61849062038547 - type: nauc_precision_at_1_std value: -42.560207043864054 - type: nauc_precision_at_20_diff1 value: -35.61971069986584 - type: nauc_precision_at_20_max value: 5.4664303079116765 - type: nauc_precision_at_20_std value: 34.992352471692826 - type: nauc_precision_at_3_diff1 value: -5.691231842471157 - type: nauc_precision_at_3_max value: 14.797949087742444 - type: nauc_precision_at_3_std value: -0.1930317395644928 - type: nauc_precision_at_5_diff1 value: -20.03913781462645 - type: nauc_precision_at_5_max value: 11.956771408712749 - type: nauc_precision_at_5_std value: 13.179251389859731 - type: nauc_recall_at_1000_diff1 value: 64.03509042729674 - type: nauc_recall_at_1000_max value: 40.91691485428493 - type: nauc_recall_at_1000_std value: 16.12968625875372 - type: nauc_recall_at_100_diff1 value: 63.83116179628575 - type: nauc_recall_at_100_max value: 43.72908117676382 - type: nauc_recall_at_100_std value: -20.50966716852155 - type: nauc_recall_at_10_diff1 value: 66.42071960186394 - type: nauc_recall_at_10_max value: 28.983207818687205 - type: nauc_recall_at_10_std value: -56.61417798753744 - type: nauc_recall_at_1_diff1 value: 77.29690208952982 - type: nauc_recall_at_1_max value: 19.839875762282293 - type: nauc_recall_at_1_std value: -45.355684654708284 - type: nauc_recall_at_20_diff1 value: 66.32360705219874 - type: nauc_recall_at_20_max value: 33.30698111822631 - type: nauc_recall_at_20_std value: -43.89233781737452 - type: nauc_recall_at_3_diff1 value: 69.67029394927077 - type: nauc_recall_at_3_max value: 22.67803039327696 - type: nauc_recall_at_3_std value: -56.43327209861502 - type: nauc_recall_at_5_diff1 value: 68.05622143936131 - type: nauc_recall_at_5_max value: 26.67795559040675 - type: nauc_recall_at_5_std value: -58.158231198510954 - type: ndcg_at_1 value: 76.08 - type: ndcg_at_10 value: 84.114 - type: ndcg_at_100 value: 85.784 - type: ndcg_at_1000 value: 85.992 - type: ndcg_at_20 value: 84.976 - type: ndcg_at_3 value: 80.74799999999999 - type: ndcg_at_5 value: 82.626 - type: precision_at_1 value: 76.08 - type: precision_at_10 value: 12.926000000000002 - type: precision_at_100 value: 1.509 - type: precision_at_1000 value: 0.156 - type: precision_at_20 value: 6.912999999999999 - type: precision_at_3 value: 35.5 - type: precision_at_5 value: 23.541999999999998 - type: recall_at_1 value: 65.848 - type: recall_at_10 value: 92.611 - type: recall_at_100 value: 98.69 - type: recall_at_1000 value: 99.83999999999999 - type: recall_at_20 value: 95.47200000000001 - type: recall_at_3 value: 83.122 - type: recall_at_5 value: 88.23 - task: type: Retrieval dataset: name: MTEB SCIDOCS-PL (default) type: clarin-knext/scidocs-pl config: default split: test revision: 45452b03f05560207ef19149545f168e596c9337 metrics: - type: main_score value: 15.379999999999999 - type: map_at_1 value: 3.6029999999999998 - type: map_at_10 value: 8.843 - type: map_at_100 value: 10.433 - type: map_at_1000 value: 10.689 - type: map_at_20 value: 9.597 - type: map_at_3 value: 6.363 - type: map_at_5 value: 7.603 - type: mrr_at_1 value: 17.7 - type: mrr_at_10 value: 26.58900793650793 - type: mrr_at_100 value: 27.699652322890987 - type: mrr_at_1000 value: 27.78065313118353 - type: mrr_at_20 value: 27.215020950411816 - type: mrr_at_3 value: 23.36666666666668 - type: mrr_at_5 value: 25.211666666666666 - type: nauc_map_at_1000_diff1 value: 21.92235143827129 - type: nauc_map_at_1000_max value: 37.50300940750989 - type: nauc_map_at_1000_std value: 20.872586122198552 - type: nauc_map_at_100_diff1 value: 21.917408170465833 - type: nauc_map_at_100_max value: 37.4654466815513 - type: nauc_map_at_100_std value: 20.621643878648534 - type: nauc_map_at_10_diff1 value: 22.914388723621183 - type: nauc_map_at_10_max value: 36.468131213468794 - type: nauc_map_at_10_std value: 16.760980140791492 - type: nauc_map_at_1_diff1 value: 29.00799502838457 - type: nauc_map_at_1_max value: 26.64926291797503 - type: nauc_map_at_1_std value: 8.167291261637361 - type: nauc_map_at_20_diff1 value: 22.46580947804047 - type: nauc_map_at_20_max value: 36.656294842562275 - type: nauc_map_at_20_std value: 18.099232417722078 - type: nauc_map_at_3_diff1 value: 23.436009032045934 - type: nauc_map_at_3_max value: 31.325807212280914 - type: nauc_map_at_3_std value: 9.780905232048852 - type: nauc_map_at_5_diff1 value: 22.891704394665528 - type: nauc_map_at_5_max value: 35.40584466642894 - type: nauc_map_at_5_std value: 13.476986099394656 - type: nauc_mrr_at_1000_diff1 value: 25.052937655397866 - type: nauc_mrr_at_1000_max value: 29.64431912670108 - type: nauc_mrr_at_1000_std value: 14.549744963988044 - type: nauc_mrr_at_100_diff1 value: 25.070871266969224 - type: nauc_mrr_at_100_max value: 29.68743604652336 - type: nauc_mrr_at_100_std value: 14.582010154574432 - type: nauc_mrr_at_10_diff1 value: 24.88881466938897 - type: nauc_mrr_at_10_max value: 29.488430770768144 - type: nauc_mrr_at_10_std value: 14.269241073852266 - type: nauc_mrr_at_1_diff1 value: 29.220540327267503 - type: nauc_mrr_at_1_max value: 26.81908580507911 - type: nauc_mrr_at_1_std value: 8.00840295809718 - type: nauc_mrr_at_20_diff1 value: 25.067912695721944 - type: nauc_mrr_at_20_max value: 29.759227563849628 - type: nauc_mrr_at_20_std value: 14.685076859257357 - type: nauc_mrr_at_3_diff1 value: 24.645848739182696 - type: nauc_mrr_at_3_max value: 27.73368549660351 - type: nauc_mrr_at_3_std value: 11.475742805586943 - type: nauc_mrr_at_5_diff1 value: 24.895295760909946 - type: nauc_mrr_at_5_max value: 29.130755033240423 - type: nauc_mrr_at_5_std value: 12.955802929145404 - type: nauc_ndcg_at_1000_diff1 value: 20.68434434777729 - type: nauc_ndcg_at_1000_max value: 37.67055146424174 - type: nauc_ndcg_at_1000_std value: 29.57493715069776 - type: nauc_ndcg_at_100_diff1 value: 20.396834816492383 - type: nauc_ndcg_at_100_max value: 37.460575228670514 - type: nauc_ndcg_at_100_std value: 27.826534756761944 - type: nauc_ndcg_at_10_diff1 value: 22.640844106236027 - type: nauc_ndcg_at_10_max value: 35.21291764462327 - type: nauc_ndcg_at_10_std value: 19.53289455984506 - type: nauc_ndcg_at_1_diff1 value: 29.220540327267503 - type: nauc_ndcg_at_1_max value: 26.81908580507911 - type: nauc_ndcg_at_1_std value: 8.00840295809718 - type: nauc_ndcg_at_20_diff1 value: 22.117126657768623 - type: nauc_ndcg_at_20_max value: 35.79395781940806 - type: nauc_ndcg_at_20_std value: 22.242748346260786 - type: nauc_ndcg_at_3_diff1 value: 23.00596063212187 - type: nauc_ndcg_at_3_max value: 30.149013627580523 - type: nauc_ndcg_at_3_std value: 11.07904064662722 - type: nauc_ndcg_at_5_diff1 value: 22.81875419630523 - type: nauc_ndcg_at_5_max value: 34.24267468356626 - type: nauc_ndcg_at_5_std value: 15.307780280752088 - type: nauc_precision_at_1000_diff1 value: 9.606677689029972 - type: nauc_precision_at_1000_max value: 32.74855550489271 - type: nauc_precision_at_1000_std value: 42.65372585937895 - type: nauc_precision_at_100_diff1 value: 11.528981313529545 - type: nauc_precision_at_100_max value: 35.642529490132404 - type: nauc_precision_at_100_std value: 38.146151426052306 - type: nauc_precision_at_10_diff1 value: 18.783957183811836 - type: nauc_precision_at_10_max value: 36.1982008334257 - type: nauc_precision_at_10_std value: 25.09349473195891 - type: nauc_precision_at_1_diff1 value: 29.220540327267503 - type: nauc_precision_at_1_max value: 26.81908580507911 - type: nauc_precision_at_1_std value: 8.00840295809718 - type: nauc_precision_at_20_diff1 value: 17.458766320828214 - type: nauc_precision_at_20_max value: 36.000404903025235 - type: nauc_precision_at_20_std value: 29.1608044138323 - type: nauc_precision_at_3_diff1 value: 20.213669462067166 - type: nauc_precision_at_3_max value: 31.120650847205912 - type: nauc_precision_at_3_std value: 12.390972418818118 - type: nauc_precision_at_5_diff1 value: 20.114245715785678 - type: nauc_precision_at_5_max value: 37.30360111495823 - type: nauc_precision_at_5_std value: 19.053109037822853 - type: nauc_recall_at_1000_diff1 value: 9.85800049032612 - type: nauc_recall_at_1000_max value: 32.48319160802687 - type: nauc_recall_at_1000_std value: 43.79941601741161 - type: nauc_recall_at_100_diff1 value: 11.375255270968337 - type: nauc_recall_at_100_max value: 35.1868784124497 - type: nauc_recall_at_100_std value: 38.422680583482666 - type: nauc_recall_at_10_diff1 value: 18.445783123521938 - type: nauc_recall_at_10_max value: 35.633267936276766 - type: nauc_recall_at_10_std value: 24.94469506254716 - type: nauc_recall_at_1_diff1 value: 29.00799502838457 - type: nauc_recall_at_1_max value: 26.64926291797503 - type: nauc_recall_at_1_std value: 8.167291261637361 - type: nauc_recall_at_20_diff1 value: 17.314906604151936 - type: nauc_recall_at_20_max value: 35.66067699203996 - type: nauc_recall_at_20_std value: 29.400137012506082 - type: nauc_recall_at_3_diff1 value: 19.873710875648698 - type: nauc_recall_at_3_max value: 30.92404718742849 - type: nauc_recall_at_3_std value: 12.400871018075199 - type: nauc_recall_at_5_diff1 value: 19.869948324233192 - type: nauc_recall_at_5_max value: 37.06832511687574 - type: nauc_recall_at_5_std value: 19.0798814966156 - type: ndcg_at_1 value: 17.7 - type: ndcg_at_10 value: 15.379999999999999 - type: ndcg_at_100 value: 22.09 - type: ndcg_at_1000 value: 27.151999999999997 - type: ndcg_at_20 value: 17.576 - type: ndcg_at_3 value: 14.219999999999999 - type: ndcg_at_5 value: 12.579 - type: precision_at_1 value: 17.7 - type: precision_at_10 value: 8.08 - type: precision_at_100 value: 1.7840000000000003 - type: precision_at_1000 value: 0.3 - type: precision_at_20 value: 5.305 - type: precision_at_3 value: 13.167000000000002 - type: precision_at_5 value: 11.06 - type: recall_at_1 value: 3.6029999999999998 - type: recall_at_10 value: 16.413 - type: recall_at_100 value: 36.263 - type: recall_at_1000 value: 61.016999999999996 - type: recall_at_20 value: 21.587999999999997 - type: recall_at_3 value: 8.013 - type: recall_at_5 value: 11.198 - task: type: Retrieval dataset: name: MTEB SciFact-PL (default) type: clarin-knext/scifact-pl config: default split: test revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e metrics: - type: main_score value: 64.764 - type: map_at_1 value: 49.778 - type: map_at_10 value: 59.88 - type: map_at_100 value: 60.707 - type: map_at_1000 value: 60.729 - type: map_at_20 value: 60.419999999999995 - type: map_at_3 value: 57.45400000000001 - type: map_at_5 value: 58.729 - type: mrr_at_1 value: 52.33333333333333 - type: mrr_at_10 value: 61.29193121693122 - type: mrr_at_100 value: 61.95817765126313 - type: mrr_at_1000 value: 61.97583284368782 - type: mrr_at_20 value: 61.72469949641003 - type: mrr_at_3 value: 59.44444444444444 - type: mrr_at_5 value: 60.494444444444454 - type: nauc_map_at_1000_diff1 value: 62.21235294015774 - type: nauc_map_at_1000_max value: 48.83996609100249 - type: nauc_map_at_1000_std value: 5.23892781043174 - type: nauc_map_at_100_diff1 value: 62.20170226789429 - type: nauc_map_at_100_max value: 48.8391766453537 - type: nauc_map_at_100_std value: 5.2664077457917715 - type: nauc_map_at_10_diff1 value: 61.961975488329024 - type: nauc_map_at_10_max value: 48.397109987625186 - type: nauc_map_at_10_std value: 4.314859710827481 - type: nauc_map_at_1_diff1 value: 65.0865197011516 - type: nauc_map_at_1_max value: 41.38862781954889 - type: nauc_map_at_1_std value: -0.9182122632530586 - type: nauc_map_at_20_diff1 value: 61.99173935851292 - type: nauc_map_at_20_max value: 48.79961814179307 - type: nauc_map_at_20_std value: 5.262181845825118 - type: nauc_map_at_3_diff1 value: 62.37910539880477 - type: nauc_map_at_3_max value: 47.13627890977091 - type: nauc_map_at_3_std value: 2.327897198087264 - type: nauc_map_at_5_diff1 value: 61.60080757149592 - type: nauc_map_at_5_max value: 47.60052458345962 - type: nauc_map_at_5_std value: 3.1770196981231047 - type: nauc_mrr_at_1000_diff1 value: 62.86810952814966 - type: nauc_mrr_at_1000_max value: 52.13248094447774 - type: nauc_mrr_at_1000_std value: 10.100485746570733 - type: nauc_mrr_at_100_diff1 value: 62.85364829491874 - type: nauc_mrr_at_100_max value: 52.134528010631854 - type: nauc_mrr_at_100_std value: 10.120945685447369 - type: nauc_mrr_at_10_diff1 value: 62.65679301829915 - type: nauc_mrr_at_10_max value: 52.09270719182349 - type: nauc_mrr_at_10_std value: 9.913834434725441 - type: nauc_mrr_at_1_diff1 value: 66.84108271415636 - type: nauc_mrr_at_1_max value: 46.67646429855176 - type: nauc_mrr_at_1_std value: 5.5505252956352304 - type: nauc_mrr_at_20_diff1 value: 62.72473227039611 - type: nauc_mrr_at_20_max value: 52.13479097802757 - type: nauc_mrr_at_20_std value: 10.188278833464084 - type: nauc_mrr_at_3_diff1 value: 63.797429185518496 - type: nauc_mrr_at_3_max value: 52.16486999573481 - type: nauc_mrr_at_3_std value: 9.094360767062762 - type: nauc_mrr_at_5_diff1 value: 62.592917975475494 - type: nauc_mrr_at_5_max value: 52.330741486107414 - type: nauc_mrr_at_5_std value: 9.742175534421389 - type: nauc_ndcg_at_1000_diff1 value: 61.38859337672476 - type: nauc_ndcg_at_1000_max value: 51.48380058339184 - type: nauc_ndcg_at_1000_std value: 9.670547660897673 - type: nauc_ndcg_at_100_diff1 value: 61.02438489641434 - type: nauc_ndcg_at_100_max value: 51.781246646780865 - type: nauc_ndcg_at_100_std value: 10.592961553245187 - type: nauc_ndcg_at_10_diff1 value: 60.03678353308358 - type: nauc_ndcg_at_10_max value: 50.70725688848762 - type: nauc_ndcg_at_10_std value: 7.9472446491016315 - type: nauc_ndcg_at_1_diff1 value: 66.84108271415636 - type: nauc_ndcg_at_1_max value: 46.67646429855176 - type: nauc_ndcg_at_1_std value: 5.5505252956352304 - type: nauc_ndcg_at_20_diff1 value: 59.828482718480224 - type: nauc_ndcg_at_20_max value: 51.45831789601284 - type: nauc_ndcg_at_20_std value: 10.722673683272049 - type: nauc_ndcg_at_3_diff1 value: 61.68982937524109 - type: nauc_ndcg_at_3_max value: 49.745326748604775 - type: nauc_ndcg_at_3_std value: 4.948298621202247 - type: nauc_ndcg_at_5_diff1 value: 59.67396171973207 - type: nauc_ndcg_at_5_max value: 49.87855139298281 - type: nauc_ndcg_at_5_std value: 6.08990428055584 - type: nauc_precision_at_1000_diff1 value: -1.594227972036865 - type: nauc_precision_at_1000_max value: 32.48431723086185 - type: nauc_precision_at_1000_std value: 53.84748466965268 - type: nauc_precision_at_100_diff1 value: 8.06411455192293 - type: nauc_precision_at_100_max value: 39.91003601878948 - type: nauc_precision_at_100_std value: 55.52979711075091 - type: nauc_precision_at_10_diff1 value: 26.610514456014066 - type: nauc_precision_at_10_max value: 47.09062494321172 - type: nauc_precision_at_10_std value: 33.91984226498748 - type: nauc_precision_at_1_diff1 value: 66.84108271415636 - type: nauc_precision_at_1_max value: 46.67646429855176 - type: nauc_precision_at_1_std value: 5.5505252956352304 - type: nauc_precision_at_20_diff1 value: 16.947688843085583 - type: nauc_precision_at_20_max value: 45.40488186572008 - type: nauc_precision_at_20_std value: 48.354421924500905 - type: nauc_precision_at_3_diff1 value: 49.11263981720622 - type: nauc_precision_at_3_max value: 52.7084625111683 - type: nauc_precision_at_3_std value: 16.734612173556453 - type: nauc_precision_at_5_diff1 value: 39.06503705015792 - type: nauc_precision_at_5_max value: 52.21710506893391 - type: nauc_precision_at_5_std value: 23.350948149460233 - type: nauc_recall_at_1000_diff1 value: 43.1559290382817 - type: nauc_recall_at_1000_max value: 83.66013071895456 - type: nauc_recall_at_1000_std value: 86.27450980392177 - type: nauc_recall_at_100_diff1 value: 46.016860850620375 - type: nauc_recall_at_100_max value: 69.3944888744547 - type: nauc_recall_at_100_std value: 55.286945696152735 - type: nauc_recall_at_10_diff1 value: 49.65877895350921 - type: nauc_recall_at_10_max value: 53.02636695700889 - type: nauc_recall_at_10_std value: 13.967608945823828 - type: nauc_recall_at_1_diff1 value: 65.0865197011516 - type: nauc_recall_at_1_max value: 41.38862781954889 - type: nauc_recall_at_1_std value: -0.9182122632530586 - type: nauc_recall_at_20_diff1 value: 43.355308229973524 - type: nauc_recall_at_20_max value: 57.04187909533764 - type: nauc_recall_at_20_std value: 33.578720846660524 - type: nauc_recall_at_3_diff1 value: 56.922996057428165 - type: nauc_recall_at_3_max value: 50.74417041895424 - type: nauc_recall_at_3_std value: 5.623890124328387 - type: nauc_recall_at_5_diff1 value: 50.55620076865238 - type: nauc_recall_at_5_max value: 51.3316854622085 - type: nauc_recall_at_5_std value: 8.995457887269255 - type: ndcg_at_1 value: 52.333 - type: ndcg_at_10 value: 64.764 - type: ndcg_at_100 value: 68.167 - type: ndcg_at_1000 value: 68.816 - type: ndcg_at_20 value: 66.457 - type: ndcg_at_3 value: 60.346 - type: ndcg_at_5 value: 62.365 - type: precision_at_1 value: 52.333 - type: precision_at_10 value: 8.799999999999999 - type: precision_at_100 value: 1.057 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_20 value: 4.8 - type: precision_at_3 value: 23.889 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 49.778 - type: recall_at_10 value: 78.206 - type: recall_at_100 value: 93.10000000000001 - type: recall_at_1000 value: 98.333 - type: recall_at_20 value: 84.467 - type: recall_at_3 value: 66.367 - type: recall_at_5 value: 71.35000000000001 - task: type: Retrieval dataset: name: MTEB TRECCOVID-PL (default) type: clarin-knext/trec-covid-pl config: default split: test revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd metrics: - type: main_score value: 72.18900000000001 - type: map_at_1 value: 0.214 - type: map_at_10 value: 1.755 - type: map_at_100 value: 9.944 - type: map_at_1000 value: 24.205 - type: map_at_20 value: 3.1510000000000002 - type: map_at_3 value: 0.6 - type: map_at_5 value: 0.9560000000000001 - type: mrr_at_1 value: 82.0 - type: mrr_at_10 value: 89.06666666666666 - type: mrr_at_100 value: 89.06666666666666 - type: mrr_at_1000 value: 89.06666666666666 - type: mrr_at_20 value: 89.06666666666666 - type: mrr_at_3 value: 87.66666666666666 - type: mrr_at_5 value: 89.06666666666666 - type: nauc_map_at_1000_diff1 value: -9.342037623635543 - type: nauc_map_at_1000_max value: 45.71499810252398 - type: nauc_map_at_1000_std value: 76.86482845196852 - type: nauc_map_at_100_diff1 value: -6.932395299866198 - type: nauc_map_at_100_max value: 36.097801891181604 - type: nauc_map_at_100_std value: 65.6085215411685 - type: nauc_map_at_10_diff1 value: -6.3654843824342775 - type: nauc_map_at_10_max value: 9.564437521432714 - type: nauc_map_at_10_std value: 21.8377319336476 - type: nauc_map_at_1_diff1 value: 8.269590874255034 - type: nauc_map_at_1_max value: 3.482498491294516 - type: nauc_map_at_1_std value: 8.985226819412189 - type: nauc_map_at_20_diff1 value: -4.971435767877232 - type: nauc_map_at_20_max value: 22.88801858567121 - type: nauc_map_at_20_std value: 32.38492618534027 - type: nauc_map_at_3_diff1 value: 1.1615973694623123 - type: nauc_map_at_3_max value: 1.935417800315643 - type: nauc_map_at_3_std value: 10.289328305818698 - type: nauc_map_at_5_diff1 value: -2.4675967231444105 - type: nauc_map_at_5_max value: 2.4611483736622373 - type: nauc_map_at_5_std value: 15.082324305750811 - type: nauc_mrr_at_1000_diff1 value: 13.098526703499063 - type: nauc_mrr_at_1000_max value: 56.37362177417431 - type: nauc_mrr_at_1000_std value: 73.2456769749587 - type: nauc_mrr_at_100_diff1 value: 13.098526703499063 - type: nauc_mrr_at_100_max value: 56.37362177417431 - type: nauc_mrr_at_100_std value: 73.2456769749587 - type: nauc_mrr_at_10_diff1 value: 13.098526703499063 - type: nauc_mrr_at_10_max value: 56.37362177417431 - type: nauc_mrr_at_10_std value: 73.2456769749587 - type: nauc_mrr_at_1_diff1 value: 12.099350148694809 - type: nauc_mrr_at_1_max value: 53.75041304108387 - type: nauc_mrr_at_1_std value: 68.84018063663402 - type: nauc_mrr_at_20_diff1 value: 13.098526703499063 - type: nauc_mrr_at_20_max value: 56.37362177417431 - type: nauc_mrr_at_20_std value: 73.2456769749587 - type: nauc_mrr_at_3_diff1 value: 12.173557857011161 - type: nauc_mrr_at_3_max value: 57.540780562363395 - type: nauc_mrr_at_3_std value: 75.42098189580211 - type: nauc_mrr_at_5_diff1 value: 13.098526703499063 - type: nauc_mrr_at_5_max value: 56.37362177417431 - type: nauc_mrr_at_5_std value: 73.2456769749587 - type: nauc_ndcg_at_1000_diff1 value: -8.951471847310401 - type: nauc_ndcg_at_1000_max value: 43.86942237288822 - type: nauc_ndcg_at_1000_std value: 74.61077735148591 - type: nauc_ndcg_at_100_diff1 value: -17.754559361083817 - type: nauc_ndcg_at_100_max value: 53.97187119773482 - type: nauc_ndcg_at_100_std value: 80.7944136146514 - type: nauc_ndcg_at_10_diff1 value: -26.637734697836414 - type: nauc_ndcg_at_10_max value: 47.70102699133149 - type: nauc_ndcg_at_10_std value: 70.26909560828646 - type: nauc_ndcg_at_1_diff1 value: -1.2250530785563207 - type: nauc_ndcg_at_1_max value: 46.60509554140131 - type: nauc_ndcg_at_1_std value: 62.63906581740976 - type: nauc_ndcg_at_20_diff1 value: -22.44286466550908 - type: nauc_ndcg_at_20_max value: 55.40492058090103 - type: nauc_ndcg_at_20_std value: 72.11813912145738 - type: nauc_ndcg_at_3_diff1 value: -14.8152721896563 - type: nauc_ndcg_at_3_max value: 38.952259383027595 - type: nauc_ndcg_at_3_std value: 59.819750166537766 - type: nauc_ndcg_at_5_diff1 value: -19.150105688904375 - type: nauc_ndcg_at_5_max value: 42.311180547775315 - type: nauc_ndcg_at_5_std value: 66.6632229321094 - type: nauc_precision_at_1000_diff1 value: -11.555591477978941 - type: nauc_precision_at_1000_max value: 43.7311644834851 - type: nauc_precision_at_1000_std value: 52.10644767999648 - type: nauc_precision_at_100_diff1 value: -16.94803099801117 - type: nauc_precision_at_100_max value: 54.08281631067633 - type: nauc_precision_at_100_std value: 82.77237347891331 - type: nauc_precision_at_10_diff1 value: -27.351332814863355 - type: nauc_precision_at_10_max value: 48.08237549065846 - type: nauc_precision_at_10_std value: 69.37250843534329 - type: nauc_precision_at_1_diff1 value: 12.099350148694809 - type: nauc_precision_at_1_max value: 53.75041304108387 - type: nauc_precision_at_1_std value: 68.84018063663402 - type: nauc_precision_at_20_diff1 value: -18.2422222283388 - type: nauc_precision_at_20_max value: 59.517328129343696 - type: nauc_precision_at_20_std value: 72.05149307342747 - type: nauc_precision_at_3_diff1 value: -10.226547543075897 - type: nauc_precision_at_3_max value: 43.14684818832875 - type: nauc_precision_at_3_std value: 57.31936467418288 - type: nauc_precision_at_5_diff1 value: -14.28521589468673 - type: nauc_precision_at_5_max value: 41.633426753962596 - type: nauc_precision_at_5_std value: 64.94400576804541 - type: nauc_recall_at_1000_diff1 value: -0.9648831207497152 - type: nauc_recall_at_1000_max value: 31.70832946085005 - type: nauc_recall_at_1000_std value: 63.21471613968869 - type: nauc_recall_at_100_diff1 value: -1.360254380933586 - type: nauc_recall_at_100_max value: 25.960597782099605 - type: nauc_recall_at_100_std value: 51.52757589609674 - type: nauc_recall_at_10_diff1 value: -0.3899439424189566 - type: nauc_recall_at_10_max value: 5.094341897886072 - type: nauc_recall_at_10_std value: 11.266045616925698 - type: nauc_recall_at_1_diff1 value: 8.269590874255034 - type: nauc_recall_at_1_max value: 3.482498491294516 - type: nauc_recall_at_1_std value: 8.985226819412189 - type: nauc_recall_at_20_diff1 value: 6.4797098359254175 - type: nauc_recall_at_20_max value: 15.663700985336124 - type: nauc_recall_at_20_std value: 17.154099587904913 - type: nauc_recall_at_3_diff1 value: 3.7245972450393507 - type: nauc_recall_at_3_max value: 0.4063857187240345 - type: nauc_recall_at_3_std value: 6.641948062821941 - type: nauc_recall_at_5_diff1 value: 4.013879477591466 - type: nauc_recall_at_5_max value: -1.4266586618013566 - type: nauc_recall_at_5_std value: 7.311601874411205 - type: ndcg_at_1 value: 75.0 - type: ndcg_at_10 value: 72.18900000000001 - type: ndcg_at_100 value: 54.022999999999996 - type: ndcg_at_1000 value: 49.492000000000004 - type: ndcg_at_20 value: 68.51 - type: ndcg_at_3 value: 73.184 - type: ndcg_at_5 value: 72.811 - type: precision_at_1 value: 82.0 - type: precision_at_10 value: 77.4 - type: precision_at_100 value: 55.24 - type: precision_at_1000 value: 21.822 - type: precision_at_20 value: 73.0 - type: precision_at_3 value: 79.333 - type: precision_at_5 value: 79.2 - type: recall_at_1 value: 0.214 - type: recall_at_10 value: 1.9980000000000002 - type: recall_at_100 value: 13.328999999999999 - type: recall_at_1000 value: 47.204 - type: recall_at_20 value: 3.7310000000000003 - type: recall_at_3 value: 0.628 - type: recall_at_5 value: 1.049 - task: type: MultilabelClassification dataset: name: MTEB CEDRClassification (default) type: ai-forever/cedr-classification config: default split: test revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 metrics: - type: accuracy value: 47.30605738575983 - type: f1 value: 41.26091043925065 - type: lrap value: 72.89452709883206 - type: main_score value: 47.30605738575983 - task: type: Reranking dataset: name: MTEB MIRACLReranking (ru) type: miracl/mmteb-miracl-reranking config: ru split: dev revision: 6d1962c527217f8927fca80f890f14f36b2802af metrics: - type: MAP@1(MIRACL) value: 20.721999999999998 - type: MAP@10(MIRACL) value: 33.900999999999996 - type: MAP@100(MIRACL) value: 36.813 - type: MAP@1000(MIRACL) value: 36.813 - type: MAP@20(MIRACL) value: 35.684 - type: MAP@3(MIRACL) value: 28.141 - type: MAP@5(MIRACL) value: 31.075000000000003 - type: NDCG@1(MIRACL) value: 32.799 - type: NDCG@10(MIRACL) value: 42.065000000000005 - type: NDCG@100(MIRACL) value: 49.730999999999995 - type: NDCG@1000(MIRACL) value: 49.730999999999995 - type: NDCG@20(MIRACL) value: 46.0 - type: NDCG@3(MIRACL) value: 34.481 - type: NDCG@5(MIRACL) value: 37.452999999999996 - type: P@1(MIRACL) value: 32.799 - type: P@10(MIRACL) value: 11.668000000000001 - type: P@100(MIRACL) value: 1.9529999999999998 - type: P@1000(MIRACL) value: 0.19499999999999998 - type: P@20(MIRACL) value: 7.51 - type: P@3(MIRACL) value: 20.823 - type: P@5(MIRACL) value: 16.728 - type: Recall@1(MIRACL) value: 20.721999999999998 - type: Recall@10(MIRACL) value: 54.762 - type: Recall@100(MIRACL) value: 79.952 - type: Recall@1000(MIRACL) value: 79.952 - type: Recall@20(MIRACL) value: 66.26100000000001 - type: Recall@3(MIRACL) value: 34.410000000000004 - type: Recall@5(MIRACL) value: 42.659000000000006 - type: main_score value: 42.065000000000005 - type: nAUC_MAP@1000_diff1(MIRACL) value: 14.33534992502818 - type: nAUC_MAP@1000_max(MIRACL) value: 12.367998764646115 - type: nAUC_MAP@1000_std(MIRACL) value: 4.569686002935006 - type: nAUC_MAP@100_diff1(MIRACL) value: 14.33534992502818 - type: nAUC_MAP@100_max(MIRACL) value: 12.367998764646115 - type: nAUC_MAP@100_std(MIRACL) value: 4.569686002935006 - type: nAUC_MAP@10_diff1(MIRACL) value: 16.920323975680027 - type: nAUC_MAP@10_max(MIRACL) value: 9.327171297204082 - type: nAUC_MAP@10_std(MIRACL) value: 3.2039133783079015 - type: nAUC_MAP@1_diff1(MIRACL) value: 28.698973487482206 - type: nAUC_MAP@1_max(MIRACL) value: 2.9217687660885034 - type: nAUC_MAP@1_std(MIRACL) value: -1.1247408800976524 - type: nAUC_MAP@20_diff1(MIRACL) value: 15.359083081640476 - type: nAUC_MAP@20_max(MIRACL) value: 11.310494233946345 - type: nAUC_MAP@20_std(MIRACL) value: 4.4171898386022885 - type: nAUC_MAP@3_diff1(MIRACL) value: 22.27430591851617 - type: nAUC_MAP@3_max(MIRACL) value: 6.407438291284658 - type: nAUC_MAP@3_std(MIRACL) value: 0.9799184530397409 - type: nAUC_MAP@5_diff1(MIRACL) value: 19.20571689941054 - type: nAUC_MAP@5_max(MIRACL) value: 7.987468654026893 - type: nAUC_MAP@5_std(MIRACL) value: 1.8324246565938962 - type: nAUC_NDCG@1000_diff1(MIRACL) value: 3.7537669018914768 - type: nAUC_NDCG@1000_max(MIRACL) value: 20.7944707840533 - type: nAUC_NDCG@1000_std(MIRACL) value: 8.444837055303063 - type: nAUC_NDCG@100_diff1(MIRACL) value: 3.7537669018914768 - type: nAUC_NDCG@100_max(MIRACL) value: 20.7944707840533 - type: nAUC_NDCG@100_std(MIRACL) value: 8.444837055303063 - type: nAUC_NDCG@10_diff1(MIRACL) value: 10.829575656103888 - type: nAUC_NDCG@10_max(MIRACL) value: 13.0445496498929 - type: nAUC_NDCG@10_std(MIRACL) value: 6.050412212625362 - type: nAUC_NDCG@1_diff1(MIRACL) value: 19.1388712233292 - type: nAUC_NDCG@1_max(MIRACL) value: 10.871900994781642 - type: nAUC_NDCG@1_std(MIRACL) value: 3.218568248751811 - type: nAUC_NDCG@20_diff1(MIRACL) value: 7.093172181746442 - type: nAUC_NDCG@20_max(MIRACL) value: 16.955238078958836 - type: nAUC_NDCG@20_std(MIRACL) value: 8.325656379573035 - type: nAUC_NDCG@3_diff1(MIRACL) value: 17.134437303330802 - type: nAUC_NDCG@3_max(MIRACL) value: 10.235328822955793 - type: nAUC_NDCG@3_std(MIRACL) value: 3.2341358691084814 - type: nAUC_NDCG@5_diff1(MIRACL) value: 14.733664618337636 - type: nAUC_NDCG@5_max(MIRACL) value: 11.181897412035282 - type: nAUC_NDCG@5_std(MIRACL) value: 3.642277088791985 - type: nAUC_P@1000_diff1(MIRACL) value: -26.330038284867573 - type: nAUC_P@1000_max(MIRACL) value: 28.450694137240458 - type: nAUC_P@1000_std(MIRACL) value: 9.892993775474912 - type: nAUC_P@100_diff1(MIRACL) value: -26.330038284867552 - type: nAUC_P@100_max(MIRACL) value: 28.45069413724051 - type: nAUC_P@100_std(MIRACL) value: 9.892993775474928 - type: nAUC_P@10_diff1(MIRACL) value: -17.436937353231112 - type: nAUC_P@10_max(MIRACL) value: 24.327018012947857 - type: nAUC_P@10_std(MIRACL) value: 11.78803527706634 - type: nAUC_P@1_diff1(MIRACL) value: 19.1388712233292 - type: nAUC_P@1_max(MIRACL) value: 10.871900994781642 - type: nAUC_P@1_std(MIRACL) value: 3.218568248751811 - type: nAUC_P@20_diff1(MIRACL) value: -22.947528755272426 - type: nAUC_P@20_max(MIRACL) value: 27.773093471902538 - type: nAUC_P@20_std(MIRACL) value: 14.898619107087221 - type: nAUC_P@3_diff1(MIRACL) value: 1.4100426412400944 - type: nAUC_P@3_max(MIRACL) value: 17.397472872058845 - type: nAUC_P@3_std(MIRACL) value: 8.240008229861875 - type: nAUC_P@5_diff1(MIRACL) value: -7.971349332207021 - type: nAUC_P@5_max(MIRACL) value: 22.198441167940963 - type: nAUC_P@5_std(MIRACL) value: 9.00265164460082 - type: nAUC_Recall@1000_diff1(MIRACL) value: -38.69835271863148 - type: nAUC_Recall@1000_max(MIRACL) value: 50.9545152809108 - type: nAUC_Recall@1000_std(MIRACL) value: 20.44270887092116 - type: nAUC_Recall@100_diff1(MIRACL) value: -38.69835271863148 - type: nAUC_Recall@100_max(MIRACL) value: 50.9545152809108 - type: nAUC_Recall@100_std(MIRACL) value: 20.44270887092116 - type: nAUC_Recall@10_diff1(MIRACL) value: -0.08109036309433801 - type: nAUC_Recall@10_max(MIRACL) value: 12.696619907773568 - type: nAUC_Recall@10_std(MIRACL) value: 8.791982704261589 - type: nAUC_Recall@1_diff1(MIRACL) value: 28.698973487482206 - type: nAUC_Recall@1_max(MIRACL) value: 2.9217687660885034 - type: nAUC_Recall@1_std(MIRACL) value: -1.1247408800976524 - type: nAUC_Recall@20_diff1(MIRACL) value: -13.312171017942623 - type: nAUC_Recall@20_max(MIRACL) value: 24.19847346821666 - type: nAUC_Recall@20_std(MIRACL) value: 15.8157702609797 - type: nAUC_Recall@3_diff1(MIRACL) value: 16.909128321353343 - type: nAUC_Recall@3_max(MIRACL) value: 6.552122731902991 - type: nAUC_Recall@3_std(MIRACL) value: 1.9963898223457228 - type: nAUC_Recall@5_diff1(MIRACL) value: 9.990292655247721 - type: nAUC_Recall@5_max(MIRACL) value: 9.361722273507574 - type: nAUC_Recall@5_std(MIRACL) value: 3.270918827854495 - task: type: MultilabelClassification dataset: name: MTEB SensitiveTopicsClassification (default) type: ai-forever/sensitive-topics-classification config: default split: test revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 metrics: - type: accuracy value: 30.634765625 - type: f1 value: 32.647559808678665 - type: lrap value: 45.94319661458259 - type: main_score value: 30.634765625 - task: type: STS dataset: name: MTEB ATEC (default) type: C-MTEB/ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cosine_pearson value: 47.541497334563296 - type: cosine_spearman value: 49.06268944206629 - type: euclidean_pearson value: 51.838926748581635 - type: euclidean_spearman value: 48.930697157135356 - type: main_score value: 49.06268944206629 - type: manhattan_pearson value: 51.835306769406365 - type: manhattan_spearman value: 48.86135493444834 - type: pearson value: 47.541497334563296 - type: spearman value: 49.06268944206629 - task: type: Classification dataset: name: MTEB AllegroReviews (default) type: PL-MTEB/allegro-reviews config: default split: test revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 metrics: - type: accuracy value: 49.51292246520874 - type: f1 value: 44.14350234332397 - type: f1_weighted value: 51.65508998354552 - type: main_score value: 49.51292246520874 - task: type: Clustering dataset: name: MTEB AlloProfClusteringP2P (default) type: lyon-nlp/alloprof config: default split: test revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b metrics: - type: main_score value: 63.883383458621665 - type: v_measure value: 63.883383458621665 - type: v_measure_std value: 2.693666879958465 - type: main_score value: 46.85924588755251 - type: v_measure value: 46.85924588755251 - type: v_measure_std value: 2.1918258880872377 - task: type: Clustering dataset: name: MTEB 8TagsClustering type: PL-MTEB/8tags-clustering config: default split: test revision: None metrics: - type: v_measure value: 43.65721212452554 - task: type: Reranking dataset: name: MTEB AlloprofReranking (default) type: lyon-nlp/mteb-fr-reranking-alloprof-s2p config: default split: test revision: e40c8a63ce02da43200eccb5b0846fcaa888f562 metrics: - type: map value: 66.39013753839347 - type: mrr value: 67.68045617786551 - type: main_score value: 66.39013753839347 - task: type: Retrieval dataset: name: MTEB AlloprofRetrieval (default) type: lyon-nlp/alloprof config: default split: test revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd metrics: - type: main_score value: 54.284 - type: map_at_1 value: 37.047000000000004 - type: map_at_10 value: 48.53 - type: map_at_100 value: 49.357 - type: map_at_1000 value: 49.39 - type: map_at_20 value: 49.064 - type: map_at_3 value: 45.675 - type: map_at_5 value: 47.441 - type: mrr_at_1 value: 37.04663212435233 - type: mrr_at_10 value: 48.5300326232969 - type: mrr_at_100 value: 49.35708199037581 - type: mrr_at_1000 value: 49.39005824603193 - type: mrr_at_20 value: 49.06417416464799 - type: mrr_at_3 value: 45.67501439263105 - type: mrr_at_5 value: 47.44099021301103 - type: nauc_map_at_1000_diff1 value: 43.32474221868009 - type: nauc_map_at_1000_max value: 39.407334029058575 - type: nauc_map_at_1000_std value: -2.3728154448932606 - type: nauc_map_at_100_diff1 value: 43.32336300929909 - type: nauc_map_at_100_max value: 39.432174777554835 - type: nauc_map_at_100_std value: -2.356396922384349 - type: nauc_map_at_10_diff1 value: 43.1606520154482 - type: nauc_map_at_10_max value: 39.33734650558226 - type: nauc_map_at_10_std value: -2.5156222475075256 - type: nauc_map_at_1_diff1 value: 46.2178975214499 - type: nauc_map_at_1_max value: 36.26173199049361 - type: nauc_map_at_1_std value: -3.0897555582816443 - type: nauc_map_at_20_diff1 value: 43.272980702916456 - type: nauc_map_at_20_max value: 39.4896977052276 - type: nauc_map_at_20_std value: -2.3305501742917043 - type: nauc_map_at_3_diff1 value: 43.49525042967079 - type: nauc_map_at_3_max value: 38.66352501824728 - type: nauc_map_at_3_std value: -3.202794391620473 - type: nauc_map_at_5_diff1 value: 43.2266692546611 - type: nauc_map_at_5_max value: 38.77368661115743 - type: nauc_map_at_5_std value: -3.0897532130127954 - type: nauc_mrr_at_1000_diff1 value: 43.32474221868009 - type: nauc_mrr_at_1000_max value: 39.407334029058575 - type: nauc_mrr_at_1000_std value: -2.3728154448932606 - type: nauc_mrr_at_100_diff1 value: 43.32336300929909 - type: nauc_mrr_at_100_max value: 39.432174777554835 - type: nauc_mrr_at_100_std value: -2.356396922384349 - type: nauc_mrr_at_10_diff1 value: 43.1606520154482 - type: nauc_mrr_at_10_max value: 39.33734650558226 - type: nauc_mrr_at_10_std value: -2.5156222475075256 - type: nauc_mrr_at_1_diff1 value: 46.2178975214499 - type: nauc_mrr_at_1_max value: 36.26173199049361 - type: nauc_mrr_at_1_std value: -3.0897555582816443 - type: nauc_mrr_at_20_diff1 value: 43.272980702916456 - type: nauc_mrr_at_20_max value: 39.4896977052276 - type: nauc_mrr_at_20_std value: -2.3305501742917043 - type: nauc_mrr_at_3_diff1 value: 43.49525042967079 - type: nauc_mrr_at_3_max value: 38.66352501824728 - type: nauc_mrr_at_3_std value: -3.202794391620473 - type: nauc_mrr_at_5_diff1 value: 43.2266692546611 - type: nauc_mrr_at_5_max value: 38.77368661115743 - type: nauc_mrr_at_5_std value: -3.0897532130127954 - type: nauc_ndcg_at_1000_diff1 value: 43.01903168202974 - type: nauc_ndcg_at_1000_max value: 40.75496622942232 - type: nauc_ndcg_at_1000_std value: -1.3150412981845496 - type: nauc_ndcg_at_100_diff1 value: 42.98016493758145 - type: nauc_ndcg_at_100_max value: 41.55869635162325 - type: nauc_ndcg_at_100_std value: -0.5355252976886055 - type: nauc_ndcg_at_10_diff1 value: 42.218755211347506 - type: nauc_ndcg_at_10_max value: 41.305042275175765 - type: nauc_ndcg_at_10_std value: -1.4034484444573714 - type: nauc_ndcg_at_1_diff1 value: 46.2178975214499 - type: nauc_ndcg_at_1_max value: 36.26173199049361 - type: nauc_ndcg_at_1_std value: -3.0897555582816443 - type: nauc_ndcg_at_20_diff1 value: 42.66574440095576 - type: nauc_ndcg_at_20_max value: 42.014620115124515 - type: nauc_ndcg_at_20_std value: -0.5176162553751498 - type: nauc_ndcg_at_3_diff1 value: 42.837450505106055 - type: nauc_ndcg_at_3_max value: 39.525369733082414 - type: nauc_ndcg_at_3_std value: -3.1605948245795155 - type: nauc_ndcg_at_5_diff1 value: 42.37951815451173 - type: nauc_ndcg_at_5_max value: 39.78840132935179 - type: nauc_ndcg_at_5_std value: -2.936898430768135 - type: nauc_precision_at_1000_diff1 value: 49.69224988612385 - type: nauc_precision_at_1000_max value: 79.57897547128005 - type: nauc_precision_at_1000_std value: 45.040371354764645 - type: nauc_precision_at_100_diff1 value: 42.70597486048422 - type: nauc_precision_at_100_max value: 65.74628759606188 - type: nauc_precision_at_100_std value: 25.49157745244855 - type: nauc_precision_at_10_diff1 value: 38.565609931689345 - type: nauc_precision_at_10_max value: 50.0239696180852 - type: nauc_precision_at_10_std value: 3.976354829503967 - type: nauc_precision_at_1_diff1 value: 46.2178975214499 - type: nauc_precision_at_1_max value: 36.26173199049361 - type: nauc_precision_at_1_std value: -3.0897555582816443 - type: nauc_precision_at_20_diff1 value: 40.4134718566864 - type: nauc_precision_at_20_max value: 57.121778108665374 - type: nauc_precision_at_20_std value: 11.46021975428544 - type: nauc_precision_at_3_diff1 value: 40.90538379461529 - type: nauc_precision_at_3_max value: 42.18393248057992 - type: nauc_precision_at_3_std value: -3.005249943837297 - type: nauc_precision_at_5_diff1 value: 39.60162965860782 - type: nauc_precision_at_5_max value: 43.28317158174058 - type: nauc_precision_at_5_std value: -2.3469094487738054 - type: nauc_recall_at_1000_diff1 value: 49.69224988612252 - type: nauc_recall_at_1000_max value: 79.57897547127862 - type: nauc_recall_at_1000_std value: 45.04037135476256 - type: nauc_recall_at_100_diff1 value: 42.70597486048432 - type: nauc_recall_at_100_max value: 65.74628759606213 - type: nauc_recall_at_100_std value: 25.491577452448727 - type: nauc_recall_at_10_diff1 value: 38.56560993168935 - type: nauc_recall_at_10_max value: 50.02396961808522 - type: nauc_recall_at_10_std value: 3.9763548295040314 - type: nauc_recall_at_1_diff1 value: 46.2178975214499 - type: nauc_recall_at_1_max value: 36.26173199049361 - type: nauc_recall_at_1_std value: -3.0897555582816443 - type: nauc_recall_at_20_diff1 value: 40.41347185668637 - type: nauc_recall_at_20_max value: 57.12177810866533 - type: nauc_recall_at_20_std value: 11.460219754285431 - type: nauc_recall_at_3_diff1 value: 40.90538379461527 - type: nauc_recall_at_3_max value: 42.18393248057989 - type: nauc_recall_at_3_std value: -3.005249943837297 - type: nauc_recall_at_5_diff1 value: 39.601629658607784 - type: nauc_recall_at_5_max value: 43.28317158174053 - type: nauc_recall_at_5_std value: -2.3469094487738054 - type: ndcg_at_1 value: 37.047000000000004 - type: ndcg_at_10 value: 54.284 - type: ndcg_at_100 value: 58.34 - type: ndcg_at_1000 value: 59.303 - type: ndcg_at_20 value: 56.235 - type: ndcg_at_3 value: 48.503 - type: ndcg_at_5 value: 51.686 - type: precision_at_1 value: 37.047000000000004 - type: precision_at_10 value: 7.237 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.005 - type: precision_at_3 value: 18.898 - type: precision_at_5 value: 12.884 - type: recall_at_1 value: 37.047000000000004 - type: recall_at_10 value: 72.366 - type: recall_at_100 value: 91.408 - type: recall_at_1000 value: 99.136 - type: recall_at_20 value: 80.095 - type: recall_at_3 value: 56.693000000000005 - type: recall_at_5 value: 64.42099999999999 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 89.49253731343283 - type: ap value: 61.88098616359918 - type: ap_weighted value: 61.88098616359918 - type: f1 value: 84.76516623679144 - type: f1_weighted value: 89.92745276292968 - type: main_score value: 89.49253731343283 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (de) type: mteb/amazon_counterfactual config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 89.61456102783727 - type: ap value: 93.11816566733742 - type: ap_weighted value: 93.11816566733742 - type: f1 value: 88.27635757733722 - type: f1_weighted value: 89.82581568285453 - type: main_score value: 89.61456102783727 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification (default) type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 95.3825 - type: ap value: 93.393033869502 - type: ap_weighted value: 93.393033869502 - type: f1 value: 95.38109007966307 - type: f1_weighted value: 95.38109007966305 - type: main_score value: 95.3825 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.768 - type: f1 value: 48.95084821944411 - type: f1_weighted value: 48.9508482194441 - type: main_score value: 49.768 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (de) type: mteb/amazon_reviews_multi config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.071999999999996 - type: f1 value: 47.24171107487612 - type: f1_weighted value: 47.24171107487612 - type: main_score value: 48.071999999999996 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (es) type: mteb/amazon_reviews_multi config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.102000000000004 - type: f1 value: 47.27193805278696 - type: f1_weighted value: 47.27193805278696 - type: main_score value: 48.102000000000004 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (fr) type: mteb/amazon_reviews_multi config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.30800000000001 - type: f1 value: 46.41683358017851 - type: f1_weighted value: 46.41683358017851 - type: main_score value: 47.30800000000001 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.944 - type: f1 value: 44.223824487744395 - type: f1_weighted value: 44.22382448774439 - type: main_score value: 44.944 - task: type: Retrieval dataset: name: MTEB ArguAna (default) type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 29.232000000000003 - type: map_at_10 value: 45.117000000000004 - type: map_at_100 value: 45.977000000000004 - type: map_at_1000 value: 45.98 - type: map_at_20 value: 45.815 - type: map_at_3 value: 39.912 - type: map_at_5 value: 42.693 - type: mrr_at_1 value: 29.659000000000002 - type: mrr_at_10 value: 45.253 - type: mrr_at_100 value: 46.125 - type: mrr_at_1000 value: 46.129 - type: mrr_at_20 value: 45.964 - type: mrr_at_3 value: 40.043 - type: mrr_at_5 value: 42.870000000000005 - type: ndcg_at_1 value: 29.232000000000003 - type: ndcg_at_10 value: 54.327999999999996 - type: ndcg_at_100 value: 57.86 - type: ndcg_at_1000 value: 57.935 - type: ndcg_at_20 value: 56.794 - type: ndcg_at_3 value: 43.516 - type: ndcg_at_5 value: 48.512 - type: precision_at_1 value: 29.232000000000003 - type: precision_at_10 value: 8.393 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.676 - type: precision_at_3 value: 17.994 - type: precision_at_5 value: 13.215 - type: recall_at_1 value: 29.232000000000003 - type: recall_at_10 value: 83.926 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 93.528 - type: recall_at_3 value: 53.983000000000004 - type: recall_at_5 value: 66.074 - type: main_score value: 54.327999999999996 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P (default) type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: main_score value: 46.6636824632419 - type: v_measure value: 46.6636824632419 - type: v_measure_std value: 13.817129140714963 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S (default) type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: main_score value: 39.271141892800024 - type: v_measure value: 39.271141892800024 - type: v_measure_std value: 14.276782483454827 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions (default) type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 65.04363277324629 - type: mrr value: 78.2372598162072 - type: main_score value: 65.04363277324629 - task: type: Reranking dataset: name: MTEB MindSmallReranking (default) type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.83 - type: main_score value: 30.83 - task: type: STS dataset: name: MTEB BIOSSES (default) type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cosine_pearson value: 88.80382082011027 - type: cosine_spearman value: 88.68876782169106 - type: euclidean_pearson value: 87.00802890147176 - type: euclidean_spearman value: 87.43211268192712 - type: main_score value: 88.68876782169106 - type: manhattan_pearson value: 87.14062537179474 - type: manhattan_spearman value: 87.59115245033443 - type: pearson value: 88.80382082011027 - type: spearman value: 88.68876782169106 - task: type: STS dataset: name: MTEB BQ (default) type: C-MTEB/BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cosine_pearson value: 61.588006604878196 - type: cosine_spearman value: 63.20615427154465 - type: euclidean_pearson value: 61.818547092516496 - type: euclidean_spearman value: 63.21558009151778 - type: main_score value: 63.20615427154465 - type: manhattan_pearson value: 61.665588158487616 - type: manhattan_spearman value: 63.051544488238584 - type: pearson value: 61.588006604878196 - type: spearman value: 63.20615427154465 - task: type: Retrieval dataset: name: MTEB BSARDRetrieval (default) type: maastrichtlawtech/bsard config: default split: test revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 metrics: - type: main_score value: 64.414 - type: map_at_1 value: 14.865 - type: map_at_10 value: 21.605 - type: map_at_100 value: 22.762 - type: map_at_1000 value: 22.854 - type: map_at_20 value: 22.259999999999998 - type: map_at_3 value: 20.119999999999997 - type: map_at_5 value: 20.931 - type: mrr_at_1 value: 14.864864864864865 - type: mrr_at_10 value: 21.605176605176606 - type: mrr_at_100 value: 22.7622306460065 - type: mrr_at_1000 value: 22.85383406410312 - type: mrr_at_20 value: 22.259528463088845 - type: mrr_at_3 value: 20.12012012012012 - type: mrr_at_5 value: 20.930930930930934 - type: nauc_map_at_1000_diff1 value: 17.486265968689338 - type: nauc_map_at_1000_max value: 22.736799291688836 - type: nauc_map_at_1000_std value: 9.831687441977147 - type: nauc_map_at_100_diff1 value: 17.50754492049086 - type: nauc_map_at_100_max value: 22.77693662806787 - type: nauc_map_at_100_std value: 9.853899509675395 - type: nauc_map_at_10_diff1 value: 17.42133968580952 - type: nauc_map_at_10_max value: 22.45861793882279 - type: nauc_map_at_10_std value: 8.964888472915938 - type: nauc_map_at_1_diff1 value: 19.433947086968093 - type: nauc_map_at_1_max value: 24.75657047550517 - type: nauc_map_at_1_std value: 15.122329157218505 - type: nauc_map_at_20_diff1 value: 17.429856756008785 - type: nauc_map_at_20_max value: 22.438850987431017 - type: nauc_map_at_20_std value: 9.172746012213558 - type: nauc_map_at_3_diff1 value: 18.218182689678475 - type: nauc_map_at_3_max value: 23.57169444088667 - type: nauc_map_at_3_std value: 10.464473559366356 - type: nauc_map_at_5_diff1 value: 18.6075342519133 - type: nauc_map_at_5_max value: 23.308845973576673 - type: nauc_map_at_5_std value: 9.364009996445652 - type: nauc_mrr_at_1000_diff1 value: 17.486265968689338 - type: nauc_mrr_at_1000_max value: 22.736799291688836 - type: nauc_mrr_at_1000_std value: 9.831687441977147 - type: nauc_mrr_at_100_diff1 value: 17.50754492049086 - type: nauc_mrr_at_100_max value: 22.77693662806787 - type: nauc_mrr_at_100_std value: 9.853899509675395 - type: nauc_mrr_at_10_diff1 value: 17.42133968580952 - type: nauc_mrr_at_10_max value: 22.45861793882279 - type: nauc_mrr_at_10_std value: 8.964888472915938 - type: nauc_mrr_at_1_diff1 value: 19.433947086968093 - type: nauc_mrr_at_1_max value: 24.75657047550517 - type: nauc_mrr_at_1_std value: 15.122329157218505 - type: nauc_mrr_at_20_diff1 value: 17.429856756008785 - type: nauc_mrr_at_20_max value: 22.438850987431017 - type: nauc_mrr_at_20_std value: 9.172746012213558 - type: nauc_mrr_at_3_diff1 value: 18.218182689678475 - type: nauc_mrr_at_3_max value: 23.57169444088667 - type: nauc_mrr_at_3_std value: 10.464473559366356 - type: nauc_mrr_at_5_diff1 value: 18.6075342519133 - type: nauc_mrr_at_5_max value: 23.308845973576673 - type: nauc_mrr_at_5_std value: 9.364009996445652 - type: nauc_ndcg_at_1000_diff1 value: 16.327871824135745 - type: nauc_ndcg_at_1000_max value: 23.308241052911495 - type: nauc_ndcg_at_1000_std value: 11.50905911184097 - type: nauc_ndcg_at_100_diff1 value: 16.676226744692773 - type: nauc_ndcg_at_100_max value: 24.323253721240974 - type: nauc_ndcg_at_100_std value: 11.952612443651557 - type: nauc_ndcg_at_10_diff1 value: 16.030325121764594 - type: nauc_ndcg_at_10_max value: 21.306799242079542 - type: nauc_ndcg_at_10_std value: 6.63359364302513 - type: nauc_ndcg_at_1_diff1 value: 19.433947086968093 - type: nauc_ndcg_at_1_max value: 24.75657047550517 - type: nauc_ndcg_at_1_std value: 15.122329157218505 - type: nauc_ndcg_at_20_diff1 value: 16.013173605999857 - type: nauc_ndcg_at_20_max value: 21.607217260736576 - type: nauc_ndcg_at_20_std value: 7.319482417138996 - type: nauc_ndcg_at_3_diff1 value: 17.97958548328493 - type: nauc_ndcg_at_3_max value: 23.58346522810145 - type: nauc_ndcg_at_3_std value: 9.392582854708314 - type: nauc_ndcg_at_5_diff1 value: 18.734733324685287 - type: nauc_ndcg_at_5_max value: 23.273244317623742 - type: nauc_ndcg_at_5_std value: 7.638611545253834 - type: nauc_precision_at_1000_diff1 value: 7.919843339380295 - type: nauc_precision_at_1000_max value: 31.575386234270486 - type: nauc_precision_at_1000_std value: 39.332224386769404 - type: nauc_precision_at_100_diff1 value: 15.018050960000052 - type: nauc_precision_at_100_max value: 34.98209513759861 - type: nauc_precision_at_100_std value: 26.970034484359022 - type: nauc_precision_at_10_diff1 value: 12.102191084210922 - type: nauc_precision_at_10_max value: 18.112541150340675 - type: nauc_precision_at_10_std value: 0.7358784689406018 - type: nauc_precision_at_1_diff1 value: 19.433947086968093 - type: nauc_precision_at_1_max value: 24.75657047550517 - type: nauc_precision_at_1_std value: 15.122329157218505 - type: nauc_precision_at_20_diff1 value: 12.018814361204328 - type: nauc_precision_at_20_max value: 19.75123746049928 - type: nauc_precision_at_20_std value: 3.012204650582264 - type: nauc_precision_at_3_diff1 value: 17.41375604940955 - type: nauc_precision_at_3_max value: 23.699834627021037 - type: nauc_precision_at_3_std value: 6.793486779050103 - type: nauc_precision_at_5_diff1 value: 19.194631963780257 - type: nauc_precision_at_5_max value: 23.31708702442155 - type: nauc_precision_at_5_std value: 3.4591358279667332 - type: nauc_recall_at_1000_diff1 value: 7.919843339380378 - type: nauc_recall_at_1000_max value: 31.57538623427063 - type: nauc_recall_at_1000_std value: 39.332224386769546 - type: nauc_recall_at_100_diff1 value: 15.018050960000085 - type: nauc_recall_at_100_max value: 34.9820951375986 - type: nauc_recall_at_100_std value: 26.97003448435901 - type: nauc_recall_at_10_diff1 value: 12.102191084210837 - type: nauc_recall_at_10_max value: 18.112541150340594 - type: nauc_recall_at_10_std value: 0.7358784689405188 - type: nauc_recall_at_1_diff1 value: 19.433947086968093 - type: nauc_recall_at_1_max value: 24.75657047550517 - type: nauc_recall_at_1_std value: 15.122329157218505 - type: nauc_recall_at_20_diff1 value: 12.01881436120429 - type: nauc_recall_at_20_max value: 19.751237460499222 - type: nauc_recall_at_20_std value: 3.0122046505822135 - type: nauc_recall_at_3_diff1 value: 17.413756049409503 - type: nauc_recall_at_3_max value: 23.699834627020998 - type: nauc_recall_at_3_std value: 6.793486779050083 - type: nauc_recall_at_5_diff1 value: 19.194631963780203 - type: nauc_recall_at_5_max value: 23.3170870244215 - type: nauc_recall_at_5_std value: 3.459135827966664 - type: ndcg_at_1 value: 14.865 - type: ndcg_at_10 value: 24.764 - type: ndcg_at_100 value: 30.861 - type: ndcg_at_1000 value: 33.628 - type: ndcg_at_20 value: 27.078000000000003 - type: ndcg_at_3 value: 21.675 - type: ndcg_at_5 value: 23.148 - type: precision_at_1 value: 14.865 - type: precision_at_10 value: 3.4680000000000004 - type: precision_at_100 value: 0.644 - type: precision_at_1000 value: 0.087 - type: precision_at_20 value: 2.185 - type: precision_at_3 value: 8.709 - type: precision_at_5 value: 5.946 - type: recall_at_1 value: 14.865 - type: recall_at_10 value: 34.685 - type: recall_at_100 value: 64.414 - type: recall_at_1000 value: 86.937 - type: recall_at_20 value: 43.694 - type: recall_at_3 value: 26.125999999999998 - type: recall_at_5 value: 29.73 - task: type: Classification dataset: name: MTEB Banking77Classification (default) type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.08116883116882 - type: f1 value: 84.05587055990273 - type: f1_weighted value: 84.05587055990274 - type: main_score value: 84.08116883116882 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P (default) type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: main_score value: 38.1941007822277 - type: v_measure value: 38.1941007822277 - type: v_measure_std value: 0.7502113547288178 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S (default) type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: main_score value: 34.42075599178318 - type: v_measure value: 34.42075599178318 - type: v_measure_std value: 0.600256720497283 - task: type: Clustering dataset: name: MTEB BlurbsClusteringP2P (default) type: slvnwhrl/blurbs-clustering-p2p config: default split: test revision: a2dd5b02a77de3466a3eaa98ae586b5610314496 metrics: - type: main_score value: 41.634627363047265 - type: v_measure value: 41.634627363047265 - type: v_measure_std value: 9.726923191225307 - task: type: Clustering dataset: name: MTEB BlurbsClusteringS2S (default) type: slvnwhrl/blurbs-clustering-s2s config: default split: test revision: 22793b6a6465bf00120ad525e38c51210858132c metrics: - type: main_score value: 20.996468295584197 - type: v_measure value: 20.996468295584197 - type: v_measure_std value: 9.225766688272197 - task: type: Classification dataset: name: MTEB CBD (default) type: PL-MTEB/cbd config: default split: test revision: 36ddb419bcffe6a5374c3891957912892916f28d metrics: - type: accuracy value: 69.99 - type: ap value: 22.57826353116948 - type: ap_weighted value: 22.57826353116948 - type: f1 value: 59.04574955548393 - type: f1_weighted value: 74.36235022309789 - type: main_score value: 69.99 - task: type: PairClassification dataset: name: MTEB CDSC-E (default) type: PL-MTEB/cdsce-pairclassification config: default split: test revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d metrics: - type: cosine_accuracy value: 88.7 - type: cosine_accuracy_threshold value: 97.37848043441772 - type: cosine_ap value: 73.0405088928302 - type: cosine_f1 value: 63.52201257861635 - type: cosine_f1_threshold value: 96.98888063430786 - type: cosine_precision value: 78.90625 - type: cosine_recall value: 53.1578947368421 - type: dot_accuracy value: 84.89999999999999 - type: dot_accuracy_threshold value: 43603.09753417969 - type: dot_ap value: 56.98157569085279 - type: dot_f1 value: 57.606490872210955 - type: dot_f1_threshold value: 40406.23779296875 - type: dot_precision value: 46.864686468646866 - type: dot_recall value: 74.73684210526315 - type: euclidean_accuracy value: 88.5 - type: euclidean_accuracy_threshold value: 498.0483055114746 - type: euclidean_ap value: 72.97328234816734 - type: euclidean_f1 value: 63.722397476340696 - type: euclidean_f1_threshold value: 508.6186408996582 - type: euclidean_precision value: 79.52755905511812 - type: euclidean_recall value: 53.1578947368421 - type: main_score value: 73.0405088928302 - type: manhattan_accuracy value: 88.6 - type: manhattan_accuracy_threshold value: 12233.079528808594 - type: manhattan_ap value: 72.92148503992615 - type: manhattan_f1 value: 63.69426751592356 - type: manhattan_f1_threshold value: 12392.754364013672 - type: manhattan_precision value: 80.64516129032258 - type: manhattan_recall value: 52.63157894736842 - type: max_accuracy value: 88.7 - type: max_ap value: 73.0405088928302 - type: max_f1 value: 63.722397476340696 - type: max_precision value: 80.64516129032258 - type: max_recall value: 74.73684210526315 - type: similarity_accuracy value: 88.7 - type: similarity_accuracy_threshold value: 97.37848043441772 - type: similarity_ap value: 73.0405088928302 - type: similarity_f1 value: 63.52201257861635 - type: similarity_f1_threshold value: 96.98888063430786 - type: similarity_precision value: 78.90625 - type: similarity_recall value: 53.1578947368421 - task: type: STS dataset: name: MTEB CDSC-R (default) type: PL-MTEB/cdscr-sts config: default split: test revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd metrics: - type: cosine_pearson value: 92.97492495289738 - type: cosine_spearman value: 92.63248098608472 - type: euclidean_pearson value: 92.04712487782031 - type: euclidean_spearman value: 92.19679486755008 - type: main_score value: 92.63248098608472 - type: manhattan_pearson value: 92.0101187740438 - type: manhattan_spearman value: 92.20926859332754 - type: pearson value: 92.97492495289738 - type: spearman value: 92.63248098608472 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P (default) type: C-MTEB/CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: main_score value: 39.96377851800628 - type: v_measure value: 39.96377851800628 - type: v_measure_std value: 0.9793033243093288 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S (default) type: C-MTEB/CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: main_score value: 38.788850224595784 - type: v_measure value: 38.788850224595784 - type: v_measure_std value: 1.0712604145916924 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 77.95952507806115 - type: mrr value: 80.8643253968254 - type: main_score value: 77.95952507806115 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 78.21522500165045 - type: mrr value: 81.28194444444443 - type: main_score value: 78.21522500165045 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval (default) type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 33.377 - type: map_at_10 value: 46.371 - type: map_at_100 value: 47.829 - type: map_at_1000 value: 47.94 - type: map_at_20 value: 47.205000000000005 - type: map_at_3 value: 42.782 - type: map_at_5 value: 44.86 - type: mrr_at_1 value: 41.345 - type: mrr_at_10 value: 52.187 - type: mrr_at_100 value: 52.893 - type: mrr_at_1000 value: 52.929 - type: mrr_at_20 value: 52.637 - type: mrr_at_3 value: 49.714000000000006 - type: mrr_at_5 value: 51.373000000000005 - type: ndcg_at_1 value: 41.345 - type: ndcg_at_10 value: 52.946000000000005 - type: ndcg_at_100 value: 57.92699999999999 - type: ndcg_at_1000 value: 59.609 - type: ndcg_at_20 value: 54.900999999999996 - type: ndcg_at_3 value: 48.357 - type: ndcg_at_5 value: 50.739000000000004 - type: precision_at_1 value: 41.345 - type: precision_at_10 value: 10.186 - type: precision_at_100 value: 1.554 - type: precision_at_1000 value: 0.2 - type: precision_at_20 value: 5.959 - type: precision_at_3 value: 23.796 - type: precision_at_5 value: 17.024 - type: recall_at_1 value: 33.377 - type: recall_at_10 value: 65.067 - type: recall_at_100 value: 86.04899999999999 - type: recall_at_1000 value: 96.54899999999999 - type: recall_at_20 value: 72.071 - type: recall_at_3 value: 51.349999999999994 - type: recall_at_5 value: 58.41 - type: main_score value: 52.946000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval (default) type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 31.097 - type: map_at_10 value: 42.183 - type: map_at_100 value: 43.580999999999996 - type: map_at_1000 value: 43.718 - type: map_at_20 value: 42.921 - type: map_at_3 value: 38.963 - type: map_at_5 value: 40.815 - type: mrr_at_1 value: 39.745000000000005 - type: mrr_at_10 value: 48.736000000000004 - type: mrr_at_100 value: 49.405 - type: mrr_at_1000 value: 49.452 - type: mrr_at_20 value: 49.118 - type: mrr_at_3 value: 46.497 - type: mrr_at_5 value: 47.827999999999996 - type: ndcg_at_1 value: 39.745000000000005 - type: ndcg_at_10 value: 48.248000000000005 - type: ndcg_at_100 value: 52.956 - type: ndcg_at_1000 value: 54.99699999999999 - type: ndcg_at_20 value: 50.01 - type: ndcg_at_3 value: 43.946000000000005 - type: ndcg_at_5 value: 46.038000000000004 - type: precision_at_1 value: 39.745000000000005 - type: precision_at_10 value: 9.229 - type: precision_at_100 value: 1.5070000000000001 - type: precision_at_1000 value: 0.199 - type: precision_at_20 value: 5.489999999999999 - type: precision_at_3 value: 21.38 - type: precision_at_5 value: 15.274 - type: recall_at_1 value: 31.097 - type: recall_at_10 value: 58.617 - type: recall_at_100 value: 78.55199999999999 - type: recall_at_1000 value: 91.13900000000001 - type: recall_at_20 value: 64.92 - type: recall_at_3 value: 45.672000000000004 - type: recall_at_5 value: 51.669 - type: main_score value: 48.248000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval (default) type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 39.745000000000005 - type: map_at_10 value: 52.063 - type: map_at_100 value: 53.077 - type: map_at_1000 value: 53.13 - type: map_at_20 value: 52.66 - type: map_at_3 value: 48.662 - type: map_at_5 value: 50.507000000000005 - type: mrr_at_1 value: 45.391999999999996 - type: mrr_at_10 value: 55.528 - type: mrr_at_100 value: 56.16100000000001 - type: mrr_at_1000 value: 56.192 - type: mrr_at_20 value: 55.923 - type: mrr_at_3 value: 52.93600000000001 - type: mrr_at_5 value: 54.435 - type: ndcg_at_1 value: 45.391999999999996 - type: ndcg_at_10 value: 58.019 - type: ndcg_at_100 value: 61.936 - type: ndcg_at_1000 value: 63.015 - type: ndcg_at_20 value: 59.691 - type: ndcg_at_3 value: 52.294 - type: ndcg_at_5 value: 55.017 - type: precision_at_1 value: 45.391999999999996 - type: precision_at_10 value: 9.386 - type: precision_at_100 value: 1.232 - type: precision_at_1000 value: 0.136 - type: precision_at_20 value: 5.223 - type: precision_at_3 value: 23.177 - type: precision_at_5 value: 15.9 - type: recall_at_1 value: 39.745000000000005 - type: recall_at_10 value: 72.08099999999999 - type: recall_at_100 value: 88.85300000000001 - type: recall_at_1000 value: 96.569 - type: recall_at_20 value: 78.203 - type: recall_at_3 value: 56.957 - type: recall_at_5 value: 63.63100000000001 - type: main_score value: 58.019 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval (default) type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 26.651999999999997 - type: map_at_10 value: 35.799 - type: map_at_100 value: 36.846000000000004 - type: map_at_1000 value: 36.931000000000004 - type: map_at_20 value: 36.341 - type: map_at_3 value: 32.999 - type: map_at_5 value: 34.597 - type: mrr_at_1 value: 28.814 - type: mrr_at_10 value: 37.869 - type: mrr_at_100 value: 38.728 - type: mrr_at_1000 value: 38.795 - type: mrr_at_20 value: 38.317 - type: mrr_at_3 value: 35.235 - type: mrr_at_5 value: 36.738 - type: ndcg_at_1 value: 28.814 - type: ndcg_at_10 value: 41.028 - type: ndcg_at_100 value: 46.162 - type: ndcg_at_1000 value: 48.15 - type: ndcg_at_20 value: 42.824 - type: ndcg_at_3 value: 35.621 - type: ndcg_at_5 value: 38.277 - type: precision_at_1 value: 28.814 - type: precision_at_10 value: 6.361999999999999 - type: precision_at_100 value: 0.9450000000000001 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_20 value: 3.6159999999999997 - type: precision_at_3 value: 15.140999999999998 - type: precision_at_5 value: 10.712000000000002 - type: recall_at_1 value: 26.651999999999997 - type: recall_at_10 value: 55.038 - type: recall_at_100 value: 78.806 - type: recall_at_1000 value: 93.485 - type: recall_at_20 value: 61.742 - type: recall_at_3 value: 40.682 - type: recall_at_5 value: 46.855000000000004 - type: main_score value: 41.028 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval (default) type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 17.627000000000002 - type: map_at_10 value: 26.436999999999998 - type: map_at_100 value: 27.85 - type: map_at_1000 value: 27.955999999999996 - type: map_at_20 value: 27.233 - type: map_at_3 value: 23.777 - type: map_at_5 value: 25.122 - type: mrr_at_1 value: 22.387999999999998 - type: mrr_at_10 value: 31.589 - type: mrr_at_100 value: 32.641999999999996 - type: mrr_at_1000 value: 32.696999999999996 - type: mrr_at_20 value: 32.201 - type: mrr_at_3 value: 28.98 - type: mrr_at_5 value: 30.342000000000002 - type: ndcg_at_1 value: 22.387999999999998 - type: ndcg_at_10 value: 32.129999999999995 - type: ndcg_at_100 value: 38.562999999999995 - type: ndcg_at_1000 value: 40.903 - type: ndcg_at_20 value: 34.652 - type: ndcg_at_3 value: 27.26 - type: ndcg_at_5 value: 29.235 - type: precision_at_1 value: 22.387999999999998 - type: precision_at_10 value: 5.970000000000001 - type: precision_at_100 value: 1.068 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_20 value: 3.6999999999999997 - type: precision_at_3 value: 13.267000000000001 - type: precision_at_5 value: 9.403 - type: recall_at_1 value: 17.627000000000002 - type: recall_at_10 value: 44.71 - type: recall_at_100 value: 72.426 - type: recall_at_1000 value: 88.64699999999999 - type: recall_at_20 value: 53.65 - type: recall_at_3 value: 30.989 - type: recall_at_5 value: 36.237 - type: main_score value: 32.129999999999995 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval (default) type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 30.891000000000002 - type: map_at_10 value: 41.519 - type: map_at_100 value: 42.896 - type: map_at_1000 value: 42.992999999999995 - type: map_at_20 value: 42.287 - type: map_at_3 value: 37.822 - type: map_at_5 value: 39.976 - type: mrr_at_1 value: 37.921 - type: mrr_at_10 value: 47.260999999999996 - type: mrr_at_100 value: 48.044 - type: mrr_at_1000 value: 48.08 - type: mrr_at_20 value: 47.699999999999996 - type: mrr_at_3 value: 44.513999999999996 - type: mrr_at_5 value: 46.064 - type: ndcg_at_1 value: 37.921 - type: ndcg_at_10 value: 47.806 - type: ndcg_at_100 value: 53.274 - type: ndcg_at_1000 value: 55.021 - type: ndcg_at_20 value: 49.973 - type: ndcg_at_3 value: 42.046 - type: ndcg_at_5 value: 44.835 - type: precision_at_1 value: 37.921 - type: precision_at_10 value: 8.767999999999999 - type: precision_at_100 value: 1.353 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 5.135 - type: precision_at_3 value: 20.051 - type: precision_at_5 value: 14.398 - type: recall_at_1 value: 30.891000000000002 - type: recall_at_10 value: 60.897999999999996 - type: recall_at_100 value: 83.541 - type: recall_at_1000 value: 94.825 - type: recall_at_20 value: 68.356 - type: recall_at_3 value: 44.65 - type: recall_at_5 value: 51.919000000000004 - type: main_score value: 47.806 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval (default) type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 27.654 - type: map_at_10 value: 38.025999999999996 - type: map_at_100 value: 39.425 - type: map_at_1000 value: 39.528 - type: map_at_20 value: 38.838 - type: map_at_3 value: 34.745 - type: map_at_5 value: 36.537 - type: mrr_at_1 value: 34.018 - type: mrr_at_10 value: 43.314 - type: mrr_at_100 value: 44.283 - type: mrr_at_1000 value: 44.327 - type: mrr_at_20 value: 43.929 - type: mrr_at_3 value: 40.868 - type: mrr_at_5 value: 42.317 - type: ndcg_at_1 value: 34.018 - type: ndcg_at_10 value: 43.887 - type: ndcg_at_100 value: 49.791000000000004 - type: ndcg_at_1000 value: 51.834 - type: ndcg_at_20 value: 46.376 - type: ndcg_at_3 value: 38.769999999999996 - type: ndcg_at_5 value: 41.144 - type: precision_at_1 value: 34.018 - type: precision_at_10 value: 8.001999999999999 - type: precision_at_100 value: 1.2630000000000001 - type: precision_at_1000 value: 0.16 - type: precision_at_20 value: 4.737 - type: precision_at_3 value: 18.417 - type: precision_at_5 value: 13.150999999999998 - type: recall_at_1 value: 27.654 - type: recall_at_10 value: 56.111 - type: recall_at_100 value: 81.136 - type: recall_at_1000 value: 94.788 - type: recall_at_20 value: 65.068 - type: recall_at_3 value: 41.713 - type: recall_at_5 value: 48.106 - type: main_score value: 43.887 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval (default) type: CQADupstackRetrieval_is_a_combined_dataset config: default split: test revision: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 42.58858333333333 - type: ndcg_at_10 value: 42.58858333333333 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval (default) type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 24.501 - type: map_at_10 value: 32.814 - type: map_at_100 value: 33.754 - type: map_at_1000 value: 33.859 - type: map_at_20 value: 33.324 - type: map_at_3 value: 30.758000000000003 - type: map_at_5 value: 31.936999999999998 - type: mrr_at_1 value: 27.761000000000003 - type: mrr_at_10 value: 35.662 - type: mrr_at_100 value: 36.443999999999996 - type: mrr_at_1000 value: 36.516999999999996 - type: mrr_at_20 value: 36.085 - type: mrr_at_3 value: 33.742 - type: mrr_at_5 value: 34.931 - type: ndcg_at_1 value: 27.761000000000003 - type: ndcg_at_10 value: 37.208000000000006 - type: ndcg_at_100 value: 41.839 - type: ndcg_at_1000 value: 44.421 - type: ndcg_at_20 value: 38.917 - type: ndcg_at_3 value: 33.544000000000004 - type: ndcg_at_5 value: 35.374 - type: precision_at_1 value: 27.761000000000003 - type: precision_at_10 value: 5.92 - type: precision_at_100 value: 0.899 - type: precision_at_1000 value: 0.12 - type: precision_at_20 value: 3.4130000000000003 - type: precision_at_3 value: 15.031 - type: precision_at_5 value: 10.306999999999999 - type: recall_at_1 value: 24.501 - type: recall_at_10 value: 47.579 - type: recall_at_100 value: 69.045 - type: recall_at_1000 value: 88.032 - type: recall_at_20 value: 54.125 - type: recall_at_3 value: 37.202 - type: recall_at_5 value: 41.927 - type: main_score value: 37.208000000000006 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval (default) type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 18.29 - type: map_at_10 value: 26.183 - type: map_at_100 value: 27.351999999999997 - type: map_at_1000 value: 27.483999999999998 - type: map_at_20 value: 26.798 - type: map_at_3 value: 23.629 - type: map_at_5 value: 24.937 - type: mrr_at_1 value: 22.299 - type: mrr_at_10 value: 30.189 - type: mrr_at_100 value: 31.098 - type: mrr_at_1000 value: 31.177 - type: mrr_at_20 value: 30.697000000000003 - type: mrr_at_3 value: 27.862 - type: mrr_at_5 value: 29.066 - type: ndcg_at_1 value: 22.299 - type: ndcg_at_10 value: 31.202 - type: ndcg_at_100 value: 36.617 - type: ndcg_at_1000 value: 39.544000000000004 - type: ndcg_at_20 value: 33.177 - type: ndcg_at_3 value: 26.639000000000003 - type: ndcg_at_5 value: 28.526 - type: precision_at_1 value: 22.299 - type: precision_at_10 value: 5.8020000000000005 - type: precision_at_100 value: 1.0070000000000001 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_20 value: 3.505 - type: precision_at_3 value: 12.698 - type: precision_at_5 value: 9.174 - type: recall_at_1 value: 18.29 - type: recall_at_10 value: 42.254999999999995 - type: recall_at_100 value: 66.60000000000001 - type: recall_at_1000 value: 87.31400000000001 - type: recall_at_20 value: 49.572 - type: recall_at_3 value: 29.342000000000002 - type: recall_at_5 value: 34.221000000000004 - type: main_score value: 31.202 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval (default) type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 27.722 - type: map_at_10 value: 37.698 - type: map_at_100 value: 38.899 - type: map_at_1000 value: 38.998 - type: map_at_20 value: 38.381 - type: map_at_3 value: 34.244 - type: map_at_5 value: 36.295 - type: mrr_at_1 value: 32.183 - type: mrr_at_10 value: 41.429 - type: mrr_at_100 value: 42.308 - type: mrr_at_1000 value: 42.358000000000004 - type: mrr_at_20 value: 41.957 - type: mrr_at_3 value: 38.401999999999994 - type: mrr_at_5 value: 40.294999999999995 - type: ndcg_at_1 value: 32.183 - type: ndcg_at_10 value: 43.519000000000005 - type: ndcg_at_100 value: 48.786 - type: ndcg_at_1000 value: 50.861999999999995 - type: ndcg_at_20 value: 45.654 - type: ndcg_at_3 value: 37.521 - type: ndcg_at_5 value: 40.615 - type: precision_at_1 value: 32.183 - type: precision_at_10 value: 7.603 - type: precision_at_100 value: 1.135 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_20 value: 4.408 - type: precision_at_3 value: 17.071 - type: precision_at_5 value: 12.668 - type: recall_at_1 value: 27.722 - type: recall_at_10 value: 57.230000000000004 - type: recall_at_100 value: 79.97999999999999 - type: recall_at_1000 value: 94.217 - type: recall_at_20 value: 64.864 - type: recall_at_3 value: 41.215 - type: recall_at_5 value: 48.774 - type: main_score value: 43.519000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval (default) type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 25.852999999999998 - type: map_at_10 value: 35.394999999999996 - type: map_at_100 value: 37.291999999999994 - type: map_at_1000 value: 37.495 - type: map_at_20 value: 36.372 - type: map_at_3 value: 32.336 - type: map_at_5 value: 34.159 - type: mrr_at_1 value: 31.818 - type: mrr_at_10 value: 40.677 - type: mrr_at_100 value: 41.728 - type: mrr_at_1000 value: 41.778 - type: mrr_at_20 value: 41.301 - type: mrr_at_3 value: 38.208 - type: mrr_at_5 value: 39.592 - type: ndcg_at_1 value: 31.818 - type: ndcg_at_10 value: 41.559000000000005 - type: ndcg_at_100 value: 48.012 - type: ndcg_at_1000 value: 50.234 - type: ndcg_at_20 value: 44.15 - type: ndcg_at_3 value: 36.918 - type: ndcg_at_5 value: 39.227000000000004 - type: precision_at_1 value: 31.818 - type: precision_at_10 value: 8.043 - type: precision_at_100 value: 1.625 - type: precision_at_1000 value: 0.245 - type: precision_at_20 value: 5.2170000000000005 - type: precision_at_3 value: 17.655 - type: precision_at_5 value: 12.845999999999998 - type: recall_at_1 value: 25.852999999999998 - type: recall_at_10 value: 53.093 - type: recall_at_100 value: 81.05799999999999 - type: recall_at_1000 value: 94.657 - type: recall_at_20 value: 62.748000000000005 - type: recall_at_3 value: 39.300000000000004 - type: recall_at_5 value: 45.754 - type: main_score value: 41.559000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval (default) type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 19.23 - type: map_at_10 value: 28.128999999999998 - type: map_at_100 value: 29.195 - type: map_at_1000 value: 29.310000000000002 - type: map_at_20 value: 28.713 - type: map_at_3 value: 25.191000000000003 - type: map_at_5 value: 26.69 - type: mrr_at_1 value: 21.257 - type: mrr_at_10 value: 30.253999999999998 - type: mrr_at_100 value: 31.195 - type: mrr_at_1000 value: 31.270999999999997 - type: mrr_at_20 value: 30.747999999999998 - type: mrr_at_3 value: 27.633999999999997 - type: mrr_at_5 value: 28.937 - type: ndcg_at_1 value: 21.257 - type: ndcg_at_10 value: 33.511 - type: ndcg_at_100 value: 38.733000000000004 - type: ndcg_at_1000 value: 41.489 - type: ndcg_at_20 value: 35.476 - type: ndcg_at_3 value: 27.845 - type: ndcg_at_5 value: 30.264999999999997 - type: precision_at_1 value: 21.257 - type: precision_at_10 value: 5.619 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.124 - type: precision_at_20 value: 3.29 - type: precision_at_3 value: 12.508 - type: precision_at_5 value: 8.946 - type: recall_at_1 value: 19.23 - type: recall_at_10 value: 48.185 - type: recall_at_100 value: 71.932 - type: recall_at_1000 value: 92.587 - type: recall_at_20 value: 55.533 - type: recall_at_3 value: 32.865 - type: recall_at_5 value: 38.577 - type: main_score value: 33.511 - task: type: Retrieval dataset: name: MTEB ClimateFEVER (default) type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 19.594 - type: map_at_10 value: 32.519 - type: map_at_100 value: 34.1 - type: map_at_1000 value: 34.263 - type: map_at_20 value: 33.353 - type: map_at_3 value: 27.898 - type: map_at_5 value: 30.524 - type: mrr_at_1 value: 46.515 - type: mrr_at_10 value: 56.958 - type: mrr_at_100 value: 57.54899999999999 - type: mrr_at_1000 value: 57.574999999999996 - type: mrr_at_20 value: 57.315000000000005 - type: mrr_at_3 value: 54.852999999999994 - type: mrr_at_5 value: 56.153 - type: ndcg_at_1 value: 46.515 - type: ndcg_at_10 value: 42.363 - type: ndcg_at_100 value: 48.233 - type: ndcg_at_1000 value: 50.993 - type: ndcg_at_20 value: 44.533 - type: ndcg_at_3 value: 37.297000000000004 - type: ndcg_at_5 value: 38.911 - type: precision_at_1 value: 46.515 - type: precision_at_10 value: 12.520999999999999 - type: precision_at_100 value: 1.8980000000000001 - type: precision_at_1000 value: 0.242 - type: precision_at_20 value: 7.212000000000001 - type: precision_at_3 value: 27.752 - type: precision_at_5 value: 20.391000000000002 - type: recall_at_1 value: 19.594 - type: recall_at_10 value: 46.539 - type: recall_at_100 value: 66.782 - type: recall_at_1000 value: 82.049 - type: recall_at_20 value: 52.611 - type: recall_at_3 value: 32.528 - type: recall_at_5 value: 38.933 - type: main_score value: 42.363 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval (default) type: C-MTEB/CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: main_score value: 35.927 - type: map_at_1 value: 20.144000000000002 - type: map_at_10 value: 29.94 - type: map_at_100 value: 31.630000000000003 - type: map_at_1000 value: 31.778000000000002 - type: map_at_20 value: 30.798 - type: map_at_3 value: 26.534999999999997 - type: map_at_5 value: 28.33 - type: mrr_at_1 value: 31.23280820205051 - type: mrr_at_10 value: 38.66781179421835 - type: mrr_at_100 value: 39.656936166081785 - type: mrr_at_1000 value: 39.724602893117414 - type: mrr_at_20 value: 39.21272461558451 - type: mrr_at_3 value: 36.30907726931729 - type: mrr_at_5 value: 37.59814953738436 - type: nauc_map_at_1000_diff1 value: 44.5755334437146 - type: nauc_map_at_1000_max value: 40.726916781400746 - type: nauc_map_at_1000_std value: -19.591835061497367 - type: nauc_map_at_100_diff1 value: 44.54542899921038 - type: nauc_map_at_100_max value: 40.68305902532837 - type: nauc_map_at_100_std value: -19.658902089283487 - type: nauc_map_at_10_diff1 value: 44.56110529630953 - type: nauc_map_at_10_max value: 39.89826167846008 - type: nauc_map_at_10_std value: -20.62910633667902 - type: nauc_map_at_1_diff1 value: 50.82120107004449 - type: nauc_map_at_1_max value: 33.208851367861584 - type: nauc_map_at_1_std value: -20.29409730258174 - type: nauc_map_at_20_diff1 value: 44.51171242433788 - type: nauc_map_at_20_max value: 40.30431132782945 - type: nauc_map_at_20_std value: -20.290524142792417 - type: nauc_map_at_3_diff1 value: 45.80394138665133 - type: nauc_map_at_3_max value: 37.766191281426956 - type: nauc_map_at_3_std value: -21.223601997333876 - type: nauc_map_at_5_diff1 value: 45.00457218474283 - type: nauc_map_at_5_max value: 38.901044576388365 - type: nauc_map_at_5_std value: -20.893069613941634 - type: nauc_mrr_at_1000_diff1 value: 50.09855359231429 - type: nauc_mrr_at_1000_max value: 46.481000170008826 - type: nauc_mrr_at_1000_std value: -16.053461377096102 - type: nauc_mrr_at_100_diff1 value: 50.08205026347746 - type: nauc_mrr_at_100_max value: 46.47262126963331 - type: nauc_mrr_at_100_std value: -16.049112778748693 - type: nauc_mrr_at_10_diff1 value: 50.02363239081706 - type: nauc_mrr_at_10_max value: 46.39287859062042 - type: nauc_mrr_at_10_std value: -16.280866744769657 - type: nauc_mrr_at_1_diff1 value: 55.692503735317445 - type: nauc_mrr_at_1_max value: 47.334834529801014 - type: nauc_mrr_at_1_std value: -16.985483585693512 - type: nauc_mrr_at_20_diff1 value: 50.07725225722074 - type: nauc_mrr_at_20_max value: 46.47279295070193 - type: nauc_mrr_at_20_std value: -16.15168364678318 - type: nauc_mrr_at_3_diff1 value: 51.18685337274134 - type: nauc_mrr_at_3_max value: 46.7286365021621 - type: nauc_mrr_at_3_std value: -16.708451287313718 - type: nauc_mrr_at_5_diff1 value: 50.46777237893576 - type: nauc_mrr_at_5_max value: 46.5352076502249 - type: nauc_mrr_at_5_std value: -16.557413659905034 - type: nauc_ndcg_at_1000_diff1 value: 43.974299434438066 - type: nauc_ndcg_at_1000_max value: 43.44628675071857 - type: nauc_ndcg_at_1000_std value: -15.3495102005021 - type: nauc_ndcg_at_100_diff1 value: 43.336365081508504 - type: nauc_ndcg_at_100_max value: 43.11345604460776 - type: nauc_ndcg_at_100_std value: -15.571128070860615 - type: nauc_ndcg_at_10_diff1 value: 43.41266214720136 - type: nauc_ndcg_at_10_max value: 41.519676787851914 - type: nauc_ndcg_at_10_std value: -19.217175017223568 - type: nauc_ndcg_at_1_diff1 value: 55.692503735317445 - type: nauc_ndcg_at_1_max value: 47.334834529801014 - type: nauc_ndcg_at_1_std value: -16.985483585693512 - type: nauc_ndcg_at_20_diff1 value: 43.351653862834496 - type: nauc_ndcg_at_20_max value: 42.11608469750499 - type: nauc_ndcg_at_20_std value: -18.485363540641664 - type: nauc_ndcg_at_3_diff1 value: 45.64193888236677 - type: nauc_ndcg_at_3_max value: 42.497135099009995 - type: nauc_ndcg_at_3_std value: -18.764012041130094 - type: nauc_ndcg_at_5_diff1 value: 44.523392133895186 - type: nauc_ndcg_at_5_max value: 41.564242030096345 - type: nauc_ndcg_at_5_std value: -19.31080790984941 - type: nauc_precision_at_1000_diff1 value: 6.383464615714393 - type: nauc_precision_at_1000_max value: 27.439930931284657 - type: nauc_precision_at_1000_std value: 19.070716188143034 - type: nauc_precision_at_100_diff1 value: 12.599136754501284 - type: nauc_precision_at_100_max value: 35.886310962337795 - type: nauc_precision_at_100_std value: 14.06587592659196 - type: nauc_precision_at_10_diff1 value: 25.388891173150206 - type: nauc_precision_at_10_max value: 46.10269270777384 - type: nauc_precision_at_10_std value: -5.993803607158499 - type: nauc_precision_at_1_diff1 value: 55.692503735317445 - type: nauc_precision_at_1_max value: 47.334834529801014 - type: nauc_precision_at_1_std value: -16.985483585693512 - type: nauc_precision_at_20_diff1 value: 20.984013463099707 - type: nauc_precision_at_20_max value: 42.9471854616888 - type: nauc_precision_at_20_std value: -0.8045549929346024 - type: nauc_precision_at_3_diff1 value: 36.191850547148356 - type: nauc_precision_at_3_max value: 48.09923832376049 - type: nauc_precision_at_3_std value: -13.159407051271321 - type: nauc_precision_at_5_diff1 value: 31.04967966700407 - type: nauc_precision_at_5_max value: 47.62867673349624 - type: nauc_precision_at_5_std value: -10.345790325137353 - type: nauc_recall_at_1000_diff1 value: 11.03436839065707 - type: nauc_recall_at_1000_max value: 42.32265076651575 - type: nauc_recall_at_1000_std value: 30.478521053399206 - type: nauc_recall_at_100_diff1 value: 24.788349084510806 - type: nauc_recall_at_100_max value: 36.72097184821956 - type: nauc_recall_at_100_std value: -0.2241144179522076 - type: nauc_recall_at_10_diff1 value: 31.613053567704885 - type: nauc_recall_at_10_max value: 34.4597322828833 - type: nauc_recall_at_10_std value: -18.00022912690819 - type: nauc_recall_at_1_diff1 value: 50.82120107004449 - type: nauc_recall_at_1_max value: 33.208851367861584 - type: nauc_recall_at_1_std value: -20.29409730258174 - type: nauc_recall_at_20_diff1 value: 30.277002670708384 - type: nauc_recall_at_20_max value: 35.212475675060375 - type: nauc_recall_at_20_std value: -15.822788854733687 - type: nauc_recall_at_3_diff1 value: 38.87844958322257 - type: nauc_recall_at_3_max value: 34.66914910044104 - type: nauc_recall_at_3_std value: -20.234707300209127 - type: nauc_recall_at_5_diff1 value: 35.551139991687776 - type: nauc_recall_at_5_max value: 34.61009958820695 - type: nauc_recall_at_5_std value: -19.519180149293444 - type: ndcg_at_1 value: 31.233 - type: ndcg_at_10 value: 35.927 - type: ndcg_at_100 value: 43.037 - type: ndcg_at_1000 value: 45.900999999999996 - type: ndcg_at_20 value: 38.39 - type: ndcg_at_3 value: 31.366 - type: ndcg_at_5 value: 33.108 - type: precision_at_1 value: 31.233 - type: precision_at_10 value: 8.15 - type: precision_at_100 value: 1.402 - type: precision_at_1000 value: 0.17700000000000002 - type: precision_at_20 value: 4.91 - type: precision_at_3 value: 17.871000000000002 - type: precision_at_5 value: 12.948 - type: recall_at_1 value: 20.144000000000002 - type: recall_at_10 value: 44.985 - type: recall_at_100 value: 74.866 - type: recall_at_1000 value: 94.477 - type: recall_at_20 value: 53.37 - type: recall_at_3 value: 31.141000000000002 - type: recall_at_5 value: 36.721 - task: type: PairClassification dataset: name: MTEB Cmnli (default) type: C-MTEB/CMNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 71.25676488274203 - type: cos_sim_accuracy_threshold value: 78.11152935028076 - type: cos_sim_ap value: 79.10444825556077 - type: cos_sim_f1 value: 74.10750923266312 - type: cos_sim_f1_threshold value: 75.2312421798706 - type: cos_sim_precision value: 66.02083714129044 - type: cos_sim_recall value: 84.45171849427169 - type: dot_accuracy value: 68.11785929043896 - type: dot_accuracy_threshold value: 34783.23974609375 - type: dot_ap value: 75.80201827987712 - type: dot_f1 value: 72.31670990679349 - type: dot_f1_threshold value: 31978.036499023438 - type: dot_precision value: 61.386623164763456 - type: dot_recall value: 87.98223053542202 - type: euclidean_accuracy value: 71.41310883944678 - type: euclidean_accuracy_threshold value: 1374.9353408813477 - type: euclidean_ap value: 79.23359768836457 - type: euclidean_f1 value: 74.38512297540491 - type: euclidean_f1_threshold value: 1512.6035690307617 - type: euclidean_precision value: 64.97816593886463 - type: euclidean_recall value: 86.97685293429974 - type: manhattan_accuracy value: 71.32892363199038 - type: manhattan_accuracy_threshold value: 33340.49072265625 - type: manhattan_ap value: 79.11973684118587 - type: manhattan_f1 value: 74.29401993355481 - type: manhattan_f1_threshold value: 36012.52746582031 - type: manhattan_precision value: 66.81605975723622 - type: manhattan_recall value: 83.65676876315175 - type: max_accuracy value: 71.41310883944678 - type: max_ap value: 79.23359768836457 - type: max_f1 value: 74.38512297540491 - task: type: Retrieval dataset: name: MTEB CovidRetrieval (default) type: C-MTEB/CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: main_score value: 78.917 - type: map_at_1 value: 67.281 - type: map_at_10 value: 75.262 - type: map_at_100 value: 75.60900000000001 - type: map_at_1000 value: 75.618 - type: map_at_20 value: 75.50200000000001 - type: map_at_3 value: 73.455 - type: map_at_5 value: 74.657 - type: mrr_at_1 value: 67.43940990516333 - type: mrr_at_10 value: 75.27367989696756 - type: mrr_at_100 value: 75.62029353306437 - type: mrr_at_1000 value: 75.62934741874726 - type: mrr_at_20 value: 75.51356607409173 - type: mrr_at_3 value: 73.5159817351598 - type: mrr_at_5 value: 74.73832103969093 - type: nauc_map_at_1000_diff1 value: 77.26666391867634 - type: nauc_map_at_1000_max value: 49.928541012203496 - type: nauc_map_at_1000_std value: -40.494469470474456 - type: nauc_map_at_100_diff1 value: 77.26087423162396 - type: nauc_map_at_100_max value: 49.944275615664424 - type: nauc_map_at_100_std value: -40.48299992715398 - type: nauc_map_at_10_diff1 value: 76.97400113500906 - type: nauc_map_at_10_max value: 49.84177029115674 - type: nauc_map_at_10_std value: -40.829250876511445 - type: nauc_map_at_1_diff1 value: 81.44050620630395 - type: nauc_map_at_1_max value: 48.97711944070578 - type: nauc_map_at_1_std value: -38.963689457570254 - type: nauc_map_at_20_diff1 value: 77.21791353089375 - type: nauc_map_at_20_max value: 49.958206759079424 - type: nauc_map_at_20_std value: -40.53067571658996 - type: nauc_map_at_3_diff1 value: 77.3555925208868 - type: nauc_map_at_3_max value: 49.32158146451256 - type: nauc_map_at_3_std value: -41.93552426981978 - type: nauc_map_at_5_diff1 value: 77.07099950431504 - type: nauc_map_at_5_max value: 49.54190504495002 - type: nauc_map_at_5_std value: -41.814968130918096 - type: nauc_mrr_at_1000_diff1 value: 77.31388774540477 - type: nauc_mrr_at_1000_max value: 49.96779699175759 - type: nauc_mrr_at_1000_std value: -40.43739645160277 - type: nauc_mrr_at_100_diff1 value: 77.30817786449413 - type: nauc_mrr_at_100_max value: 49.982514428937655 - type: nauc_mrr_at_100_std value: -40.42876582797744 - type: nauc_mrr_at_10_diff1 value: 77.02048060465756 - type: nauc_mrr_at_10_max value: 49.87937207270602 - type: nauc_mrr_at_10_std value: -40.77596560333177 - type: nauc_mrr_at_1_diff1 value: 81.27219599516599 - type: nauc_mrr_at_1_max value: 49.3083394026327 - type: nauc_mrr_at_1_std value: -38.31023037552026 - type: nauc_mrr_at_20_diff1 value: 77.26497089316055 - type: nauc_mrr_at_20_max value: 49.996257597621415 - type: nauc_mrr_at_20_std value: -40.476723608868014 - type: nauc_mrr_at_3_diff1 value: 77.38971294099257 - type: nauc_mrr_at_3_max value: 49.38110328987404 - type: nauc_mrr_at_3_std value: -41.7118646715979 - type: nauc_mrr_at_5_diff1 value: 77.08286142519952 - type: nauc_mrr_at_5_max value: 49.655249374588685 - type: nauc_mrr_at_5_std value: -41.48173039989406 - type: nauc_ndcg_at_1000_diff1 value: 76.47399204021758 - type: nauc_ndcg_at_1000_max value: 50.55770139961048 - type: nauc_ndcg_at_1000_std value: -39.55650430279072 - type: nauc_ndcg_at_100_diff1 value: 76.29355616618253 - type: nauc_ndcg_at_100_max value: 51.003608112592936 - type: nauc_ndcg_at_100_std value: -39.24769744605206 - type: nauc_ndcg_at_10_diff1 value: 74.88697528447634 - type: nauc_ndcg_at_10_max value: 50.398416372815234 - type: nauc_ndcg_at_10_std value: -40.76526585772833 - type: nauc_ndcg_at_1_diff1 value: 81.27219599516599 - type: nauc_ndcg_at_1_max value: 49.3083394026327 - type: nauc_ndcg_at_1_std value: -38.31023037552026 - type: nauc_ndcg_at_20_diff1 value: 75.85463512091866 - type: nauc_ndcg_at_20_max value: 50.97338683654334 - type: nauc_ndcg_at_20_std value: -39.353128774903404 - type: nauc_ndcg_at_3_diff1 value: 75.94015726123543 - type: nauc_ndcg_at_3_max value: 49.22194251063148 - type: nauc_ndcg_at_3_std value: -43.040457030630435 - type: nauc_ndcg_at_5_diff1 value: 75.19166189770303 - type: nauc_ndcg_at_5_max value: 49.65696229797189 - type: nauc_ndcg_at_5_std value: -42.81534909184424 - type: nauc_precision_at_1000_diff1 value: -14.830901395815788 - type: nauc_precision_at_1000_max value: 19.686297136854623 - type: nauc_precision_at_1000_std value: 61.19310360166978 - type: nauc_precision_at_100_diff1 value: 20.55469986751769 - type: nauc_precision_at_100_max value: 50.78431835075583 - type: nauc_precision_at_100_std value: 31.54986568374813 - type: nauc_precision_at_10_diff1 value: 45.991938532558656 - type: nauc_precision_at_10_max value: 46.386318595630385 - type: nauc_precision_at_10_std value: -23.463011435224608 - type: nauc_precision_at_1_diff1 value: 81.27219599516599 - type: nauc_precision_at_1_max value: 49.3083394026327 - type: nauc_precision_at_1_std value: -38.31023037552026 - type: nauc_precision_at_20_diff1 value: 41.53180472410822 - type: nauc_precision_at_20_max value: 49.89800247204318 - type: nauc_precision_at_20_std value: -2.4192847331537095 - type: nauc_precision_at_3_diff1 value: 67.37504651209993 - type: nauc_precision_at_3_max value: 47.893537208629496 - type: nauc_precision_at_3_std value: -43.2362212382819 - type: nauc_precision_at_5_diff1 value: 60.03438883791718 - type: nauc_precision_at_5_max value: 48.29770502354206 - type: nauc_precision_at_5_std value: -40.39588448271546 - type: nauc_recall_at_1000_diff1 value: 71.04741174480844 - type: nauc_recall_at_1000_max value: 93.19056506596002 - type: nauc_recall_at_1000_std value: 62.96994797650912 - type: nauc_recall_at_100_diff1 value: 65.00418176852641 - type: nauc_recall_at_100_max value: 85.27352708427193 - type: nauc_recall_at_100_std value: 2.8812005546518886 - type: nauc_recall_at_10_diff1 value: 61.263254794998865 - type: nauc_recall_at_10_max value: 54.17618329507141 - type: nauc_recall_at_10_std value: -39.80603966142593 - type: nauc_recall_at_1_diff1 value: 81.44050620630395 - type: nauc_recall_at_1_max value: 48.97711944070578 - type: nauc_recall_at_1_std value: -38.963689457570254 - type: nauc_recall_at_20_diff1 value: 64.42106091745396 - type: nauc_recall_at_20_max value: 63.10796640821887 - type: nauc_recall_at_20_std value: -22.60117424572222 - type: nauc_recall_at_3_diff1 value: 70.66311436592945 - type: nauc_recall_at_3_max value: 48.69498944323469 - type: nauc_recall_at_3_std value: -47.37847524874532 - type: nauc_recall_at_5_diff1 value: 66.12701111728848 - type: nauc_recall_at_5_max value: 49.91763957934711 - type: nauc_recall_at_5_std value: -48.173252920584126 - type: ndcg_at_1 value: 67.43900000000001 - type: ndcg_at_10 value: 78.917 - type: ndcg_at_100 value: 80.53399999999999 - type: ndcg_at_1000 value: 80.768 - type: ndcg_at_20 value: 79.813 - type: ndcg_at_3 value: 75.37 - type: ndcg_at_5 value: 77.551 - type: precision_at_1 value: 67.43900000000001 - type: precision_at_10 value: 9.115 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.737 - type: precision_at_3 value: 27.081 - type: precision_at_5 value: 17.345 - type: recall_at_1 value: 67.281 - type: recall_at_10 value: 90.2 - type: recall_at_100 value: 97.576 - type: recall_at_1000 value: 99.368 - type: recall_at_20 value: 93.783 - type: recall_at_3 value: 80.822 - type: recall_at_5 value: 86.091 - task: type: Retrieval dataset: name: MTEB DBPedia (default) type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.041 - type: map_at_10 value: 18.662 - type: map_at_100 value: 26.054 - type: map_at_1000 value: 27.769 - type: map_at_20 value: 21.499 - type: map_at_3 value: 13.628000000000002 - type: map_at_5 value: 15.617 - type: mrr_at_1 value: 67.25 - type: mrr_at_10 value: 74.673 - type: mrr_at_100 value: 75.022 - type: mrr_at_1000 value: 75.031 - type: mrr_at_20 value: 74.895 - type: mrr_at_3 value: 73.042 - type: mrr_at_5 value: 74.179 - type: ndcg_at_1 value: 55.75 - type: ndcg_at_10 value: 41.004000000000005 - type: ndcg_at_100 value: 44.912 - type: ndcg_at_1000 value: 51.946000000000005 - type: ndcg_at_20 value: 40.195 - type: ndcg_at_3 value: 45.803 - type: ndcg_at_5 value: 42.976 - type: precision_at_1 value: 67.25 - type: precision_at_10 value: 31.874999999999996 - type: precision_at_100 value: 10.37 - type: precision_at_1000 value: 2.1430000000000002 - type: precision_at_20 value: 24.275 - type: precision_at_3 value: 48.417 - type: precision_at_5 value: 40.2 - type: recall_at_1 value: 9.041 - type: recall_at_10 value: 23.592 - type: recall_at_100 value: 49.476 - type: recall_at_1000 value: 71.677 - type: recall_at_20 value: 30.153000000000002 - type: recall_at_3 value: 14.777000000000001 - type: recall_at_5 value: 17.829 - type: main_score value: 41.004000000000005 - task: type: Retrieval dataset: name: MTEB DuRetrieval (default) type: C-MTEB/DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: main_score value: 83.134 - type: map_at_1 value: 23.907999999999998 - type: map_at_10 value: 74.566 - type: map_at_100 value: 77.706 - type: map_at_1000 value: 77.762 - type: map_at_20 value: 76.943 - type: map_at_3 value: 50.971999999999994 - type: map_at_5 value: 64.429 - type: mrr_at_1 value: 84.8 - type: mrr_at_10 value: 89.73218253968246 - type: mrr_at_100 value: 89.82853630655774 - type: mrr_at_1000 value: 89.83170411703153 - type: mrr_at_20 value: 89.79582030091501 - type: mrr_at_3 value: 89.32499999999992 - type: mrr_at_5 value: 89.58749999999992 - type: nauc_map_at_1000_diff1 value: -2.2736020650163717 - type: nauc_map_at_1000_max value: 45.3937519555142 - type: nauc_map_at_1000_std value: 10.824778228268581 - type: nauc_map_at_100_diff1 value: -2.2662939752750066 - type: nauc_map_at_100_max value: 45.423960626031366 - type: nauc_map_at_100_std value: 10.804239351738717 - type: nauc_map_at_10_diff1 value: 0.9395752585654343 - type: nauc_map_at_10_max value: 42.53814836940551 - type: nauc_map_at_10_std value: 0.7199313235265218 - type: nauc_map_at_1_diff1 value: 45.19415865267676 - type: nauc_map_at_1_max value: -1.7261947382471912 - type: nauc_map_at_1_std value: -32.16144291613605 - type: nauc_map_at_20_diff1 value: -1.884514152147472 - type: nauc_map_at_20_max value: 44.830401115927174 - type: nauc_map_at_20_std value: 8.118530414377219 - type: nauc_map_at_3_diff1 value: 25.678881127059967 - type: nauc_map_at_3_max value: 12.191400431839758 - type: nauc_map_at_3_std value: -27.201740587642327 - type: nauc_map_at_5_diff1 value: 13.227128780829572 - type: nauc_map_at_5_max value: 26.978282739708977 - type: nauc_map_at_5_std value: -17.555610348070584 - type: nauc_mrr_at_1000_diff1 value: 21.073512437502178 - type: nauc_mrr_at_1000_max value: 64.9680257861005 - type: nauc_mrr_at_1000_std value: 19.626288754404293 - type: nauc_mrr_at_100_diff1 value: 21.074637426957732 - type: nauc_mrr_at_100_max value: 64.97612675661915 - type: nauc_mrr_at_100_std value: 19.649504127800878 - type: nauc_mrr_at_10_diff1 value: 21.12003267626651 - type: nauc_mrr_at_10_max value: 65.24362289059766 - type: nauc_mrr_at_10_std value: 19.92351276180984 - type: nauc_mrr_at_1_diff1 value: 22.711430629147635 - type: nauc_mrr_at_1_max value: 58.4059429497403 - type: nauc_mrr_at_1_std value: 11.967886722567973 - type: nauc_mrr_at_20_diff1 value: 20.98220830510272 - type: nauc_mrr_at_20_max value: 65.05737535197835 - type: nauc_mrr_at_20_std value: 19.66672900782771 - type: nauc_mrr_at_3_diff1 value: 20.924796220048528 - type: nauc_mrr_at_3_max value: 65.71388669932584 - type: nauc_mrr_at_3_std value: 20.05912197134477 - type: nauc_mrr_at_5_diff1 value: 20.61978649468208 - type: nauc_mrr_at_5_max value: 65.50709154526211 - type: nauc_mrr_at_5_std value: 20.241434276181838 - type: nauc_ndcg_at_1000_diff1 value: 0.25363171946133656 - type: nauc_ndcg_at_1000_max value: 54.12840465309885 - type: nauc_ndcg_at_1000_std value: 20.749184325412546 - type: nauc_ndcg_at_100_diff1 value: 0.15649430250272792 - type: nauc_ndcg_at_100_max value: 54.47995322413234 - type: nauc_ndcg_at_100_std value: 21.266786634233267 - type: nauc_ndcg_at_10_diff1 value: 0.14579250840386346 - type: nauc_ndcg_at_10_max value: 49.8643037948353 - type: nauc_ndcg_at_10_std value: 12.960701643914216 - type: nauc_ndcg_at_1_diff1 value: 22.711430629147635 - type: nauc_ndcg_at_1_max value: 58.4059429497403 - type: nauc_ndcg_at_1_std value: 11.967886722567973 - type: nauc_ndcg_at_20_diff1 value: -0.6701559981776763 - type: nauc_ndcg_at_20_max value: 52.95443437012488 - type: nauc_ndcg_at_20_std value: 16.708883972005758 - type: nauc_ndcg_at_3_diff1 value: -0.19084922341962388 - type: nauc_ndcg_at_3_max value: 46.2110230886874 - type: nauc_ndcg_at_3_std value: 13.363250229683038 - type: nauc_ndcg_at_5_diff1 value: 0.9840019268192548 - type: nauc_ndcg_at_5_max value: 43.56594891798146 - type: nauc_ndcg_at_5_std value: 8.577017104088146 - type: nauc_precision_at_1000_diff1 value: -30.779179091501145 - type: nauc_precision_at_1000_max value: 16.056094258615673 - type: nauc_precision_at_1000_std value: 49.96303902363283 - type: nauc_precision_at_100_diff1 value: -31.583236638899585 - type: nauc_precision_at_100_max value: 19.16571713603373 - type: nauc_precision_at_100_std value: 51.870647903980036 - type: nauc_precision_at_10_diff1 value: -35.62134572732597 - type: nauc_precision_at_10_max value: 31.6935186494612 - type: nauc_precision_at_10_std value: 46.68659723766723 - type: nauc_precision_at_1_diff1 value: 22.711430629147635 - type: nauc_precision_at_1_max value: 58.4059429497403 - type: nauc_precision_at_1_std value: 11.967886722567973 - type: nauc_precision_at_20_diff1 value: -33.875460046920495 - type: nauc_precision_at_20_max value: 24.188420133566442 - type: nauc_precision_at_20_std value: 50.02387762958483 - type: nauc_precision_at_3_diff1 value: -28.875998450906827 - type: nauc_precision_at_3_max value: 44.77058831167941 - type: nauc_precision_at_3_std value: 31.77993710437207 - type: nauc_precision_at_5_diff1 value: -34.92525440306491 - type: nauc_precision_at_5_max value: 39.855219917077086 - type: nauc_precision_at_5_std value: 37.95432046169299 - type: nauc_recall_at_1000_diff1 value: -14.293309371874733 - type: nauc_recall_at_1000_max value: 59.06948692482579 - type: nauc_recall_at_1000_std value: 62.586254868312686 - type: nauc_recall_at_100_diff1 value: -4.344100947212704 - type: nauc_recall_at_100_max value: 58.42120421043602 - type: nauc_recall_at_100_std value: 46.48562009316997 - type: nauc_recall_at_10_diff1 value: 0.04948662912161709 - type: nauc_recall_at_10_max value: 42.42809687119093 - type: nauc_recall_at_10_std value: 0.6892504250411409 - type: nauc_recall_at_1_diff1 value: 45.19415865267676 - type: nauc_recall_at_1_max value: -1.7261947382471912 - type: nauc_recall_at_1_std value: -32.16144291613605 - type: nauc_recall_at_20_diff1 value: -7.634587864605111 - type: nauc_recall_at_20_max value: 49.21327187174134 - type: nauc_recall_at_20_std value: 16.408481068336346 - type: nauc_recall_at_3_diff1 value: 24.72546591038644 - type: nauc_recall_at_3_max value: 6.620763400972902 - type: nauc_recall_at_3_std value: -29.994703323331684 - type: nauc_recall_at_5_diff1 value: 12.65527364845842 - type: nauc_recall_at_5_max value: 20.400121385794694 - type: nauc_recall_at_5_std value: -22.34284568447213 - type: ndcg_at_1 value: 84.8 - type: ndcg_at_10 value: 83.134 - type: ndcg_at_100 value: 86.628 - type: ndcg_at_1000 value: 87.151 - type: ndcg_at_20 value: 85.092 - type: ndcg_at_3 value: 81.228 - type: ndcg_at_5 value: 80.2 - type: precision_at_1 value: 84.8 - type: precision_at_10 value: 40.394999999999996 - type: precision_at_100 value: 4.745 - type: precision_at_1000 value: 0.488 - type: precision_at_20 value: 22.245 - type: precision_at_3 value: 73.25 - type: precision_at_5 value: 61.86000000000001 - type: recall_at_1 value: 23.907999999999998 - type: recall_at_10 value: 85.346 - type: recall_at_100 value: 96.515 - type: recall_at_1000 value: 99.156 - type: recall_at_20 value: 91.377 - type: recall_at_3 value: 54.135 - type: recall_at_5 value: 70.488 - task: type: Retrieval dataset: name: MTEB EcomRetrieval (default) type: C-MTEB/EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: main_score value: 60.887 - type: map_at_1 value: 46.6 - type: map_at_10 value: 56.035000000000004 - type: map_at_100 value: 56.741 - type: map_at_1000 value: 56.764 - type: map_at_20 value: 56.513999999999996 - type: map_at_3 value: 53.733 - type: map_at_5 value: 54.913000000000004 - type: mrr_at_1 value: 46.6 - type: mrr_at_10 value: 56.034523809523776 - type: mrr_at_100 value: 56.74056360434383 - type: mrr_at_1000 value: 56.76373487222486 - type: mrr_at_20 value: 56.51374873879128 - type: mrr_at_3 value: 53.73333333333328 - type: mrr_at_5 value: 54.91333333333327 - type: nauc_map_at_1000_diff1 value: 65.13546939953387 - type: nauc_map_at_1000_max value: 43.358890946774494 - type: nauc_map_at_1000_std value: -9.973282105235036 - type: nauc_map_at_100_diff1 value: 65.12449309472493 - type: nauc_map_at_100_max value: 43.377100882923145 - type: nauc_map_at_100_std value: -9.971781228240555 - type: nauc_map_at_10_diff1 value: 64.83020018537475 - type: nauc_map_at_10_max value: 43.25969482323034 - type: nauc_map_at_10_std value: -10.120272176001547 - type: nauc_map_at_1_diff1 value: 69.58727592100516 - type: nauc_map_at_1_max value: 38.236494689522026 - type: nauc_map_at_1_std value: -14.833390831689597 - type: nauc_map_at_20_diff1 value: 65.01159809914586 - type: nauc_map_at_20_max value: 43.33440319829618 - type: nauc_map_at_20_std value: -10.039958228659726 - type: nauc_map_at_3_diff1 value: 65.2396323885909 - type: nauc_map_at_3_max value: 42.26904017378952 - type: nauc_map_at_3_std value: -11.793017036934044 - type: nauc_map_at_5_diff1 value: 64.96397227898036 - type: nauc_map_at_5_max value: 43.231333789145424 - type: nauc_map_at_5_std value: -10.349933732151372 - type: nauc_mrr_at_1000_diff1 value: 65.13546939953387 - type: nauc_mrr_at_1000_max value: 43.358890946774494 - type: nauc_mrr_at_1000_std value: -9.973282105235036 - type: nauc_mrr_at_100_diff1 value: 65.12449309472493 - type: nauc_mrr_at_100_max value: 43.377100882923145 - type: nauc_mrr_at_100_std value: -9.971781228240555 - type: nauc_mrr_at_10_diff1 value: 64.83020018537475 - type: nauc_mrr_at_10_max value: 43.25969482323034 - type: nauc_mrr_at_10_std value: -10.120272176001547 - type: nauc_mrr_at_1_diff1 value: 69.58727592100516 - type: nauc_mrr_at_1_max value: 38.236494689522026 - type: nauc_mrr_at_1_std value: -14.833390831689597 - type: nauc_mrr_at_20_diff1 value: 65.01159809914586 - type: nauc_mrr_at_20_max value: 43.33440319829618 - type: nauc_mrr_at_20_std value: -10.039958228659726 - type: nauc_mrr_at_3_diff1 value: 65.2396323885909 - type: nauc_mrr_at_3_max value: 42.26904017378952 - type: nauc_mrr_at_3_std value: -11.793017036934044 - type: nauc_mrr_at_5_diff1 value: 64.96397227898036 - type: nauc_mrr_at_5_max value: 43.231333789145424 - type: nauc_mrr_at_5_std value: -10.349933732151372 - type: nauc_ndcg_at_1000_diff1 value: 64.26802655199876 - type: nauc_ndcg_at_1000_max value: 45.854310744745185 - type: nauc_ndcg_at_1000_std value: -6.184417305204082 - type: nauc_ndcg_at_100_diff1 value: 63.99268329609827 - type: nauc_ndcg_at_100_max value: 46.31270128748375 - type: nauc_ndcg_at_100_std value: -6.1393433180558965 - type: nauc_ndcg_at_10_diff1 value: 62.6735104141137 - type: nauc_ndcg_at_10_max value: 45.54954799462398 - type: nauc_ndcg_at_10_std value: -7.348851199024871 - type: nauc_ndcg_at_1_diff1 value: 69.58727592100516 - type: nauc_ndcg_at_1_max value: 38.236494689522026 - type: nauc_ndcg_at_1_std value: -14.833390831689597 - type: nauc_ndcg_at_20_diff1 value: 63.25899651677274 - type: nauc_ndcg_at_20_max value: 45.952196968886014 - type: nauc_ndcg_at_20_std value: -6.807607465125713 - type: nauc_ndcg_at_3_diff1 value: 63.65618337476822 - type: nauc_ndcg_at_3_max value: 43.507890965228945 - type: nauc_ndcg_at_3_std value: -10.73845622217601 - type: nauc_ndcg_at_5_diff1 value: 63.079162432921855 - type: nauc_ndcg_at_5_max value: 45.38303443868148 - type: nauc_ndcg_at_5_std value: -8.063657824835534 - type: nauc_precision_at_1000_diff1 value: 63.01459977930557 - type: nauc_precision_at_1000_max value: 92.4253034547151 - type: nauc_precision_at_1000_std value: 84.4845513963158 - type: nauc_precision_at_100_diff1 value: 57.17217119405878 - type: nauc_precision_at_100_max value: 80.70049725316484 - type: nauc_precision_at_100_std value: 41.78392287147403 - type: nauc_precision_at_10_diff1 value: 53.115665404390725 - type: nauc_precision_at_10_max value: 55.73825657341263 - type: nauc_precision_at_10_std value: 5.406226305013257 - type: nauc_precision_at_1_diff1 value: 69.58727592100516 - type: nauc_precision_at_1_max value: 38.236494689522026 - type: nauc_precision_at_1_std value: -14.833390831689597 - type: nauc_precision_at_20_diff1 value: 53.77730697622828 - type: nauc_precision_at_20_max value: 61.88170819253054 - type: nauc_precision_at_20_std value: 13.678730470003856 - type: nauc_precision_at_3_diff1 value: 58.580196992291455 - type: nauc_precision_at_3_max value: 47.404834585376626 - type: nauc_precision_at_3_std value: -7.374978769024051 - type: nauc_precision_at_5_diff1 value: 56.44564652606437 - type: nauc_precision_at_5_max value: 53.08973975162324 - type: nauc_precision_at_5_std value: 0.22762700141423803 - type: nauc_recall_at_1000_diff1 value: 63.01459977930565 - type: nauc_recall_at_1000_max value: 92.42530345471532 - type: nauc_recall_at_1000_std value: 84.48455139631602 - type: nauc_recall_at_100_diff1 value: 57.17217119405904 - type: nauc_recall_at_100_max value: 80.70049725316468 - type: nauc_recall_at_100_std value: 41.783922871474275 - type: nauc_recall_at_10_diff1 value: 53.11566540439087 - type: nauc_recall_at_10_max value: 55.738256573412656 - type: nauc_recall_at_10_std value: 5.406226305013377 - type: nauc_recall_at_1_diff1 value: 69.58727592100516 - type: nauc_recall_at_1_max value: 38.236494689522026 - type: nauc_recall_at_1_std value: -14.833390831689597 - type: nauc_recall_at_20_diff1 value: 53.77730697622846 - type: nauc_recall_at_20_max value: 61.881708192530525 - type: nauc_recall_at_20_std value: 13.678730470003947 - type: nauc_recall_at_3_diff1 value: 58.5801969922914 - type: nauc_recall_at_3_max value: 47.40483458537654 - type: nauc_recall_at_3_std value: -7.37497876902413 - type: nauc_recall_at_5_diff1 value: 56.445646526064394 - type: nauc_recall_at_5_max value: 53.08973975162332 - type: nauc_recall_at_5_std value: 0.22762700141428024 - type: ndcg_at_1 value: 46.6 - type: ndcg_at_10 value: 60.887 - type: ndcg_at_100 value: 64.18199999999999 - type: ndcg_at_1000 value: 64.726 - type: ndcg_at_20 value: 62.614999999999995 - type: ndcg_at_3 value: 56.038 - type: ndcg_at_5 value: 58.150999999999996 - type: precision_at_1 value: 46.6 - type: precision_at_10 value: 7.630000000000001 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.096 - type: precision_at_20 value: 4.154999999999999 - type: precision_at_3 value: 20.9 - type: precision_at_5 value: 13.56 - type: recall_at_1 value: 46.6 - type: recall_at_10 value: 76.3 - type: recall_at_100 value: 91.4 - type: recall_at_1000 value: 95.6 - type: recall_at_20 value: 83.1 - type: recall_at_3 value: 62.7 - type: recall_at_5 value: 67.80000000000001 - task: type: Classification dataset: name: MTEB EmotionClassification (default) type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 73.29999999999998 - type: f1 value: 67.71473706580302 - type: f1_weighted value: 74.83537255312045 - type: main_score value: 73.29999999999998 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 78.371 - type: map_at_10 value: 85.762 - type: map_at_100 value: 85.954 - type: map_at_1000 value: 85.966 - type: map_at_20 value: 85.887 - type: map_at_3 value: 84.854 - type: map_at_5 value: 85.408 - type: mrr_at_1 value: 84.443 - type: mrr_at_10 value: 90.432 - type: mrr_at_100 value: 90.483 - type: mrr_at_1000 value: 90.484 - type: mrr_at_20 value: 90.473 - type: mrr_at_3 value: 89.89399999999999 - type: mrr_at_5 value: 90.244 - type: ndcg_at_1 value: 84.443 - type: ndcg_at_10 value: 89.05499999999999 - type: ndcg_at_100 value: 89.68 - type: ndcg_at_1000 value: 89.87899999999999 - type: ndcg_at_20 value: 89.381 - type: ndcg_at_3 value: 87.73100000000001 - type: ndcg_at_5 value: 88.425 - type: precision_at_1 value: 84.443 - type: precision_at_10 value: 10.520999999999999 - type: precision_at_100 value: 1.103 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_20 value: 5.362 - type: precision_at_3 value: 33.198 - type: precision_at_5 value: 20.441000000000003 - type: recall_at_1 value: 78.371 - type: recall_at_10 value: 94.594 - type: recall_at_100 value: 96.97099999999999 - type: recall_at_1000 value: 98.18 - type: recall_at_20 value: 95.707 - type: recall_at_3 value: 90.853 - type: recall_at_5 value: 92.74799999999999 - type: main_score value: 89.05499999999999 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 23.810000000000002 - type: map_at_10 value: 39.051 - type: map_at_100 value: 41.231 - type: map_at_1000 value: 41.376000000000005 - type: map_at_20 value: 40.227000000000004 - type: map_at_3 value: 33.915 - type: map_at_5 value: 36.459 - type: mrr_at_1 value: 48.148 - type: mrr_at_10 value: 55.765 - type: mrr_at_100 value: 56.495 - type: mrr_at_1000 value: 56.525999999999996 - type: mrr_at_20 value: 56.213 - type: mrr_at_3 value: 53.086 - type: mrr_at_5 value: 54.513999999999996 - type: ndcg_at_1 value: 48.148 - type: ndcg_at_10 value: 47.349999999999994 - type: ndcg_at_100 value: 54.61899999999999 - type: ndcg_at_1000 value: 56.830000000000005 - type: ndcg_at_20 value: 50.143 - type: ndcg_at_3 value: 43.108000000000004 - type: ndcg_at_5 value: 44.023 - type: precision_at_1 value: 48.148 - type: precision_at_10 value: 13.441 - type: precision_at_100 value: 2.085 - type: precision_at_1000 value: 0.248 - type: precision_at_20 value: 7.870000000000001 - type: precision_at_3 value: 28.909000000000002 - type: precision_at_5 value: 20.957 - type: recall_at_1 value: 23.810000000000002 - type: recall_at_10 value: 54.303000000000004 - type: recall_at_100 value: 81.363 - type: recall_at_1000 value: 94.391 - type: recall_at_20 value: 63.056999999999995 - type: recall_at_3 value: 38.098 - type: recall_at_5 value: 44.414 - type: main_score value: 47.349999999999994 - task: type: Classification dataset: name: MTEB GeoreviewClassification (default) type: ai-forever/georeview-classification config: default split: test revision: 3765c0d1de6b7d264bc459433c45e5a75513839c metrics: - type: accuracy value: 48.0126953125 - type: f1 value: 47.65764016160488 - type: f1_weighted value: 47.65701659482088 - type: main_score value: 48.0126953125 - task: type: Clustering dataset: name: MTEB GeoreviewClusteringP2P (default) type: ai-forever/georeview-clustering-p2p config: default split: test revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec metrics: - type: main_score value: 73.62357853672266 - type: v_measure value: 73.62357853672266 - type: v_measure_std value: 0.5942247545535766 - task: type: Retrieval dataset: name: MTEB GerDaLIR (default) type: jinaai/ger_da_lir config: default split: test revision: 0bb47f1d73827e96964edb84dfe552f62f4fd5eb metrics: - type: main_score value: 16.227 - type: map_at_1 value: 8.082 - type: map_at_10 value: 12.959999999999999 - type: map_at_100 value: 13.923 - type: map_at_1000 value: 14.030999999999999 - type: map_at_20 value: 13.453000000000001 - type: map_at_3 value: 11.018 - type: map_at_5 value: 12.056000000000001 - type: mrr_at_1 value: 8.993332249146203 - type: mrr_at_10 value: 13.994013092850247 - type: mrr_at_100 value: 14.913737673149308 - type: mrr_at_1000 value: 15.00843809934407 - type: mrr_at_20 value: 14.470268462334007 - type: mrr_at_3 value: 12.000596302921846 - type: mrr_at_5 value: 13.070689000921561 - type: nauc_map_at_1000_diff1 value: 28.559639584013286 - type: nauc_map_at_1000_max value: 25.533800126086714 - type: nauc_map_at_1000_std value: 9.826551026628666 - type: nauc_map_at_100_diff1 value: 28.544724499331696 - type: nauc_map_at_100_max value: 25.46734324526386 - type: nauc_map_at_100_std value: 9.739314481785591 - type: nauc_map_at_10_diff1 value: 28.77447517718118 - type: nauc_map_at_10_max value: 24.7431615237795 - type: nauc_map_at_10_std value: 8.349878188033646 - type: nauc_map_at_1_diff1 value: 37.405452629895514 - type: nauc_map_at_1_max value: 24.444208978394023 - type: nauc_map_at_1_std value: 4.043820373810528 - type: nauc_map_at_20_diff1 value: 28.69764217789062 - type: nauc_map_at_20_max value: 25.111848355996496 - type: nauc_map_at_20_std value: 9.034829905305918 - type: nauc_map_at_3_diff1 value: 30.89053285076882 - type: nauc_map_at_3_max value: 24.862886115911152 - type: nauc_map_at_3_std value: 6.654260832396586 - type: nauc_map_at_5_diff1 value: 29.230629676604263 - type: nauc_map_at_5_max value: 24.374302288018583 - type: nauc_map_at_5_std value: 7.341846952319046 - type: nauc_mrr_at_1000_diff1 value: 28.086147932781426 - type: nauc_mrr_at_1000_max value: 25.98698528264653 - type: nauc_mrr_at_1000_std value: 9.917554348624545 - type: nauc_mrr_at_100_diff1 value: 28.069163279791336 - type: nauc_mrr_at_100_max value: 25.949440010886804 - type: nauc_mrr_at_100_std value: 9.874340979732578 - type: nauc_mrr_at_10_diff1 value: 28.239920869530046 - type: nauc_mrr_at_10_max value: 25.351271409498576 - type: nauc_mrr_at_10_std value: 8.669862759875162 - type: nauc_mrr_at_1_diff1 value: 35.96543040207856 - type: nauc_mrr_at_1_max value: 25.488936487231967 - type: nauc_mrr_at_1_std value: 4.76439131038345 - type: nauc_mrr_at_20_diff1 value: 28.18865871284607 - type: nauc_mrr_at_20_max value: 25.67121763344746 - type: nauc_mrr_at_20_std value: 9.297910707519472 - type: nauc_mrr_at_3_diff1 value: 30.166714199740717 - type: nauc_mrr_at_3_max value: 25.541792491964877 - type: nauc_mrr_at_3_std value: 7.083090296398472 - type: nauc_mrr_at_5_diff1 value: 28.68475284656478 - type: nauc_mrr_at_5_max value: 24.994071363482835 - type: nauc_mrr_at_5_std value: 7.687507254902365 - type: nauc_ndcg_at_1000_diff1 value: 25.292792613586467 - type: nauc_ndcg_at_1000_max value: 29.211905289377178 - type: nauc_ndcg_at_1000_std value: 18.088867467320355 - type: nauc_ndcg_at_100_diff1 value: 25.026905011089152 - type: nauc_ndcg_at_100_max value: 27.98822281254431 - type: nauc_ndcg_at_100_std value: 16.69456904301902 - type: nauc_ndcg_at_10_diff1 value: 25.972279051109503 - type: nauc_ndcg_at_10_max value: 24.86486482734957 - type: nauc_ndcg_at_10_std value: 10.398605822106353 - type: nauc_ndcg_at_1_diff1 value: 36.134710485184826 - type: nauc_ndcg_at_1_max value: 25.384572790326025 - type: nauc_ndcg_at_1_std value: 4.591863033771824 - type: nauc_ndcg_at_20_diff1 value: 25.850033660205536 - type: nauc_ndcg_at_20_max value: 25.944243193140515 - type: nauc_ndcg_at_20_std value: 12.392409721204892 - type: nauc_ndcg_at_3_diff1 value: 29.1966056380018 - type: nauc_ndcg_at_3_max value: 24.978843156259913 - type: nauc_ndcg_at_3_std value: 7.353914459205087 - type: nauc_ndcg_at_5_diff1 value: 26.795315295756282 - type: nauc_ndcg_at_5_max value: 24.1196789150412 - type: nauc_ndcg_at_5_std value: 8.311970988265172 - type: nauc_precision_at_1000_diff1 value: 9.128270550217984 - type: nauc_precision_at_1000_max value: 35.79286915973607 - type: nauc_precision_at_1000_std value: 39.15669472887154 - type: nauc_precision_at_100_diff1 value: 14.770289799034384 - type: nauc_precision_at_100_max value: 34.58262232264337 - type: nauc_precision_at_100_std value: 34.101148102981384 - type: nauc_precision_at_10_diff1 value: 19.899104673118178 - type: nauc_precision_at_10_max value: 26.636940338985625 - type: nauc_precision_at_10_std value: 15.73871357255849 - type: nauc_precision_at_1_diff1 value: 36.134710485184826 - type: nauc_precision_at_1_max value: 25.384572790326025 - type: nauc_precision_at_1_std value: 4.591863033771824 - type: nauc_precision_at_20_diff1 value: 19.423457975148942 - type: nauc_precision_at_20_max value: 29.58123490878582 - type: nauc_precision_at_20_std value: 20.847850110821618 - type: nauc_precision_at_3_diff1 value: 24.986416623492918 - type: nauc_precision_at_3_max value: 25.973548400472975 - type: nauc_precision_at_3_std value: 9.486410455972823 - type: nauc_precision_at_5_diff1 value: 21.237741424923332 - type: nauc_precision_at_5_max value: 24.647141028200164 - type: nauc_precision_at_5_std value: 11.102785032334147 - type: nauc_recall_at_1000_diff1 value: 15.999714888817829 - type: nauc_recall_at_1000_max value: 44.34701908906545 - type: nauc_recall_at_1000_std value: 51.13471291594717 - type: nauc_recall_at_100_diff1 value: 17.401714890483706 - type: nauc_recall_at_100_max value: 33.39042631654808 - type: nauc_recall_at_100_std value: 33.944446168451584 - type: nauc_recall_at_10_diff1 value: 20.30036232399894 - type: nauc_recall_at_10_max value: 24.006718284396786 - type: nauc_recall_at_10_std value: 14.049375108518669 - type: nauc_recall_at_1_diff1 value: 37.405452629895514 - type: nauc_recall_at_1_max value: 24.444208978394023 - type: nauc_recall_at_1_std value: 4.043820373810528 - type: nauc_recall_at_20_diff1 value: 20.23582802609045 - type: nauc_recall_at_20_max value: 26.408063410785243 - type: nauc_recall_at_20_std value: 18.617479515468112 - type: nauc_recall_at_3_diff1 value: 25.53221830103098 - type: nauc_recall_at_3_max value: 24.283712329152678 - type: nauc_recall_at_3_std value: 8.428947805841867 - type: nauc_recall_at_5_diff1 value: 21.741499601020823 - type: nauc_recall_at_5_max value: 22.754924586295296 - type: nauc_recall_at_5_std value: 9.966736688169814 - type: ndcg_at_1 value: 8.977 - type: ndcg_at_10 value: 16.227 - type: ndcg_at_100 value: 21.417 - type: ndcg_at_1000 value: 24.451 - type: ndcg_at_20 value: 17.982 - type: ndcg_at_3 value: 12.206999999999999 - type: ndcg_at_5 value: 14.059 - type: precision_at_1 value: 8.977 - type: precision_at_10 value: 2.933 - type: precision_at_100 value: 0.59 - type: precision_at_1000 value: 0.087 - type: precision_at_20 value: 1.8599999999999999 - type: precision_at_3 value: 5.550999999999999 - type: precision_at_5 value: 4.340999999999999 - type: recall_at_1 value: 8.082 - type: recall_at_10 value: 25.52 - type: recall_at_100 value: 50.32 - type: recall_at_1000 value: 74.021 - type: recall_at_20 value: 32.229 - type: recall_at_3 value: 14.66 - type: recall_at_5 value: 19.062 - task: type: Retrieval dataset: name: MTEB GermanDPR (default) type: deepset/germandpr config: default split: test revision: 5129d02422a66be600ac89cd3e8531b4f97d347d metrics: - type: main_score value: 82.422 - type: map_at_1 value: 64.39 - type: map_at_10 value: 77.273 - type: map_at_100 value: 77.375 - type: map_at_1000 value: 77.376 - type: map_at_20 value: 77.351 - type: map_at_3 value: 75.46300000000001 - type: map_at_5 value: 76.878 - type: mrr_at_1 value: 64.19512195121952 - type: mrr_at_10 value: 77.15842044134736 - type: mrr_at_100 value: 77.2604854308704 - type: mrr_at_1000 value: 77.26087882190109 - type: mrr_at_20 value: 77.23572154560611 - type: mrr_at_3 value: 75.34959349593504 - type: mrr_at_5 value: 76.76422764227652 - type: nauc_map_at_1000_diff1 value: 49.73135253389972 - type: nauc_map_at_1000_max value: 8.665570717396145 - type: nauc_map_at_1000_std value: -25.920927572114522 - type: nauc_map_at_100_diff1 value: 49.729170775336605 - type: nauc_map_at_100_max value: 8.66717979705074 - type: nauc_map_at_100_std value: -25.918338868918596 - type: nauc_map_at_10_diff1 value: 49.708681691445925 - type: nauc_map_at_10_max value: 8.830640635692113 - type: nauc_map_at_10_std value: -25.843238986304858 - type: nauc_map_at_1_diff1 value: 51.750022350988914 - type: nauc_map_at_1_max value: 3.599863010364626 - type: nauc_map_at_1_std value: -27.670122127567314 - type: nauc_map_at_20_diff1 value: 49.72609185887161 - type: nauc_map_at_20_max value: 8.766556053409218 - type: nauc_map_at_20_std value: -25.85975887517904 - type: nauc_map_at_3_diff1 value: 49.328512536255595 - type: nauc_map_at_3_max value: 9.475682028996795 - type: nauc_map_at_3_std value: -26.277349632171017 - type: nauc_map_at_5_diff1 value: 49.42801822186142 - type: nauc_map_at_5_max value: 8.788822474357252 - type: nauc_map_at_5_std value: -25.959260882028573 - type: nauc_mrr_at_1000_diff1 value: 50.13038598302397 - type: nauc_mrr_at_1000_max value: 8.734338637484832 - type: nauc_mrr_at_1000_std value: -26.653343549855908 - type: nauc_mrr_at_100_diff1 value: 50.12820392111392 - type: nauc_mrr_at_100_max value: 8.735940503917966 - type: nauc_mrr_at_100_std value: -26.65074918231251 - type: nauc_mrr_at_10_diff1 value: 50.10567888458267 - type: nauc_mrr_at_10_max value: 8.898451291748575 - type: nauc_mrr_at_10_std value: -26.572046921975655 - type: nauc_mrr_at_1_diff1 value: 52.22769994409465 - type: nauc_mrr_at_1_max value: 3.6490820146062015 - type: nauc_mrr_at_1_std value: -28.535100562320498 - type: nauc_mrr_at_20_diff1 value: 50.12462222100699 - type: nauc_mrr_at_20_max value: 8.83487018268756 - type: nauc_mrr_at_20_std value: -26.591437036958332 - type: nauc_mrr_at_3_diff1 value: 49.6987353700016 - type: nauc_mrr_at_3_max value: 9.531003760756258 - type: nauc_mrr_at_3_std value: -26.949799063124818 - type: nauc_mrr_at_5_diff1 value: 49.823881656376585 - type: nauc_mrr_at_5_max value: 8.850404667985085 - type: nauc_mrr_at_5_std value: -26.680008966088582 - type: nauc_ndcg_at_1000_diff1 value: 49.41721203361181 - type: nauc_ndcg_at_1000_max value: 9.41093067609825 - type: nauc_ndcg_at_1000_std value: -25.499543637737567 - type: nauc_ndcg_at_100_diff1 value: 49.32810419509252 - type: nauc_ndcg_at_100_max value: 9.476216458766897 - type: nauc_ndcg_at_100_std value: -25.393856250990414 - type: nauc_ndcg_at_10_diff1 value: 49.181984436623694 - type: nauc_ndcg_at_10_max value: 10.65234732763274 - type: nauc_ndcg_at_10_std value: -24.737669349012297 - type: nauc_ndcg_at_1_diff1 value: 51.750022350988914 - type: nauc_ndcg_at_1_max value: 3.599863010364626 - type: nauc_ndcg_at_1_std value: -27.670122127567314 - type: nauc_ndcg_at_20_diff1 value: 49.275394594995056 - type: nauc_ndcg_at_20_max value: 10.402059796651923 - type: nauc_ndcg_at_20_std value: -24.82329915806705 - type: nauc_ndcg_at_3_diff1 value: 48.22614352152889 - type: nauc_ndcg_at_3_max value: 11.67464280791404 - type: nauc_ndcg_at_3_std value: -25.867824868234095 - type: nauc_ndcg_at_5_diff1 value: 48.35583502987241 - type: nauc_ndcg_at_5_max value: 10.494278750448451 - type: nauc_ndcg_at_5_std value: -25.11599634172764 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: -56.39478136433852 - type: nauc_precision_at_100_max value: 86.93518577529493 - type: nauc_precision_at_100_std value: 100.0 - type: nauc_precision_at_10_diff1 value: 38.662829729133094 - type: nauc_precision_at_10_max value: 56.38018435740605 - type: nauc_precision_at_10_std value: 6.288091897081105 - type: nauc_precision_at_1_diff1 value: 51.750022350988914 - type: nauc_precision_at_1_max value: 3.599863010364626 - type: nauc_precision_at_1_std value: -27.670122127567314 - type: nauc_precision_at_20_diff1 value: 34.739153182429085 - type: nauc_precision_at_20_max value: 84.86908403000989 - type: nauc_precision_at_20_std value: 29.156199421219455 - type: nauc_precision_at_3_diff1 value: 42.09287362529135 - type: nauc_precision_at_3_max value: 23.629152759287074 - type: nauc_precision_at_3_std value: -23.721376911302492 - type: nauc_precision_at_5_diff1 value: 36.03866171924644 - type: nauc_precision_at_5_max value: 29.166173558775327 - type: nauc_precision_at_5_std value: -15.096374563068448 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: -56.39478136433541 - type: nauc_recall_at_100_max value: 86.93518577528111 - type: nauc_recall_at_100_std value: 100.0 - type: nauc_recall_at_10_diff1 value: 38.66282972913384 - type: nauc_recall_at_10_max value: 56.3801843574071 - type: nauc_recall_at_10_std value: 6.288091897082639 - type: nauc_recall_at_1_diff1 value: 51.750022350988914 - type: nauc_recall_at_1_max value: 3.599863010364626 - type: nauc_recall_at_1_std value: -27.670122127567314 - type: nauc_recall_at_20_diff1 value: 34.7391531824321 - type: nauc_recall_at_20_max value: 84.86908403001016 - type: nauc_recall_at_20_std value: 29.156199421220748 - type: nauc_recall_at_3_diff1 value: 42.09287362529107 - type: nauc_recall_at_3_max value: 23.629152759286946 - type: nauc_recall_at_3_std value: -23.72137691130291 - type: nauc_recall_at_5_diff1 value: 36.0386617192469 - type: nauc_recall_at_5_max value: 29.1661735587759 - type: nauc_recall_at_5_std value: -15.09637456306774 - type: ndcg_at_1 value: 64.39 - type: ndcg_at_10 value: 82.422 - type: ndcg_at_100 value: 82.86099999999999 - type: ndcg_at_1000 value: 82.87299999999999 - type: ndcg_at_20 value: 82.67999999999999 - type: ndcg_at_3 value: 78.967 - type: ndcg_at_5 value: 81.50699999999999 - type: precision_at_1 value: 64.39 - type: precision_at_10 value: 9.795 - type: precision_at_100 value: 0.9990000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.946 - type: precision_at_3 value: 29.691000000000003 - type: precision_at_5 value: 19.044 - type: recall_at_1 value: 64.39 - type: recall_at_10 value: 97.951 - type: recall_at_100 value: 99.902 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 98.92699999999999 - type: recall_at_3 value: 89.07300000000001 - type: recall_at_5 value: 95.22 - task: type: Retrieval dataset: name: MTEB GermanQuAD-Retrieval (default) type: mteb/germanquad-retrieval config: default split: test revision: f5c87ae5a2e7a5106606314eef45255f03151bb3 metrics: - type: main_score value: 94.15532365396247 - type: map_at_1 value: 90.789 - type: map_at_10 value: 94.24 - type: map_at_100 value: 94.283 - type: map_at_1000 value: 94.284 - type: map_at_20 value: 94.272 - type: map_at_3 value: 93.913 - type: map_at_5 value: 94.155 - type: mrr_at_1 value: 90.78947368421053 - type: mrr_at_10 value: 94.23987411056376 - type: mrr_at_100 value: 94.28320936825 - type: mrr_at_1000 value: 94.28350209115848 - type: mrr_at_20 value: 94.271919092559 - type: mrr_at_3 value: 93.91258318209313 - type: mrr_at_5 value: 94.15532365396247 - type: nauc_map_at_1000_diff1 value: 89.29089310650436 - type: nauc_map_at_1000_max value: 73.83868784032414 - type: nauc_map_at_1000_std value: -11.635778561889989 - type: nauc_map_at_100_diff1 value: 89.29077225707755 - type: nauc_map_at_100_max value: 73.84002740580378 - type: nauc_map_at_100_std value: -11.644096256165092 - type: nauc_map_at_10_diff1 value: 89.29117612292366 - type: nauc_map_at_10_max value: 73.97487984981221 - type: nauc_map_at_10_std value: -11.35191794373827 - type: nauc_map_at_1_diff1 value: 89.35436544117584 - type: nauc_map_at_1_max value: 70.35936815057701 - type: nauc_map_at_1_std value: -13.598996360976903 - type: nauc_map_at_20_diff1 value: 89.2530394052653 - type: nauc_map_at_20_max value: 73.83537529419839 - type: nauc_map_at_20_std value: -11.628272822028478 - type: nauc_map_at_3_diff1 value: 89.375111893546 - type: nauc_map_at_3_max value: 74.78900366026112 - type: nauc_map_at_3_std value: -12.720905253503274 - type: nauc_map_at_5_diff1 value: 89.35358300820893 - type: nauc_map_at_5_max value: 74.31996219723239 - type: nauc_map_at_5_std value: -10.768642638210867 - type: nauc_mrr_at_1000_diff1 value: 89.29089310650436 - type: nauc_mrr_at_1000_max value: 73.83868784032414 - type: nauc_mrr_at_1000_std value: -11.635778561889989 - type: nauc_mrr_at_100_diff1 value: 89.29077225707755 - type: nauc_mrr_at_100_max value: 73.84002740580378 - type: nauc_mrr_at_100_std value: -11.644096256165092 - type: nauc_mrr_at_10_diff1 value: 89.29117612292366 - type: nauc_mrr_at_10_max value: 73.97487984981221 - type: nauc_mrr_at_10_std value: -11.35191794373827 - type: nauc_mrr_at_1_diff1 value: 89.35436544117584 - type: nauc_mrr_at_1_max value: 70.35936815057701 - type: nauc_mrr_at_1_std value: -13.598996360976903 - type: nauc_mrr_at_20_diff1 value: 89.2530394052653 - type: nauc_mrr_at_20_max value: 73.83537529419839 - type: nauc_mrr_at_20_std value: -11.628272822028478 - type: nauc_mrr_at_3_diff1 value: 89.375111893546 - type: nauc_mrr_at_3_max value: 74.78900366026112 - type: nauc_mrr_at_3_std value: -12.720905253503274 - type: nauc_mrr_at_5_diff1 value: 89.35358300820893 - type: nauc_mrr_at_5_max value: 74.31996219723239 - type: nauc_mrr_at_5_std value: -10.768642638210867 - type: nauc_ndcg_at_1000_diff1 value: 89.27620775856863 - type: nauc_ndcg_at_1000_max value: 74.2985757362615 - type: nauc_ndcg_at_1000_std value: -11.236142819703023 - type: nauc_ndcg_at_100_diff1 value: 89.27284787540731 - type: nauc_ndcg_at_100_max value: 74.33539303365968 - type: nauc_ndcg_at_100_std value: -11.469413615851936 - type: nauc_ndcg_at_10_diff1 value: 89.21496710661724 - type: nauc_ndcg_at_10_max value: 75.02035398490516 - type: nauc_ndcg_at_10_std value: -9.903255803665814 - type: nauc_ndcg_at_1_diff1 value: 89.35436544117584 - type: nauc_ndcg_at_1_max value: 70.35936815057701 - type: nauc_ndcg_at_1_std value: -13.598996360976903 - type: nauc_ndcg_at_20_diff1 value: 89.03561289544179 - type: nauc_ndcg_at_20_max value: 74.4006766600049 - type: nauc_ndcg_at_20_std value: -11.129237862587743 - type: nauc_ndcg_at_3_diff1 value: 89.46540193201693 - type: nauc_ndcg_at_3_max value: 76.87093548368378 - type: nauc_ndcg_at_3_std value: -12.484902872086767 - type: nauc_ndcg_at_5_diff1 value: 89.39924941584766 - type: nauc_ndcg_at_5_max value: 75.96975269092722 - type: nauc_ndcg_at_5_std value: -8.180295581144833 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_100_diff1 value: 86.93074003795302 - type: nauc_precision_at_100_max value: 100.0 - type: nauc_precision_at_100_std value: -174.07785375176616 - type: nauc_precision_at_10_diff1 value: 87.43064119412082 - type: nauc_precision_at_10_max value: 90.60785783417448 - type: nauc_precision_at_10_std value: 15.378710059645906 - type: nauc_precision_at_1_diff1 value: 89.35436544117584 - type: nauc_precision_at_1_max value: 70.35936815057701 - type: nauc_precision_at_1_std value: -13.598996360976903 - type: nauc_precision_at_20_diff1 value: 78.78206037685919 - type: nauc_precision_at_20_max value: 82.52264166455923 - type: nauc_precision_at_20_std value: -5.95806599216658 - type: nauc_precision_at_3_diff1 value: 90.12709256456401 - type: nauc_precision_at_3_max value: 90.72678805838154 - type: nauc_precision_at_3_std value: -11.047599315631993 - type: nauc_precision_at_5_diff1 value: 89.9066873566561 - type: nauc_precision_at_5_max value: 93.51571626543664 - type: nauc_precision_at_5_std value: 22.632403279126162 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 86.93074003793416 - type: nauc_recall_at_100_max value: 100.0 - type: nauc_recall_at_100_std value: -174.07785375175723 - type: nauc_recall_at_10_diff1 value: 87.43064119411991 - type: nauc_recall_at_10_max value: 90.60785783417579 - type: nauc_recall_at_10_std value: 15.378710059643607 - type: nauc_recall_at_1_diff1 value: 89.35436544117584 - type: nauc_recall_at_1_max value: 70.35936815057701 - type: nauc_recall_at_1_std value: -13.598996360976903 - type: nauc_recall_at_20_diff1 value: 78.78206037685645 - type: nauc_recall_at_20_max value: 82.52264166455791 - type: nauc_recall_at_20_std value: -5.958065992168697 - type: nauc_recall_at_3_diff1 value: 90.12709256456463 - type: nauc_recall_at_3_max value: 90.7267880583832 - type: nauc_recall_at_3_std value: -11.047599315631881 - type: nauc_recall_at_5_diff1 value: 89.90668735665676 - type: nauc_recall_at_5_max value: 93.51571626543753 - type: nauc_recall_at_5_std value: 22.632403279126112 - type: ndcg_at_1 value: 90.789 - type: ndcg_at_10 value: 95.46 - type: ndcg_at_100 value: 95.652 - type: ndcg_at_1000 value: 95.659 - type: ndcg_at_20 value: 95.575 - type: ndcg_at_3 value: 94.82000000000001 - type: ndcg_at_5 value: 95.26400000000001 - type: precision_at_1 value: 90.789 - type: precision_at_10 value: 9.908999999999999 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.977 - type: precision_at_3 value: 32.471 - type: precision_at_5 value: 19.701 - type: recall_at_1 value: 90.789 - type: recall_at_10 value: 99.093 - type: recall_at_100 value: 99.955 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 99.546 - type: recall_at_3 value: 97.414 - type: recall_at_5 value: 98.503 - task: type: STS dataset: name: MTEB GermanSTSBenchmark (default) type: jinaai/german-STSbenchmark config: default split: test revision: e36907544d44c3a247898ed81540310442329e20 metrics: - type: cosine_pearson value: 86.55319003300265 - type: cosine_spearman value: 87.50267373081324 - type: euclidean_pearson value: 87.41630636501863 - type: euclidean_spearman value: 88.02170803409365 - type: main_score value: 87.50267373081324 - type: manhattan_pearson value: 87.33703179056744 - type: manhattan_spearman value: 87.99192826922514 - type: pearson value: 86.55319003300265 - type: spearman value: 87.50267373081324 - task: type: Clustering dataset: name: MTEB HALClusteringS2S (default) type: lyon-nlp/clustering-hal-s2s config: default split: test revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 metrics: - type: main_score value: 27.477557517301303 - type: v_measure value: 27.477557517301303 - type: v_measure_std value: 3.3525736581861336 - task: type: Classification dataset: name: MTEB HeadlineClassification (default) type: ai-forever/headline-classification config: default split: test revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb metrics: - type: accuracy value: 75.0830078125 - type: f1 value: 75.08863209267814 - type: f1_weighted value: 75.08895979060917 - type: main_score value: 75.0830078125 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 38.143 - type: map_at_10 value: 55.916999999999994 - type: map_at_100 value: 56.706 - type: map_at_1000 value: 56.77100000000001 - type: map_at_20 value: 56.367 - type: map_at_3 value: 53.111 - type: map_at_5 value: 54.839000000000006 - type: mrr_at_1 value: 76.286 - type: mrr_at_10 value: 81.879 - type: mrr_at_100 value: 82.09100000000001 - type: mrr_at_1000 value: 82.101 - type: mrr_at_20 value: 82.01 - type: mrr_at_3 value: 80.972 - type: mrr_at_5 value: 81.537 - type: ndcg_at_1 value: 76.286 - type: ndcg_at_10 value: 64.673 - type: ndcg_at_100 value: 67.527 - type: ndcg_at_1000 value: 68.857 - type: ndcg_at_20 value: 65.822 - type: ndcg_at_3 value: 60.616 - type: ndcg_at_5 value: 62.827999999999996 - type: precision_at_1 value: 76.286 - type: precision_at_10 value: 13.196 - type: precision_at_100 value: 1.544 - type: precision_at_1000 value: 0.172 - type: precision_at_20 value: 6.968000000000001 - type: precision_at_3 value: 37.992 - type: precision_at_5 value: 24.54 - type: recall_at_1 value: 38.143 - type: recall_at_10 value: 65.982 - type: recall_at_100 value: 77.225 - type: recall_at_1000 value: 86.077 - type: recall_at_20 value: 69.68299999999999 - type: recall_at_3 value: 56.989000000000004 - type: recall_at_5 value: 61.35 - type: main_score value: 64.673 - task: type: Classification dataset: name: MTEB IFlyTek (default) type: C-MTEB/IFlyTek-classification config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 41.67756829549827 - type: f1 value: 33.929325579581636 - type: f1_weighted value: 43.03952025643197 - type: main_score value: 41.67756829549827 - task: type: Classification dataset: name: MTEB ImdbClassification (default) type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.90440000000001 - type: ap value: 88.78663714603425 - type: ap_weighted value: 88.78663714603425 - type: f1 value: 91.89564361975891 - type: f1_weighted value: 91.89564361975891 - type: main_score value: 91.90440000000001 - task: type: Classification dataset: name: MTEB InappropriatenessClassification (default) type: ai-forever/inappropriateness-classification config: default split: test revision: 601651fdc45ef243751676e62dd7a19f491c0285 metrics: - type: accuracy value: 61.0498046875 - type: ap value: 57.04240566648215 - type: ap_weighted value: 57.04240566648215 - type: f1 value: 60.867630038606954 - type: f1_weighted value: 60.867630038606954 - type: main_score value: 61.0498046875 - task: type: Classification dataset: name: MTEB JDReview (default) type: C-MTEB/JDReview-classification config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 83.50844277673546 - type: ap value: 48.46732380712268 - type: ap_weighted value: 48.46732380712268 - type: f1 value: 77.43967451387445 - type: f1_weighted value: 84.78462929014114 - type: main_score value: 83.50844277673546 - task: type: Classification dataset: name: MTEB KinopoiskClassification (default) type: ai-forever/kinopoisk-sentiment-classification config: default split: test revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 metrics: - type: accuracy value: 62.393333333333324 - type: f1 value: 61.35940129568015 - type: f1_weighted value: 61.35940129568015 - type: main_score value: 62.393333333333324 - task: type: STS dataset: name: MTEB LCQMC (default) type: C-MTEB/LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cosine_pearson value: 67.74375505907872 - type: cosine_spearman value: 75.94582231399434 - type: euclidean_pearson value: 74.52501692443582 - type: euclidean_spearman value: 75.88428434746646 - type: main_score value: 75.94582231399434 - type: manhattan_pearson value: 74.55015441749529 - type: manhattan_spearman value: 75.83288262176175 - type: pearson value: 67.74375505907872 - type: spearman value: 75.94582231399434 - task: type: Retrieval dataset: name: MTEB LEMBNarrativeQARetrieval (default) type: dwzhu/LongEmbed config: default split: test revision: 6e346642246bfb4928c560ee08640dc84d074e8c metrics: - type: map_at_1 value: 23.093 - type: map_at_10 value: 30.227999999999998 - type: map_at_100 value: 31.423000000000002 - type: map_at_1000 value: 31.533 - type: map_at_20 value: 30.835 - type: map_at_3 value: 27.983999999999998 - type: map_at_5 value: 29.253 - type: mrr_at_1 value: 23.093 - type: mrr_at_10 value: 30.227999999999998 - type: mrr_at_100 value: 31.423000000000002 - type: mrr_at_1000 value: 31.533 - type: mrr_at_20 value: 30.835 - type: mrr_at_3 value: 27.983999999999998 - type: mrr_at_5 value: 29.253 - type: ndcg_at_1 value: 23.093 - type: ndcg_at_10 value: 34.297 - type: ndcg_at_100 value: 41.049 - type: ndcg_at_1000 value: 43.566 - type: ndcg_at_20 value: 36.52 - type: ndcg_at_3 value: 29.629 - type: ndcg_at_5 value: 31.926 - type: precision_at_1 value: 23.093 - type: precision_at_10 value: 4.735 - type: precision_at_100 value: 0.8109999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 2.8080000000000003 - type: precision_at_3 value: 11.468 - type: precision_at_5 value: 8.001 - type: recall_at_1 value: 23.093 - type: recall_at_10 value: 47.354 - type: recall_at_100 value: 81.147 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 56.16799999999999 - type: recall_at_3 value: 34.405 - type: recall_at_5 value: 40.004 - type: main_score value: 34.297 - type: map_at_1 value: 24.361 - type: map_at_10 value: 33.641 - type: map_at_100 value: 35.104 - type: map_at_1000 value: 35.127 - type: map_at_20 value: 34.388999999999996 - type: map_at_3 value: 30.255 - type: map_at_5 value: 32.079 - type: mrr_at_1 value: 24.361 - type: mrr_at_10 value: 33.641 - type: mrr_at_100 value: 35.104 - type: mrr_at_1000 value: 35.127 - type: mrr_at_20 value: 34.388999999999996 - type: mrr_at_3 value: 30.255 - type: mrr_at_5 value: 32.079 - type: ndcg_at_1 value: 24.361 - type: ndcg_at_10 value: 39.337 - type: ndcg_at_100 value: 47.384 - type: ndcg_at_1000 value: 47.75 - type: ndcg_at_20 value: 42.077999999999996 - type: ndcg_at_3 value: 32.235 - type: ndcg_at_5 value: 35.524 - type: precision_at_1 value: 24.361 - type: precision_at_10 value: 5.783 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 3.435 - type: precision_at_3 value: 12.661 - type: precision_at_5 value: 9.193999999999999 - type: recall_at_1 value: 24.361 - type: recall_at_10 value: 57.826 - type: recall_at_100 value: 97.51100000000001 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 68.697 - type: recall_at_3 value: 37.983 - type: recall_at_5 value: 45.972 - type: main_score value: 39.337 - type: map_at_1 value: 53.667 - type: map_at_10 value: 61.719 - type: map_at_100 value: 62.471 - type: map_at_1000 value: 62.492000000000004 - type: map_at_20 value: 62.153000000000006 - type: map_at_3 value: 59.167 - type: map_at_5 value: 60.95 - type: mrr_at_1 value: 53.667 - type: mrr_at_10 value: 61.719 - type: mrr_at_100 value: 62.471 - type: mrr_at_1000 value: 62.492000000000004 - type: mrr_at_20 value: 62.153000000000006 - type: mrr_at_3 value: 59.167 - type: mrr_at_5 value: 60.95 - type: ndcg_at_1 value: 53.667 - type: ndcg_at_10 value: 66.018 - type: ndcg_at_100 value: 69.726 - type: ndcg_at_1000 value: 70.143 - type: ndcg_at_20 value: 67.61399999999999 - type: ndcg_at_3 value: 60.924 - type: ndcg_at_5 value: 64.10900000000001 - type: precision_at_1 value: 53.667 - type: precision_at_10 value: 7.9670000000000005 - type: precision_at_100 value: 0.97 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.3 - type: precision_at_3 value: 22.0 - type: precision_at_5 value: 14.732999999999999 - type: recall_at_1 value: 53.667 - type: recall_at_10 value: 79.667 - type: recall_at_100 value: 97.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 86.0 - type: recall_at_3 value: 66.0 - type: recall_at_5 value: 73.667 - type: main_score value: 66.018 - task: type: Retrieval dataset: name: MTEB LEMBNeedleRetrieval (default) type: dwzhu/LongEmbed config: default split: test_256 revision: 6e346642246bfb4928c560ee08640dc84d074e8c metrics: - type: map_at_1 value: 64.0 - type: map_at_10 value: 77.083 - type: map_at_100 value: 77.265 - type: map_at_1000 value: 77.265 - type: map_at_20 value: 77.265 - type: map_at_3 value: 76.333 - type: map_at_5 value: 76.833 - type: mrr_at_1 value: 64.0 - type: mrr_at_10 value: 77.083 - type: mrr_at_100 value: 77.265 - type: mrr_at_1000 value: 77.265 - type: mrr_at_20 value: 77.265 - type: mrr_at_3 value: 76.333 - type: mrr_at_5 value: 76.833 - type: ndcg_at_1 value: 64.0 - type: ndcg_at_10 value: 82.325 - type: ndcg_at_100 value: 82.883 - type: ndcg_at_1000 value: 82.883 - type: ndcg_at_20 value: 82.883 - type: ndcg_at_3 value: 80.833 - type: ndcg_at_5 value: 81.694 - type: precision_at_1 value: 64.0 - type: precision_at_10 value: 9.8 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 5.0 - type: precision_at_3 value: 31.333 - type: precision_at_5 value: 19.2 - type: recall_at_1 value: 64.0 - type: recall_at_10 value: 98.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 100.0 - type: recall_at_3 value: 94.0 - type: recall_at_5 value: 96.0 - type: main_score value: 64.0 - type: map_at_1 value: 100.0 - type: map_at_10 value: 100.0 - type: map_at_100 value: 100.0 - type: map_at_1000 value: 100.0 - type: map_at_20 value: 100.0 - type: map_at_3 value: 100.0 - type: map_at_5 value: 100.0 - type: mrr_at_1 value: 100.0 - type: mrr_at_10 value: 100.0 - type: mrr_at_100 value: 100.0 - type: mrr_at_1000 value: 100.0 - type: mrr_at_20 value: 100.0 - type: mrr_at_3 value: 100.0 - type: mrr_at_5 value: 100.0 - type: ndcg_at_1 value: 100.0 - type: ndcg_at_10 value: 100.0 - type: ndcg_at_100 value: 100.0 - type: ndcg_at_1000 value: 100.0 - type: ndcg_at_20 value: 100.0 - type: ndcg_at_3 value: 100.0 - type: ndcg_at_5 value: 100.0 - type: precision_at_1 value: 100.0 - type: precision_at_10 value: 10.0 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 5.0 - type: precision_at_3 value: 33.333 - type: precision_at_5 value: 20.0 - type: recall_at_1 value: 100.0 - type: recall_at_10 value: 100.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 100.0 - type: recall_at_3 value: 100.0 - type: recall_at_5 value: 100.0 - type: main_score value: 100.0 - task: type: Retrieval dataset: name: MTEB LEMBSummScreenFDRetrieval (default) type: dwzhu/LongEmbed config: default split: validation revision: 6e346642246bfb4928c560ee08640dc84d074e8c metrics: - type: map_at_1 value: 84.821 - type: map_at_10 value: 90.11200000000001 - type: map_at_100 value: 90.158 - type: map_at_1000 value: 90.158 - type: map_at_20 value: 90.137 - type: map_at_3 value: 89.385 - type: map_at_5 value: 89.876 - type: mrr_at_1 value: 84.821 - type: mrr_at_10 value: 90.11200000000001 - type: mrr_at_100 value: 90.158 - type: mrr_at_1000 value: 90.158 - type: mrr_at_20 value: 90.137 - type: mrr_at_3 value: 89.385 - type: mrr_at_5 value: 89.876 - type: ndcg_at_1 value: 84.821 - type: ndcg_at_10 value: 92.334 - type: ndcg_at_100 value: 92.535 - type: ndcg_at_1000 value: 92.535 - type: ndcg_at_20 value: 92.414 - type: ndcg_at_3 value: 90.887 - type: ndcg_at_5 value: 91.758 - type: precision_at_1 value: 84.821 - type: precision_at_10 value: 9.911 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.97 - type: precision_at_3 value: 31.746000000000002 - type: precision_at_5 value: 19.464000000000002 - type: recall_at_1 value: 84.821 - type: recall_at_10 value: 99.107 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 99.405 - type: recall_at_3 value: 95.238 - type: recall_at_5 value: 97.321 - type: main_score value: 92.334 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (deu-deu) type: facebook/mlqa config: deu-deu split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 67.548 - type: map_at_1 value: 56.559000000000005 - type: map_at_10 value: 63.867 - type: map_at_100 value: 64.429 - type: map_at_1000 value: 64.457 - type: map_at_20 value: 64.215 - type: map_at_3 value: 62.109 - type: map_at_5 value: 63.101 - type: mrr_at_1 value: 56.56990915134057 - type: mrr_at_10 value: 63.86820789324668 - type: mrr_at_100 value: 64.42973602152581 - type: mrr_at_1000 value: 64.45818598090155 - type: mrr_at_20 value: 64.2163052263868 - type: mrr_at_3 value: 62.10946155550634 - type: mrr_at_5 value: 63.10104143585199 - type: nauc_map_at_1000_diff1 value: 73.78440163370111 - type: nauc_map_at_1000_max value: 66.37875518052162 - type: nauc_map_at_1000_std value: -17.063915098135396 - type: nauc_map_at_100_diff1 value: 73.77180802985815 - type: nauc_map_at_100_max value: 66.38365998362033 - type: nauc_map_at_100_std value: -17.053345109661972 - type: nauc_map_at_10_diff1 value: 73.70041876696037 - type: nauc_map_at_10_max value: 66.33213342705997 - type: nauc_map_at_10_std value: -17.40657791273925 - type: nauc_map_at_1_diff1 value: 76.8784374396948 - type: nauc_map_at_1_max value: 64.07170606935357 - type: nauc_map_at_1_std value: -18.464213686790654 - type: nauc_map_at_20_diff1 value: 73.72371377231813 - type: nauc_map_at_20_max value: 66.42108121059451 - type: nauc_map_at_20_std value: -17.05384923889036 - type: nauc_map_at_3_diff1 value: 74.08287018839246 - type: nauc_map_at_3_max value: 66.42422337760333 - type: nauc_map_at_3_std value: -17.79503404131652 - type: nauc_map_at_5_diff1 value: 73.9294779027339 - type: nauc_map_at_5_max value: 66.51752041065726 - type: nauc_map_at_5_std value: -17.67309805113804 - type: nauc_mrr_at_1000_diff1 value: 73.78389736923545 - type: nauc_mrr_at_1000_max value: 66.37929720858341 - type: nauc_mrr_at_1000_std value: -17.058591711291278 - type: nauc_mrr_at_100_diff1 value: 73.77126451253136 - type: nauc_mrr_at_100_max value: 66.38405917246607 - type: nauc_mrr_at_100_std value: -17.047251035212863 - type: nauc_mrr_at_10_diff1 value: 73.69960470665124 - type: nauc_mrr_at_10_max value: 66.33265194210313 - type: nauc_mrr_at_10_std value: -17.399659076827998 - type: nauc_mrr_at_1_diff1 value: 76.8689850260726 - type: nauc_mrr_at_1_max value: 64.09858188287487 - type: nauc_mrr_at_1_std value: -18.46064784201847 - type: nauc_mrr_at_20_diff1 value: 73.72312682063128 - type: nauc_mrr_at_20_max value: 66.42181932858745 - type: nauc_mrr_at_20_std value: -17.04690257511092 - type: nauc_mrr_at_3_diff1 value: 74.08287018839246 - type: nauc_mrr_at_3_max value: 66.42422337760333 - type: nauc_mrr_at_3_std value: -17.79503404131652 - type: nauc_mrr_at_5_diff1 value: 73.9294779027339 - type: nauc_mrr_at_5_max value: 66.51752041065726 - type: nauc_mrr_at_5_std value: -17.67309805113804 - type: nauc_ndcg_at_1000_diff1 value: 72.97825548342801 - type: nauc_ndcg_at_1000_max value: 66.96275437178257 - type: nauc_ndcg_at_1000_std value: -15.611902299641587 - type: nauc_ndcg_at_100_diff1 value: 72.58724738936613 - type: nauc_ndcg_at_100_max value: 67.16774012704182 - type: nauc_ndcg_at_100_std value: -14.945088654796812 - type: nauc_ndcg_at_10_diff1 value: 72.16253640477947 - type: nauc_ndcg_at_10_max value: 67.01746849484621 - type: nauc_ndcg_at_10_std value: -16.46102507270809 - type: nauc_ndcg_at_1_diff1 value: 76.8689850260726 - type: nauc_ndcg_at_1_max value: 64.09858188287487 - type: nauc_ndcg_at_1_std value: -18.46064784201847 - type: nauc_ndcg_at_20_diff1 value: 72.19995325129975 - type: nauc_ndcg_at_20_max value: 67.39639713797962 - type: nauc_ndcg_at_20_std value: -15.091689370748531 - type: nauc_ndcg_at_3_diff1 value: 73.13123604206514 - type: nauc_ndcg_at_3_max value: 67.23123167871547 - type: nauc_ndcg_at_3_std value: -17.492755234009156 - type: nauc_ndcg_at_5_diff1 value: 72.8154718929895 - type: nauc_ndcg_at_5_max value: 67.44578008373777 - type: nauc_ndcg_at_5_std value: -17.251840358751362 - type: nauc_precision_at_1000_diff1 value: 47.89748325983604 - type: nauc_precision_at_1000_max value: 70.47466197804906 - type: nauc_precision_at_1000_std value: 72.66193512114775 - type: nauc_precision_at_100_diff1 value: 59.493743734005356 - type: nauc_precision_at_100_max value: 74.02140147220713 - type: nauc_precision_at_100_std value: 17.26664098026236 - type: nauc_precision_at_10_diff1 value: 64.94415011040277 - type: nauc_precision_at_10_max value: 69.6963814950747 - type: nauc_precision_at_10_std value: -11.663043657012954 - type: nauc_precision_at_1_diff1 value: 76.8689850260726 - type: nauc_precision_at_1_max value: 64.09858188287487 - type: nauc_precision_at_1_std value: -18.46064784201847 - type: nauc_precision_at_20_diff1 value: 63.145886909986416 - type: nauc_precision_at_20_max value: 72.95708033630744 - type: nauc_precision_at_20_std value: -1.5039593629280323 - type: nauc_precision_at_3_diff1 value: 69.88902201644449 - type: nauc_precision_at_3_max value: 69.80499971089935 - type: nauc_precision_at_3_std value: -16.444680766676647 - type: nauc_precision_at_5_diff1 value: 68.60869967062919 - type: nauc_precision_at_5_max value: 70.75998207564281 - type: nauc_precision_at_5_std value: -15.62613396998262 - type: nauc_recall_at_1000_diff1 value: 62.6646436338833 - type: nauc_recall_at_1000_max value: 86.17801636476078 - type: nauc_recall_at_1000_std value: 71.84718775540334 - type: nauc_recall_at_100_diff1 value: 61.110492191439505 - type: nauc_recall_at_100_max value: 75.45730686603042 - type: nauc_recall_at_100_std value: 16.202465011589428 - type: nauc_recall_at_10_diff1 value: 65.1522196516815 - type: nauc_recall_at_10_max value: 69.7626435962161 - type: nauc_recall_at_10_std value: -11.801178474770449 - type: nauc_recall_at_1_diff1 value: 76.8784374396948 - type: nauc_recall_at_1_max value: 64.07170606935357 - type: nauc_recall_at_1_std value: -18.464213686790654 - type: nauc_recall_at_20_diff1 value: 63.40332739504143 - type: nauc_recall_at_20_max value: 73.04113661090965 - type: nauc_recall_at_20_std value: -1.6609741140266947 - type: nauc_recall_at_3_diff1 value: 70.03728086098866 - type: nauc_recall_at_3_max value: 69.85953774320521 - type: nauc_recall_at_3_std value: -16.482993123411706 - type: nauc_recall_at_5_diff1 value: 68.77396121765933 - type: nauc_recall_at_5_max value: 70.8231205493519 - type: nauc_recall_at_5_std value: -15.668037770700863 - type: ndcg_at_1 value: 56.57 - type: ndcg_at_10 value: 67.548 - type: ndcg_at_100 value: 70.421 - type: ndcg_at_1000 value: 71.198 - type: ndcg_at_20 value: 68.829 - type: ndcg_at_3 value: 63.88700000000001 - type: ndcg_at_5 value: 65.689 - type: precision_at_1 value: 56.57 - type: precision_at_10 value: 7.922 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.216 - type: precision_at_3 value: 23.015 - type: precision_at_5 value: 14.691 - type: recall_at_1 value: 56.559000000000005 - type: recall_at_10 value: 79.182 - type: recall_at_100 value: 92.946 - type: recall_at_1000 value: 99.092 - type: recall_at_20 value: 84.27900000000001 - type: recall_at_3 value: 69.023 - type: recall_at_5 value: 73.432 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (deu-spa) type: facebook/mlqa config: deu-spa split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 70.645 - type: map_at_1 value: 58.423 - type: map_at_10 value: 66.613 - type: map_at_100 value: 67.14099999999999 - type: map_at_1000 value: 67.161 - type: map_at_20 value: 66.965 - type: map_at_3 value: 64.714 - type: map_at_5 value: 65.835 - type: mrr_at_1 value: 58.4225352112676 - type: mrr_at_10 value: 66.61321260898735 - type: mrr_at_100 value: 67.13991570812132 - type: mrr_at_1000 value: 67.1598532168174 - type: mrr_at_20 value: 66.96384710024888 - type: mrr_at_3 value: 64.71361502347425 - type: mrr_at_5 value: 65.83474178403769 - type: nauc_map_at_1000_diff1 value: 73.9485117118935 - type: nauc_map_at_1000_max value: 65.74479869396299 - type: nauc_map_at_1000_std value: -20.300269749495563 - type: nauc_map_at_100_diff1 value: 73.93900406302829 - type: nauc_map_at_100_max value: 65.75508449194885 - type: nauc_map_at_100_std value: -20.265330791570175 - type: nauc_map_at_10_diff1 value: 73.84863233472605 - type: nauc_map_at_10_max value: 65.89377317378211 - type: nauc_map_at_10_std value: -20.404123131964695 - type: nauc_map_at_1_diff1 value: 76.73627284218519 - type: nauc_map_at_1_max value: 62.94957512510876 - type: nauc_map_at_1_std value: -20.99649749330682 - type: nauc_map_at_20_diff1 value: 73.88712006109598 - type: nauc_map_at_20_max value: 65.82057018162664 - type: nauc_map_at_20_std value: -20.269476512431915 - type: nauc_map_at_3_diff1 value: 74.21419190161502 - type: nauc_map_at_3_max value: 65.64993368062119 - type: nauc_map_at_3_std value: -21.34641749007071 - type: nauc_map_at_5_diff1 value: 74.0119419385777 - type: nauc_map_at_5_max value: 65.69809416369732 - type: nauc_map_at_5_std value: -21.16901556082261 - type: nauc_mrr_at_1000_diff1 value: 73.94915184134923 - type: nauc_mrr_at_1000_max value: 65.74522469633418 - type: nauc_mrr_at_1000_std value: -20.303028367132246 - type: nauc_mrr_at_100_diff1 value: 73.93964394728808 - type: nauc_mrr_at_100_max value: 65.75550992323707 - type: nauc_mrr_at_100_std value: -20.26808820438918 - type: nauc_mrr_at_10_diff1 value: 73.84863233472605 - type: nauc_mrr_at_10_max value: 65.89377317378211 - type: nauc_mrr_at_10_std value: -20.404123131964695 - type: nauc_mrr_at_1_diff1 value: 76.73627284218519 - type: nauc_mrr_at_1_max value: 62.94957512510876 - type: nauc_mrr_at_1_std value: -20.99649749330682 - type: nauc_mrr_at_20_diff1 value: 73.88775721128745 - type: nauc_mrr_at_20_max value: 65.820991355628 - type: nauc_mrr_at_20_std value: -20.272216587019734 - type: nauc_mrr_at_3_diff1 value: 74.21419190161502 - type: nauc_mrr_at_3_max value: 65.64993368062119 - type: nauc_mrr_at_3_std value: -21.34641749007071 - type: nauc_mrr_at_5_diff1 value: 74.0119419385777 - type: nauc_mrr_at_5_max value: 65.69809416369732 - type: nauc_mrr_at_5_std value: -21.16901556082261 - type: nauc_ndcg_at_1000_diff1 value: 73.29396365944277 - type: nauc_ndcg_at_1000_max value: 66.44879592109541 - type: nauc_ndcg_at_1000_std value: -19.285991058788195 - type: nauc_ndcg_at_100_diff1 value: 73.0159172721162 - type: nauc_ndcg_at_100_max value: 66.76216389231388 - type: nauc_ndcg_at_100_std value: -18.27931368094887 - type: nauc_ndcg_at_10_diff1 value: 72.42096650774693 - type: nauc_ndcg_at_10_max value: 67.48592688463306 - type: nauc_ndcg_at_10_std value: -18.91453756077581 - type: nauc_ndcg_at_1_diff1 value: 76.73627284218519 - type: nauc_ndcg_at_1_max value: 62.94957512510876 - type: nauc_ndcg_at_1_std value: -20.99649749330682 - type: nauc_ndcg_at_20_diff1 value: 72.53699362385684 - type: nauc_ndcg_at_20_max value: 67.22763976357872 - type: nauc_ndcg_at_20_std value: -18.299910635008338 - type: nauc_ndcg_at_3_diff1 value: 73.3698453761989 - type: nauc_ndcg_at_3_max value: 66.71056987289383 - type: nauc_ndcg_at_3_std value: -21.405154376652803 - type: nauc_ndcg_at_5_diff1 value: 72.9491030712935 - type: nauc_ndcg_at_5_max value: 66.85786103137077 - type: nauc_ndcg_at_5_std value: -21.04005053344073 - type: nauc_precision_at_1000_diff1 value: 17.02462370967451 - type: nauc_precision_at_1000_max value: 48.03260752496052 - type: nauc_precision_at_1000_std value: 87.56077915079334 - type: nauc_precision_at_100_diff1 value: 58.590352501194985 - type: nauc_precision_at_100_max value: 78.2649015433222 - type: nauc_precision_at_100_std value: 28.05030453158992 - type: nauc_precision_at_10_diff1 value: 64.89497928764766 - type: nauc_precision_at_10_max value: 75.93257124951242 - type: nauc_precision_at_10_std value: -9.825306994117462 - type: nauc_precision_at_1_diff1 value: 76.73627284218519 - type: nauc_precision_at_1_max value: 62.94957512510876 - type: nauc_precision_at_1_std value: -20.99649749330682 - type: nauc_precision_at_20_diff1 value: 62.11366204321558 - type: nauc_precision_at_20_max value: 75.9571427846493 - type: nauc_precision_at_20_std value: -0.94585212808191 - type: nauc_precision_at_3_diff1 value: 70.52940972112398 - type: nauc_precision_at_3_max value: 70.3402053170779 - type: nauc_precision_at_3_std value: -21.579778424241304 - type: nauc_precision_at_5_diff1 value: 68.78962580223575 - type: nauc_precision_at_5_max value: 71.41410894398376 - type: nauc_precision_at_5_std value: -20.415603405161956 - type: nauc_recall_at_1000_diff1 value: 55.88625447348128 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 100.0 - type: nauc_recall_at_100_diff1 value: 61.17942268389525 - type: nauc_recall_at_100_max value: 81.12207841563487 - type: nauc_recall_at_100_std value: 27.141215257528113 - type: nauc_recall_at_10_diff1 value: 64.8949792876478 - type: nauc_recall_at_10_max value: 75.93257124951249 - type: nauc_recall_at_10_std value: -9.825306994117323 - type: nauc_recall_at_1_diff1 value: 76.73627284218519 - type: nauc_recall_at_1_max value: 62.94957512510876 - type: nauc_recall_at_1_std value: -20.99649749330682 - type: nauc_recall_at_20_diff1 value: 63.07808719241162 - type: nauc_recall_at_20_max value: 76.96808746317542 - type: nauc_recall_at_20_std value: -1.5235053258631275 - type: nauc_recall_at_3_diff1 value: 70.52940972112405 - type: nauc_recall_at_3_max value: 70.3402053170779 - type: nauc_recall_at_3_std value: -21.57977842424124 - type: nauc_recall_at_5_diff1 value: 68.78962580223575 - type: nauc_recall_at_5_max value: 71.41410894398392 - type: nauc_recall_at_5_std value: -20.415603405161793 - type: ndcg_at_1 value: 58.423 - type: ndcg_at_10 value: 70.645 - type: ndcg_at_100 value: 73.277 - type: ndcg_at_1000 value: 73.785 - type: ndcg_at_20 value: 71.918 - type: ndcg_at_3 value: 66.679 - type: ndcg_at_5 value: 68.72200000000001 - type: precision_at_1 value: 58.423 - type: precision_at_10 value: 8.338 - type: precision_at_100 value: 0.959 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.423 - type: precision_at_3 value: 24.113 - type: precision_at_5 value: 15.47 - type: recall_at_1 value: 58.423 - type: recall_at_10 value: 83.38 - type: recall_at_100 value: 95.887 - type: recall_at_1000 value: 99.831 - type: recall_at_20 value: 88.39399999999999 - type: recall_at_3 value: 72.33800000000001 - type: recall_at_5 value: 77.352 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (deu-eng) type: facebook/mlqa config: deu-eng split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 67.067 - type: map_at_1 value: 55.861000000000004 - type: map_at_10 value: 63.42100000000001 - type: map_at_100 value: 64.03 - type: map_at_1000 value: 64.05999999999999 - type: map_at_20 value: 63.819 - type: map_at_3 value: 61.773 - type: map_at_5 value: 62.736999999999995 - type: mrr_at_1 value: 55.88300465322402 - type: mrr_at_10 value: 63.43111082973707 - type: mrr_at_100 value: 64.03962373590272 - type: mrr_at_1000 value: 64.0698259866376 - type: mrr_at_20 value: 63.82871766489112 - type: mrr_at_3 value: 61.78447448112865 - type: mrr_at_5 value: 62.74835659945346 - type: nauc_map_at_1000_diff1 value: 74.58505763417352 - type: nauc_map_at_1000_max value: 66.26060764852198 - type: nauc_map_at_1000_std value: -16.896178230873897 - type: nauc_map_at_100_diff1 value: 74.57057487892857 - type: nauc_map_at_100_max value: 66.26600433283826 - type: nauc_map_at_100_std value: -16.87596113104189 - type: nauc_map_at_10_diff1 value: 74.53453636322749 - type: nauc_map_at_10_max value: 66.27501737773804 - type: nauc_map_at_10_std value: -17.178743257781775 - type: nauc_map_at_1_diff1 value: 77.63067209375254 - type: nauc_map_at_1_max value: 64.17718675702672 - type: nauc_map_at_1_std value: -17.639521106853717 - type: nauc_map_at_20_diff1 value: 74.52007402431164 - type: nauc_map_at_20_max value: 66.28276291359268 - type: nauc_map_at_20_std value: -16.939292897754758 - type: nauc_map_at_3_diff1 value: 74.79187974631951 - type: nauc_map_at_3_max value: 66.23256568210611 - type: nauc_map_at_3_std value: -17.894889918934112 - type: nauc_map_at_5_diff1 value: 74.63011328882517 - type: nauc_map_at_5_max value: 66.35411054978499 - type: nauc_map_at_5_std value: -17.50140342194211 - type: nauc_mrr_at_1000_diff1 value: 74.57520089771667 - type: nauc_mrr_at_1000_max value: 66.27270912845914 - type: nauc_mrr_at_1000_std value: -16.84012675362397 - type: nauc_mrr_at_100_diff1 value: 74.56070964572156 - type: nauc_mrr_at_100_max value: 66.2780701126926 - type: nauc_mrr_at_100_std value: -16.820035083069865 - type: nauc_mrr_at_10_diff1 value: 74.52455978435117 - type: nauc_mrr_at_10_max value: 66.28697244023137 - type: nauc_mrr_at_10_std value: -17.122477723330523 - type: nauc_mrr_at_1_diff1 value: 77.60643512422061 - type: nauc_mrr_at_1_max value: 64.21736966061896 - type: nauc_mrr_at_1_std value: -17.56627338275146 - type: nauc_mrr_at_20_diff1 value: 74.5099814266373 - type: nauc_mrr_at_20_max value: 66.29485560556576 - type: nauc_mrr_at_20_std value: -16.882350027335306 - type: nauc_mrr_at_3_diff1 value: 74.78132817375507 - type: nauc_mrr_at_3_max value: 66.24761860047623 - type: nauc_mrr_at_3_std value: -17.833128575678998 - type: nauc_mrr_at_5_diff1 value: 74.6193031207433 - type: nauc_mrr_at_5_max value: 66.36951764432901 - type: nauc_mrr_at_5_std value: -17.438203106324227 - type: nauc_ndcg_at_1000_diff1 value: 73.79386161629151 - type: nauc_ndcg_at_1000_max value: 66.84013038018082 - type: nauc_ndcg_at_1000_std value: -15.387358822700667 - type: nauc_ndcg_at_100_diff1 value: 73.36132885277745 - type: nauc_ndcg_at_100_max value: 67.04416926901568 - type: nauc_ndcg_at_100_std value: -14.503256942521972 - type: nauc_ndcg_at_10_diff1 value: 73.11847332785027 - type: nauc_ndcg_at_10_max value: 67.02149621303091 - type: nauc_ndcg_at_10_std value: -16.142234662067782 - type: nauc_ndcg_at_1_diff1 value: 77.60643512422061 - type: nauc_ndcg_at_1_max value: 64.21736966061896 - type: nauc_ndcg_at_1_std value: -17.56627338275146 - type: nauc_ndcg_at_20_diff1 value: 72.97961452569768 - type: nauc_ndcg_at_20_max value: 67.12369127081152 - type: nauc_ndcg_at_20_std value: -15.11921773223936 - type: nauc_ndcg_at_3_diff1 value: 73.77769312598772 - type: nauc_ndcg_at_3_max value: 66.94438755852309 - type: nauc_ndcg_at_3_std value: -17.75960443830741 - type: nauc_ndcg_at_5_diff1 value: 73.43991209562891 - type: nauc_ndcg_at_5_max value: 67.21682951737418 - type: nauc_ndcg_at_5_std value: -17.013510008231805 - type: nauc_precision_at_1000_diff1 value: 51.30633281948362 - type: nauc_precision_at_1000_max value: 76.78675288883846 - type: nauc_precision_at_1000_std value: 71.70041985304397 - type: nauc_precision_at_100_diff1 value: 59.86656455853326 - type: nauc_precision_at_100_max value: 74.41958422732161 - type: nauc_precision_at_100_std value: 22.098920296069124 - type: nauc_precision_at_10_diff1 value: 66.4696166928741 - type: nauc_precision_at_10_max value: 69.88463108697104 - type: nauc_precision_at_10_std value: -10.707950954702742 - type: nauc_precision_at_1_diff1 value: 77.60643512422061 - type: nauc_precision_at_1_max value: 64.21736966061896 - type: nauc_precision_at_1_std value: -17.56627338275146 - type: nauc_precision_at_20_diff1 value: 63.45094585276983 - type: nauc_precision_at_20_max value: 71.57741245347195 - type: nauc_precision_at_20_std value: -2.2211545419051744 - type: nauc_precision_at_3_diff1 value: 70.28060818081384 - type: nauc_precision_at_3_max value: 69.22652927816439 - type: nauc_precision_at_3_std value: -17.158576243559434 - type: nauc_precision_at_5_diff1 value: 68.90765418427162 - type: nauc_precision_at_5_max value: 70.32585273389111 - type: nauc_precision_at_5_std value: -14.950363729664524 - type: nauc_recall_at_1000_diff1 value: 65.11255117927331 - type: nauc_recall_at_1000_max value: 88.35641213283338 - type: nauc_recall_at_1000_std value: 69.89792573640547 - type: nauc_recall_at_100_diff1 value: 61.46376457272238 - type: nauc_recall_at_100_max value: 75.48265142243015 - type: nauc_recall_at_100_std value: 21.223182712042178 - type: nauc_recall_at_10_diff1 value: 66.89353375308997 - type: nauc_recall_at_10_max value: 70.06655416883785 - type: nauc_recall_at_10_std value: -11.100871879439435 - type: nauc_recall_at_1_diff1 value: 77.63067209375254 - type: nauc_recall_at_1_max value: 64.17718675702672 - type: nauc_recall_at_1_std value: -17.639521106853717 - type: nauc_recall_at_20_diff1 value: 63.98532276331878 - type: nauc_recall_at_20_max value: 71.81562599791899 - type: nauc_recall_at_20_std value: -2.696537977147695 - type: nauc_recall_at_3_diff1 value: 70.4507655865698 - type: nauc_recall_at_3_max value: 69.25705030141037 - type: nauc_recall_at_3_std value: -17.299948348202836 - type: nauc_recall_at_5_diff1 value: 69.09152857901888 - type: nauc_recall_at_5_max value: 70.35609636026405 - type: nauc_recall_at_5_std value: -15.105012139255896 - type: ndcg_at_1 value: 55.883 - type: ndcg_at_10 value: 67.067 - type: ndcg_at_100 value: 70.07 - type: ndcg_at_1000 value: 70.875 - type: ndcg_at_20 value: 68.498 - type: ndcg_at_3 value: 63.666 - type: ndcg_at_5 value: 65.40599999999999 - type: precision_at_1 value: 55.883 - type: precision_at_10 value: 7.8549999999999995 - type: precision_at_100 value: 0.928 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.2090000000000005 - type: precision_at_3 value: 23.052 - type: precision_at_5 value: 14.677999999999999 - type: recall_at_1 value: 55.861000000000004 - type: recall_at_10 value: 78.495 - type: recall_at_100 value: 92.688 - type: recall_at_1000 value: 99.02499999999999 - type: recall_at_20 value: 84.124 - type: recall_at_3 value: 69.123 - type: recall_at_5 value: 73.355 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (spa-deu) type: facebook/mlqa config: spa-deu split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 73.90299999999999 - type: map_at_1 value: 61.236000000000004 - type: map_at_10 value: 69.88799999999999 - type: map_at_100 value: 70.319 - type: map_at_1000 value: 70.341 - type: map_at_20 value: 70.16799999999999 - type: map_at_3 value: 68.104 - type: map_at_5 value: 69.164 - type: mrr_at_1 value: 61.2739571589628 - type: mrr_at_10 value: 69.92589162684993 - type: mrr_at_100 value: 70.35245455509234 - type: mrr_at_1000 value: 70.37438351396742 - type: mrr_at_20 value: 70.20247469915404 - type: mrr_at_3 value: 68.14167606163099 - type: mrr_at_5 value: 69.20142803457354 - type: nauc_map_at_1000_diff1 value: 74.70416754842327 - type: nauc_map_at_1000_max value: 65.86915994583384 - type: nauc_map_at_1000_std value: -19.04437483534443 - type: nauc_map_at_100_diff1 value: 74.70011798058674 - type: nauc_map_at_100_max value: 65.88507779167188 - type: nauc_map_at_100_std value: -19.018670970643786 - type: nauc_map_at_10_diff1 value: 74.6362126804427 - type: nauc_map_at_10_max value: 66.05733054427198 - type: nauc_map_at_10_std value: -19.034317737897354 - type: nauc_map_at_1_diff1 value: 77.24970536833601 - type: nauc_map_at_1_max value: 62.07820573048406 - type: nauc_map_at_1_std value: -20.917086586335078 - type: nauc_map_at_20_diff1 value: 74.64113920401083 - type: nauc_map_at_20_max value: 65.89991740166793 - type: nauc_map_at_20_std value: -19.09987515041243 - type: nauc_map_at_3_diff1 value: 74.6518162332119 - type: nauc_map_at_3_max value: 66.10312348194024 - type: nauc_map_at_3_std value: -18.95881457716116 - type: nauc_map_at_5_diff1 value: 74.55141020670321 - type: nauc_map_at_5_max value: 65.94345752979342 - type: nauc_map_at_5_std value: -19.453976877992304 - type: nauc_mrr_at_1000_diff1 value: 74.64458488344088 - type: nauc_mrr_at_1000_max value: 65.84575328456057 - type: nauc_mrr_at_1000_std value: -18.901614615119904 - type: nauc_mrr_at_100_diff1 value: 74.64058497924627 - type: nauc_mrr_at_100_max value: 65.86170461767928 - type: nauc_mrr_at_100_std value: -18.87601697091505 - type: nauc_mrr_at_10_diff1 value: 74.57266634464752 - type: nauc_mrr_at_10_max value: 66.03331587645152 - type: nauc_mrr_at_10_std value: -18.87888060105393 - type: nauc_mrr_at_1_diff1 value: 77.19578272647183 - type: nauc_mrr_at_1_max value: 62.05252035478773 - type: nauc_mrr_at_1_std value: -20.790530940625267 - type: nauc_mrr_at_20_diff1 value: 74.5808171250021 - type: nauc_mrr_at_20_max value: 65.87643606587798 - type: nauc_mrr_at_20_std value: -18.95476583474199 - type: nauc_mrr_at_3_diff1 value: 74.5917053289191 - type: nauc_mrr_at_3_max value: 66.08044079438714 - type: nauc_mrr_at_3_std value: -18.81168463163586 - type: nauc_mrr_at_5_diff1 value: 74.48934579694608 - type: nauc_mrr_at_5_max value: 65.91993162383771 - type: nauc_mrr_at_5_std value: -19.302710791338797 - type: nauc_ndcg_at_1000_diff1 value: 74.20191283992186 - type: nauc_ndcg_at_1000_max value: 66.60831175771229 - type: nauc_ndcg_at_1000_std value: -18.175208725175484 - type: nauc_ndcg_at_100_diff1 value: 74.07713451642955 - type: nauc_ndcg_at_100_max value: 67.02028626335476 - type: nauc_ndcg_at_100_std value: -17.36560972181693 - type: nauc_ndcg_at_10_diff1 value: 73.63235521598476 - type: nauc_ndcg_at_10_max value: 67.8118473312638 - type: nauc_ndcg_at_10_std value: -17.647560577355915 - type: nauc_ndcg_at_1_diff1 value: 77.19578272647183 - type: nauc_ndcg_at_1_max value: 62.05252035478773 - type: nauc_ndcg_at_1_std value: -20.790530940625267 - type: nauc_ndcg_at_20_diff1 value: 73.65300308228291 - type: nauc_ndcg_at_20_max value: 67.18353402731985 - type: nauc_ndcg_at_20_std value: -17.9240756389792 - type: nauc_ndcg_at_3_diff1 value: 73.73764900202292 - type: nauc_ndcg_at_3_max value: 67.60840957876889 - type: nauc_ndcg_at_3_std value: -17.962667543518933 - type: nauc_ndcg_at_5_diff1 value: 73.49040500302092 - type: nauc_ndcg_at_5_max value: 67.41251918514402 - type: nauc_ndcg_at_5_std value: -18.851877225955523 - type: nauc_precision_at_1000_diff1 value: -18.652906102973922 - type: nauc_precision_at_1000_max value: 2.1701672475574885 - type: nauc_precision_at_1000_std value: 61.713411950188835 - type: nauc_precision_at_100_diff1 value: 62.37565302288498 - type: nauc_precision_at_100_max value: 76.96921843049006 - type: nauc_precision_at_100_std value: 19.152009040219678 - type: nauc_precision_at_10_diff1 value: 68.14047344105212 - type: nauc_precision_at_10_max value: 77.7177273849099 - type: nauc_precision_at_10_std value: -9.124325941493698 - type: nauc_precision_at_1_diff1 value: 77.19578272647183 - type: nauc_precision_at_1_max value: 62.05252035478773 - type: nauc_precision_at_1_std value: -20.790530940625267 - type: nauc_precision_at_20_diff1 value: 65.38487456362745 - type: nauc_precision_at_20_max value: 74.61122933443669 - type: nauc_precision_at_20_std value: -8.129775929648341 - type: nauc_precision_at_3_diff1 value: 70.45937744142297 - type: nauc_precision_at_3_max value: 73.03004233073901 - type: nauc_precision_at_3_std value: -14.246554579025158 - type: nauc_precision_at_5_diff1 value: 69.02821772428955 - type: nauc_precision_at_5_max value: 73.52949774726446 - type: nauc_precision_at_5_std value: -16.355747231517757 - type: nauc_recall_at_1000_diff1 value: 35.804192824985755 - type: nauc_recall_at_1000_max value: 61.367785756485894 - type: nauc_recall_at_1000_std value: 54.01380822466869 - type: nauc_recall_at_100_diff1 value: 67.96210883597479 - type: nauc_recall_at_100_max value: 82.38124823732169 - type: nauc_recall_at_100_std value: 16.814922595309966 - type: nauc_recall_at_10_diff1 value: 68.21964459634341 - type: nauc_recall_at_10_max value: 77.68301934858845 - type: nauc_recall_at_10_std value: -9.430792913885066 - type: nauc_recall_at_1_diff1 value: 77.24970536833601 - type: nauc_recall_at_1_max value: 62.07820573048406 - type: nauc_recall_at_1_std value: -20.917086586335078 - type: nauc_recall_at_20_diff1 value: 66.60569906579487 - type: nauc_recall_at_20_max value: 75.66163186604354 - type: nauc_recall_at_20_std value: -9.09826205489828 - type: nauc_recall_at_3_diff1 value: 70.52323701841641 - type: nauc_recall_at_3_max value: 73.03478107411232 - type: nauc_recall_at_3_std value: -14.432325989967962 - type: nauc_recall_at_5_diff1 value: 69.08521261524373 - type: nauc_recall_at_5_max value: 73.51150270382094 - type: nauc_recall_at_5_std value: -16.569387503524368 - type: ndcg_at_1 value: 61.273999999999994 - type: ndcg_at_10 value: 73.90299999999999 - type: ndcg_at_100 value: 75.983 - type: ndcg_at_1000 value: 76.488 - type: ndcg_at_20 value: 74.921 - type: ndcg_at_3 value: 70.277 - type: ndcg_at_5 value: 72.172 - type: precision_at_1 value: 61.273999999999994 - type: precision_at_10 value: 8.641 - type: precision_at_100 value: 0.962 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.524 - type: precision_at_3 value: 25.517 - type: precision_at_5 value: 16.223000000000003 - type: recall_at_1 value: 61.236000000000004 - type: recall_at_10 value: 86.37700000000001 - type: recall_at_100 value: 96.054 - type: recall_at_1000 value: 99.887 - type: recall_at_20 value: 90.398 - type: recall_at_3 value: 76.51299999999999 - type: recall_at_5 value: 81.07900000000001 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (spa-spa) type: facebook/mlqa config: spa-spa split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 68.632 - type: map_at_1 value: 57.046 - type: map_at_10 value: 64.869 - type: map_at_100 value: 65.384 - type: map_at_1000 value: 65.413 - type: map_at_20 value: 65.185 - type: map_at_3 value: 63.178 - type: map_at_5 value: 64.12 - type: mrr_at_1 value: 57.05579889544848 - type: mrr_at_10 value: 64.8806425382317 - type: mrr_at_100 value: 65.39469233244084 - type: mrr_at_1000 value: 65.42342199403159 - type: mrr_at_20 value: 65.19634815919534 - type: mrr_at_3 value: 63.18796419729591 - type: mrr_at_5 value: 64.13159398209874 - type: nauc_map_at_1000_diff1 value: 73.23803038674018 - type: nauc_map_at_1000_max value: 67.44156201421714 - type: nauc_map_at_1000_std value: -8.60143026450049 - type: nauc_map_at_100_diff1 value: 73.22575613034235 - type: nauc_map_at_100_max value: 67.44735143420195 - type: nauc_map_at_100_std value: -8.576905069492895 - type: nauc_map_at_10_diff1 value: 73.11950129610865 - type: nauc_map_at_10_max value: 67.45107232305055 - type: nauc_map_at_10_std value: -8.799837857015392 - type: nauc_map_at_1_diff1 value: 76.18354072047988 - type: nauc_map_at_1_max value: 65.03342186728786 - type: nauc_map_at_1_std value: -10.867650288695796 - type: nauc_map_at_20_diff1 value: 73.21570748770948 - type: nauc_map_at_20_max value: 67.50340321088724 - type: nauc_map_at_20_std value: -8.594057184944676 - type: nauc_map_at_3_diff1 value: 73.17239276163892 - type: nauc_map_at_3_max value: 67.06319504819103 - type: nauc_map_at_3_std value: -9.883216310270528 - type: nauc_map_at_5_diff1 value: 73.11913507367727 - type: nauc_map_at_5_max value: 67.27497019567078 - type: nauc_map_at_5_std value: -9.497714822103118 - type: nauc_mrr_at_1000_diff1 value: 73.22971233311306 - type: nauc_mrr_at_1000_max value: 67.42977229057223 - type: nauc_mrr_at_1000_std value: -8.550068702273297 - type: nauc_mrr_at_100_diff1 value: 73.21744467317815 - type: nauc_mrr_at_100_max value: 67.43557491068093 - type: nauc_mrr_at_100_std value: -8.52559275190607 - type: nauc_mrr_at_10_diff1 value: 73.11075619726137 - type: nauc_mrr_at_10_max value: 67.43889760205286 - type: nauc_mrr_at_10_std value: -8.74617232559183 - type: nauc_mrr_at_1_diff1 value: 76.17529975949547 - type: nauc_mrr_at_1_max value: 65.02401127001608 - type: nauc_mrr_at_1_std value: -10.817814457633952 - type: nauc_mrr_at_20_diff1 value: 73.20689275225138 - type: nauc_mrr_at_20_max value: 67.49111752272192 - type: nauc_mrr_at_20_std value: -8.539827528410353 - type: nauc_mrr_at_3_diff1 value: 73.16291729623958 - type: nauc_mrr_at_3_max value: 67.05300993427998 - type: nauc_mrr_at_3_std value: -9.827915885680811 - type: nauc_mrr_at_5_diff1 value: 73.11055686484109 - type: nauc_mrr_at_5_max value: 67.26299851089122 - type: nauc_mrr_at_5_std value: -9.445190276650903 - type: nauc_ndcg_at_1000_diff1 value: 72.58833638407177 - type: nauc_ndcg_at_1000_max value: 68.10447506371374 - type: nauc_ndcg_at_1000_std value: -6.910306241546282 - type: nauc_ndcg_at_100_diff1 value: 72.24524849631476 - type: nauc_ndcg_at_100_max value: 68.30659210081238 - type: nauc_ndcg_at_100_std value: -6.04305364268931 - type: nauc_ndcg_at_10_diff1 value: 71.87363502582961 - type: nauc_ndcg_at_10_max value: 68.5010009653693 - type: nauc_ndcg_at_10_std value: -7.021281296450588 - type: nauc_ndcg_at_1_diff1 value: 76.17529975949547 - type: nauc_ndcg_at_1_max value: 65.02401127001608 - type: nauc_ndcg_at_1_std value: -10.817814457633952 - type: nauc_ndcg_at_20_diff1 value: 72.21241010439327 - type: nauc_ndcg_at_20_max value: 68.71743274030551 - type: nauc_ndcg_at_20_std value: -6.186629577195946 - type: nauc_ndcg_at_3_diff1 value: 72.08204674794459 - type: nauc_ndcg_at_3_max value: 67.5958365046156 - type: nauc_ndcg_at_3_std value: -9.576418336610345 - type: nauc_ndcg_at_5_diff1 value: 71.93179095844508 - type: nauc_ndcg_at_5_max value: 68.01914639754217 - type: nauc_ndcg_at_5_std value: -8.833768332910777 - type: nauc_precision_at_1000_diff1 value: 63.0051360227489 - type: nauc_precision_at_1000_max value: 79.93532442313229 - type: nauc_precision_at_1000_std value: 52.869517607133254 - type: nauc_precision_at_100_diff1 value: 62.43301501857154 - type: nauc_precision_at_100_max value: 75.57280416668183 - type: nauc_precision_at_100_std value: 26.758300486132747 - type: nauc_precision_at_10_diff1 value: 66.29806375971134 - type: nauc_precision_at_10_max value: 73.40301413754797 - type: nauc_precision_at_10_std value: 1.9858547295235462 - type: nauc_precision_at_1_diff1 value: 76.17529975949547 - type: nauc_precision_at_1_max value: 65.02401127001608 - type: nauc_precision_at_1_std value: -10.817814457633952 - type: nauc_precision_at_20_diff1 value: 67.05111836051105 - type: nauc_precision_at_20_max value: 76.09783190824155 - type: nauc_precision_at_20_std value: 9.906010659515564 - type: nauc_precision_at_3_diff1 value: 68.44186679250453 - type: nauc_precision_at_3_max value: 69.30301351119388 - type: nauc_precision_at_3_std value: -8.566522518882348 - type: nauc_precision_at_5_diff1 value: 67.51737199297388 - type: nauc_precision_at_5_max value: 70.75887601590472 - type: nauc_precision_at_5_std value: -6.278983102710238 - type: nauc_recall_at_1000_diff1 value: 65.12360093170948 - type: nauc_recall_at_1000_max value: 82.60209843191132 - type: nauc_recall_at_1000_std value: 51.740179583368636 - type: nauc_recall_at_100_diff1 value: 62.82007697326819 - type: nauc_recall_at_100_max value: 76.04844844677562 - type: nauc_recall_at_100_std value: 26.4678415019248 - type: nauc_recall_at_10_diff1 value: 66.28557566848767 - type: nauc_recall_at_10_max value: 73.40302709828738 - type: nauc_recall_at_10_std value: 1.9224272854613582 - type: nauc_recall_at_1_diff1 value: 76.18354072047988 - type: nauc_recall_at_1_max value: 65.03342186728786 - type: nauc_recall_at_1_std value: -10.867650288695796 - type: nauc_recall_at_20_diff1 value: 67.03430451094992 - type: nauc_recall_at_20_max value: 76.09474005171319 - type: nauc_recall_at_20_std value: 9.815888637851074 - type: nauc_recall_at_3_diff1 value: 68.44411411344718 - type: nauc_recall_at_3_max value: 69.30502737137265 - type: nauc_recall_at_3_std value: -8.629526329714132 - type: nauc_recall_at_5_diff1 value: 67.51469265953514 - type: nauc_recall_at_5_max value: 70.76969893818111 - type: nauc_recall_at_5_std value: -6.325600167105444 - type: ndcg_at_1 value: 57.056 - type: ndcg_at_10 value: 68.632 - type: ndcg_at_100 value: 71.202 - type: ndcg_at_1000 value: 71.97099999999999 - type: ndcg_at_20 value: 69.785 - type: ndcg_at_3 value: 65.131 - type: ndcg_at_5 value: 66.834 - type: precision_at_1 value: 57.056 - type: precision_at_10 value: 8.044 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.251 - type: precision_at_3 value: 23.589 - type: precision_at_5 value: 14.984 - type: recall_at_1 value: 57.046 - type: recall_at_10 value: 80.423 - type: recall_at_100 value: 92.582 - type: recall_at_1000 value: 98.638 - type: recall_at_20 value: 84.993 - type: recall_at_3 value: 70.758 - type: recall_at_5 value: 74.9 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (spa-eng) type: facebook/mlqa config: spa-eng split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 68.765 - type: map_at_1 value: 56.538999999999994 - type: map_at_10 value: 64.816 - type: map_at_100 value: 65.325 - type: map_at_1000 value: 65.352 - type: map_at_20 value: 65.113 - type: map_at_3 value: 62.934999999999995 - type: map_at_5 value: 64.063 - type: mrr_at_1 value: 56.539120502569965 - type: mrr_at_10 value: 64.81561556661505 - type: mrr_at_100 value: 65.32464238613954 - type: mrr_at_1000 value: 65.35206516602133 - type: mrr_at_20 value: 65.11270445292227 - type: mrr_at_3 value: 62.935465448315384 - type: mrr_at_5 value: 64.06339234723022 - type: nauc_map_at_1000_diff1 value: 73.20701050428072 - type: nauc_map_at_1000_max value: 67.32797480614404 - type: nauc_map_at_1000_std value: -6.211540626528362 - type: nauc_map_at_100_diff1 value: 73.19497683923063 - type: nauc_map_at_100_max value: 67.33392646467817 - type: nauc_map_at_100_std value: -6.196671563900051 - type: nauc_map_at_10_diff1 value: 73.16010547612956 - type: nauc_map_at_10_max value: 67.37793741307372 - type: nauc_map_at_10_std value: -6.3443240322521675 - type: nauc_map_at_1_diff1 value: 76.63696578575964 - type: nauc_map_at_1_max value: 65.08189618178105 - type: nauc_map_at_1_std value: -8.594195451782733 - type: nauc_map_at_20_diff1 value: 73.15233479381568 - type: nauc_map_at_20_max value: 67.3679607256072 - type: nauc_map_at_20_std value: -6.175928265286352 - type: nauc_map_at_3_diff1 value: 73.14853380980746 - type: nauc_map_at_3_max value: 67.10354198073468 - type: nauc_map_at_3_std value: -7.409679815529866 - type: nauc_map_at_5_diff1 value: 73.13425961877715 - type: nauc_map_at_5_max value: 67.22452899371224 - type: nauc_map_at_5_std value: -6.895257774506354 - type: nauc_mrr_at_1000_diff1 value: 73.20701050428072 - type: nauc_mrr_at_1000_max value: 67.32797480614404 - type: nauc_mrr_at_1000_std value: -6.211540626528362 - type: nauc_mrr_at_100_diff1 value: 73.19497683923063 - type: nauc_mrr_at_100_max value: 67.33392646467817 - type: nauc_mrr_at_100_std value: -6.196671563900051 - type: nauc_mrr_at_10_diff1 value: 73.16010547612956 - type: nauc_mrr_at_10_max value: 67.37793741307372 - type: nauc_mrr_at_10_std value: -6.3443240322521675 - type: nauc_mrr_at_1_diff1 value: 76.63696578575964 - type: nauc_mrr_at_1_max value: 65.08189618178105 - type: nauc_mrr_at_1_std value: -8.594195451782733 - type: nauc_mrr_at_20_diff1 value: 73.15233479381568 - type: nauc_mrr_at_20_max value: 67.3679607256072 - type: nauc_mrr_at_20_std value: -6.175928265286352 - type: nauc_mrr_at_3_diff1 value: 73.14853380980746 - type: nauc_mrr_at_3_max value: 67.10354198073468 - type: nauc_mrr_at_3_std value: -7.409679815529866 - type: nauc_mrr_at_5_diff1 value: 73.13425961877715 - type: nauc_mrr_at_5_max value: 67.22452899371224 - type: nauc_mrr_at_5_std value: -6.895257774506354 - type: nauc_ndcg_at_1000_diff1 value: 72.44364625096874 - type: nauc_ndcg_at_1000_max value: 67.93635761141552 - type: nauc_ndcg_at_1000_std value: -4.616429464350954 - type: nauc_ndcg_at_100_diff1 value: 72.11352383758482 - type: nauc_ndcg_at_100_max value: 68.1627312575955 - type: nauc_ndcg_at_100_std value: -3.894213672131282 - type: nauc_ndcg_at_10_diff1 value: 71.8526850770812 - type: nauc_ndcg_at_10_max value: 68.41366561888562 - type: nauc_ndcg_at_10_std value: -4.472146861145989 - type: nauc_ndcg_at_1_diff1 value: 76.63696578575964 - type: nauc_ndcg_at_1_max value: 65.08189618178105 - type: nauc_ndcg_at_1_std value: -8.594195451782733 - type: nauc_ndcg_at_20_diff1 value: 71.76464418138866 - type: nauc_ndcg_at_20_max value: 68.41174963313698 - type: nauc_ndcg_at_20_std value: -3.7449762037540157 - type: nauc_ndcg_at_3_diff1 value: 71.93808990683131 - type: nauc_ndcg_at_3_max value: 67.7010029507334 - type: nauc_ndcg_at_3_std value: -6.971858419379321 - type: nauc_ndcg_at_5_diff1 value: 71.8505224811326 - type: nauc_ndcg_at_5_max value: 67.97139549500251 - type: nauc_ndcg_at_5_std value: -5.958491308070017 - type: nauc_precision_at_1000_diff1 value: 62.20956180320043 - type: nauc_precision_at_1000_max value: 82.53412670611299 - type: nauc_precision_at_1000_std value: 55.57278124999575 - type: nauc_precision_at_100_diff1 value: 62.03792857023201 - type: nauc_precision_at_100_max value: 76.77130713424538 - type: nauc_precision_at_100_std value: 26.674102719959564 - type: nauc_precision_at_10_diff1 value: 65.89798055049931 - type: nauc_precision_at_10_max value: 73.41908620140674 - type: nauc_precision_at_10_std value: 5.21818573283179 - type: nauc_precision_at_1_diff1 value: 76.63696578575964 - type: nauc_precision_at_1_max value: 65.08189618178105 - type: nauc_precision_at_1_std value: -8.594195451782733 - type: nauc_precision_at_20_diff1 value: 63.734308542647355 - type: nauc_precision_at_20_max value: 74.69578825096144 - type: nauc_precision_at_20_std value: 12.627842502659162 - type: nauc_precision_at_3_diff1 value: 67.91189666671904 - type: nauc_precision_at_3_max value: 69.64986036783209 - type: nauc_precision_at_3_std value: -5.505669087429055 - type: nauc_precision_at_5_diff1 value: 67.01880006360248 - type: nauc_precision_at_5_max value: 70.78916423358686 - type: nauc_precision_at_5_std value: -2.2273742736401045 - type: nauc_recall_at_1000_diff1 value: 62.20956180319936 - type: nauc_recall_at_1000_max value: 82.53412670611287 - type: nauc_recall_at_1000_std value: 55.57278124999549 - type: nauc_recall_at_100_diff1 value: 62.03792857023208 - type: nauc_recall_at_100_max value: 76.77130713424577 - type: nauc_recall_at_100_std value: 26.67410271995973 - type: nauc_recall_at_10_diff1 value: 65.8979805504994 - type: nauc_recall_at_10_max value: 73.41908620140678 - type: nauc_recall_at_10_std value: 5.2181857328318655 - type: nauc_recall_at_1_diff1 value: 76.63696578575964 - type: nauc_recall_at_1_max value: 65.08189618178105 - type: nauc_recall_at_1_std value: -8.594195451782733 - type: nauc_recall_at_20_diff1 value: 63.734308542647334 - type: nauc_recall_at_20_max value: 74.69578825096123 - type: nauc_recall_at_20_std value: 12.627842502658982 - type: nauc_recall_at_3_diff1 value: 67.91189666671897 - type: nauc_recall_at_3_max value: 69.64986036783203 - type: nauc_recall_at_3_std value: -5.505669087428989 - type: nauc_recall_at_5_diff1 value: 67.01880006360243 - type: nauc_recall_at_5_max value: 70.78916423358686 - type: nauc_recall_at_5_std value: -2.227374273640135 - type: ndcg_at_1 value: 56.538999999999994 - type: ndcg_at_10 value: 68.765 - type: ndcg_at_100 value: 71.314 - type: ndcg_at_1000 value: 72.038 - type: ndcg_at_20 value: 69.828 - type: ndcg_at_3 value: 64.937 - type: ndcg_at_5 value: 66.956 - type: precision_at_1 value: 56.538999999999994 - type: precision_at_10 value: 8.113 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.265 - type: precision_at_3 value: 23.567 - type: precision_at_5 value: 15.115 - type: recall_at_1 value: 56.538999999999994 - type: recall_at_10 value: 81.135 - type: recall_at_100 value: 93.223 - type: recall_at_1000 value: 98.896 - type: recall_at_20 value: 85.304 - type: recall_at_3 value: 70.702 - type: recall_at_5 value: 75.576 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (eng-deu) type: facebook/mlqa config: eng-deu split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 69.298 - type: map_at_1 value: 58.553 - type: map_at_10 value: 65.769 - type: map_at_100 value: 66.298 - type: map_at_1000 value: 66.328 - type: map_at_20 value: 66.101 - type: map_at_3 value: 64.048 - type: map_at_5 value: 65.09 - type: mrr_at_1 value: 58.564148016840235 - type: mrr_at_10 value: 65.7685997066675 - type: mrr_at_100 value: 66.29874034432214 - type: mrr_at_1000 value: 66.32844979939088 - type: mrr_at_20 value: 66.10120513957821 - type: mrr_at_3 value: 64.04830489696437 - type: mrr_at_5 value: 65.08974074894746 - type: nauc_map_at_1000_diff1 value: 76.8409650183994 - type: nauc_map_at_1000_max value: 71.86367015521367 - type: nauc_map_at_1000_std value: -14.464881539957256 - type: nauc_map_at_100_diff1 value: 76.82536521842064 - type: nauc_map_at_100_max value: 71.86811127965429 - type: nauc_map_at_100_std value: -14.441105539722244 - type: nauc_map_at_10_diff1 value: 76.75522453447859 - type: nauc_map_at_10_max value: 71.87677500176706 - type: nauc_map_at_10_std value: -14.741331625103559 - type: nauc_map_at_1_diff1 value: 79.64060747740989 - type: nauc_map_at_1_max value: 69.84278563569617 - type: nauc_map_at_1_std value: -15.936904929655832 - type: nauc_map_at_20_diff1 value: 76.78894776059715 - type: nauc_map_at_20_max value: 71.89637938044827 - type: nauc_map_at_20_std value: -14.500564106990769 - type: nauc_map_at_3_diff1 value: 77.20562577450342 - type: nauc_map_at_3_max value: 71.80578229361525 - type: nauc_map_at_3_std value: -15.344134588512201 - type: nauc_map_at_5_diff1 value: 77.00480147367867 - type: nauc_map_at_5_max value: 71.98335924076163 - type: nauc_map_at_5_std value: -15.16537653041026 - type: nauc_mrr_at_1000_diff1 value: 76.84165367691193 - type: nauc_mrr_at_1000_max value: 71.8642679499795 - type: nauc_mrr_at_1000_std value: -14.461717954593158 - type: nauc_mrr_at_100_diff1 value: 76.8263363557998 - type: nauc_mrr_at_100_max value: 71.86874522368626 - type: nauc_mrr_at_100_std value: -14.437105168707426 - type: nauc_mrr_at_10_diff1 value: 76.75522453447859 - type: nauc_mrr_at_10_max value: 71.87677500176706 - type: nauc_mrr_at_10_std value: -14.741331625103559 - type: nauc_mrr_at_1_diff1 value: 79.65642669321981 - type: nauc_mrr_at_1_max value: 69.89135358784799 - type: nauc_mrr_at_1_std value: -15.919357002229589 - type: nauc_mrr_at_20_diff1 value: 76.78883171270601 - type: nauc_mrr_at_20_max value: 71.89806887245291 - type: nauc_mrr_at_20_std value: -14.497139746907905 - type: nauc_mrr_at_3_diff1 value: 77.20562577450342 - type: nauc_mrr_at_3_max value: 71.80578229361525 - type: nauc_mrr_at_3_std value: -15.344134588512201 - type: nauc_mrr_at_5_diff1 value: 77.00480147367867 - type: nauc_mrr_at_5_max value: 71.98335924076163 - type: nauc_mrr_at_5_std value: -15.16537653041026 - type: nauc_ndcg_at_1000_diff1 value: 76.07802417817047 - type: nauc_ndcg_at_1000_max value: 72.31792804426776 - type: nauc_ndcg_at_1000_std value: -13.049160715132244 - type: nauc_ndcg_at_100_diff1 value: 75.63343849116544 - type: nauc_ndcg_at_100_max value: 72.48362076101817 - type: nauc_ndcg_at_100_std value: -12.089600993516777 - type: nauc_ndcg_at_10_diff1 value: 75.23387929929208 - type: nauc_ndcg_at_10_max value: 72.51436288271807 - type: nauc_ndcg_at_10_std value: -13.624132103038104 - type: nauc_ndcg_at_1_diff1 value: 79.65642669321981 - type: nauc_ndcg_at_1_max value: 69.89135358784799 - type: nauc_ndcg_at_1_std value: -15.919357002229589 - type: nauc_ndcg_at_20_diff1 value: 75.32926047656296 - type: nauc_ndcg_at_20_max value: 72.61254165918145 - type: nauc_ndcg_at_20_std value: -12.683157599238701 - type: nauc_ndcg_at_3_diff1 value: 76.3089337665469 - type: nauc_ndcg_at_3_max value: 72.40014674426054 - type: nauc_ndcg_at_3_std value: -15.08624226353458 - type: nauc_ndcg_at_5_diff1 value: 75.88857331641834 - type: nauc_ndcg_at_5_max value: 72.7719386827224 - type: nauc_ndcg_at_5_std value: -14.70546521089236 - type: nauc_precision_at_1000_diff1 value: 59.66563879069911 - type: nauc_precision_at_1000_max value: 74.57123562956772 - type: nauc_precision_at_1000_std value: 58.61396866718965 - type: nauc_precision_at_100_diff1 value: 62.8695896550042 - type: nauc_precision_at_100_max value: 77.81408796785 - type: nauc_precision_at_100_std value: 23.819735672317826 - type: nauc_precision_at_10_diff1 value: 68.08051625224569 - type: nauc_precision_at_10_max value: 75.14432336036869 - type: nauc_precision_at_10_std value: -7.97602345252735 - type: nauc_precision_at_1_diff1 value: 79.65642669321981 - type: nauc_precision_at_1_max value: 69.89135358784799 - type: nauc_precision_at_1_std value: -15.919357002229589 - type: nauc_precision_at_20_diff1 value: 66.7168005185165 - type: nauc_precision_at_20_max value: 76.58522761697147 - type: nauc_precision_at_20_std value: -0.17923428317323292 - type: nauc_precision_at_3_diff1 value: 73.23394851561207 - type: nauc_precision_at_3_max value: 74.32517846819215 - type: nauc_precision_at_3_std value: -14.142301336188348 - type: nauc_precision_at_5_diff1 value: 71.5666882547012 - type: nauc_precision_at_5_max value: 75.71098205440033 - type: nauc_precision_at_5_std value: -12.808362513638052 - type: nauc_recall_at_1000_diff1 value: 71.73736112325805 - type: nauc_recall_at_1000_max value: 86.70743436225898 - type: nauc_recall_at_1000_std value: 54.45802578371167 - type: nauc_recall_at_100_diff1 value: 64.07053861428128 - type: nauc_recall_at_100_max value: 78.8348308099261 - type: nauc_recall_at_100_std value: 22.72263677785103 - type: nauc_recall_at_10_diff1 value: 68.20272901407903 - type: nauc_recall_at_10_max value: 75.16315335381938 - type: nauc_recall_at_10_std value: -8.060716748913386 - type: nauc_recall_at_1_diff1 value: 79.64060747740989 - type: nauc_recall_at_1_max value: 69.84278563569617 - type: nauc_recall_at_1_std value: -15.936904929655832 - type: nauc_recall_at_20_diff1 value: 66.88206981973654 - type: nauc_recall_at_20_max value: 76.54824917595687 - type: nauc_recall_at_20_std value: -0.40294589316962287 - type: nauc_recall_at_3_diff1 value: 73.33076087258938 - type: nauc_recall_at_3_max value: 74.33763112508771 - type: nauc_recall_at_3_std value: -14.213355414905399 - type: nauc_recall_at_5_diff1 value: 71.67487623469464 - type: nauc_recall_at_5_max value: 75.72770292516316 - type: nauc_recall_at_5_std value: -12.887572274644818 - type: ndcg_at_1 value: 58.56400000000001 - type: ndcg_at_10 value: 69.298 - type: ndcg_at_100 value: 71.95899999999999 - type: ndcg_at_1000 value: 72.735 - type: ndcg_at_20 value: 70.50699999999999 - type: ndcg_at_3 value: 65.81700000000001 - type: ndcg_at_5 value: 67.681 - type: precision_at_1 value: 58.56400000000001 - type: precision_at_10 value: 8.039 - type: precision_at_100 value: 0.931 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.259 - type: precision_at_3 value: 23.65 - type: precision_at_5 value: 15.09 - type: recall_at_1 value: 58.553 - type: recall_at_10 value: 80.368 - type: recall_at_100 value: 93.013 - type: recall_at_1000 value: 99.092 - type: recall_at_20 value: 85.143 - type: recall_at_3 value: 70.928 - type: recall_at_5 value: 75.42699999999999 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (eng-spa) type: facebook/mlqa config: eng-spa split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 66.374 - type: map_at_1 value: 55.494 - type: map_at_10 value: 62.763999999999996 - type: map_at_100 value: 63.33 - type: map_at_1000 value: 63.36000000000001 - type: map_at_20 value: 63.104000000000006 - type: map_at_3 value: 61.065000000000005 - type: map_at_5 value: 62.053000000000004 - type: mrr_at_1 value: 55.49419158255571 - type: mrr_at_10 value: 62.765195140457095 - type: mrr_at_100 value: 63.33083349354529 - type: mrr_at_1000 value: 63.3611897014839 - type: mrr_at_20 value: 63.10543590095977 - type: mrr_at_3 value: 61.06455913159412 - type: mrr_at_5 value: 62.052942296705474 - type: nauc_map_at_1000_diff1 value: 75.04200018088618 - type: nauc_map_at_1000_max value: 70.49937782771909 - type: nauc_map_at_1000_std value: -5.257206317083184 - type: nauc_map_at_100_diff1 value: 75.02786834256312 - type: nauc_map_at_100_max value: 70.5016476500189 - type: nauc_map_at_100_std value: -5.228770832077681 - type: nauc_map_at_10_diff1 value: 74.9626552701647 - type: nauc_map_at_10_max value: 70.56253732243214 - type: nauc_map_at_10_std value: -5.359037281768563 - type: nauc_map_at_1_diff1 value: 78.46858307815857 - type: nauc_map_at_1_max value: 69.03908373759435 - type: nauc_map_at_1_std value: -7.479412070736642 - type: nauc_map_at_20_diff1 value: 74.98121458084796 - type: nauc_map_at_20_max value: 70.51885366822565 - type: nauc_map_at_20_std value: -5.286051287133815 - type: nauc_map_at_3_diff1 value: 75.36078454383373 - type: nauc_map_at_3_max value: 70.34997144546014 - type: nauc_map_at_3_std value: -6.663517224039184 - type: nauc_map_at_5_diff1 value: 75.0274512828238 - type: nauc_map_at_5_max value: 70.45292551591874 - type: nauc_map_at_5_std value: -6.029224488640147 - type: nauc_mrr_at_1000_diff1 value: 75.04018768469983 - type: nauc_mrr_at_1000_max value: 70.49855509132635 - type: nauc_mrr_at_1000_std value: -5.258929961409948 - type: nauc_mrr_at_100_diff1 value: 75.02605732810112 - type: nauc_mrr_at_100_max value: 70.50082584929103 - type: nauc_mrr_at_100_std value: -5.2304917988542154 - type: nauc_mrr_at_10_diff1 value: 74.96079080525713 - type: nauc_mrr_at_10_max value: 70.56167294920391 - type: nauc_mrr_at_10_std value: -5.360650630655072 - type: nauc_mrr_at_1_diff1 value: 78.46858307815857 - type: nauc_mrr_at_1_max value: 69.03908373759435 - type: nauc_mrr_at_1_std value: -7.479412070736642 - type: nauc_mrr_at_20_diff1 value: 74.97939804960517 - type: nauc_mrr_at_20_max value: 70.51804078965411 - type: nauc_mrr_at_20_std value: -5.287681954889177 - type: nauc_mrr_at_3_diff1 value: 75.36078454383373 - type: nauc_mrr_at_3_max value: 70.34997144546014 - type: nauc_mrr_at_3_std value: -6.663517224039184 - type: nauc_mrr_at_5_diff1 value: 75.0274512828238 - type: nauc_mrr_at_5_max value: 70.45292551591874 - type: nauc_mrr_at_5_std value: -6.029224488640147 - type: nauc_ndcg_at_1000_diff1 value: 74.22106834748942 - type: nauc_ndcg_at_1000_max value: 70.93625922934912 - type: nauc_ndcg_at_1000_std value: -3.4878399005946017 - type: nauc_ndcg_at_100_diff1 value: 73.74068883646733 - type: nauc_ndcg_at_100_max value: 71.02357018347472 - type: nauc_ndcg_at_100_std value: -2.462293184201324 - type: nauc_ndcg_at_10_diff1 value: 73.40967965536565 - type: nauc_ndcg_at_10_max value: 71.29379828672067 - type: nauc_ndcg_at_10_std value: -3.295547756383108 - type: nauc_ndcg_at_1_diff1 value: 78.46858307815857 - type: nauc_ndcg_at_1_max value: 69.03908373759435 - type: nauc_ndcg_at_1_std value: -7.479412070736642 - type: nauc_ndcg_at_20_diff1 value: 73.45790057693699 - type: nauc_ndcg_at_20_max value: 71.16598432419126 - type: nauc_ndcg_at_20_std value: -2.962877157646097 - type: nauc_ndcg_at_3_diff1 value: 74.30696173964847 - type: nauc_ndcg_at_3_max value: 70.79878978459556 - type: nauc_ndcg_at_3_std value: -6.297286578628299 - type: nauc_ndcg_at_5_diff1 value: 73.65858211199816 - type: nauc_ndcg_at_5_max value: 71.01122417463776 - type: nauc_ndcg_at_5_std value: -5.075990882646765 - type: nauc_precision_at_1000_diff1 value: 68.71065091972568 - type: nauc_precision_at_1000_max value: 81.38173585624777 - type: nauc_precision_at_1000_std value: 58.035497889797895 - type: nauc_precision_at_100_diff1 value: 61.93634256957017 - type: nauc_precision_at_100_max value: 74.84191770203093 - type: nauc_precision_at_100_std value: 31.3325983123831 - type: nauc_precision_at_10_diff1 value: 66.68247010944937 - type: nauc_precision_at_10_max value: 74.48773524654571 - type: nauc_precision_at_10_std value: 6.560421880785153 - type: nauc_precision_at_1_diff1 value: 78.46858307815857 - type: nauc_precision_at_1_max value: 69.03908373759435 - type: nauc_precision_at_1_std value: -7.479412070736642 - type: nauc_precision_at_20_diff1 value: 65.51592872758067 - type: nauc_precision_at_20_max value: 74.50684066823096 - type: nauc_precision_at_20_std value: 10.830479877698208 - type: nauc_precision_at_3_diff1 value: 70.89587884861588 - type: nauc_precision_at_3_max value: 72.25310558370424 - type: nauc_precision_at_3_std value: -5.0796100900749765 - type: nauc_precision_at_5_diff1 value: 68.71885719845497 - type: nauc_precision_at_5_max value: 73.02601751485672 - type: nauc_precision_at_5_std value: -1.4382681421626857 - type: nauc_recall_at_1000_diff1 value: 71.95510299834734 - type: nauc_recall_at_1000_max value: 84.03647166092985 - type: nauc_recall_at_1000_std value: 56.87490604776847 - type: nauc_recall_at_100_diff1 value: 62.446624924715955 - type: nauc_recall_at_100_max value: 75.25666892464507 - type: nauc_recall_at_100_std value: 31.068789794554686 - type: nauc_recall_at_10_diff1 value: 66.70676336328988 - type: nauc_recall_at_10_max value: 74.4963699656397 - type: nauc_recall_at_10_std value: 6.57498399706916 - type: nauc_recall_at_1_diff1 value: 78.46858307815857 - type: nauc_recall_at_1_max value: 69.03908373759435 - type: nauc_recall_at_1_std value: -7.479412070736642 - type: nauc_recall_at_20_diff1 value: 65.54082767974772 - type: nauc_recall_at_20_max value: 74.5111529838772 - type: nauc_recall_at_20_std value: 10.84574829707354 - type: nauc_recall_at_3_diff1 value: 70.89587884861584 - type: nauc_recall_at_3_max value: 72.25310558370421 - type: nauc_recall_at_3_std value: -5.07961009007491 - type: nauc_recall_at_5_diff1 value: 68.71885719845501 - type: nauc_recall_at_5_max value: 73.02601751485666 - type: nauc_recall_at_5_std value: -1.4382681421626995 - type: ndcg_at_1 value: 55.494 - type: ndcg_at_10 value: 66.374 - type: ndcg_at_100 value: 69.254 - type: ndcg_at_1000 value: 70.136 - type: ndcg_at_20 value: 67.599 - type: ndcg_at_3 value: 62.863 - type: ndcg_at_5 value: 64.644 - type: precision_at_1 value: 55.494 - type: precision_at_10 value: 7.776 - type: precision_at_100 value: 0.9159999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.1290000000000004 - type: precision_at_3 value: 22.688 - type: precision_at_5 value: 14.477 - type: recall_at_1 value: 55.494 - type: recall_at_10 value: 77.747 - type: recall_at_100 value: 91.535 - type: recall_at_1000 value: 98.619 - type: recall_at_20 value: 82.565 - type: recall_at_3 value: 68.063 - type: recall_at_5 value: 72.386 - task: type: Retrieval dataset: name: MTEB MLQARetrieval (eng-eng) type: facebook/mlqa config: eng-eng split: test revision: 397ed406c1a7902140303e7faf60fff35b58d285 metrics: - type: main_score value: 64.723 - type: map_at_1 value: 54.308 - type: map_at_10 value: 61.26200000000001 - type: map_at_100 value: 61.82299999999999 - type: map_at_1000 value: 61.856 - type: map_at_20 value: 61.575 - type: map_at_3 value: 59.565 - type: map_at_5 value: 60.561 - type: mrr_at_1 value: 54.31704368848212 - type: mrr_at_10 value: 61.26520216098834 - type: mrr_at_100 value: 61.82588321127103 - type: mrr_at_1000 value: 61.859333030574334 - type: mrr_at_20 value: 61.57780339921337 - type: mrr_at_3 value: 59.569446842801646 - type: mrr_at_5 value: 60.56323029989004 - type: nauc_map_at_1000_diff1 value: 74.21413722468635 - type: nauc_map_at_1000_max value: 70.41741227882316 - type: nauc_map_at_1000_std value: -2.5438707209848506 - type: nauc_map_at_100_diff1 value: 74.19812315947975 - type: nauc_map_at_100_max value: 70.41589146728445 - type: nauc_map_at_100_std value: -2.5336117059429553 - type: nauc_map_at_10_diff1 value: 74.21810561152937 - type: nauc_map_at_10_max value: 70.48816115200171 - type: nauc_map_at_10_std value: -2.7443834681406734 - type: nauc_map_at_1_diff1 value: 77.69378738778958 - type: nauc_map_at_1_max value: 68.64652310701173 - type: nauc_map_at_1_std value: -4.667071946448379 - type: nauc_map_at_20_diff1 value: 74.16105697562438 - type: nauc_map_at_20_max value: 70.42491994631179 - type: nauc_map_at_20_std value: -2.6070416022440472 - type: nauc_map_at_3_diff1 value: 74.60449392878863 - type: nauc_map_at_3_max value: 70.39888609914269 - type: nauc_map_at_3_std value: -3.5401151125723986 - type: nauc_map_at_5_diff1 value: 74.2423420992663 - type: nauc_map_at_5_max value: 70.36574501826757 - type: nauc_map_at_5_std value: -3.2707393116898964 - type: nauc_mrr_at_1000_diff1 value: 74.21029843731323 - type: nauc_mrr_at_1000_max value: 70.43020492688913 - type: nauc_mrr_at_1000_std value: -2.526895582202081 - type: nauc_mrr_at_100_diff1 value: 74.19440960479243 - type: nauc_mrr_at_100_max value: 70.4288998824232 - type: nauc_mrr_at_100_std value: -2.5160929945118107 - type: nauc_mrr_at_10_diff1 value: 74.2141357266166 - type: nauc_mrr_at_10_max value: 70.5005683347807 - type: nauc_mrr_at_10_std value: -2.727154557882168 - type: nauc_mrr_at_1_diff1 value: 77.69891248239793 - type: nauc_mrr_at_1_max value: 68.68255231164922 - type: nauc_mrr_at_1_std value: -4.630226727154317 - type: nauc_mrr_at_20_diff1 value: 74.15705434409723 - type: nauc_mrr_at_20_max value: 70.43741835972747 - type: nauc_mrr_at_20_std value: -2.5896756472464495 - type: nauc_mrr_at_3_diff1 value: 74.5981844349412 - type: nauc_mrr_at_3_max value: 70.41834937080564 - type: nauc_mrr_at_3_std value: -3.5161656408031163 - type: nauc_mrr_at_5_diff1 value: 74.23847535424844 - type: nauc_mrr_at_5_max value: 70.37763810013656 - type: nauc_mrr_at_5_std value: -3.2560955164581733 - type: nauc_ndcg_at_1000_diff1 value: 73.20994496725493 - type: nauc_ndcg_at_1000_max value: 70.8903016277125 - type: nauc_ndcg_at_1000_std value: -0.625772298462309 - type: nauc_ndcg_at_100_diff1 value: 72.6847141682645 - type: nauc_ndcg_at_100_max value: 70.86564422034162 - type: nauc_ndcg_at_100_std value: -0.07195786766326141 - type: nauc_ndcg_at_10_diff1 value: 72.78806493754281 - type: nauc_ndcg_at_10_max value: 71.21957067926769 - type: nauc_ndcg_at_10_std value: -1.2760418313382227 - type: nauc_ndcg_at_1_diff1 value: 77.69891248239793 - type: nauc_ndcg_at_1_max value: 68.68255231164922 - type: nauc_ndcg_at_1_std value: -4.630226727154317 - type: nauc_ndcg_at_20_diff1 value: 72.52082440882546 - type: nauc_ndcg_at_20_max value: 70.98185004796734 - type: nauc_ndcg_at_20_std value: -0.6908280874815464 - type: nauc_ndcg_at_3_diff1 value: 73.59870660843939 - type: nauc_ndcg_at_3_max value: 70.94391957288654 - type: nauc_ndcg_at_3_std value: -3.147723179140428 - type: nauc_ndcg_at_5_diff1 value: 72.90122868193457 - type: nauc_ndcg_at_5_max value: 70.89376368965165 - type: nauc_ndcg_at_5_std value: -2.6451807385626744 - type: nauc_precision_at_1000_diff1 value: 58.14737201864067 - type: nauc_precision_at_1000_max value: 78.79011251144826 - type: nauc_precision_at_1000_std value: 59.98985420476577 - type: nauc_precision_at_100_diff1 value: 59.21069121644552 - type: nauc_precision_at_100_max value: 73.00557835912306 - type: nauc_precision_at_100_std value: 26.85027406282173 - type: nauc_precision_at_10_diff1 value: 66.8760831023675 - type: nauc_precision_at_10_max value: 74.21167950452596 - type: nauc_precision_at_10_std value: 5.453652499335947 - type: nauc_precision_at_1_diff1 value: 77.69891248239793 - type: nauc_precision_at_1_max value: 68.68255231164922 - type: nauc_precision_at_1_std value: -4.630226727154317 - type: nauc_precision_at_20_diff1 value: 64.3118559132602 - type: nauc_precision_at_20_max value: 73.33078184673825 - type: nauc_precision_at_20_std value: 9.993299523049402 - type: nauc_precision_at_3_diff1 value: 70.38667185155593 - type: nauc_precision_at_3_max value: 72.66495006030951 - type: nauc_precision_at_3_std value: -1.8532839591326276 - type: nauc_precision_at_5_diff1 value: 68.12161337583686 - type: nauc_precision_at_5_max value: 72.65644960375046 - type: nauc_precision_at_5_std value: -0.33317164167012875 - type: nauc_recall_at_1000_diff1 value: 61.63204394739985 - type: nauc_recall_at_1000_max value: 81.77241537319897 - type: nauc_recall_at_1000_std value: 58.44841544062308 - type: nauc_recall_at_100_diff1 value: 59.72072697224705 - type: nauc_recall_at_100_max value: 73.28519507061553 - type: nauc_recall_at_100_std value: 26.27318390763456 - type: nauc_recall_at_10_diff1 value: 66.9757135465418 - type: nauc_recall_at_10_max value: 74.21919493374149 - type: nauc_recall_at_10_std value: 5.323369605377166 - type: nauc_recall_at_1_diff1 value: 77.69378738778958 - type: nauc_recall_at_1_max value: 68.64652310701173 - type: nauc_recall_at_1_std value: -4.667071946448379 - type: nauc_recall_at_20_diff1 value: 64.42290081731899 - type: nauc_recall_at_20_max value: 73.3358289439033 - type: nauc_recall_at_20_std value: 9.846598361586073 - type: nauc_recall_at_3_diff1 value: 70.41211290964785 - type: nauc_recall_at_3_max value: 72.64451776775402 - type: nauc_recall_at_3_std value: -1.916280959835826 - type: nauc_recall_at_5_diff1 value: 68.20695272727916 - type: nauc_recall_at_5_max value: 72.66404224006101 - type: nauc_recall_at_5_std value: -0.431125323007886 - type: ndcg_at_1 value: 54.31700000000001 - type: ndcg_at_10 value: 64.723 - type: ndcg_at_100 value: 67.648 - type: ndcg_at_1000 value: 68.619 - type: ndcg_at_20 value: 65.85499999999999 - type: ndcg_at_3 value: 61.244 - type: ndcg_at_5 value: 63.038000000000004 - type: precision_at_1 value: 54.31700000000001 - type: precision_at_10 value: 7.564 - type: precision_at_100 value: 0.898 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.005 - type: precision_at_3 value: 22.034000000000002 - type: precision_at_5 value: 14.093 - type: recall_at_1 value: 54.308 - type: recall_at_10 value: 75.622 - type: recall_at_100 value: 89.744 - type: recall_at_1000 value: 97.539 - type: recall_at_20 value: 80.085 - type: recall_at_3 value: 66.09 - type: recall_at_5 value: 70.446 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P (de) type: reciTAL/mlsum config: de split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: main_score value: 41.267647761702854 - type: v_measure value: 41.267647761702854 - type: v_measure_std value: 10.93390895077248 - type: main_score value: 40.07927325071353 - type: v_measure value: 40.07927325071353 - type: v_measure_std value: 9.296680835266145 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P (fr) type: reciTAL/mlsum config: fr split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: main_score value: 44.68714862333979 - type: v_measure value: 44.68714862333979 - type: v_measure_std value: 1.811036989797814 - type: main_score value: 44.88484854069901 - type: v_measure value: 44.88484854069901 - type: v_measure_std value: 2.3704247819781843 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P (ru) type: reciTAL/mlsum config: ru split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: main_score value: 41.92518785753813 - type: v_measure value: 41.92518785753813 - type: v_measure_std value: 5.9356661900220775 - type: main_score value: 43.97657450929179 - type: v_measure value: 43.97657450929179 - type: v_measure_std value: 6.087547931333613 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P (es) type: reciTAL/mlsum config: es split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: main_score value: 48.69875719812033 - type: v_measure value: 48.69875719812033 - type: v_measure_std value: 1.204253881950113 - type: main_score value: 48.41108671948728 - type: v_measure value: 48.41108671948728 - type: v_measure_std value: 1.3848320630151243 - task: type: Reranking dataset: name: MTEB MMarcoReranking (default) type: C-MTEB/Mmarco-reranking config: default split: dev revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 metrics: - type: map value: 21.050447576170395 - type: mrr value: 20.201984126984126 - type: main_score value: 21.050447576170395 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval (default) type: C-MTEB/MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: main_score value: 79.687 - type: map_at_1 value: 66.872 - type: map_at_10 value: 75.949 - type: map_at_100 value: 76.25 - type: map_at_1000 value: 76.259 - type: map_at_20 value: 76.145 - type: map_at_3 value: 74.01299999999999 - type: map_at_5 value: 75.232 - type: mrr_at_1 value: 69.18338108882521 - type: mrr_at_10 value: 76.5424227952881 - type: mrr_at_100 value: 76.8019342792628 - type: mrr_at_1000 value: 76.81002278342808 - type: mrr_at_20 value: 76.7115234815896 - type: mrr_at_3 value: 74.83046800382044 - type: mrr_at_5 value: 75.88490926456515 - type: nauc_map_at_1000_diff1 value: 78.06933310424179 - type: nauc_map_at_1000_max value: 49.392948209665896 - type: nauc_map_at_1000_std value: -15.126109322591166 - type: nauc_map_at_100_diff1 value: 78.06612779298378 - type: nauc_map_at_100_max value: 49.40761618630397 - type: nauc_map_at_100_std value: -15.099282408159349 - type: nauc_map_at_10_diff1 value: 77.94565685470538 - type: nauc_map_at_10_max value: 49.50559610363201 - type: nauc_map_at_10_std value: -15.182130695916355 - type: nauc_map_at_1_diff1 value: 79.84814509858211 - type: nauc_map_at_1_max value: 40.78978466656547 - type: nauc_map_at_1_std value: -19.96189264026715 - type: nauc_map_at_20_diff1 value: 78.03597839981245 - type: nauc_map_at_20_max value: 49.49477427223376 - type: nauc_map_at_20_std value: -15.084990000838378 - type: nauc_map_at_3_diff1 value: 78.0637014655507 - type: nauc_map_at_3_max value: 48.63214001973341 - type: nauc_map_at_3_std value: -17.093950563306596 - type: nauc_map_at_5_diff1 value: 77.94068229240348 - type: nauc_map_at_5_max value: 49.38930719689204 - type: nauc_map_at_5_std value: -15.9919454201954 - type: nauc_mrr_at_1000_diff1 value: 78.34582398092816 - type: nauc_mrr_at_1000_max value: 49.623566992784156 - type: nauc_mrr_at_1000_std value: -14.381347765493265 - type: nauc_mrr_at_100_diff1 value: 78.3429966714221 - type: nauc_mrr_at_100_max value: 49.63684922240546 - type: nauc_mrr_at_100_std value: -14.354914066301236 - type: nauc_mrr_at_10_diff1 value: 78.2208070219624 - type: nauc_mrr_at_10_max value: 49.77720536573364 - type: nauc_mrr_at_10_std value: -14.316233764741812 - type: nauc_mrr_at_1_diff1 value: 80.22305496572142 - type: nauc_mrr_at_1_max value: 44.30231210192536 - type: nauc_mrr_at_1_std value: -18.942549914934492 - type: nauc_mrr_at_20_diff1 value: 78.31006724240147 - type: nauc_mrr_at_20_max value: 49.72338465276142 - type: nauc_mrr_at_20_std value: -14.30722621948953 - type: nauc_mrr_at_3_diff1 value: 78.39832634634523 - type: nauc_mrr_at_3_max value: 49.24985961036677 - type: nauc_mrr_at_3_std value: -15.966286866763191 - type: nauc_mrr_at_5_diff1 value: 78.2406507247798 - type: nauc_mrr_at_5_max value: 49.71276359754787 - type: nauc_mrr_at_5_std value: -14.979526226149698 - type: nauc_ndcg_at_1000_diff1 value: 77.74892471071016 - type: nauc_ndcg_at_1000_max value: 51.11543344053061 - type: nauc_ndcg_at_1000_std value: -12.208878737005096 - type: nauc_ndcg_at_100_diff1 value: 77.67462502211228 - type: nauc_ndcg_at_100_max value: 51.593977338939034 - type: nauc_ndcg_at_100_std value: -11.312126179513802 - type: nauc_ndcg_at_10_diff1 value: 77.0571291760012 - type: nauc_ndcg_at_10_max value: 52.35435572808972 - type: nauc_ndcg_at_10_std value: -11.33242546164059 - type: nauc_ndcg_at_1_diff1 value: 80.22305496572142 - type: nauc_ndcg_at_1_max value: 44.30231210192536 - type: nauc_ndcg_at_1_std value: -18.942549914934492 - type: nauc_ndcg_at_20_diff1 value: 77.4141216117471 - type: nauc_ndcg_at_20_max value: 52.340600871365375 - type: nauc_ndcg_at_20_std value: -10.989010161550912 - type: nauc_ndcg_at_3_diff1 value: 77.43971989259062 - type: nauc_ndcg_at_3_max value: 50.59251358320663 - type: nauc_ndcg_at_3_std value: -15.59337960636058 - type: nauc_ndcg_at_5_diff1 value: 77.12174287031847 - type: nauc_ndcg_at_5_max value: 51.97108510288907 - type: nauc_ndcg_at_5_std value: -13.474902612427167 - type: nauc_precision_at_1000_diff1 value: -19.36793534929367 - type: nauc_precision_at_1000_max value: 11.803383262344036 - type: nauc_precision_at_1000_std value: 24.304436015177046 - type: nauc_precision_at_100_diff1 value: -6.273790806909921 - type: nauc_precision_at_100_max value: 23.372606271300747 - type: nauc_precision_at_100_std value: 29.085768971612342 - type: nauc_precision_at_10_diff1 value: 21.67045907336595 - type: nauc_precision_at_10_max value: 41.68948432407223 - type: nauc_precision_at_10_std value: 17.837055074458092 - type: nauc_precision_at_1_diff1 value: 80.22305496572142 - type: nauc_precision_at_1_max value: 44.30231210192536 - type: nauc_precision_at_1_std value: -18.942549914934492 - type: nauc_precision_at_20_diff1 value: 12.577671896684803 - type: nauc_precision_at_20_max value: 37.44944702246691 - type: nauc_precision_at_20_std value: 23.635897665206087 - type: nauc_precision_at_3_diff1 value: 47.165335112814056 - type: nauc_precision_at_3_max value: 47.0458691263379 - type: nauc_precision_at_3_std value: -3.3181861146890217 - type: nauc_precision_at_5_diff1 value: 35.406205343514806 - type: nauc_precision_at_5_max value: 45.56549449285401 - type: nauc_precision_at_5_std value: 5.612378074562386 - type: nauc_recall_at_1000_diff1 value: 72.32762520815842 - type: nauc_recall_at_1000_max value: 85.64979256307343 - type: nauc_recall_at_1000_std value: 73.61925297037476 - type: nauc_recall_at_100_diff1 value: 72.31946328709962 - type: nauc_recall_at_100_max value: 83.76576070068353 - type: nauc_recall_at_100_std value: 57.39376538662535 - type: nauc_recall_at_10_diff1 value: 69.51307788072499 - type: nauc_recall_at_10_max value: 69.60124733654142 - type: nauc_recall_at_10_std value: 13.483540424716892 - type: nauc_recall_at_1_diff1 value: 79.84814509858211 - type: nauc_recall_at_1_max value: 40.78978466656547 - type: nauc_recall_at_1_std value: -19.96189264026715 - type: nauc_recall_at_20_diff1 value: 70.92168324710599 - type: nauc_recall_at_20_max value: 76.09106252420084 - type: nauc_recall_at_20_std value: 25.406842300761447 - type: nauc_recall_at_3_diff1 value: 74.1212680517145 - type: nauc_recall_at_3_max value: 56.24921832879403 - type: nauc_recall_at_3_std value: -11.55542913578436 - type: nauc_recall_at_5_diff1 value: 72.31262959872993 - type: nauc_recall_at_5_max value: 62.761214896697915 - type: nauc_recall_at_5_std value: -3.280167584070396 - type: ndcg_at_1 value: 69.18299999999999 - type: ndcg_at_10 value: 79.687 - type: ndcg_at_100 value: 81.062 - type: ndcg_at_1000 value: 81.312 - type: ndcg_at_20 value: 80.34599999999999 - type: ndcg_at_3 value: 75.98700000000001 - type: ndcg_at_5 value: 78.039 - type: precision_at_1 value: 69.18299999999999 - type: precision_at_10 value: 9.636 - type: precision_at_100 value: 1.0330000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 4.958 - type: precision_at_3 value: 28.515 - type: precision_at_5 value: 18.201 - type: recall_at_1 value: 66.872 - type: recall_at_10 value: 90.688 - type: recall_at_100 value: 96.99 - type: recall_at_1000 value: 98.958 - type: recall_at_20 value: 93.21199999999999 - type: recall_at_3 value: 80.84599999999999 - type: recall_at_5 value: 85.732 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 21.861 - type: map_at_10 value: 34.008 - type: map_at_100 value: 35.174 - type: map_at_1000 value: 35.224 - type: map_at_20 value: 34.705999999999996 - type: map_at_3 value: 30.209000000000003 - type: map_at_5 value: 32.351 - type: mrr_at_1 value: 22.493 - type: mrr_at_10 value: 34.583999999999996 - type: mrr_at_100 value: 35.691 - type: mrr_at_1000 value: 35.736000000000004 - type: mrr_at_20 value: 35.257 - type: mrr_at_3 value: 30.85 - type: mrr_at_5 value: 32.962 - type: ndcg_at_1 value: 22.493 - type: ndcg_at_10 value: 40.815 - type: ndcg_at_100 value: 46.483999999999995 - type: ndcg_at_1000 value: 47.73 - type: ndcg_at_20 value: 43.302 - type: ndcg_at_3 value: 33.056000000000004 - type: ndcg_at_5 value: 36.879 - type: precision_at_1 value: 22.493 - type: precision_at_10 value: 6.465999999999999 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.752 - type: precision_at_3 value: 14.069 - type: precision_at_5 value: 10.384 - type: recall_at_1 value: 21.861 - type: recall_at_10 value: 61.781 - type: recall_at_100 value: 88.095 - type: recall_at_1000 value: 97.625 - type: recall_at_20 value: 71.44500000000001 - type: recall_at_3 value: 40.653 - type: recall_at_5 value: 49.841 - type: main_score value: 40.815 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 97.4874601003192 - type: f1 value: 97.19067544931094 - type: f1_weighted value: 97.49331776181019 - type: main_score value: 97.4874601003192 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (de) type: mteb/mtop_domain config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 96.89489997182305 - type: f1 value: 96.51138586512977 - type: f1_weighted value: 96.89723065967186 - type: main_score value: 96.89489997182305 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (es) type: mteb/mtop_domain config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 97.17144763175452 - type: f1 value: 96.81785681878274 - type: f1_weighted value: 97.1778974586874 - type: main_score value: 97.17144763175452 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (fr) type: mteb/mtop_domain config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 96.30128405887879 - type: f1 value: 95.94555923088487 - type: f1_weighted value: 96.30399416794926 - type: main_score value: 96.30128405887879 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 84.53488372093022 - type: f1 value: 61.77995074251401 - type: f1_weighted value: 86.8005170485101 - type: main_score value: 84.53488372093022 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (de) type: mteb/mtop_intent config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 80.79459002535924 - type: f1 value: 56.08938302001448 - type: f1_weighted value: 83.66582131948252 - type: main_score value: 80.79459002535924 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (es) type: mteb/mtop_intent config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 84.7765176784523 - type: f1 value: 61.39860057885528 - type: f1_weighted value: 86.94881745670745 - type: main_score value: 84.7765176784523 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (fr) type: mteb/mtop_intent config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 82.2079549013467 - type: f1 value: 59.90260478749016 - type: f1_weighted value: 84.36861708593257 - type: main_score value: 82.2079549013467 - task: type: Classification dataset: name: MTEB MasakhaNEWSClassification (eng) type: mteb/masakhanews config: eng split: test revision: 18193f187b92da67168c655c9973a165ed9593dd metrics: - type: accuracy value: 74.98945147679325 - type: f1 value: 74.3157483560261 - type: f1_weighted value: 75.01179008904884 - type: main_score value: 74.98945147679325 - task: type: Classification dataset: name: MTEB MasakhaNEWSClassification (fra) type: mteb/masakhanews config: fra split: test revision: 18193f187b92da67168c655c9973a165ed9593dd metrics: - type: accuracy value: 74.02843601895735 - type: f1 value: 70.40326349620732 - type: f1_weighted value: 74.6596277063484 - type: main_score value: 74.02843601895735 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (amh) type: masakhane/masakhanews config: amh split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 69.45780291725053 - type: v_measure value: 69.45780291725053 - type: v_measure_std value: 36.54340055904091 - type: main_score value: 60.95132147787602 - type: v_measure value: 60.95132147787602 - type: v_measure_std value: 37.330148394033365 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (eng) type: masakhane/masakhanews config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 64.88996119332239 - type: v_measure value: 64.88996119332239 - type: v_measure_std value: 30.017223408197268 - type: main_score value: 60.974810831426595 - type: v_measure value: 60.974810831426595 - type: v_measure_std value: 24.934675467507827 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (fra) type: masakhane/masakhanews config: fra split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 42.362383958691666 - type: v_measure value: 42.362383958691666 - type: v_measure_std value: 37.61076788039063 - type: main_score value: 44.479206673553335 - type: v_measure value: 44.479206673553335 - type: v_measure_std value: 32.58254804499339 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (hau) type: masakhane/masakhanews config: hau split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 43.29201252405562 - type: v_measure value: 43.29201252405562 - type: v_measure_std value: 34.31987945146255 - type: main_score value: 26.4742082741682 - type: v_measure value: 26.4742082741682 - type: v_measure_std value: 22.344929192323097 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (ibo) type: masakhane/masakhanews config: ibo split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 33.59926542995238 - type: v_measure value: 33.59926542995238 - type: v_measure_std value: 35.70048601084112 - type: main_score value: 38.906129911741985 - type: v_measure value: 38.906129911741985 - type: v_measure_std value: 34.785601792668444 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (lin) type: masakhane/masakhanews config: lin split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 67.58487601893106 - type: v_measure value: 67.58487601893106 - type: v_measure_std value: 35.16784970777931 - type: main_score value: 62.60982020876592 - type: v_measure value: 62.60982020876592 - type: v_measure_std value: 40.7368955715045 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (lug) type: masakhane/masakhanews config: lug split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 50.01220872023533 - type: v_measure value: 50.01220872023533 - type: v_measure_std value: 41.87411574676182 - type: main_score value: 42.70424106365967 - type: v_measure value: 42.70424106365967 - type: v_measure_std value: 46.80946241135087 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (orm) type: masakhane/masakhanews config: orm split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 29.007847502598317 - type: v_measure value: 29.007847502598317 - type: v_measure_std value: 38.374997395079994 - type: main_score value: 28.609942199922322 - type: v_measure value: 28.609942199922322 - type: v_measure_std value: 38.46685040191088 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (pcm) type: masakhane/masakhanews config: pcm split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 79.13520228554611 - type: v_measure value: 79.13520228554611 - type: v_measure_std value: 18.501843848275183 - type: main_score value: 76.83901348810822 - type: v_measure value: 76.83901348810822 - type: v_measure_std value: 17.57617141269189 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (run) type: masakhane/masakhanews config: run split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 60.317213909746656 - type: v_measure value: 60.317213909746656 - type: v_measure_std value: 36.500281823747386 - type: main_score value: 46.89757547846193 - type: v_measure value: 46.89757547846193 - type: v_measure_std value: 44.58903590203438 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (sna) type: masakhane/masakhanews config: sna split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 59.395277358240946 - type: v_measure value: 59.395277358240946 - type: v_measure_std value: 37.500916816164654 - type: main_score value: 55.37185207068829 - type: v_measure value: 55.37185207068829 - type: v_measure_std value: 36.944574863543004 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (som) type: masakhane/masakhanews config: som split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 38.18638688704302 - type: v_measure value: 38.18638688704302 - type: v_measure_std value: 35.453681137564466 - type: main_score value: 37.44211021681754 - type: v_measure value: 37.44211021681754 - type: v_measure_std value: 33.41469994463241 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (swa) type: masakhane/masakhanews config: swa split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 29.49230755729658 - type: v_measure value: 29.49230755729658 - type: v_measure_std value: 28.284313285264645 - type: main_score value: 26.020680621216062 - type: v_measure value: 26.020680621216062 - type: v_measure_std value: 25.480037522570413 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (tir) type: masakhane/masakhanews config: tir split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 60.632258622750115 - type: v_measure value: 60.632258622750115 - type: v_measure_std value: 34.429711214740564 - type: main_score value: 63.74306846771303 - type: v_measure value: 63.74306846771303 - type: v_measure_std value: 32.19119631078685 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (xho) type: masakhane/masakhanews config: xho split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 41.76322918806381 - type: v_measure value: 41.76322918806381 - type: v_measure_std value: 36.43245296200775 - type: main_score value: 24.580890519243777 - type: v_measure value: 24.580890519243777 - type: v_measure_std value: 37.941836363967106 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (yor) type: masakhane/masakhanews config: yor split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: main_score value: 33.17083910808645 - type: v_measure value: 33.17083910808645 - type: v_measure_std value: 34.87547994284835 - type: main_score value: 43.63458888828314 - type: v_measure value: 43.63458888828314 - type: v_measure_std value: 31.28169350649098 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pl) type: mteb/amazon_massive_intent config: pl split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 75.37323470073974 - type: f1 value: 71.1836877753734 - type: f1_weighted value: 75.72073213955457 - type: main_score value: 75.37323470073974 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (de) type: mteb/amazon_massive_intent config: de split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 74.83523873570948 - type: f1 value: 70.72375821116886 - type: f1_weighted value: 75.20800490010755 - type: main_score value: 74.83523873570948 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (es) type: mteb/amazon_massive_intent config: es split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 75.31607262945528 - type: f1 value: 72.06063554897662 - type: f1_weighted value: 75.72438161355252 - type: main_score value: 75.31607262945528 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ru) type: mteb/amazon_massive_intent config: ru split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 76.7955615332885 - type: f1 value: 73.08099648499756 - type: f1_weighted value: 77.18482068239668 - type: main_score value: 76.7955615332885 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 77.60591795561534 - type: f1 value: 74.46676705370395 - type: f1_weighted value: 77.69888062336614 - type: main_score value: 77.60591795561534 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fr) type: mteb/amazon_massive_intent config: fr split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 76.32145258910558 - type: f1 value: 72.89824154178328 - type: f1_weighted value: 76.6539327979472 - type: main_score value: 76.32145258910558 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 73.21788836583724 - type: f1 value: 70.45594512246377 - type: f1_weighted value: 73.67862536499393 - type: main_score value: 73.21788836583724 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 80.82044384667114 - type: f1 value: 80.53217664465089 - type: f1_weighted value: 80.94535087010512 - type: main_score value: 80.82044384667114 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pl) type: mteb/amazon_massive_scenario config: pl split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 82.1049092131809 - type: f1 value: 81.55343463694733 - type: f1_weighted value: 82.33509098770782 - type: main_score value: 82.1049092131809 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (es) type: mteb/amazon_massive_scenario config: es split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 82.58238063214526 - type: f1 value: 82.27974449333072 - type: f1_weighted value: 82.81337569618209 - type: main_score value: 82.58238063214526 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (de) type: mteb/amazon_massive_scenario config: de split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 83.97108271687962 - type: f1 value: 83.56285606936076 - type: f1_weighted value: 84.10198745390771 - type: main_score value: 83.97108271687962 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 84.71082716879623 - type: f1 value: 84.09447062371402 - type: f1_weighted value: 84.73765765551342 - type: main_score value: 84.71082716879623 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fr) type: mteb/amazon_massive_scenario config: fr split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 83.093476798924 - type: f1 value: 82.72656900752943 - type: f1_weighted value: 83.26606516503364 - type: main_score value: 83.093476798924 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ru) type: mteb/amazon_massive_scenario config: ru split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 84.05850706119705 - type: f1 value: 83.64234048881222 - type: f1_weighted value: 84.17315768381876 - type: main_score value: 84.05850706119705 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval (default) type: C-MTEB/MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: main_score value: 56.635999999999996 - type: map_at_1 value: 48.699999999999996 - type: map_at_10 value: 53.991 - type: map_at_100 value: 54.449999999999996 - type: map_at_1000 value: 54.515 - type: map_at_20 value: 54.212 - type: map_at_3 value: 52.833 - type: map_at_5 value: 53.503 - type: mrr_at_1 value: 48.699999999999996 - type: mrr_at_10 value: 53.991309523809505 - type: mrr_at_100 value: 54.45008993448266 - type: mrr_at_1000 value: 54.515253990549795 - type: mrr_at_20 value: 54.21201762247036 - type: mrr_at_3 value: 52.8333333333333 - type: mrr_at_5 value: 53.50333333333328 - type: nauc_map_at_1000_diff1 value: 79.96867989401643 - type: nauc_map_at_1000_max value: 69.75230895599029 - type: nauc_map_at_1000_std value: 2.6418738289740213 - type: nauc_map_at_100_diff1 value: 79.95343709599133 - type: nauc_map_at_100_max value: 69.751282671507 - type: nauc_map_at_100_std value: 2.621719966106279 - type: nauc_map_at_10_diff1 value: 80.02875864565634 - type: nauc_map_at_10_max value: 69.80948662290187 - type: nauc_map_at_10_std value: 2.329151604733765 - type: nauc_map_at_1_diff1 value: 83.616940281383 - type: nauc_map_at_1_max value: 69.08142651929452 - type: nauc_map_at_1_std value: 1.9687791394035643 - type: nauc_map_at_20_diff1 value: 79.95555601275339 - type: nauc_map_at_20_max value: 69.76604695002925 - type: nauc_map_at_20_std value: 2.556184141901367 - type: nauc_map_at_3_diff1 value: 80.74790131023668 - type: nauc_map_at_3_max value: 70.57797991892402 - type: nauc_map_at_3_std value: 2.7115149849964117 - type: nauc_map_at_5_diff1 value: 80.31796539878381 - type: nauc_map_at_5_max value: 69.93573796420061 - type: nauc_map_at_5_std value: 2.0731614029506606 - type: nauc_mrr_at_1000_diff1 value: 79.96867999907981 - type: nauc_mrr_at_1000_max value: 69.57395578976896 - type: nauc_mrr_at_1000_std value: 2.46351945887829 - type: nauc_mrr_at_100_diff1 value: 79.95343709599133 - type: nauc_mrr_at_100_max value: 69.57322054130803 - type: nauc_mrr_at_100_std value: 2.4436578359073433 - type: nauc_mrr_at_10_diff1 value: 80.02875864565634 - type: nauc_mrr_at_10_max value: 69.63292630937411 - type: nauc_mrr_at_10_std value: 2.1525912912060012 - type: nauc_mrr_at_1_diff1 value: 83.616940281383 - type: nauc_mrr_at_1_max value: 68.74717310480305 - type: nauc_mrr_at_1_std value: 1.6345257249120868 - type: nauc_mrr_at_20_diff1 value: 79.95555601275339 - type: nauc_mrr_at_20_max value: 69.58883608470444 - type: nauc_mrr_at_20_std value: 2.378973276576547 - type: nauc_mrr_at_3_diff1 value: 80.74790131023668 - type: nauc_mrr_at_3_max value: 70.40430475488604 - type: nauc_mrr_at_3_std value: 2.5378398209583817 - type: nauc_mrr_at_5_diff1 value: 80.31796539878381 - type: nauc_mrr_at_5_max value: 69.7605991748183 - type: nauc_mrr_at_5_std value: 1.898022613568352 - type: nauc_ndcg_at_1000_diff1 value: 78.35504059321225 - type: nauc_ndcg_at_1000_max value: 69.06752522437093 - type: nauc_ndcg_at_1000_std value: 3.9624036886099265 - type: nauc_ndcg_at_100_diff1 value: 77.79729140249833 - type: nauc_ndcg_at_100_max value: 68.93113791506029 - type: nauc_ndcg_at_100_std value: 3.642178826886181 - type: nauc_ndcg_at_10_diff1 value: 78.160158293918 - type: nauc_ndcg_at_10_max value: 69.28122202281361 - type: nauc_ndcg_at_10_std value: 2.438976810940962 - type: nauc_ndcg_at_1_diff1 value: 83.616940281383 - type: nauc_ndcg_at_1_max value: 69.08142651929452 - type: nauc_ndcg_at_1_std value: 1.9687791394035643 - type: nauc_ndcg_at_20_diff1 value: 77.88514432874997 - type: nauc_ndcg_at_20_max value: 69.06148818508873 - type: nauc_ndcg_at_20_std value: 3.1800249272363676 - type: nauc_ndcg_at_3_diff1 value: 79.73510384405803 - type: nauc_ndcg_at_3_max value: 70.78000695123832 - type: nauc_ndcg_at_3_std value: 2.9041415468363274 - type: nauc_ndcg_at_5_diff1 value: 78.91872808866195 - type: nauc_ndcg_at_5_max value: 69.61478429620091 - type: nauc_ndcg_at_5_std value: 1.734699636301054 - type: nauc_precision_at_1000_diff1 value: 66.37858395390673 - type: nauc_precision_at_1000_max value: 60.651659037598534 - type: nauc_precision_at_1000_std value: 27.388353715469798 - type: nauc_precision_at_100_diff1 value: 66.34325807776025 - type: nauc_precision_at_100_max value: 63.63855305621111 - type: nauc_precision_at_100_std value: 10.641748149575351 - type: nauc_precision_at_10_diff1 value: 71.3784685491089 - type: nauc_precision_at_10_max value: 67.05313695174542 - type: nauc_precision_at_10_std value: 3.000406867930561 - type: nauc_precision_at_1_diff1 value: 83.616940281383 - type: nauc_precision_at_1_max value: 69.08142651929452 - type: nauc_precision_at_1_std value: 1.9687791394035643 - type: nauc_precision_at_20_diff1 value: 69.73407910977694 - type: nauc_precision_at_20_max value: 65.77426240320742 - type: nauc_precision_at_20_std value: 6.204416838482586 - type: nauc_precision_at_3_diff1 value: 76.63737537643107 - type: nauc_precision_at_3_max value: 71.29710200719668 - type: nauc_precision_at_3_std value: 3.47180961484546 - type: nauc_precision_at_5_diff1 value: 74.36945983536717 - type: nauc_precision_at_5_max value: 68.33292218003061 - type: nauc_precision_at_5_std value: 0.47128762620258075 - type: nauc_recall_at_1000_diff1 value: 66.37858395390681 - type: nauc_recall_at_1000_max value: 60.65165903759889 - type: nauc_recall_at_1000_std value: 27.388353715469822 - type: nauc_recall_at_100_diff1 value: 66.34325807776025 - type: nauc_recall_at_100_max value: 63.63855305621116 - type: nauc_recall_at_100_std value: 10.641748149575351 - type: nauc_recall_at_10_diff1 value: 71.37846854910892 - type: nauc_recall_at_10_max value: 67.05313695174546 - type: nauc_recall_at_10_std value: 3.000406867930663 - type: nauc_recall_at_1_diff1 value: 83.616940281383 - type: nauc_recall_at_1_max value: 69.08142651929452 - type: nauc_recall_at_1_std value: 1.9687791394035643 - type: nauc_recall_at_20_diff1 value: 69.73407910977691 - type: nauc_recall_at_20_max value: 65.77426240320746 - type: nauc_recall_at_20_std value: 6.204416838482536 - type: nauc_recall_at_3_diff1 value: 76.63737537643112 - type: nauc_recall_at_3_max value: 71.29710200719668 - type: nauc_recall_at_3_std value: 3.471809614845442 - type: nauc_recall_at_5_diff1 value: 74.36945983536715 - type: nauc_recall_at_5_max value: 68.33292218003065 - type: nauc_recall_at_5_std value: 0.4712876262026442 - type: ndcg_at_1 value: 48.699999999999996 - type: ndcg_at_10 value: 56.635999999999996 - type: ndcg_at_100 value: 59.193 - type: ndcg_at_1000 value: 60.97 - type: ndcg_at_20 value: 57.426 - type: ndcg_at_3 value: 54.186 - type: ndcg_at_5 value: 55.407 - type: precision_at_1 value: 48.699999999999996 - type: precision_at_10 value: 6.5 - type: precision_at_100 value: 0.777 - type: precision_at_1000 value: 0.092 - type: precision_at_20 value: 3.405 - type: precision_at_3 value: 19.367 - type: precision_at_5 value: 12.22 - type: recall_at_1 value: 48.699999999999996 - type: recall_at_10 value: 65.0 - type: recall_at_100 value: 77.7 - type: recall_at_1000 value: 91.8 - type: recall_at_20 value: 68.10000000000001 - type: recall_at_3 value: 58.099999999999994 - type: recall_at_5 value: 61.1 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P (default) type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: main_score value: 34.80188561439236 - type: v_measure value: 34.80188561439236 - type: v_measure_std value: 1.5703148841573102 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S (default) type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: main_score value: 32.42285513996236 - type: v_measure value: 32.42285513996236 - type: v_measure_std value: 1.3769867487457566 - task: type: Retrieval dataset: name: MTEB MintakaRetrieval (de) type: jinaai/mintakaqa config: de split: test revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e metrics: - type: main_score value: 27.025 - type: map_at_1 value: 14.532 - type: map_at_10 value: 22.612 - type: map_at_100 value: 23.802 - type: map_at_1000 value: 23.9 - type: map_at_20 value: 23.275000000000002 - type: map_at_3 value: 20.226 - type: map_at_5 value: 21.490000000000002 - type: mrr_at_1 value: 14.532434709351305 - type: mrr_at_10 value: 22.612077265615575 - type: mrr_at_100 value: 23.801523356874675 - type: mrr_at_1000 value: 23.900118499340238 - type: mrr_at_20 value: 23.275466430108995 - type: mrr_at_3 value: 20.22606009547877 - type: mrr_at_5 value: 21.489750070204945 - type: nauc_map_at_1000_diff1 value: 14.148987799763596 - type: nauc_map_at_1000_max value: 44.70338461387784 - type: nauc_map_at_1000_std value: 15.868006767707637 - type: nauc_map_at_100_diff1 value: 14.11371769080442 - type: nauc_map_at_100_max value: 44.67995540936296 - type: nauc_map_at_100_std value: 15.890796502029076 - type: nauc_map_at_10_diff1 value: 14.29066834165688 - type: nauc_map_at_10_max value: 45.10997111765282 - type: nauc_map_at_10_std value: 15.508568918629864 - type: nauc_map_at_1_diff1 value: 23.473291302576396 - type: nauc_map_at_1_max value: 44.68942599764586 - type: nauc_map_at_1_std value: 12.424377262427253 - type: nauc_map_at_20_diff1 value: 14.112652046087831 - type: nauc_map_at_20_max value: 44.82014861413682 - type: nauc_map_at_20_std value: 15.739350613646385 - type: nauc_map_at_3_diff1 value: 16.119659221396347 - type: nauc_map_at_3_max value: 46.04766378953525 - type: nauc_map_at_3_std value: 13.969878046315925 - type: nauc_map_at_5_diff1 value: 15.095453434076184 - type: nauc_map_at_5_max value: 45.802128149314406 - type: nauc_map_at_5_std value: 14.957442173319949 - type: nauc_mrr_at_1000_diff1 value: 14.148987799763596 - type: nauc_mrr_at_1000_max value: 44.70338461387784 - type: nauc_mrr_at_1000_std value: 15.868006767707637 - type: nauc_mrr_at_100_diff1 value: 14.11371769080442 - type: nauc_mrr_at_100_max value: 44.67995540936296 - type: nauc_mrr_at_100_std value: 15.890796502029076 - type: nauc_mrr_at_10_diff1 value: 14.29066834165688 - type: nauc_mrr_at_10_max value: 45.10997111765282 - type: nauc_mrr_at_10_std value: 15.508568918629864 - type: nauc_mrr_at_1_diff1 value: 23.473291302576396 - type: nauc_mrr_at_1_max value: 44.68942599764586 - type: nauc_mrr_at_1_std value: 12.424377262427253 - type: nauc_mrr_at_20_diff1 value: 14.112652046087831 - type: nauc_mrr_at_20_max value: 44.82014861413682 - type: nauc_mrr_at_20_std value: 15.739350613646385 - type: nauc_mrr_at_3_diff1 value: 16.119659221396347 - type: nauc_mrr_at_3_max value: 46.04766378953525 - type: nauc_mrr_at_3_std value: 13.969878046315925 - type: nauc_mrr_at_5_diff1 value: 15.095453434076184 - type: nauc_mrr_at_5_max value: 45.802128149314406 - type: nauc_mrr_at_5_std value: 14.957442173319949 - type: nauc_ndcg_at_1000_diff1 value: 11.626606894574028 - type: nauc_ndcg_at_1000_max value: 43.328592841065536 - type: nauc_ndcg_at_1000_std value: 18.049446272245547 - type: nauc_ndcg_at_100_diff1 value: 10.485720606660239 - type: nauc_ndcg_at_100_max value: 42.405317674170966 - type: nauc_ndcg_at_100_std value: 19.107151641936987 - type: nauc_ndcg_at_10_diff1 value: 11.029351078162982 - type: nauc_ndcg_at_10_max value: 44.36855031964681 - type: nauc_ndcg_at_10_std value: 17.302796171409305 - type: nauc_ndcg_at_1_diff1 value: 23.473291302576396 - type: nauc_ndcg_at_1_max value: 44.68942599764586 - type: nauc_ndcg_at_1_std value: 12.424377262427253 - type: nauc_ndcg_at_20_diff1 value: 10.356662718168412 - type: nauc_ndcg_at_20_max value: 43.31602680430083 - type: nauc_ndcg_at_20_std value: 18.162891267850316 - type: nauc_ndcg_at_3_diff1 value: 14.42844952297869 - type: nauc_ndcg_at_3_max value: 46.26603339466543 - type: nauc_ndcg_at_3_std value: 14.449362723887857 - type: nauc_ndcg_at_5_diff1 value: 12.783416563486396 - type: nauc_ndcg_at_5_max value: 45.852176479124424 - type: nauc_ndcg_at_5_std value: 16.11775016428085 - type: nauc_precision_at_1000_diff1 value: -8.045361059399795 - type: nauc_precision_at_1000_max value: 21.970273281738777 - type: nauc_precision_at_1000_std value: 49.564650488193266 - type: nauc_precision_at_100_diff1 value: -2.118628861593353 - type: nauc_precision_at_100_max value: 31.32498977104778 - type: nauc_precision_at_100_std value: 32.96087731883451 - type: nauc_precision_at_10_diff1 value: 3.0335517475367615 - type: nauc_precision_at_10_max value: 42.21620215030219 - type: nauc_precision_at_10_std value: 21.90159732315962 - type: nauc_precision_at_1_diff1 value: 23.473291302576396 - type: nauc_precision_at_1_max value: 44.68942599764586 - type: nauc_precision_at_1_std value: 12.424377262427253 - type: nauc_precision_at_20_diff1 value: 0.4087201843719047 - type: nauc_precision_at_20_max value: 38.485034773895734 - type: nauc_precision_at_20_std value: 25.077397979916682 - type: nauc_precision_at_3_diff1 value: 10.408327736589833 - type: nauc_precision_at_3_max value: 46.757216289175076 - type: nauc_precision_at_3_std value: 15.62594354926867 - type: nauc_precision_at_5_diff1 value: 7.326752744229544 - type: nauc_precision_at_5_max value: 45.89190518573553 - type: nauc_precision_at_5_std value: 19.01717163438957 - type: nauc_recall_at_1000_diff1 value: -8.045361059400387 - type: nauc_recall_at_1000_max value: 21.97027328173812 - type: nauc_recall_at_1000_std value: 49.56465048819266 - type: nauc_recall_at_100_diff1 value: -2.118628861593277 - type: nauc_recall_at_100_max value: 31.324989771047818 - type: nauc_recall_at_100_std value: 32.96087731883457 - type: nauc_recall_at_10_diff1 value: 3.0335517475367166 - type: nauc_recall_at_10_max value: 42.21620215030217 - type: nauc_recall_at_10_std value: 21.901597323159606 - type: nauc_recall_at_1_diff1 value: 23.473291302576396 - type: nauc_recall_at_1_max value: 44.68942599764586 - type: nauc_recall_at_1_std value: 12.424377262427253 - type: nauc_recall_at_20_diff1 value: 0.40872018437190905 - type: nauc_recall_at_20_max value: 38.485034773895734 - type: nauc_recall_at_20_std value: 25.077397979916693 - type: nauc_recall_at_3_diff1 value: 10.408327736589843 - type: nauc_recall_at_3_max value: 46.75721628917507 - type: nauc_recall_at_3_std value: 15.625943549268664 - type: nauc_recall_at_5_diff1 value: 7.326752744229548 - type: nauc_recall_at_5_max value: 45.89190518573557 - type: nauc_recall_at_5_std value: 19.01717163438958 - type: ndcg_at_1 value: 14.532 - type: ndcg_at_10 value: 27.025 - type: ndcg_at_100 value: 33.305 - type: ndcg_at_1000 value: 36.38 - type: ndcg_at_20 value: 29.443 - type: ndcg_at_3 value: 22.035 - type: ndcg_at_5 value: 24.319 - type: precision_at_1 value: 14.532 - type: precision_at_10 value: 4.115 - type: precision_at_100 value: 0.717 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 2.536 - type: precision_at_3 value: 9.085 - type: precision_at_5 value: 6.563 - type: recall_at_1 value: 14.532 - type: recall_at_10 value: 41.154 - type: recall_at_100 value: 71.651 - type: recall_at_1000 value: 96.841 - type: recall_at_20 value: 50.71600000000001 - type: recall_at_3 value: 27.254 - type: recall_at_5 value: 32.814 - task: type: Retrieval dataset: name: MTEB MintakaRetrieval (es) type: jinaai/mintakaqa config: es split: test revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e metrics: - type: main_score value: 26.912000000000003 - type: map_at_1 value: 14.686 - type: map_at_10 value: 22.569 - type: map_at_100 value: 23.679 - type: map_at_1000 value: 23.777 - type: map_at_20 value: 23.169 - type: map_at_3 value: 20.201 - type: map_at_5 value: 21.566 - type: mrr_at_1 value: 14.686468646864686 - type: mrr_at_10 value: 22.569346220336296 - type: mrr_at_100 value: 23.678819125817146 - type: mrr_at_1000 value: 23.77713511338264 - type: mrr_at_20 value: 23.16850858443442 - type: mrr_at_3 value: 20.200770077007665 - type: mrr_at_5 value: 21.56628162816276 - type: nauc_map_at_1000_diff1 value: 14.129007578838381 - type: nauc_map_at_1000_max value: 44.4255501141499 - type: nauc_map_at_1000_std value: 19.95906154868176 - type: nauc_map_at_100_diff1 value: 14.09071870575231 - type: nauc_map_at_100_max value: 44.403179928955566 - type: nauc_map_at_100_std value: 20.00413657519976 - type: nauc_map_at_10_diff1 value: 14.149535953153688 - type: nauc_map_at_10_max value: 44.66529917634685 - type: nauc_map_at_10_std value: 19.580235989479394 - type: nauc_map_at_1_diff1 value: 23.489813522176636 - type: nauc_map_at_1_max value: 46.54578639925787 - type: nauc_map_at_1_std value: 16.39083721709994 - type: nauc_map_at_20_diff1 value: 14.021560420656181 - type: nauc_map_at_20_max value: 44.4825455452467 - type: nauc_map_at_20_std value: 19.886927750826878 - type: nauc_map_at_3_diff1 value: 16.182977890477723 - type: nauc_map_at_3_max value: 46.1840554029258 - type: nauc_map_at_3_std value: 18.735671900228958 - type: nauc_map_at_5_diff1 value: 14.779126395472833 - type: nauc_map_at_5_max value: 45.23237213817556 - type: nauc_map_at_5_std value: 19.348508580412872 - type: nauc_mrr_at_1000_diff1 value: 14.129007578838381 - type: nauc_mrr_at_1000_max value: 44.4255501141499 - type: nauc_mrr_at_1000_std value: 19.95906154868176 - type: nauc_mrr_at_100_diff1 value: 14.09071870575231 - type: nauc_mrr_at_100_max value: 44.403179928955566 - type: nauc_mrr_at_100_std value: 20.00413657519976 - type: nauc_mrr_at_10_diff1 value: 14.149535953153688 - type: nauc_mrr_at_10_max value: 44.66529917634685 - type: nauc_mrr_at_10_std value: 19.580235989479394 - type: nauc_mrr_at_1_diff1 value: 23.489813522176636 - type: nauc_mrr_at_1_max value: 46.54578639925787 - type: nauc_mrr_at_1_std value: 16.39083721709994 - type: nauc_mrr_at_20_diff1 value: 14.021560420656181 - type: nauc_mrr_at_20_max value: 44.4825455452467 - type: nauc_mrr_at_20_std value: 19.886927750826878 - type: nauc_mrr_at_3_diff1 value: 16.182977890477723 - type: nauc_mrr_at_3_max value: 46.1840554029258 - type: nauc_mrr_at_3_std value: 18.735671900228958 - type: nauc_mrr_at_5_diff1 value: 14.779126395472833 - type: nauc_mrr_at_5_max value: 45.23237213817556 - type: nauc_mrr_at_5_std value: 19.348508580412872 - type: nauc_ndcg_at_1000_diff1 value: 11.762470380481101 - type: nauc_ndcg_at_1000_max value: 42.8233203033089 - type: nauc_ndcg_at_1000_std value: 21.78503705117719 - type: nauc_ndcg_at_100_diff1 value: 10.45886076220022 - type: nauc_ndcg_at_100_max value: 41.85472899256818 - type: nauc_ndcg_at_100_std value: 23.20955486335138 - type: nauc_ndcg_at_10_diff1 value: 10.605912468659469 - type: nauc_ndcg_at_10_max value: 43.150942448104715 - type: nauc_ndcg_at_10_std value: 21.120035764826085 - type: nauc_ndcg_at_1_diff1 value: 23.489813522176636 - type: nauc_ndcg_at_1_max value: 46.54578639925787 - type: nauc_ndcg_at_1_std value: 16.39083721709994 - type: nauc_ndcg_at_20_diff1 value: 10.11291783888644 - type: nauc_ndcg_at_20_max value: 42.51260678842788 - type: nauc_ndcg_at_20_std value: 22.1744949382252 - type: nauc_ndcg_at_3_diff1 value: 14.25625326760802 - type: nauc_ndcg_at_3_max value: 45.96162916377383 - type: nauc_ndcg_at_3_std value: 19.557832728215523 - type: nauc_ndcg_at_5_diff1 value: 11.956317653823053 - type: nauc_ndcg_at_5_max value: 44.35971268886807 - type: nauc_ndcg_at_5_std value: 20.581696730374233 - type: nauc_precision_at_1000_diff1 value: 5.132291843566577 - type: nauc_precision_at_1000_max value: 25.293354576835263 - type: nauc_precision_at_1000_std value: 40.36005126087624 - type: nauc_precision_at_100_diff1 value: -1.5252854375008238 - type: nauc_precision_at_100_max value: 31.007586474495984 - type: nauc_precision_at_100_std value: 37.297552993548386 - type: nauc_precision_at_10_diff1 value: 1.9663657370770737 - type: nauc_precision_at_10_max value: 39.194092293625125 - type: nauc_precision_at_10_std value: 24.956542621999542 - type: nauc_precision_at_1_diff1 value: 23.489813522176636 - type: nauc_precision_at_1_max value: 46.54578639925787 - type: nauc_precision_at_1_std value: 16.39083721709994 - type: nauc_precision_at_20_diff1 value: 0.011112090390932373 - type: nauc_precision_at_20_max value: 36.9357074392519 - type: nauc_precision_at_20_std value: 28.611387115093876 - type: nauc_precision_at_3_diff1 value: 9.596831091013703 - type: nauc_precision_at_3_max value: 45.3905541893809 - type: nauc_precision_at_3_std value: 21.599314388526945 - type: nauc_precision_at_5_diff1 value: 5.175887949900142 - type: nauc_precision_at_5_max value: 42.129467510414464 - type: nauc_precision_at_5_std value: 23.607251548776677 - type: nauc_recall_at_1000_diff1 value: 5.132291843566257 - type: nauc_recall_at_1000_max value: 25.29335457683396 - type: nauc_recall_at_1000_std value: 40.36005126087638 - type: nauc_recall_at_100_diff1 value: -1.5252854375008988 - type: nauc_recall_at_100_max value: 31.00758647449594 - type: nauc_recall_at_100_std value: 37.29755299354834 - type: nauc_recall_at_10_diff1 value: 1.9663657370770793 - type: nauc_recall_at_10_max value: 39.19409229362512 - type: nauc_recall_at_10_std value: 24.956542621999546 - type: nauc_recall_at_1_diff1 value: 23.489813522176636 - type: nauc_recall_at_1_max value: 46.54578639925787 - type: nauc_recall_at_1_std value: 16.39083721709994 - type: nauc_recall_at_20_diff1 value: 0.011112090390923075 - type: nauc_recall_at_20_max value: 36.93570743925189 - type: nauc_recall_at_20_std value: 28.611387115093883 - type: nauc_recall_at_3_diff1 value: 9.596831091013714 - type: nauc_recall_at_3_max value: 45.39055418938087 - type: nauc_recall_at_3_std value: 21.599314388526956 - type: nauc_recall_at_5_diff1 value: 5.17588794990012 - type: nauc_recall_at_5_max value: 42.12946751041448 - type: nauc_recall_at_5_std value: 23.607251548776695 - type: ndcg_at_1 value: 14.686 - type: ndcg_at_10 value: 26.912000000000003 - type: ndcg_at_100 value: 32.919 - type: ndcg_at_1000 value: 36.119 - type: ndcg_at_20 value: 29.079 - type: ndcg_at_3 value: 21.995 - type: ndcg_at_5 value: 24.474999999999998 - type: precision_at_1 value: 14.686 - type: precision_at_10 value: 4.08 - type: precision_at_100 value: 0.703 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 2.467 - type: precision_at_3 value: 9.062000000000001 - type: precision_at_5 value: 6.65 - type: recall_at_1 value: 14.686 - type: recall_at_10 value: 40.8 - type: recall_at_100 value: 70.338 - type: recall_at_1000 value: 96.82300000000001 - type: recall_at_20 value: 49.34 - type: recall_at_3 value: 27.186 - type: recall_at_5 value: 33.251 - task: type: Retrieval dataset: name: MTEB MintakaRetrieval (fr) type: jinaai/mintakaqa config: fr split: test revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e metrics: - type: main_score value: 26.909 - type: map_at_1 value: 14.701 - type: map_at_10 value: 22.613 - type: map_at_100 value: 23.729 - type: map_at_1000 value: 23.837 - type: map_at_20 value: 23.262 - type: map_at_3 value: 20.236 - type: map_at_5 value: 21.673000000000002 - type: mrr_at_1 value: 14.7010647010647 - type: mrr_at_10 value: 22.613165113165113 - type: mrr_at_100 value: 23.72877605989423 - type: mrr_at_1000 value: 23.837150802746805 - type: mrr_at_20 value: 23.261627081110596 - type: mrr_at_3 value: 20.2361452361452 - type: mrr_at_5 value: 21.673491673491625 - type: nauc_map_at_1000_diff1 value: 17.08927788889635 - type: nauc_map_at_1000_max value: 47.240929150603336 - type: nauc_map_at_1000_std value: 20.559244258100275 - type: nauc_map_at_100_diff1 value: 17.029461792796777 - type: nauc_map_at_100_max value: 47.207381115550696 - type: nauc_map_at_100_std value: 20.581498156895265 - type: nauc_map_at_10_diff1 value: 17.351456007804536 - type: nauc_map_at_10_max value: 47.815880040221344 - type: nauc_map_at_10_std value: 20.292999107555794 - type: nauc_map_at_1_diff1 value: 27.297525357600776 - type: nauc_map_at_1_max value: 47.18835074959486 - type: nauc_map_at_1_std value: 18.304203168281834 - type: nauc_map_at_20_diff1 value: 17.157460199542136 - type: nauc_map_at_20_max value: 47.4776610667456 - type: nauc_map_at_20_std value: 20.499186342964478 - type: nauc_map_at_3_diff1 value: 19.393119961356277 - type: nauc_map_at_3_max value: 49.02841822452882 - type: nauc_map_at_3_std value: 19.293122796321292 - type: nauc_map_at_5_diff1 value: 17.76275044752008 - type: nauc_map_at_5_max value: 48.01292548040298 - type: nauc_map_at_5_std value: 19.928449977400504 - type: nauc_mrr_at_1000_diff1 value: 17.08927788889635 - type: nauc_mrr_at_1000_max value: 47.240929150603336 - type: nauc_mrr_at_1000_std value: 20.559244258100275 - type: nauc_mrr_at_100_diff1 value: 17.029461792796777 - type: nauc_mrr_at_100_max value: 47.207381115550696 - type: nauc_mrr_at_100_std value: 20.581498156895265 - type: nauc_mrr_at_10_diff1 value: 17.351456007804536 - type: nauc_mrr_at_10_max value: 47.815880040221344 - type: nauc_mrr_at_10_std value: 20.292999107555794 - type: nauc_mrr_at_1_diff1 value: 27.297525357600776 - type: nauc_mrr_at_1_max value: 47.18835074959486 - type: nauc_mrr_at_1_std value: 18.304203168281834 - type: nauc_mrr_at_20_diff1 value: 17.157460199542136 - type: nauc_mrr_at_20_max value: 47.4776610667456 - type: nauc_mrr_at_20_std value: 20.499186342964478 - type: nauc_mrr_at_3_diff1 value: 19.393119961356277 - type: nauc_mrr_at_3_max value: 49.02841822452882 - type: nauc_mrr_at_3_std value: 19.293122796321292 - type: nauc_mrr_at_5_diff1 value: 17.76275044752008 - type: nauc_mrr_at_5_max value: 48.01292548040298 - type: nauc_mrr_at_5_std value: 19.928449977400504 - type: nauc_ndcg_at_1000_diff1 value: 13.989496006047975 - type: nauc_ndcg_at_1000_max value: 45.626323944336114 - type: nauc_ndcg_at_1000_std value: 22.125600410796515 - type: nauc_ndcg_at_100_diff1 value: 12.302204843705244 - type: nauc_ndcg_at_100_max value: 44.46856314559079 - type: nauc_ndcg_at_100_std value: 23.084984546328677 - type: nauc_ndcg_at_10_diff1 value: 14.001226213368275 - type: nauc_ndcg_at_10_max value: 47.37780636546918 - type: nauc_ndcg_at_10_std value: 21.702709032840637 - type: nauc_ndcg_at_1_diff1 value: 27.297525357600776 - type: nauc_ndcg_at_1_max value: 47.18835074959486 - type: nauc_ndcg_at_1_std value: 18.304203168281834 - type: nauc_ndcg_at_20_diff1 value: 13.317759910171056 - type: nauc_ndcg_at_20_max value: 46.25171251043813 - type: nauc_ndcg_at_20_std value: 22.309331575402595 - type: nauc_ndcg_at_3_diff1 value: 17.555381234893872 - type: nauc_ndcg_at_3_max value: 49.48635590260059 - type: nauc_ndcg_at_3_std value: 19.734570962933674 - type: nauc_ndcg_at_5_diff1 value: 14.844841165765061 - type: nauc_ndcg_at_5_max value: 47.76437065028708 - type: nauc_ndcg_at_5_std value: 20.816034479453954 - type: nauc_precision_at_1000_diff1 value: -15.591898698252546 - type: nauc_precision_at_1000_max value: 20.545984285353892 - type: nauc_precision_at_1000_std value: 38.9013414992826 - type: nauc_precision_at_100_diff1 value: -5.290395978742176 - type: nauc_precision_at_100_max value: 31.340480360546845 - type: nauc_precision_at_100_std value: 33.6897935720505 - type: nauc_precision_at_10_diff1 value: 5.965001997926562 - type: nauc_precision_at_10_max value: 46.12515296162247 - type: nauc_precision_at_10_std value: 25.409433135253558 - type: nauc_precision_at_1_diff1 value: 27.297525357600776 - type: nauc_precision_at_1_max value: 47.18835074959486 - type: nauc_precision_at_1_std value: 18.304203168281834 - type: nauc_precision_at_20_diff1 value: 3.4438127279827744 - type: nauc_precision_at_20_max value: 42.36095587714494 - type: nauc_precision_at_20_std value: 27.367900512797906 - type: nauc_precision_at_3_diff1 value: 13.165017224718916 - type: nauc_precision_at_3_max value: 50.58931825484506 - type: nauc_precision_at_3_std value: 20.852009214609442 - type: nauc_precision_at_5_diff1 value: 7.840087177549876 - type: nauc_precision_at_5_max value: 46.99388755575109 - type: nauc_precision_at_5_std value: 23.048702393099834 - type: nauc_recall_at_1000_diff1 value: -15.591898698252932 - type: nauc_recall_at_1000_max value: 20.5459842853537 - type: nauc_recall_at_1000_std value: 38.901341499282395 - type: nauc_recall_at_100_diff1 value: -5.290395978742165 - type: nauc_recall_at_100_max value: 31.340480360546863 - type: nauc_recall_at_100_std value: 33.68979357205046 - type: nauc_recall_at_10_diff1 value: 5.96500199792656 - type: nauc_recall_at_10_max value: 46.1251529616225 - type: nauc_recall_at_10_std value: 25.409433135253543 - type: nauc_recall_at_1_diff1 value: 27.297525357600776 - type: nauc_recall_at_1_max value: 47.18835074959486 - type: nauc_recall_at_1_std value: 18.304203168281834 - type: nauc_recall_at_20_diff1 value: 3.4438127279827833 - type: nauc_recall_at_20_max value: 42.36095587714498 - type: nauc_recall_at_20_std value: 27.36790051279787 - type: nauc_recall_at_3_diff1 value: 13.165017224718916 - type: nauc_recall_at_3_max value: 50.589318254845054 - type: nauc_recall_at_3_std value: 20.852009214609435 - type: nauc_recall_at_5_diff1 value: 7.840087177549891 - type: nauc_recall_at_5_max value: 46.99388755575112 - type: nauc_recall_at_5_std value: 23.048702393099845 - type: ndcg_at_1 value: 14.701 - type: ndcg_at_10 value: 26.909 - type: ndcg_at_100 value: 32.727000000000004 - type: ndcg_at_1000 value: 36.086 - type: ndcg_at_20 value: 29.236 - type: ndcg_at_3 value: 22.004 - type: ndcg_at_5 value: 24.615000000000002 - type: precision_at_1 value: 14.701 - type: precision_at_10 value: 4.062 - type: precision_at_100 value: 0.688 - type: precision_at_1000 value: 0.096 - type: precision_at_20 value: 2.488 - type: precision_at_3 value: 9.036 - type: precision_at_5 value: 6.699 - type: recall_at_1 value: 14.701 - type: recall_at_10 value: 40.622 - type: recall_at_100 value: 68.796 - type: recall_at_1000 value: 96.314 - type: recall_at_20 value: 49.754 - type: recall_at_3 value: 27.108999999999998 - type: recall_at_5 value: 33.497 - task: type: Classification dataset: name: MTEB MultilingualSentiment (default) type: C-MTEB/MultilingualSentiment-classification config: default split: test revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 73.20999999999998 - type: f1 value: 73.18755986777474 - type: f1_weighted value: 73.18755986777475 - type: main_score value: 73.20999999999998 - task: type: Retrieval dataset: name: MTEB NFCorpus (default) type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 4.822 - type: map_at_10 value: 13.144 - type: map_at_100 value: 17.254 - type: map_at_1000 value: 18.931 - type: map_at_20 value: 14.834 - type: map_at_3 value: 8.975 - type: map_at_5 value: 10.922 - type: mrr_at_1 value: 47.059 - type: mrr_at_10 value: 55.806999999999995 - type: mrr_at_100 value: 56.286 - type: mrr_at_1000 value: 56.327000000000005 - type: mrr_at_20 value: 56.00000000000001 - type: mrr_at_3 value: 54.17999999999999 - type: mrr_at_5 value: 55.155 - type: ndcg_at_1 value: 44.427 - type: ndcg_at_10 value: 36.623 - type: ndcg_at_100 value: 33.664 - type: ndcg_at_1000 value: 42.538 - type: ndcg_at_20 value: 34.066 - type: ndcg_at_3 value: 41.118 - type: ndcg_at_5 value: 39.455 - type: precision_at_1 value: 46.44 - type: precision_at_10 value: 28.607 - type: precision_at_100 value: 9.189 - type: precision_at_1000 value: 2.261 - type: precision_at_20 value: 21.238 - type: precision_at_3 value: 39.628 - type: precision_at_5 value: 35.604 - type: recall_at_1 value: 4.822 - type: recall_at_10 value: 17.488999999999997 - type: recall_at_100 value: 35.052 - type: recall_at_1000 value: 66.67999999999999 - type: recall_at_20 value: 21.343999999999998 - type: recall_at_3 value: 10.259 - type: recall_at_5 value: 13.406 - type: main_score value: 36.623 - task: type: Retrieval dataset: name: MTEB NQ (default) type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 41.411 - type: map_at_10 value: 57.179 - type: map_at_100 value: 57.945 - type: map_at_1000 value: 57.967999999999996 - type: map_at_20 value: 57.687 - type: map_at_3 value: 53.46300000000001 - type: map_at_5 value: 55.696999999999996 - type: mrr_at_1 value: 46.233999999999995 - type: mrr_at_10 value: 59.831999999999994 - type: mrr_at_100 value: 60.33500000000001 - type: mrr_at_1000 value: 60.348 - type: mrr_at_20 value: 60.167 - type: mrr_at_3 value: 56.972 - type: mrr_at_5 value: 58.74 - type: ndcg_at_1 value: 46.205 - type: ndcg_at_10 value: 64.23100000000001 - type: ndcg_at_100 value: 67.242 - type: ndcg_at_1000 value: 67.72500000000001 - type: ndcg_at_20 value: 65.77300000000001 - type: ndcg_at_3 value: 57.516 - type: ndcg_at_5 value: 61.11600000000001 - type: precision_at_1 value: 46.205 - type: precision_at_10 value: 9.873 - type: precision_at_100 value: 1.158 - type: precision_at_1000 value: 0.12 - type: precision_at_20 value: 5.319 - type: precision_at_3 value: 25.424999999999997 - type: precision_at_5 value: 17.375 - type: recall_at_1 value: 41.411 - type: recall_at_10 value: 82.761 - type: recall_at_100 value: 95.52199999999999 - type: recall_at_1000 value: 99.02499999999999 - type: recall_at_20 value: 88.34 - type: recall_at_3 value: 65.73 - type: recall_at_5 value: 73.894 - type: main_score value: 64.23100000000001 - task: type: PairClassification dataset: name: MTEB Ocnli (default) type: C-MTEB/OCNLI config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cosine_accuracy value: 62.3714131023281 - type: cosine_accuracy_threshold value: 79.70921993255615 - type: cosine_ap value: 66.41380155495659 - type: cosine_f1 value: 68.89547185780786 - type: cosine_f1_threshold value: 72.91591167449951 - type: cosine_precision value: 57.485875706214685 - type: cosine_recall value: 85.95564941921859 - type: dot_accuracy value: 60.47644829453167 - type: dot_accuracy_threshold value: 36627.362060546875 - type: dot_ap value: 63.696303449293204 - type: dot_f1 value: 68.3986041101202 - type: dot_f1_threshold value: 30452.72216796875 - type: dot_precision value: 54.04411764705882 - type: dot_recall value: 93.13621964097149 - type: euclidean_accuracy value: 63.02111532214402 - type: euclidean_accuracy_threshold value: 1392.76762008667 - type: euclidean_ap value: 66.65907089443218 - type: euclidean_f1 value: 69.05036524413688 - type: euclidean_f1_threshold value: 1711.5310668945312 - type: euclidean_precision value: 54.29262394195889 - type: euclidean_recall value: 94.82576557550159 - type: main_score value: 63.02111532214402 - type: manhattan_accuracy value: 62.75040606388739 - type: manhattan_accuracy_threshold value: 32475.347900390625 - type: manhattan_ap value: 66.50943585125434 - type: manhattan_f1 value: 69.08382066276802 - type: manhattan_f1_threshold value: 41238.470458984375 - type: manhattan_precision value: 54.75896168108776 - type: manhattan_recall value: 93.55860612460401 - type: max_accuracy value: 63.02111532214402 - type: max_ap value: 66.65907089443218 - type: max_f1 value: 69.08382066276802 - type: max_precision value: 57.485875706214685 - type: max_recall value: 94.82576557550159 - type: similarity_accuracy value: 62.3714131023281 - type: similarity_accuracy_threshold value: 79.70921993255615 - type: similarity_ap value: 66.41380155495659 - type: similarity_f1 value: 68.89547185780786 - type: similarity_f1_threshold value: 72.91591167449951 - type: similarity_precision value: 57.485875706214685 - type: similarity_recall value: 85.95564941921859 - task: type: Classification dataset: name: MTEB OnlineShopping (default) type: C-MTEB/OnlineShopping-classification config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 91.88000000000001 - type: ap value: 89.52463684448476 - type: ap_weighted value: 89.52463684448476 - type: f1 value: 91.86313022306673 - type: f1_weighted value: 91.87806318146912 - type: main_score value: 91.88000000000001 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (en) type: GEM/opusparcus config: en split: test.full revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cosine_accuracy value: 92.65578635014838 - type: cosine_accuracy_threshold value: 74.02530312538147 - type: cosine_ap value: 98.3834226153613 - type: cosine_f1 value: 94.92567913890312 - type: cosine_f1_threshold value: 74.02530312538147 - type: cosine_precision value: 95.562435500516 - type: cosine_recall value: 94.29735234215886 - type: dot_accuracy value: 91.54302670623146 - type: dot_accuracy_threshold value: 34452.29187011719 - type: dot_ap value: 98.1237257754439 - type: dot_f1 value: 94.22400803616273 - type: dot_f1_threshold value: 33670.41931152344 - type: dot_precision value: 92.9633300297324 - type: dot_recall value: 95.5193482688391 - type: euclidean_accuracy value: 92.28486646884274 - type: euclidean_accuracy_threshold value: 1602.8022766113281 - type: euclidean_ap value: 98.3099021504706 - type: euclidean_f1 value: 94.75277497477296 - type: euclidean_f1_threshold value: 1604.7462463378906 - type: euclidean_precision value: 93.89999999999999 - type: euclidean_recall value: 95.62118126272912 - type: main_score value: 98.3834226153613 - type: manhattan_accuracy value: 92.2106824925816 - type: manhattan_accuracy_threshold value: 38872.90954589844 - type: manhattan_ap value: 98.28694101230218 - type: manhattan_f1 value: 94.67815509376584 - type: manhattan_f1_threshold value: 38872.90954589844 - type: manhattan_precision value: 94.24823410696267 - type: manhattan_recall value: 95.11201629327903 - type: max_accuracy value: 92.65578635014838 - type: max_ap value: 98.3834226153613 - type: max_f1 value: 94.92567913890312 - type: max_precision value: 95.562435500516 - type: max_recall value: 95.62118126272912 - type: similarity_accuracy value: 92.65578635014838 - type: similarity_accuracy_threshold value: 74.02530312538147 - type: similarity_ap value: 98.3834226153613 - type: similarity_f1 value: 94.92567913890312 - type: similarity_f1_threshold value: 74.02530312538147 - type: similarity_precision value: 95.562435500516 - type: similarity_recall value: 94.29735234215886 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (de) type: GEM/opusparcus config: de split: test.full revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cosine_accuracy value: 87.72178850248403 - type: cosine_accuracy_threshold value: 73.33863377571106 - type: cosine_ap value: 96.98901408834976 - type: cosine_f1 value: 91.89944134078212 - type: cosine_f1_threshold value: 71.45810127258301 - type: cosine_precision value: 89.64577656675749 - type: cosine_recall value: 94.26934097421203 - type: dot_accuracy value: 86.30234208658624 - type: dot_accuracy_threshold value: 32027.130126953125 - type: dot_ap value: 96.12260574893256 - type: dot_f1 value: 91.31602506714414 - type: dot_f1_threshold value: 30804.376220703125 - type: dot_precision value: 85.93091828138164 - type: dot_recall value: 97.42120343839542 - type: euclidean_accuracy value: 87.9347054648687 - type: euclidean_accuracy_threshold value: 1609.6670150756836 - type: euclidean_ap value: 97.00238860358252 - type: euclidean_f1 value: 92.1089063221043 - type: euclidean_f1_threshold value: 1641.8487548828125 - type: euclidean_precision value: 89.10714285714286 - type: euclidean_recall value: 95.31996179560649 - type: main_score value: 97.00238860358252 - type: manhattan_accuracy value: 87.72178850248403 - type: manhattan_accuracy_threshold value: 40137.060546875 - type: manhattan_ap value: 96.98653728159941 - type: manhattan_f1 value: 92.03865623561896 - type: manhattan_f1_threshold value: 40137.060546875 - type: manhattan_precision value: 88.80994671403198 - type: manhattan_recall value: 95.51098376313276 - type: max_accuracy value: 87.9347054648687 - type: max_ap value: 97.00238860358252 - type: max_f1 value: 92.1089063221043 - type: max_precision value: 89.64577656675749 - type: max_recall value: 97.42120343839542 - type: similarity_accuracy value: 87.72178850248403 - type: similarity_accuracy_threshold value: 73.33863377571106 - type: similarity_ap value: 96.98901408834976 - type: similarity_f1 value: 91.89944134078212 - type: similarity_f1_threshold value: 71.45810127258301 - type: similarity_precision value: 89.64577656675749 - type: similarity_recall value: 94.26934097421203 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (fr) type: GEM/opusparcus config: fr split: test.full revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cosine_accuracy value: 80.92643051771117 - type: cosine_accuracy_threshold value: 76.68856382369995 - type: cosine_ap value: 93.74622381534307 - type: cosine_f1 value: 87.12328767123287 - type: cosine_f1_threshold value: 71.64022922515869 - type: cosine_precision value: 80.64243448858834 - type: cosine_recall value: 94.73684210526315 - type: dot_accuracy value: 80.858310626703 - type: dot_accuracy_threshold value: 34028.3935546875 - type: dot_ap value: 91.18448457633308 - type: dot_f1 value: 86.82606657290202 - type: dot_f1_threshold value: 34028.3935546875 - type: dot_precision value: 82.2380106571936 - type: dot_recall value: 91.9563058589871 - type: euclidean_accuracy value: 80.858310626703 - type: euclidean_accuracy_threshold value: 1595.7651138305664 - type: euclidean_ap value: 93.8182717829648 - type: euclidean_f1 value: 87.04044117647058 - type: euclidean_f1_threshold value: 1609.2475891113281 - type: euclidean_precision value: 81.00940975192472 - type: euclidean_recall value: 94.04170804369414 - type: main_score value: 93.8182717829648 - type: manhattan_accuracy value: 80.99455040871935 - type: manhattan_accuracy_threshold value: 38092.132568359375 - type: manhattan_ap value: 93.77563401151711 - type: manhattan_f1 value: 86.91983122362869 - type: manhattan_f1_threshold value: 38092.132568359375 - type: manhattan_precision value: 82.32682060390763 - type: manhattan_recall value: 92.05561072492551 - type: max_accuracy value: 80.99455040871935 - type: max_ap value: 93.8182717829648 - type: max_f1 value: 87.12328767123287 - type: max_precision value: 82.32682060390763 - type: max_recall value: 94.73684210526315 - type: similarity_accuracy value: 80.92643051771117 - type: similarity_accuracy_threshold value: 76.68856382369995 - type: similarity_ap value: 93.74622381534307 - type: similarity_f1 value: 87.12328767123287 - type: similarity_f1_threshold value: 71.64022922515869 - type: similarity_precision value: 80.64243448858834 - type: similarity_recall value: 94.73684210526315 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (ru) type: GEM/opusparcus config: ru split: test.full revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cosine_accuracy value: 76.83823529411765 - type: cosine_accuracy_threshold value: 72.70769476890564 - type: cosine_ap value: 89.56692049908222 - type: cosine_f1 value: 83.99832003359934 - type: cosine_f1_threshold value: 70.9052324295044 - type: cosine_precision value: 76.16146230007617 - type: cosine_recall value: 93.63295880149812 - type: dot_accuracy value: 76.28676470588235 - type: dot_accuracy_threshold value: 33740.68908691406 - type: dot_ap value: 87.77185177141567 - type: dot_f1 value: 83.62251375370292 - type: dot_f1_threshold value: 32726.611328125 - type: dot_precision value: 76.29343629343629 - type: dot_recall value: 92.50936329588015 - type: euclidean_accuracy value: 77.32843137254902 - type: euclidean_accuracy_threshold value: 1566.510009765625 - type: euclidean_ap value: 89.60605626791111 - type: euclidean_f1 value: 84.06546080964686 - type: euclidean_f1_threshold value: 1576.4202117919922 - type: euclidean_precision value: 77.83094098883574 - type: euclidean_recall value: 91.38576779026218 - type: main_score value: 89.60605626791111 - type: manhattan_accuracy value: 76.89950980392157 - type: manhattan_accuracy_threshold value: 38202.215576171875 - type: manhattan_ap value: 89.55766894104868 - type: manhattan_f1 value: 83.80462724935732 - type: manhattan_f1_threshold value: 38934.375 - type: manhattan_precision value: 77.25118483412322 - type: manhattan_recall value: 91.57303370786516 - type: max_accuracy value: 77.32843137254902 - type: max_ap value: 89.60605626791111 - type: max_f1 value: 84.06546080964686 - type: max_precision value: 77.83094098883574 - type: max_recall value: 93.63295880149812 - type: similarity_accuracy value: 76.83823529411765 - type: similarity_accuracy_threshold value: 72.70769476890564 - type: similarity_ap value: 89.56692049908222 - type: similarity_f1 value: 83.99832003359934 - type: similarity_f1_threshold value: 70.9052324295044 - type: similarity_precision value: 76.16146230007617 - type: similarity_recall value: 93.63295880149812 - task: type: Classification dataset: name: MTEB PAC (default) type: laugustyniak/abusive-clauses-pl config: default split: test revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 metrics: - type: accuracy value: 68.39559803069794 - type: ap value: 77.68074206719457 - type: ap_weighted value: 77.68074206719457 - type: f1 value: 66.23485605467732 - type: f1_weighted value: 69.03201442129347 - type: main_score value: 68.39559803069794 - task: type: STS dataset: name: MTEB PAWSX (default) type: C-MTEB/PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cosine_pearson value: 13.161523266433587 - type: cosine_spearman value: 15.557333873773386 - type: euclidean_pearson value: 17.147508431907525 - type: euclidean_spearman value: 15.664112857732146 - type: main_score value: 15.557333873773386 - type: manhattan_pearson value: 17.130875906264386 - type: manhattan_spearman value: 15.624397342229637 - type: pearson value: 13.161523266433587 - type: spearman value: 15.557333873773386 - task: type: PairClassification dataset: name: MTEB PSC (default) type: PL-MTEB/psc-pairclassification config: default split: test revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 metrics: - type: cosine_accuracy value: 97.86641929499072 - type: cosine_accuracy_threshold value: 79.0391206741333 - type: cosine_ap value: 99.19403807771533 - type: cosine_f1 value: 96.45608628659475 - type: cosine_f1_threshold value: 79.0391206741333 - type: cosine_precision value: 97.50778816199377 - type: cosine_recall value: 95.42682926829268 - type: dot_accuracy value: 98.14471243042672 - type: dot_accuracy_threshold value: 29808.1787109375 - type: dot_ap value: 99.331999859971 - type: dot_f1 value: 97.01492537313433 - type: dot_f1_threshold value: 29808.1787109375 - type: dot_precision value: 95.02923976608187 - type: dot_recall value: 99.08536585365853 - type: euclidean_accuracy value: 97.49536178107606 - type: euclidean_accuracy_threshold value: 1276.227855682373 - type: euclidean_ap value: 98.91056467717377 - type: euclidean_f1 value: 95.83975346687212 - type: euclidean_f1_threshold value: 1276.227855682373 - type: euclidean_precision value: 96.88473520249221 - type: euclidean_recall value: 94.8170731707317 - type: main_score value: 99.331999859971 - type: manhattan_accuracy value: 97.49536178107606 - type: manhattan_accuracy_threshold value: 31097.674560546875 - type: manhattan_ap value: 98.95694691792707 - type: manhattan_f1 value: 95.83975346687212 - type: manhattan_f1_threshold value: 31097.674560546875 - type: manhattan_precision value: 96.88473520249221 - type: manhattan_recall value: 94.8170731707317 - type: max_accuracy value: 98.14471243042672 - type: max_ap value: 99.331999859971 - type: max_f1 value: 97.01492537313433 - type: max_precision value: 97.50778816199377 - type: max_recall value: 99.08536585365853 - type: similarity_accuracy value: 97.86641929499072 - type: similarity_accuracy_threshold value: 79.0391206741333 - type: similarity_ap value: 99.19403807771533 - type: similarity_f1 value: 96.45608628659475 - type: similarity_f1_threshold value: 79.0391206741333 - type: similarity_precision value: 97.50778816199377 - type: similarity_recall value: 95.42682926829268 - task: type: PairClassification dataset: name: MTEB PawsXPairClassification (en) type: google-research-datasets/paws-x config: en split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cosine_accuracy value: 61.8 - type: cosine_accuracy_threshold value: 99.5664119720459 - type: cosine_ap value: 60.679317786040585 - type: cosine_f1 value: 63.17354143441101 - type: cosine_f1_threshold value: 97.22164869308472 - type: cosine_precision value: 47.6457399103139 - type: cosine_recall value: 93.71554575523705 - type: dot_accuracy value: 55.7 - type: dot_accuracy_threshold value: 48353.62548828125 - type: dot_ap value: 48.53805970536875 - type: dot_f1 value: 62.42214532871972 - type: dot_f1_threshold value: 38215.53955078125 - type: dot_precision value: 45.48663640948058 - type: dot_recall value: 99.44873208379272 - type: euclidean_accuracy value: 61.75000000000001 - type: euclidean_accuracy_threshold value: 189.0761137008667 - type: euclidean_ap value: 60.55517418691518 - type: euclidean_f1 value: 63.07977736549165 - type: euclidean_f1_threshold value: 504.3168067932129 - type: euclidean_precision value: 47.53914988814318 - type: euclidean_recall value: 93.71554575523705 - type: main_score value: 60.679317786040585 - type: manhattan_accuracy value: 61.9 - type: manhattan_accuracy_threshold value: 4695.778274536133 - type: manhattan_ap value: 60.48686620413608 - type: manhattan_f1 value: 62.92880855772778 - type: manhattan_f1_threshold value: 12542.36831665039 - type: manhattan_precision value: 47.28381374722838 - type: manhattan_recall value: 94.04630650496141 - type: max_accuracy value: 61.9 - type: max_ap value: 60.679317786040585 - type: max_f1 value: 63.17354143441101 - type: max_precision value: 47.6457399103139 - type: max_recall value: 99.44873208379272 - type: similarity_accuracy value: 61.8 - type: similarity_accuracy_threshold value: 99.5664119720459 - type: similarity_ap value: 60.679317786040585 - type: similarity_f1 value: 63.17354143441101 - type: similarity_f1_threshold value: 97.22164869308472 - type: similarity_precision value: 47.6457399103139 - type: similarity_recall value: 93.71554575523705 - task: type: PairClassification dataset: name: MTEB PawsXPairClassification (de) type: google-research-datasets/paws-x config: de split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cosine_accuracy value: 60.25 - type: cosine_accuracy_threshold value: 99.54338073730469 - type: cosine_ap value: 56.7863613689054 - type: cosine_f1 value: 62.23499820337766 - type: cosine_f1_threshold value: 89.95014429092407 - type: cosine_precision value: 45.86864406779661 - type: cosine_recall value: 96.75977653631284 - type: dot_accuracy value: 56.8 - type: dot_accuracy_threshold value: 47349.78332519531 - type: dot_ap value: 49.7857806061729 - type: dot_f1 value: 62.31225986727209 - type: dot_f1_threshold value: 30143.206787109375 - type: dot_precision value: 45.32520325203252 - type: dot_recall value: 99.66480446927373 - type: euclidean_accuracy value: 60.3 - type: euclidean_accuracy_threshold value: 219.78106498718262 - type: euclidean_ap value: 56.731544327179606 - type: euclidean_f1 value: 62.19895287958115 - type: euclidean_f1_threshold value: 1792.1623229980469 - type: euclidean_precision value: 45.22842639593909 - type: euclidean_recall value: 99.55307262569832 - type: main_score value: 56.7863613689054 - type: manhattan_accuracy value: 60.150000000000006 - type: manhattan_accuracy_threshold value: 5104.503631591797 - type: manhattan_ap value: 56.70304479768734 - type: manhattan_f1 value: 62.22067039106145 - type: manhattan_f1_threshold value: 42839.471435546875 - type: manhattan_precision value: 45.2513966480447 - type: manhattan_recall value: 99.55307262569832 - type: max_accuracy value: 60.3 - type: max_ap value: 56.7863613689054 - type: max_f1 value: 62.31225986727209 - type: max_precision value: 45.86864406779661 - type: max_recall value: 99.66480446927373 - type: similarity_accuracy value: 60.25 - type: similarity_accuracy_threshold value: 99.54338073730469 - type: similarity_ap value: 56.7863613689054 - type: similarity_f1 value: 62.23499820337766 - type: similarity_f1_threshold value: 89.95014429092407 - type: similarity_precision value: 45.86864406779661 - type: similarity_recall value: 96.75977653631284 - task: type: PairClassification dataset: name: MTEB PawsXPairClassification (es) type: google-research-datasets/paws-x config: es split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cosine_accuracy value: 59.699999999999996 - type: cosine_accuracy_threshold value: 99.55930709838867 - type: cosine_ap value: 57.31662248806265 - type: cosine_f1 value: 62.444061962134256 - type: cosine_f1_threshold value: 74.75898265838623 - type: cosine_precision value: 45.3953953953954 - type: cosine_recall value: 100.0 - type: dot_accuracy value: 55.900000000000006 - type: dot_accuracy_threshold value: 47512.90283203125 - type: dot_ap value: 49.39339147787568 - type: dot_f1 value: 62.487082328625554 - type: dot_f1_threshold value: 34989.03503417969 - type: dot_precision value: 45.44088176352705 - type: dot_recall value: 100.0 - type: euclidean_accuracy value: 59.599999999999994 - type: euclidean_accuracy_threshold value: 200.82547664642334 - type: euclidean_ap value: 57.19737488445163 - type: euclidean_f1 value: 62.444061962134256 - type: euclidean_f1_threshold value: 1538.8837814331055 - type: euclidean_precision value: 45.3953953953954 - type: euclidean_recall value: 100.0 - type: main_score value: 57.31662248806265 - type: manhattan_accuracy value: 59.550000000000004 - type: manhattan_accuracy_threshold value: 5016.501617431641 - type: manhattan_ap value: 57.089959907945065 - type: manhattan_f1 value: 62.444061962134256 - type: manhattan_f1_threshold value: 37523.53515625 - type: manhattan_precision value: 45.3953953953954 - type: manhattan_recall value: 100.0 - type: max_accuracy value: 59.699999999999996 - type: max_ap value: 57.31662248806265 - type: max_f1 value: 62.487082328625554 - type: max_precision value: 45.44088176352705 - type: max_recall value: 100.0 - type: similarity_accuracy value: 59.699999999999996 - type: similarity_accuracy_threshold value: 99.55930709838867 - type: similarity_ap value: 57.31662248806265 - type: similarity_f1 value: 62.444061962134256 - type: similarity_f1_threshold value: 74.75898265838623 - type: similarity_precision value: 45.3953953953954 - type: similarity_recall value: 100.0 - task: type: PairClassification dataset: name: MTEB PawsXPairClassification (fr) type: google-research-datasets/paws-x config: fr split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cosine_accuracy value: 61.150000000000006 - type: cosine_accuracy_threshold value: 99.36153888702393 - type: cosine_ap value: 59.43845317938599 - type: cosine_f1 value: 62.51298026998961 - type: cosine_f1_threshold value: 76.77866220474243 - type: cosine_precision value: 45.468277945619334 - type: cosine_recall value: 100.0 - type: dot_accuracy value: 55.75 - type: dot_accuracy_threshold value: 48931.55212402344 - type: dot_ap value: 50.15949290538757 - type: dot_f1 value: 62.53462603878117 - type: dot_f1_threshold value: 34415.7958984375 - type: dot_precision value: 45.4911838790932 - type: dot_recall value: 100.0 - type: euclidean_accuracy value: 61.050000000000004 - type: euclidean_accuracy_threshold value: 240.8097267150879 - type: euclidean_ap value: 59.367971294226216 - type: euclidean_f1 value: 62.51298026998961 - type: euclidean_f1_threshold value: 1444.132423400879 - type: euclidean_precision value: 45.468277945619334 - type: euclidean_recall value: 100.0 - type: main_score value: 59.43845317938599 - type: manhattan_accuracy value: 60.95 - type: manhattan_accuracy_threshold value: 5701.206207275391 - type: manhattan_ap value: 59.30094096378774 - type: manhattan_f1 value: 62.53462603878117 - type: manhattan_f1_threshold value: 33445.672607421875 - type: manhattan_precision value: 45.4911838790932 - type: manhattan_recall value: 100.0 - type: max_accuracy value: 61.150000000000006 - type: max_ap value: 59.43845317938599 - type: max_f1 value: 62.53462603878117 - type: max_precision value: 45.4911838790932 - type: max_recall value: 100.0 - type: similarity_accuracy value: 61.150000000000006 - type: similarity_accuracy_threshold value: 99.36153888702393 - type: similarity_ap value: 59.43845317938599 - type: similarity_f1 value: 62.51298026998961 - type: similarity_f1_threshold value: 76.77866220474243 - type: similarity_precision value: 45.468277945619334 - type: similarity_recall value: 100.0 - task: type: PairClassification dataset: name: MTEB PawsXPairClassification (zh) type: google-research-datasets/paws-x config: zh split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cosine_accuracy value: 58.85 - type: cosine_accuracy_threshold value: 99.73838329315186 - type: cosine_ap value: 54.66913160570546 - type: cosine_f1 value: 62.32136632973162 - type: cosine_f1_threshold value: 76.4499306678772 - type: cosine_precision value: 45.265822784810126 - type: cosine_recall value: 100.0 - type: dot_accuracy value: 56.25 - type: dot_accuracy_threshold value: 47351.9287109375 - type: dot_ap value: 48.5266232989438 - type: dot_f1 value: 62.277951933124356 - type: dot_f1_threshold value: 31325.28076171875 - type: dot_precision value: 45.220030349013655 - type: dot_recall value: 100.0 - type: euclidean_accuracy value: 58.9 - type: euclidean_accuracy_threshold value: 144.24468278884888 - type: euclidean_ap value: 54.66981490353506 - type: euclidean_f1 value: 62.32136632973162 - type: euclidean_f1_threshold value: 1484.908676147461 - type: euclidean_precision value: 45.265822784810126 - type: euclidean_recall value: 100.0 - type: main_score value: 54.66981490353506 - type: manhattan_accuracy value: 58.9 - type: manhattan_accuracy_threshold value: 3586.785125732422 - type: manhattan_ap value: 54.668355260247736 - type: manhattan_f1 value: 62.32136632973162 - type: manhattan_f1_threshold value: 36031.22863769531 - type: manhattan_precision value: 45.265822784810126 - type: manhattan_recall value: 100.0 - type: max_accuracy value: 58.9 - type: max_ap value: 54.66981490353506 - type: max_f1 value: 62.32136632973162 - type: max_precision value: 45.265822784810126 - type: max_recall value: 100.0 - type: similarity_accuracy value: 58.85 - type: similarity_accuracy_threshold value: 99.73838329315186 - type: similarity_ap value: 54.66913160570546 - type: similarity_f1 value: 62.32136632973162 - type: similarity_f1_threshold value: 76.4499306678772 - type: similarity_precision value: 45.265822784810126 - type: similarity_recall value: 100.0 - task: type: Classification dataset: name: MTEB PolEmo2.0-IN (default) type: PL-MTEB/polemo2_in config: default split: test revision: d90724373c70959f17d2331ad51fb60c71176b03 metrics: - type: accuracy value: 83.75346260387812 - type: f1 value: 81.98304891214909 - type: f1_weighted value: 84.29623200830078 - type: main_score value: 83.75346260387812 - task: type: Classification dataset: name: MTEB PolEmo2.0-OUT (default) type: PL-MTEB/polemo2_out config: default split: test revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 metrics: - type: accuracy value: 66.53846153846153 - type: f1 value: 52.71826064368638 - type: f1_weighted value: 69.10010124630334 - type: main_score value: 66.53846153846153 - task: type: PairClassification dataset: name: MTEB PPC type: PL-MTEB/ppc-pairclassification config: default split: test revision: None metrics: - type: cosine_accuracy value: 81.8 - type: cosine_accuracy_threshold value: 90.47793745994568 - type: cosine_ap value: 91.42490266080884 - type: cosine_f1 value: 85.4632587859425 - type: cosine_f1_threshold value: 90.47793745994568 - type: cosine_precision value: 82.56172839506173 - type: cosine_recall value: 88.57615894039735 - type: dot_accuracy value: 74.6 - type: dot_accuracy_threshold value: 42102.23693847656 - type: dot_ap value: 86.20060009096979 - type: dot_f1 value: 80.02842928216063 - type: dot_f1_threshold value: 38970.16906738281 - type: dot_precision value: 70.1120797011208 - type: dot_recall value: 93.21192052980133 - type: euclidean_accuracy value: 81.5 - type: euclidean_accuracy_threshold value: 880.433464050293 - type: euclidean_ap value: 91.33143477982087 - type: euclidean_f1 value: 85.44600938967135 - type: euclidean_f1_threshold value: 964.0384674072266 - type: euclidean_precision value: 81.00890207715133 - type: euclidean_recall value: 90.39735099337747 - type: main_score value: 91.42490266080884 - type: manhattan_accuracy value: 81.3 - type: manhattan_accuracy_threshold value: 22100.830078125 - type: manhattan_ap value: 91.25996158651282 - type: manhattan_f1 value: 85.38102643856921 - type: manhattan_f1_threshold value: 24043.515014648438 - type: manhattan_precision value: 80.49853372434018 - type: manhattan_recall value: 90.89403973509934 - type: max_accuracy value: 81.8 - type: max_ap value: 91.42490266080884 - type: max_f1 value: 85.4632587859425 - type: max_precision value: 82.56172839506173 - type: max_recall value: 93.21192052980133 - type: similarity_accuracy value: 81.8 - type: similarity_accuracy_threshold value: 90.47793745994568 - type: similarity_ap value: 91.42490266080884 - type: similarity_f1 value: 85.4632587859425 - type: similarity_f1_threshold value: 90.47793745994568 - type: similarity_precision value: 82.56172839506173 - type: similarity_recall value: 88.57615894039735 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval (default) type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 71.419 - type: map_at_10 value: 85.542 - type: map_at_100 value: 86.161 - type: map_at_1000 value: 86.175 - type: map_at_20 value: 85.949 - type: map_at_3 value: 82.623 - type: map_at_5 value: 84.5 - type: mrr_at_1 value: 82.27 - type: mrr_at_10 value: 88.21900000000001 - type: mrr_at_100 value: 88.313 - type: mrr_at_1000 value: 88.31400000000001 - type: mrr_at_20 value: 88.286 - type: mrr_at_3 value: 87.325 - type: mrr_at_5 value: 87.97500000000001 - type: ndcg_at_1 value: 82.3 - type: ndcg_at_10 value: 89.088 - type: ndcg_at_100 value: 90.217 - type: ndcg_at_1000 value: 90.29700000000001 - type: ndcg_at_20 value: 89.697 - type: ndcg_at_3 value: 86.435 - type: ndcg_at_5 value: 87.966 - type: precision_at_1 value: 82.3 - type: precision_at_10 value: 13.527000000000001 - type: precision_at_100 value: 1.537 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.165000000000001 - type: precision_at_3 value: 37.92 - type: precision_at_5 value: 24.914 - type: recall_at_1 value: 71.419 - type: recall_at_10 value: 95.831 - type: recall_at_100 value: 99.64 - type: recall_at_1000 value: 99.988 - type: recall_at_20 value: 97.76599999999999 - type: recall_at_3 value: 88.081 - type: recall_at_5 value: 92.50500000000001 - type: main_score value: 89.088 - task: type: STS dataset: name: MTEB RUParaPhraserSTS (default) type: merionum/ru_paraphraser config: default split: test revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 metrics: - type: cosine_pearson value: 67.91177744712421 - type: cosine_spearman value: 76.77113726753656 - type: euclidean_pearson value: 73.81454206068638 - type: euclidean_spearman value: 76.92529493599028 - type: main_score value: 76.77113726753656 - type: manhattan_pearson value: 73.81690454439168 - type: manhattan_spearman value: 76.87333776705002 - type: pearson value: 67.91177744712421 - type: spearman value: 76.77113726753656 - task: type: Clustering dataset: name: MTEB RedditClustering (default) type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: main_score value: 55.39924225216962 - type: v_measure value: 55.39924225216962 - type: v_measure_std value: 4.723802279292467 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P (default) type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: main_score value: 62.87465161304012 - type: v_measure value: 62.87465161304012 - type: v_measure_std value: 12.082670914488473 - task: type: Retrieval dataset: name: MTEB RiaNewsRetrieval (default) type: ai-forever/ria-news-retrieval config: default split: test revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 metrics: - type: main_score value: 79.209 - type: map_at_1 value: 67.33 - type: map_at_10 value: 75.633 - type: map_at_100 value: 75.897 - type: map_at_1000 value: 75.907 - type: map_at_20 value: 75.804 - type: map_at_3 value: 74.2 - type: map_at_5 value: 75.13300000000001 - type: mrr_at_1 value: 67.31 - type: mrr_at_10 value: 75.62709126984095 - type: mrr_at_100 value: 75.89105697041113 - type: mrr_at_1000 value: 75.90115653883124 - type: mrr_at_20 value: 75.79802332308172 - type: mrr_at_3 value: 74.19499999999961 - type: mrr_at_5 value: 75.12849999999939 - type: nauc_map_at_1000_diff1 value: 74.30304869630591 - type: nauc_map_at_1000_max value: 36.477146725784046 - type: nauc_map_at_1000_std value: -20.862772498461723 - type: nauc_map_at_100_diff1 value: 74.29833058090355 - type: nauc_map_at_100_max value: 36.483678619667884 - type: nauc_map_at_100_std value: -20.856274849980135 - type: nauc_map_at_10_diff1 value: 74.20729220697967 - type: nauc_map_at_10_max value: 36.56543146170092 - type: nauc_map_at_10_std value: -20.991081015484728 - type: nauc_map_at_1_diff1 value: 77.38899022125185 - type: nauc_map_at_1_max value: 32.45918619669731 - type: nauc_map_at_1_std value: -22.149586336167324 - type: nauc_map_at_20_diff1 value: 74.2447573558587 - type: nauc_map_at_20_max value: 36.50383130240387 - type: nauc_map_at_20_std value: -20.87013743041831 - type: nauc_map_at_3_diff1 value: 74.3054577294586 - type: nauc_map_at_3_max value: 36.484530586652724 - type: nauc_map_at_3_std value: -21.90543024607988 - type: nauc_map_at_5_diff1 value: 74.21062368961503 - type: nauc_map_at_5_max value: 36.55670532498779 - type: nauc_map_at_5_std value: -21.488786900676942 - type: nauc_mrr_at_1000_diff1 value: 74.31619177956684 - type: nauc_mrr_at_1000_max value: 36.53498918453189 - type: nauc_mrr_at_1000_std value: -20.75986704931237 - type: nauc_mrr_at_100_diff1 value: 74.31146790382356 - type: nauc_mrr_at_100_max value: 36.54149252857106 - type: nauc_mrr_at_100_std value: -20.75341959250079 - type: nauc_mrr_at_10_diff1 value: 74.22027806145095 - type: nauc_mrr_at_10_max value: 36.622542969971725 - type: nauc_mrr_at_10_std value: -20.889417384064117 - type: nauc_mrr_at_1_diff1 value: 77.4306709551449 - type: nauc_mrr_at_1_max value: 32.57259463438259 - type: nauc_mrr_at_1_std value: -21.964402859613937 - type: nauc_mrr_at_20_diff1 value: 74.25784396230718 - type: nauc_mrr_at_20_max value: 36.561412224507336 - type: nauc_mrr_at_20_std value: -20.767665000065723 - type: nauc_mrr_at_3_diff1 value: 74.31423253547214 - type: nauc_mrr_at_3_max value: 36.537745749488906 - type: nauc_mrr_at_3_std value: -21.81259529019546 - type: nauc_mrr_at_5_diff1 value: 74.22404613312771 - type: nauc_mrr_at_5_max value: 36.60743768455219 - type: nauc_mrr_at_5_std value: -21.39479216331971 - type: nauc_ndcg_at_1000_diff1 value: 73.48182819705742 - type: nauc_ndcg_at_1000_max value: 37.86991608461793 - type: nauc_ndcg_at_1000_std value: -19.021499322688904 - type: nauc_ndcg_at_100_diff1 value: 73.34941250585759 - type: nauc_ndcg_at_100_max value: 38.11150275625829 - type: nauc_ndcg_at_100_std value: -18.70624087206104 - type: nauc_ndcg_at_10_diff1 value: 72.82520265115987 - type: nauc_ndcg_at_10_max value: 38.43323357650525 - type: nauc_ndcg_at_10_std value: -19.410953792830878 - type: nauc_ndcg_at_1_diff1 value: 77.38899022125185 - type: nauc_ndcg_at_1_max value: 32.45918619669731 - type: nauc_ndcg_at_1_std value: -22.149586336167324 - type: nauc_ndcg_at_20_diff1 value: 72.93309285256507 - type: nauc_ndcg_at_20_max value: 38.217372819067755 - type: nauc_ndcg_at_20_std value: -18.864113576359333 - type: nauc_ndcg_at_3_diff1 value: 73.18253776744112 - type: nauc_ndcg_at_3_max value: 38.008109328364 - type: nauc_ndcg_at_3_std value: -21.68785687594153 - type: nauc_ndcg_at_5_diff1 value: 72.90474739784793 - type: nauc_ndcg_at_5_max value: 38.29483039202184 - type: nauc_ndcg_at_5_std value: -20.833049811453474 - type: nauc_precision_at_1000_diff1 value: 59.306217613750334 - type: nauc_precision_at_1000_max value: 72.20747948302262 - type: nauc_precision_at_1000_std value: 45.58837180096227 - type: nauc_precision_at_100_diff1 value: 62.87286844562389 - type: nauc_precision_at_100_max value: 61.33108214045868 - type: nauc_precision_at_100_std value: 20.67481963545654 - type: nauc_precision_at_10_diff1 value: 64.11222984256685 - type: nauc_precision_at_10_max value: 50.323697746037496 - type: nauc_precision_at_10_std value: -7.9994544634332625 - type: nauc_precision_at_1_diff1 value: 77.38899022125185 - type: nauc_precision_at_1_max value: 32.45918619669731 - type: nauc_precision_at_1_std value: -22.149586336167324 - type: nauc_precision_at_20_diff1 value: 62.30228127286973 - type: nauc_precision_at_20_max value: 52.02090746208407 - type: nauc_precision_at_20_std value: 0.7629898806370331 - type: nauc_precision_at_3_diff1 value: 68.82856645994157 - type: nauc_precision_at_3_max value: 43.94171571306625 - type: nauc_precision_at_3_std value: -20.78595255410148 - type: nauc_precision_at_5_diff1 value: 66.62157622497887 - type: nauc_precision_at_5_max value: 46.69398173603811 - type: nauc_precision_at_5_std value: -17.412423571163057 - type: nauc_recall_at_1000_diff1 value: 59.30621761375148 - type: nauc_recall_at_1000_max value: 72.20747948302191 - type: nauc_recall_at_1000_std value: 45.588371800962655 - type: nauc_recall_at_100_diff1 value: 62.872868445623894 - type: nauc_recall_at_100_max value: 61.33108214045813 - type: nauc_recall_at_100_std value: 20.67481963545666 - type: nauc_recall_at_10_diff1 value: 64.11222984256698 - type: nauc_recall_at_10_max value: 50.32369774603755 - type: nauc_recall_at_10_std value: -7.999454463433321 - type: nauc_recall_at_1_diff1 value: 77.38899022125185 - type: nauc_recall_at_1_max value: 32.45918619669731 - type: nauc_recall_at_1_std value: -22.149586336167324 - type: nauc_recall_at_20_diff1 value: 62.3022812728695 - type: nauc_recall_at_20_max value: 52.02090746208397 - type: nauc_recall_at_20_std value: 0.7629898806369458 - type: nauc_recall_at_3_diff1 value: 68.82856645994157 - type: nauc_recall_at_3_max value: 43.94171571306612 - type: nauc_recall_at_3_std value: -20.78595255410157 - type: nauc_recall_at_5_diff1 value: 66.62157622497897 - type: nauc_recall_at_5_max value: 46.693981736038246 - type: nauc_recall_at_5_std value: -17.412423571162954 - type: ndcg_at_1 value: 67.33 - type: ndcg_at_10 value: 79.209 - type: ndcg_at_100 value: 80.463 - type: ndcg_at_1000 value: 80.74799999999999 - type: ndcg_at_20 value: 79.81899999999999 - type: ndcg_at_3 value: 76.335 - type: ndcg_at_5 value: 78.011 - type: precision_at_1 value: 67.33 - type: precision_at_10 value: 9.020999999999999 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.63 - type: precision_at_3 value: 27.493000000000002 - type: precision_at_5 value: 17.308 - type: recall_at_1 value: 67.33 - type: recall_at_10 value: 90.21000000000001 - type: recall_at_100 value: 96.00999999999999 - type: recall_at_1000 value: 98.29 - type: recall_at_20 value: 92.60000000000001 - type: recall_at_3 value: 82.48 - type: recall_at_5 value: 86.53999999999999 - task: type: Reranking dataset: name: MTEB RuBQReranking (default) type: ai-forever/rubq-reranking config: default split: test revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 metrics: - type: main_score value: 65.57453932493252 - type: map value: 65.57453932493252 - type: mrr value: 70.51408205663526 - type: nAUC_map_diff1 value: 26.69583260609023 - type: nAUC_map_max value: 12.928262749610663 - type: nAUC_map_std value: 11.702468857903128 - type: nAUC_mrr_diff1 value: 28.5206955462174 - type: nAUC_mrr_max value: 14.207162454694227 - type: nAUC_mrr_std value: 10.725721001555296 - task: type: Retrieval dataset: name: MTEB RuBQRetrieval (default) type: ai-forever/rubq-retrieval config: default split: test revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b metrics: - type: main_score value: 72.306 - type: map_at_1 value: 44.187 - type: map_at_10 value: 64.836 - type: map_at_100 value: 65.771 - type: map_at_1000 value: 65.8 - type: map_at_20 value: 65.497 - type: map_at_3 value: 59.692 - type: map_at_5 value: 63.105 - type: mrr_at_1 value: 62.23404255319149 - type: mrr_at_10 value: 73.40810161732159 - type: mrr_at_100 value: 73.67949305473395 - type: mrr_at_1000 value: 73.68707852294746 - type: mrr_at_20 value: 73.60429051697479 - type: mrr_at_3 value: 71.47360126083535 - type: mrr_at_5 value: 72.8447596532704 - type: nauc_map_at_1000_diff1 value: 39.838449035736886 - type: nauc_map_at_1000_max value: 32.29962306877408 - type: nauc_map_at_1000_std value: -6.324859592714388 - type: nauc_map_at_100_diff1 value: 39.824361938745426 - type: nauc_map_at_100_max value: 32.32055222704763 - type: nauc_map_at_100_std value: -6.301641111869559 - type: nauc_map_at_10_diff1 value: 39.50155328718487 - type: nauc_map_at_10_max value: 31.745730244960672 - type: nauc_map_at_10_std value: -6.867215137329693 - type: nauc_map_at_1_diff1 value: 47.66181128677822 - type: nauc_map_at_1_max value: 21.75204233166764 - type: nauc_map_at_1_std value: -8.06951079061697 - type: nauc_map_at_20_diff1 value: 39.78364637902108 - type: nauc_map_at_20_max value: 32.39065528029405 - type: nauc_map_at_20_std value: -6.368994332729006 - type: nauc_map_at_3_diff1 value: 39.51829474433183 - type: nauc_map_at_3_max value: 28.633292697821673 - type: nauc_map_at_3_std value: -7.2561170814963925 - type: nauc_map_at_5_diff1 value: 39.288433237676266 - type: nauc_map_at_5_max value: 31.007702201615515 - type: nauc_map_at_5_std value: -7.235131195162474 - type: nauc_mrr_at_1000_diff1 value: 49.599102391215226 - type: nauc_mrr_at_1000_max value: 38.25521825911133 - type: nauc_mrr_at_1000_std value: -10.448180939809435 - type: nauc_mrr_at_100_diff1 value: 49.5957067716212 - type: nauc_mrr_at_100_max value: 38.26760703964535 - type: nauc_mrr_at_100_std value: -10.438443051971081 - type: nauc_mrr_at_10_diff1 value: 49.35269710190271 - type: nauc_mrr_at_10_max value: 38.43782589127069 - type: nauc_mrr_at_10_std value: -10.404402063509815 - type: nauc_mrr_at_1_diff1 value: 53.32206103688421 - type: nauc_mrr_at_1_max value: 33.52402390241035 - type: nauc_mrr_at_1_std value: -12.73473393949936 - type: nauc_mrr_at_20_diff1 value: 49.550630850826636 - type: nauc_mrr_at_20_max value: 38.35964703941151 - type: nauc_mrr_at_20_std value: -10.444577766284766 - type: nauc_mrr_at_3_diff1 value: 49.12029127633829 - type: nauc_mrr_at_3_max value: 38.01631275124067 - type: nauc_mrr_at_3_std value: -10.523724301481309 - type: nauc_mrr_at_5_diff1 value: 49.04606949432458 - type: nauc_mrr_at_5_max value: 38.33647550077891 - type: nauc_mrr_at_5_std value: -10.47076409263114 - type: nauc_ndcg_at_1000_diff1 value: 41.342785916264226 - type: nauc_ndcg_at_1000_max value: 35.75731064862711 - type: nauc_ndcg_at_1000_std value: -5.45573422899229 - type: nauc_ndcg_at_100_diff1 value: 40.972974559636086 - type: nauc_ndcg_at_100_max value: 36.32938573321036 - type: nauc_ndcg_at_100_std value: -4.749631537590004 - type: nauc_ndcg_at_10_diff1 value: 39.67813474464166 - type: nauc_ndcg_at_10_max value: 35.480200504848966 - type: nauc_ndcg_at_10_std value: -6.318561293935512 - type: nauc_ndcg_at_1_diff1 value: 53.45970160222764 - type: nauc_ndcg_at_1_max value: 33.14759013278075 - type: nauc_ndcg_at_1_std value: -12.579833891774847 - type: nauc_ndcg_at_20_diff1 value: 40.67492861219249 - type: nauc_ndcg_at_20_max value: 36.84960799838019 - type: nauc_ndcg_at_20_std value: -5.202530835850179 - type: nauc_ndcg_at_3_diff1 value: 39.574906207408844 - type: nauc_ndcg_at_3_max value: 31.76512164509258 - type: nauc_ndcg_at_3_std value: -7.656143208565999 - type: nauc_ndcg_at_5_diff1 value: 39.096348529742095 - type: nauc_ndcg_at_5_max value: 34.075926475544165 - type: nauc_ndcg_at_5_std value: -7.238045445366631 - type: nauc_precision_at_1000_diff1 value: -14.283799754212609 - type: nauc_precision_at_1000_max value: 6.449741756717101 - type: nauc_precision_at_1000_std value: 4.862828679759048 - type: nauc_precision_at_100_diff1 value: -13.23173132700258 - type: nauc_precision_at_100_max value: 11.058898534529195 - type: nauc_precision_at_100_std value: 7.343683941814956 - type: nauc_precision_at_10_diff1 value: -7.202951643546464 - type: nauc_precision_at_10_max value: 17.499446869433278 - type: nauc_precision_at_10_std value: 2.8367985220406307 - type: nauc_precision_at_1_diff1 value: 53.45970160222764 - type: nauc_precision_at_1_max value: 33.14759013278075 - type: nauc_precision_at_1_std value: -12.579833891774847 - type: nauc_precision_at_20_diff1 value: -9.477122699154124 - type: nauc_precision_at_20_max value: 16.80556031564312 - type: nauc_precision_at_20_std value: 6.420218284416923 - type: nauc_precision_at_3_diff1 value: 5.5276143574150245 - type: nauc_precision_at_3_max value: 23.65952688481666 - type: nauc_precision_at_3_std value: -1.8730348729295785 - type: nauc_precision_at_5_diff1 value: -2.4537029093721308 - type: nauc_precision_at_5_max value: 21.41469327545133 - type: nauc_precision_at_5_std value: 0.1543890645722277 - type: nauc_recall_at_1000_diff1 value: -1.7474947956413491 - type: nauc_recall_at_1000_max value: 46.22670991970479 - type: nauc_recall_at_1000_std value: 62.582840705588794 - type: nauc_recall_at_100_diff1 value: 16.116089801097345 - type: nauc_recall_at_100_max value: 52.54794580975103 - type: nauc_recall_at_100_std value: 33.720245696003246 - type: nauc_recall_at_10_diff1 value: 23.134924318655482 - type: nauc_recall_at_10_max value: 38.73754275649077 - type: nauc_recall_at_10_std value: 0.6137471711639239 - type: nauc_recall_at_1_diff1 value: 47.66181128677822 - type: nauc_recall_at_1_max value: 21.75204233166764 - type: nauc_recall_at_1_std value: -8.06951079061697 - type: nauc_recall_at_20_diff1 value: 24.130616271355017 - type: nauc_recall_at_20_max value: 48.306178640146136 - type: nauc_recall_at_20_std value: 9.290819557000022 - type: nauc_recall_at_3_diff1 value: 29.767415016250226 - type: nauc_recall_at_3_max value: 28.54289782140701 - type: nauc_recall_at_3_std value: -5.1395675072005576 - type: nauc_recall_at_5_diff1 value: 25.410613126870174 - type: nauc_recall_at_5_max value: 33.24658754857624 - type: nauc_recall_at_5_std value: -4.211226036746632 - type: ndcg_at_1 value: 62.175000000000004 - type: ndcg_at_10 value: 72.306 - type: ndcg_at_100 value: 75.074 - type: ndcg_at_1000 value: 75.581 - type: ndcg_at_20 value: 73.875 - type: ndcg_at_3 value: 65.641 - type: ndcg_at_5 value: 69.48299999999999 - type: precision_at_1 value: 62.175000000000004 - type: precision_at_10 value: 13.907 - type: precision_at_100 value: 1.591 - type: precision_at_1000 value: 0.166 - type: precision_at_20 value: 7.446999999999999 - type: precision_at_3 value: 35.619 - type: precision_at_5 value: 24.917 - type: recall_at_1 value: 44.187 - type: recall_at_10 value: 85.10600000000001 - type: recall_at_100 value: 95.488 - type: recall_at_1000 value: 98.831 - type: recall_at_20 value: 90.22200000000001 - type: recall_at_3 value: 68.789 - type: recall_at_5 value: 77.85499999999999 - task: type: Classification dataset: name: MTEB RuReviewsClassification (default) type: ai-forever/ru-reviews-classification config: default split: test revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a metrics: - type: accuracy value: 67.5830078125 - type: f1 value: 67.56931936632446 - type: f1_weighted value: 67.57137733752779 - type: main_score value: 67.5830078125 - task: type: STS dataset: name: MTEB RuSTSBenchmarkSTS (default) type: ai-forever/ru-stsbenchmark-sts config: default split: test revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 metrics: - type: cosine_pearson value: 85.90493484626788 - type: cosine_spearman value: 86.21965691667411 - type: euclidean_pearson value: 86.07499842984909 - type: euclidean_spearman value: 86.55506818735688 - type: main_score value: 86.21965691667411 - type: manhattan_pearson value: 85.95976420231729 - type: manhattan_spearman value: 86.48604243661234 - type: pearson value: 85.90493484626788 - type: spearman value: 86.21965691667411 - task: type: Classification dataset: name: MTEB RuSciBenchGRNTIClassification (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: accuracy value: 59.1943359375 - type: f1 value: 58.894480861440414 - type: f1_weighted value: 58.903615560240866 - type: main_score value: 59.1943359375 - task: type: Clustering dataset: name: MTEB RuSciBenchGRNTIClusteringP2P (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: main_score value: 57.99209448663228 - type: v_measure value: 57.99209448663228 - type: v_measure_std value: 1.0381163861993816 - task: type: Classification dataset: name: MTEB RuSciBenchOECDClassification (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: accuracy value: 45.556640625 - type: f1 value: 45.159163104085906 - type: f1_weighted value: 45.16098316398626 - type: main_score value: 45.556640625 - task: type: Clustering dataset: name: MTEB RuSciBenchOECDClusteringP2P (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: main_score value: 50.787548070488974 - type: v_measure value: 50.787548070488974 - type: v_measure_std value: 0.8569958168946827 - task: type: Retrieval dataset: name: MTEB SCIDOCS (default) type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 4.843 - type: map_at_10 value: 11.752 - type: map_at_100 value: 13.919 - type: map_at_1000 value: 14.198 - type: map_at_20 value: 12.898000000000001 - type: map_at_3 value: 8.603 - type: map_at_5 value: 10.069 - type: mrr_at_1 value: 23.799999999999997 - type: mrr_at_10 value: 34.449999999999996 - type: mrr_at_100 value: 35.64 - type: mrr_at_1000 value: 35.691 - type: mrr_at_20 value: 35.213 - type: mrr_at_3 value: 31.383 - type: mrr_at_5 value: 33.062999999999995 - type: ndcg_at_1 value: 23.799999999999997 - type: ndcg_at_10 value: 19.811 - type: ndcg_at_100 value: 28.108 - type: ndcg_at_1000 value: 33.1 - type: ndcg_at_20 value: 22.980999999999998 - type: ndcg_at_3 value: 19.153000000000002 - type: ndcg_at_5 value: 16.408 - type: precision_at_1 value: 23.799999999999997 - type: precision_at_10 value: 10.16 - type: precision_at_100 value: 2.1999999999999997 - type: precision_at_1000 value: 0.34099999999999997 - type: precision_at_20 value: 6.915 - type: precision_at_3 value: 17.8 - type: precision_at_5 value: 14.14 - type: recall_at_1 value: 4.843 - type: recall_at_10 value: 20.595 - type: recall_at_100 value: 44.66 - type: recall_at_1000 value: 69.152 - type: recall_at_20 value: 28.04 - type: recall_at_3 value: 10.833 - type: recall_at_5 value: 14.346999999999998 - type: main_score value: 19.811 - task: type: PairClassification dataset: name: MTEB SICK-E-PL (default) type: PL-MTEB/sicke-pl-pairclassification config: default split: test revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 metrics: - type: cosine_accuracy value: 80.90093762739502 - type: cosine_accuracy_threshold value: 94.40930485725403 - type: cosine_ap value: 71.15400909912427 - type: cosine_f1 value: 66.8213457076566 - type: cosine_f1_threshold value: 91.53673648834229 - type: cosine_precision value: 62.4922504649721 - type: cosine_recall value: 71.7948717948718 - type: dot_accuracy value: 78.41418671015083 - type: dot_accuracy_threshold value: 42924.45068359375 - type: dot_ap value: 63.34003025365763 - type: dot_f1 value: 62.518258837277244 - type: dot_f1_threshold value: 40900.738525390625 - type: dot_precision value: 52.99653293709758 - type: dot_recall value: 76.21082621082621 - type: euclidean_accuracy value: 80.67672238075826 - type: euclidean_accuracy_threshold value: 696.0524559020996 - type: euclidean_ap value: 70.88762835990224 - type: euclidean_f1 value: 66.711051930759 - type: euclidean_f1_threshold value: 878.5581588745117 - type: euclidean_precision value: 62.625 - type: euclidean_recall value: 71.36752136752136 - type: main_score value: 71.15400909912427 - type: manhattan_accuracy value: 80.65633917651854 - type: manhattan_accuracy_threshold value: 17277.72674560547 - type: manhattan_ap value: 70.67105336611716 - type: manhattan_f1 value: 66.51346027577151 - type: manhattan_f1_threshold value: 21687.957763671875 - type: manhattan_precision value: 61.69305724725944 - type: manhattan_recall value: 72.15099715099716 - type: max_accuracy value: 80.90093762739502 - type: max_ap value: 71.15400909912427 - type: max_f1 value: 66.8213457076566 - type: max_precision value: 62.625 - type: max_recall value: 76.21082621082621 - type: similarity_accuracy value: 80.90093762739502 - type: similarity_accuracy_threshold value: 94.40930485725403 - type: similarity_ap value: 71.15400909912427 - type: similarity_f1 value: 66.8213457076566 - type: similarity_f1_threshold value: 91.53673648834229 - type: similarity_precision value: 62.4922504649721 - type: similarity_recall value: 71.7948717948718 - task: type: STS dataset: name: MTEB SICK-R (default) type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cosine_pearson value: 92.3339946866199 - type: cosine_spearman value: 89.61697355115497 - type: euclidean_pearson value: 90.3264916449669 - type: euclidean_spearman value: 89.36270451308866 - type: main_score value: 89.61697355115497 - type: manhattan_pearson value: 90.18909339052534 - type: manhattan_spearman value: 89.28337093097377 - type: pearson value: 92.3339946866199 - type: spearman value: 89.61697355115497 - task: type: STS dataset: name: MTEB SICK-R-PL (default) type: PL-MTEB/sickr-pl-sts config: default split: test revision: fd5c2441b7eeff8676768036142af4cfa42c1339 metrics: - type: cosine_pearson value: 85.27883048457821 - type: cosine_spearman value: 80.53204892678619 - type: euclidean_pearson value: 82.78520705216168 - type: euclidean_spearman value: 80.27848359873212 - type: main_score value: 80.53204892678619 - type: manhattan_pearson value: 82.63270640583454 - type: manhattan_spearman value: 80.21507977473146 - type: pearson value: 85.27883048457821 - type: spearman value: 80.53204892678619 - task: type: STS dataset: name: MTEB SICKFr (default) type: Lajavaness/SICK-fr config: default split: test revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a metrics: - type: cosine_pearson value: 88.77029361817212 - type: cosine_spearman value: 83.9453600346894 - type: euclidean_pearson value: 85.85331086208573 - type: euclidean_spearman value: 83.70852031985308 - type: main_score value: 83.9453600346894 - type: manhattan_pearson value: 85.66222265885914 - type: manhattan_spearman value: 83.60833111525962 - type: pearson value: 88.77029361817212 - type: spearman value: 83.9453600346894 - task: type: STS dataset: name: MTEB STS12 (default) type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cosine_pearson value: 88.76435859522375 - type: cosine_spearman value: 82.43768167804375 - type: euclidean_pearson value: 87.43566183874832 - type: euclidean_spearman value: 82.82166873757507 - type: main_score value: 82.43768167804375 - type: manhattan_pearson value: 87.39450871380951 - type: manhattan_spearman value: 82.89253043430163 - type: pearson value: 88.76435859522375 - type: spearman value: 82.43768167804375 - task: type: STS dataset: name: MTEB STS13 (default) type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cosine_pearson value: 88.86627241652141 - type: cosine_spearman value: 89.49011599120688 - type: euclidean_pearson value: 89.3314120073772 - type: euclidean_spearman value: 89.8226502776963 - type: main_score value: 89.49011599120688 - type: manhattan_pearson value: 89.2252179076963 - type: manhattan_spearman value: 89.74573844021225 - type: pearson value: 88.86627241652141 - type: spearman value: 89.49011599120688 - task: type: STS dataset: name: MTEB STS14 (default) type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cosine_pearson value: 87.22891405215968 - type: cosine_spearman value: 84.9467188157614 - type: euclidean_pearson value: 87.20330004726237 - type: euclidean_spearman value: 85.34806059461808 - type: main_score value: 84.9467188157614 - type: manhattan_pearson value: 87.15224666107623 - type: manhattan_spearman value: 85.34596898699708 - type: pearson value: 87.22891405215968 - type: spearman value: 84.9467188157614 - task: type: STS dataset: name: MTEB STS15 (default) type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cosine_pearson value: 88.14066430111033 - type: cosine_spearman value: 89.31337445552545 - type: euclidean_pearson value: 89.08039335366983 - type: euclidean_spearman value: 89.6658762856415 - type: main_score value: 89.31337445552545 - type: manhattan_pearson value: 89.08057438154486 - type: manhattan_spearman value: 89.68673984203022 - type: pearson value: 88.14066430111033 - type: spearman value: 89.31337445552545 - task: type: STS dataset: name: MTEB STS16 (default) type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cosine_pearson value: 85.14908856657084 - type: cosine_spearman value: 86.84648320786727 - type: euclidean_pearson value: 86.11454713131947 - type: euclidean_spearman value: 86.77738862047961 - type: main_score value: 86.84648320786727 - type: manhattan_pearson value: 86.07804821916372 - type: manhattan_spearman value: 86.78676064310474 - type: pearson value: 85.14908856657084 - type: spearman value: 86.84648320786727 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 89.61633502468356 - type: cosine_spearman value: 89.99772663224805 - type: euclidean_pearson value: 90.14056501501044 - type: euclidean_spearman value: 90.04496896837503 - type: main_score value: 89.99772663224805 - type: manhattan_pearson value: 90.08964860311801 - type: manhattan_spearman value: 90.00091712362196 - type: pearson value: 89.61633502468356 - type: spearman value: 89.99772663224805 - task: type: STS dataset: name: MTEB STS17 (es-en) type: mteb/sts17-crosslingual-sts config: es-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 86.44548026840202 - type: cosine_spearman value: 87.26263108768539 - type: euclidean_pearson value: 86.42844593583838 - type: euclidean_spearman value: 86.89388428664364 - type: main_score value: 87.26263108768539 - type: manhattan_pearson value: 86.47186940800881 - type: manhattan_spearman value: 87.02163091089946 - type: pearson value: 86.44548026840202 - type: spearman value: 87.26263108768539 - task: type: STS dataset: name: MTEB STS17 (en-de) type: mteb/sts17-crosslingual-sts config: en-de split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 87.89345132532758 - type: cosine_spearman value: 87.96246221327699 - type: euclidean_pearson value: 88.49013032701419 - type: euclidean_spearman value: 87.81981265317344 - type: main_score value: 87.96246221327699 - type: manhattan_pearson value: 88.31360914178538 - type: manhattan_spearman value: 87.62734530005075 - type: pearson value: 87.89345132532758 - type: spearman value: 87.96246221327699 - task: type: STS dataset: name: MTEB STS17 (es-es) type: mteb/sts17-crosslingual-sts config: es-es split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 88.4084678497171 - type: cosine_spearman value: 88.77640638748285 - type: euclidean_pearson value: 89.60124312475843 - type: euclidean_spearman value: 88.4321442688528 - type: main_score value: 88.77640638748285 - type: manhattan_pearson value: 89.62375118021299 - type: manhattan_spearman value: 88.46998118661577 - type: pearson value: 88.4084678497171 - type: spearman value: 88.77640638748285 - task: type: STS dataset: name: MTEB STS17 (fr-en) type: mteb/sts17-crosslingual-sts config: fr-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 87.30688801326498 - type: cosine_spearman value: 87.55684697258378 - type: euclidean_pearson value: 87.89672951056794 - type: euclidean_spearman value: 87.28050429201674 - type: main_score value: 87.55684697258378 - type: manhattan_pearson value: 87.74292745320572 - type: manhattan_spearman value: 87.16383993876582 - type: pearson value: 87.30688801326498 - type: spearman value: 87.55684697258378 - task: type: STS dataset: name: MTEB STS22 (zh-en) type: mteb/sts22-crosslingual-sts config: zh-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 73.46180375170147 - type: cosine_spearman value: 73.39559590127081 - type: euclidean_pearson value: 73.72613901293681 - type: euclidean_spearman value: 71.85465165176795 - type: main_score value: 73.39559590127081 - type: manhattan_pearson value: 73.07859140869076 - type: manhattan_spearman value: 71.22047343718893 - type: pearson value: 73.46180375170147 - type: spearman value: 73.39559590127081 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 62.47531620842637 - type: cosine_spearman value: 66.22504667157702 - type: euclidean_pearson value: 66.76201254783692 - type: euclidean_spearman value: 66.86115760269463 - type: main_score value: 66.22504667157702 - type: manhattan_pearson value: 66.73847836793489 - type: manhattan_spearman value: 66.7677116377695 - type: pearson value: 62.47531620842637 - type: spearman value: 66.22504667157702 - task: type: STS dataset: name: MTEB STS22 (es) type: mteb/sts22-crosslingual-sts config: es split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 69.89707002436481 - type: cosine_spearman value: 72.2054865735116 - type: euclidean_pearson value: 71.81856615570756 - type: euclidean_spearman value: 72.72593304629407 - type: main_score value: 72.2054865735116 - type: manhattan_pearson value: 72.00362684700072 - type: manhattan_spearman value: 72.62783534769964 - type: pearson value: 69.89707002436481 - type: spearman value: 72.2054865735116 - task: type: STS dataset: name: MTEB STS22 (fr) type: mteb/sts22-crosslingual-sts config: fr split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 81.59623734395916 - type: cosine_spearman value: 83.28946105111358 - type: euclidean_pearson value: 79.377330171466 - type: euclidean_spearman value: 81.81029781662205 - type: main_score value: 83.28946105111358 - type: manhattan_pearson value: 78.96970881689698 - type: manhattan_spearman value: 81.91773236079703 - type: pearson value: 81.59623734395916 - type: spearman value: 83.28946105111358 - task: type: STS dataset: name: MTEB STS22 (de-fr) type: mteb/sts22-crosslingual-sts config: de-fr split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 55.03825643126142 - type: cosine_spearman value: 58.25792501780429 - type: euclidean_pearson value: 50.38007603973409 - type: euclidean_spearman value: 59.39961789383097 - type: main_score value: 58.25792501780429 - type: manhattan_pearson value: 50.518568927999155 - type: manhattan_spearman value: 59.84185466003894 - type: pearson value: 55.03825643126142 - type: spearman value: 58.25792501780429 - task: type: STS dataset: name: MTEB STS22 (pl-en) type: mteb/sts22-crosslingual-sts config: pl-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 77.77233721490776 - type: cosine_spearman value: 76.17596588017625 - type: euclidean_pearson value: 74.47600468156611 - type: euclidean_spearman value: 72.61278728057012 - type: main_score value: 76.17596588017625 - type: manhattan_pearson value: 74.48118910099699 - type: manhattan_spearman value: 73.33167419101696 - type: pearson value: 77.77233721490776 - type: spearman value: 76.17596588017625 - task: type: STS dataset: name: MTEB STS22 (pl) type: mteb/sts22-crosslingual-sts config: pl split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 42.87453608131507 - type: cosine_spearman value: 45.137849894401185 - type: euclidean_pearson value: 31.66964197694796 - type: euclidean_spearman value: 44.1014900837869 - type: main_score value: 45.137849894401185 - type: manhattan_pearson value: 31.007199259384745 - type: manhattan_spearman value: 43.48181523288926 - type: pearson value: 42.87453608131507 - type: spearman value: 45.137849894401185 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 66.87400150638176 - type: cosine_spearman value: 67.27861354834066 - type: euclidean_pearson value: 66.81789582140216 - type: euclidean_spearman value: 66.44220479858708 - type: main_score value: 67.27861354834066 - type: manhattan_pearson value: 66.92509859033235 - type: manhattan_spearman value: 66.46841124185076 - type: pearson value: 66.87400150638176 - type: spearman value: 67.27861354834066 - task: type: STS dataset: name: MTEB STS22 (ru) type: mteb/sts22-crosslingual-sts config: ru split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 61.819804551576084 - type: cosine_spearman value: 65.0864146772135 - type: euclidean_pearson value: 62.518151090361876 - type: euclidean_spearman value: 65.13608138548017 - type: main_score value: 65.0864146772135 - type: manhattan_pearson value: 62.51413246915267 - type: manhattan_spearman value: 65.19077543064323 - type: pearson value: 61.819804551576084 - type: spearman value: 65.0864146772135 - task: type: STS dataset: name: MTEB STS22 (de) type: mteb/sts22-crosslingual-sts config: de split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 54.85728696035389 - type: cosine_spearman value: 61.60906359227576 - type: euclidean_pearson value: 52.57582587901851 - type: euclidean_spearman value: 61.41823097598308 - type: main_score value: 61.60906359227576 - type: manhattan_pearson value: 52.500978361080506 - type: manhattan_spearman value: 61.30365596659758 - type: pearson value: 54.85728696035389 - type: spearman value: 61.60906359227576 - task: type: STS dataset: name: MTEB STS22 (fr-pl) type: mteb/sts22-crosslingual-sts config: fr-pl split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 67.68016005631422 - type: cosine_spearman value: 84.51542547285167 - type: euclidean_pearson value: 66.19871164667245 - type: euclidean_spearman value: 73.24670207647144 - type: main_score value: 84.51542547285167 - type: manhattan_pearson value: 67.0443525268974 - type: manhattan_spearman value: 73.24670207647144 - type: pearson value: 67.68016005631422 - type: spearman value: 84.51542547285167 - task: type: STS dataset: name: MTEB STS22 (de-pl) type: mteb/sts22-crosslingual-sts config: de-pl split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 47.49467414030747 - type: cosine_spearman value: 56.81512095681289 - type: euclidean_pearson value: 48.42860221765214 - type: euclidean_spearman value: 58.63197306329092 - type: main_score value: 56.81512095681289 - type: manhattan_pearson value: 48.39594959260441 - type: manhattan_spearman value: 58.63197306329092 - type: pearson value: 47.49467414030747 - type: spearman value: 56.81512095681289 - task: type: STS dataset: name: MTEB STS22 (es-en) type: mteb/sts22-crosslingual-sts config: es-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 76.8364678896155 - type: cosine_spearman value: 78.45516413087114 - type: euclidean_pearson value: 78.62779318576634 - type: euclidean_spearman value: 78.88760695649488 - type: main_score value: 78.45516413087114 - type: manhattan_pearson value: 78.62131335760031 - type: manhattan_spearman value: 78.81861844200388 - type: pearson value: 76.8364678896155 - type: spearman value: 78.45516413087114 - task: type: STS dataset: name: MTEB STS22 (de-en) type: mteb/sts22-crosslingual-sts config: de-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 65.16640313911604 - type: cosine_spearman value: 60.887608967403914 - type: euclidean_pearson value: 67.49902244990913 - type: euclidean_spearman value: 59.2458787136538 - type: main_score value: 60.887608967403914 - type: manhattan_pearson value: 67.34313506388378 - type: manhattan_spearman value: 59.05283429200166 - type: pearson value: 65.16640313911604 - type: spearman value: 60.887608967403914 - task: type: STS dataset: name: MTEB STSB (default) type: C-MTEB/STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cosine_pearson value: 81.5092853013241 - type: cosine_spearman value: 83.54005474244292 - type: euclidean_pearson value: 83.7246578378554 - type: euclidean_spearman value: 84.46767551087716 - type: main_score value: 83.54005474244292 - type: manhattan_pearson value: 83.65922665594636 - type: manhattan_spearman value: 84.42431449101848 - type: pearson value: 81.5092853013241 - type: spearman value: 83.54005474244292 - task: type: STS dataset: name: MTEB STSBenchmark (default) type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cosine_pearson value: 87.70246866744966 - type: cosine_spearman value: 89.44070045346106 - type: euclidean_pearson value: 89.56956519641007 - type: euclidean_spearman value: 89.95830112784283 - type: main_score value: 89.44070045346106 - type: manhattan_pearson value: 89.48264471425145 - type: manhattan_spearman value: 89.87900732483114 - type: pearson value: 87.70246866744966 - type: spearman value: 89.44070045346106 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (de) type: mteb/stsb_multi_mt config: de split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 86.83701990805217 - type: cosine_spearman value: 87.80280785492258 - type: euclidean_pearson value: 87.77325330043514 - type: euclidean_spearman value: 88.3564607283144 - type: main_score value: 87.80280785492258 - type: manhattan_pearson value: 87.6745449945946 - type: manhattan_spearman value: 88.30660465978795 - type: pearson value: 86.83701990805217 - type: spearman value: 87.80280785492258 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (zh) type: mteb/stsb_multi_mt config: zh split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 84.27751020600267 - type: cosine_spearman value: 85.63500407412486 - type: euclidean_pearson value: 85.21829891649696 - type: euclidean_spearman value: 85.9384575715382 - type: main_score value: 85.63500407412486 - type: manhattan_pearson value: 85.10797194089801 - type: manhattan_spearman value: 85.8770162042784 - type: pearson value: 84.27751020600267 - type: spearman value: 85.63500407412486 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (fr) type: mteb/stsb_multi_mt config: fr split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 86.56833656723254 - type: cosine_spearman value: 87.4393978501382 - type: euclidean_pearson value: 87.45171512751267 - type: euclidean_spearman value: 88.13106516566947 - type: main_score value: 87.4393978501382 - type: manhattan_pearson value: 87.33010961793333 - type: manhattan_spearman value: 88.06707425102182 - type: pearson value: 86.56833656723254 - type: spearman value: 87.4393978501382 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (pl) type: mteb/stsb_multi_mt config: pl split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 85.45065540325523 - type: cosine_spearman value: 85.47881076789359 - type: euclidean_pearson value: 85.1999493863155 - type: euclidean_spearman value: 85.7874947669187 - type: main_score value: 85.47881076789359 - type: manhattan_pearson value: 85.06075305990376 - type: manhattan_spearman value: 85.71563015639558 - type: pearson value: 85.45065540325523 - type: spearman value: 85.47881076789359 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (es) type: mteb/stsb_multi_mt config: es split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 87.11952824079832 - type: cosine_spearman value: 87.9643473573153 - type: euclidean_pearson value: 88.11750364639971 - type: euclidean_spearman value: 88.63695109016498 - type: main_score value: 87.9643473573153 - type: manhattan_pearson value: 88.00294453126699 - type: manhattan_spearman value: 88.53750241758391 - type: pearson value: 87.11952824079832 - type: spearman value: 87.9643473573153 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (ru) type: mteb/stsb_multi_mt config: ru split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 85.99804354414991 - type: cosine_spearman value: 86.30252111551002 - type: euclidean_pearson value: 86.1880652037762 - type: euclidean_spearman value: 86.69556223944502 - type: main_score value: 86.30252111551002 - type: manhattan_pearson value: 86.0736400320898 - type: manhattan_spearman value: 86.61747927593393 - type: pearson value: 85.99804354414991 - type: spearman value: 86.30252111551002 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (en) type: mteb/stsb_multi_mt config: en split: test revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c metrics: - type: cosine_pearson value: 87.70246861738103 - type: cosine_spearman value: 89.44070045346106 - type: euclidean_pearson value: 89.56956518833663 - type: euclidean_spearman value: 89.95830112784283 - type: main_score value: 89.44070045346106 - type: manhattan_pearson value: 89.48264470792915 - type: manhattan_spearman value: 89.87900732483114 - type: pearson value: 87.70246861738103 - type: spearman value: 89.44070045346106 - task: type: Reranking dataset: name: MTEB SciDocsRR (default) type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.88064122814694 - type: mrr value: 95.84832651009123 - type: main_score value: 84.88064122814694 - task: type: Retrieval dataset: name: MTEB SciFact (default) type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 57.289 - type: map_at_10 value: 67.88499999999999 - type: map_at_100 value: 68.477 - type: map_at_1000 value: 68.50500000000001 - type: map_at_20 value: 68.33500000000001 - type: map_at_3 value: 65.08 - type: map_at_5 value: 67.001 - type: mrr_at_1 value: 59.667 - type: mrr_at_10 value: 68.626 - type: mrr_at_100 value: 69.082 - type: mrr_at_1000 value: 69.108 - type: mrr_at_20 value: 68.958 - type: mrr_at_3 value: 66.667 - type: mrr_at_5 value: 67.983 - type: ndcg_at_1 value: 59.667 - type: ndcg_at_10 value: 72.309 - type: ndcg_at_100 value: 74.58399999999999 - type: ndcg_at_1000 value: 75.25500000000001 - type: ndcg_at_20 value: 73.656 - type: ndcg_at_3 value: 67.791 - type: ndcg_at_5 value: 70.45 - type: precision_at_1 value: 59.667 - type: precision_at_10 value: 9.567 - type: precision_at_100 value: 1.073 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.083 - type: precision_at_3 value: 26.333000000000002 - type: precision_at_5 value: 17.666999999999998 - type: recall_at_1 value: 57.289 - type: recall_at_10 value: 84.756 - type: recall_at_100 value: 94.5 - type: recall_at_1000 value: 99.667 - type: recall_at_20 value: 89.7 - type: recall_at_3 value: 73.22800000000001 - type: recall_at_5 value: 79.444 - type: main_score value: 72.309 - task: type: Clustering dataset: name: MTEB SpanishNewsClusteringP2P (default) type: jinaai/spanish_news_clustering config: default split: test revision: bf8ca8ddc5b7da4f7004720ddf99bbe0483480e6 metrics: - type: main_score value: 45.04477709795154 - type: v_measure value: 45.04477709795154 - type: v_measure_std value: 0.0 - task: type: Retrieval dataset: name: MTEB SpanishPassageRetrievalS2S (default) type: jinaai/spanish_passage_retrieval config: default split: test revision: 9cddf2ce5209ade52c2115ccfa00eb22c6d3a837 metrics: - type: main_score value: 69.83 - type: map_at_1 value: 15.736 - type: map_at_10 value: 52.027 - type: map_at_100 value: 65.08800000000001 - type: map_at_1000 value: 65.08800000000001 - type: map_at_20 value: 60.79900000000001 - type: map_at_3 value: 32.869 - type: map_at_5 value: 41.436 - type: mrr_at_1 value: 75.44910179640718 - type: mrr_at_10 value: 84.43446440452426 - type: mrr_at_100 value: 84.48052612723271 - type: mrr_at_1000 value: 84.48052612723271 - type: mrr_at_20 value: 84.48052612723271 - type: mrr_at_3 value: 83.13373253493013 - type: mrr_at_5 value: 84.3013972055888 - type: nauc_map_at_1000_diff1 value: 50.611540149694356 - type: nauc_map_at_1000_max value: 2.1102430434260238 - type: nauc_map_at_1000_std value: -18.88993521335793 - type: nauc_map_at_100_diff1 value: 50.611540149694356 - type: nauc_map_at_100_max value: 2.1102430434260238 - type: nauc_map_at_100_std value: -18.88993521335793 - type: nauc_map_at_10_diff1 value: 59.13518981755268 - type: nauc_map_at_10_max value: -9.810386627392807 - type: nauc_map_at_10_std value: -38.31810152345078 - type: nauc_map_at_1_diff1 value: 74.96782567287174 - type: nauc_map_at_1_max value: -29.648279252607875 - type: nauc_map_at_1_std value: -54.017459339141595 - type: nauc_map_at_20_diff1 value: 55.26694458629849 - type: nauc_map_at_20_max value: -1.9490244535020729 - type: nauc_map_at_20_std value: -25.22211659104076 - type: nauc_map_at_3_diff1 value: 71.67607885031732 - type: nauc_map_at_3_max value: -25.078101661694507 - type: nauc_map_at_3_std value: -50.55408861920259 - type: nauc_map_at_5_diff1 value: 61.50111515417668 - type: nauc_map_at_5_max value: -16.4114670513168 - type: nauc_map_at_5_std value: -44.391416134859135 - type: nauc_mrr_at_1000_diff1 value: 74.18848063283234 - type: nauc_mrr_at_1000_max value: 21.929205946778005 - type: nauc_mrr_at_1000_std value: -36.27399268489433 - type: nauc_mrr_at_100_diff1 value: 74.18848063283234 - type: nauc_mrr_at_100_max value: 21.929205946778005 - type: nauc_mrr_at_100_std value: -36.27399268489433 - type: nauc_mrr_at_10_diff1 value: 74.27231582268745 - type: nauc_mrr_at_10_max value: 21.481133301135337 - type: nauc_mrr_at_10_std value: -36.72070854872902 - type: nauc_mrr_at_1_diff1 value: 76.54855950439561 - type: nauc_mrr_at_1_max value: 26.99938321212366 - type: nauc_mrr_at_1_std value: -33.098742603429635 - type: nauc_mrr_at_20_diff1 value: 74.18848063283234 - type: nauc_mrr_at_20_max value: 21.929205946778005 - type: nauc_mrr_at_20_std value: -36.27399268489433 - type: nauc_mrr_at_3_diff1 value: 72.05379526740143 - type: nauc_mrr_at_3_max value: 18.875831185752528 - type: nauc_mrr_at_3_std value: -37.27302006456391 - type: nauc_mrr_at_5_diff1 value: 74.25342356682029 - type: nauc_mrr_at_5_max value: 20.756340085088738 - type: nauc_mrr_at_5_std value: -37.99507208540703 - type: nauc_ndcg_at_1000_diff1 value: 53.259363764380275 - type: nauc_ndcg_at_1000_max value: 12.936954959423218 - type: nauc_ndcg_at_1000_std value: -16.953898675672153 - type: nauc_ndcg_at_100_diff1 value: 53.259363764380275 - type: nauc_ndcg_at_100_max value: 12.936954959423218 - type: nauc_ndcg_at_100_std value: -16.953898675672153 - type: nauc_ndcg_at_10_diff1 value: 53.70942345413554 - type: nauc_ndcg_at_10_max value: -3.8465093347016186 - type: nauc_ndcg_at_10_std value: -31.208127919994755 - type: nauc_ndcg_at_1_diff1 value: 75.30551289259554 - type: nauc_ndcg_at_1_max value: 25.53292054129834 - type: nauc_ndcg_at_1_std value: -33.285498788395145 - type: nauc_ndcg_at_20_diff1 value: 57.62409278278133 - type: nauc_ndcg_at_20_max value: 2.8040586426056233 - type: nauc_ndcg_at_20_std value: -26.270875776221704 - type: nauc_ndcg_at_3_diff1 value: 48.42294834754225 - type: nauc_ndcg_at_3_max value: 16.912467881065822 - type: nauc_ndcg_at_3_std value: -13.324841189277873 - type: nauc_ndcg_at_5_diff1 value: 47.512819802794596 - type: nauc_ndcg_at_5_max value: 14.645518203506594 - type: nauc_ndcg_at_5_std value: -17.641450435599275 - type: nauc_precision_at_1000_diff1 value: -34.43320975829637 - type: nauc_precision_at_1000_max value: 29.08585622578186 - type: nauc_precision_at_1000_std value: 46.55117940162061 - type: nauc_precision_at_100_diff1 value: -34.433209758296364 - type: nauc_precision_at_100_max value: 29.085856225781885 - type: nauc_precision_at_100_std value: 46.55117940162065 - type: nauc_precision_at_10_diff1 value: -21.895306304096902 - type: nauc_precision_at_10_max value: 33.190476527593745 - type: nauc_precision_at_10_std value: 37.64916268614298 - type: nauc_precision_at_1_diff1 value: 75.30551289259554 - type: nauc_precision_at_1_max value: 25.53292054129834 - type: nauc_precision_at_1_std value: -33.285498788395145 - type: nauc_precision_at_20_diff1 value: -27.63076748060466 - type: nauc_precision_at_20_max value: 30.689810416086154 - type: nauc_precision_at_20_std value: 46.164191636131626 - type: nauc_precision_at_3_diff1 value: 20.547345067837288 - type: nauc_precision_at_3_max value: 26.177050942827528 - type: nauc_precision_at_3_std value: 5.960466052973099 - type: nauc_precision_at_5_diff1 value: -8.928755534002669 - type: nauc_precision_at_5_max value: 40.83262650073459 - type: nauc_precision_at_5_std value: 26.158537031161494 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: 53.08654386169444 - type: nauc_recall_at_10_max value: -23.276269379519356 - type: nauc_recall_at_10_std value: -50.80707792706157 - type: nauc_recall_at_1_diff1 value: 74.96782567287174 - type: nauc_recall_at_1_max value: -29.648279252607875 - type: nauc_recall_at_1_std value: -54.017459339141595 - type: nauc_recall_at_20_diff1 value: 51.60121897059633 - type: nauc_recall_at_20_max value: -14.241779530735387 - type: nauc_recall_at_20_std value: -37.877451525215456 - type: nauc_recall_at_3_diff1 value: 66.99474984329694 - type: nauc_recall_at_3_max value: -30.802787353187966 - type: nauc_recall_at_3_std value: -53.58737792129713 - type: nauc_recall_at_5_diff1 value: 54.64214444958567 - type: nauc_recall_at_5_max value: -23.341309362104703 - type: nauc_recall_at_5_std value: -51.381363923145265 - type: ndcg_at_1 value: 76.048 - type: ndcg_at_10 value: 69.83 - type: ndcg_at_100 value: 82.11500000000001 - type: ndcg_at_1000 value: 82.11500000000001 - type: ndcg_at_20 value: 75.995 - type: ndcg_at_3 value: 69.587 - type: ndcg_at_5 value: 69.062 - type: precision_at_1 value: 76.048 - type: precision_at_10 value: 43.653 - type: precision_at_100 value: 7.718999999999999 - type: precision_at_1000 value: 0.772 - type: precision_at_20 value: 31.108000000000004 - type: precision_at_3 value: 63.87199999999999 - type: precision_at_5 value: 56.407 - type: recall_at_1 value: 15.736 - type: recall_at_10 value: 66.873 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 85.01100000000001 - type: recall_at_3 value: 36.441 - type: recall_at_5 value: 49.109 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions (default) type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cosine_accuracy value: 99.87326732673267 - type: cosine_accuracy_threshold value: 86.0752820968628 - type: cosine_ap value: 96.98758090713252 - type: cosine_f1 value: 93.52881698685542 - type: cosine_f1_threshold value: 86.0752820968628 - type: cosine_precision value: 94.58077709611452 - type: cosine_recall value: 92.5 - type: dot_accuracy value: 99.82574257425742 - type: dot_accuracy_threshold value: 40484.73815917969 - type: dot_ap value: 95.68959907254845 - type: dot_f1 value: 91.31293188548865 - type: dot_f1_threshold value: 40336.810302734375 - type: dot_precision value: 90.15594541910332 - type: dot_recall value: 92.5 - type: euclidean_accuracy value: 99.87128712871286 - type: euclidean_accuracy_threshold value: 1162.5749588012695 - type: euclidean_ap value: 96.92640435656577 - type: euclidean_f1 value: 93.4475806451613 - type: euclidean_f1_threshold value: 1162.5749588012695 - type: euclidean_precision value: 94.20731707317073 - type: euclidean_recall value: 92.7 - type: main_score value: 96.98758090713252 - type: manhattan_accuracy value: 99.86930693069307 - type: manhattan_accuracy_threshold value: 28348.71826171875 - type: manhattan_ap value: 96.93832673967925 - type: manhattan_f1 value: 93.33333333333333 - type: manhattan_f1_threshold value: 28348.71826171875 - type: manhattan_precision value: 94.28571428571428 - type: manhattan_recall value: 92.4 - type: max_accuracy value: 99.87326732673267 - type: max_ap value: 96.98758090713252 - type: max_f1 value: 93.52881698685542 - type: max_precision value: 94.58077709611452 - type: max_recall value: 92.7 - type: similarity_accuracy value: 99.87326732673267 - type: similarity_accuracy_threshold value: 86.0752820968628 - type: similarity_ap value: 96.98758090713252 - type: similarity_f1 value: 93.52881698685542 - type: similarity_f1_threshold value: 86.0752820968628 - type: similarity_precision value: 94.58077709611452 - type: similarity_recall value: 92.5 - task: type: Clustering dataset: name: MTEB StackExchangeClustering (default) type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: main_score value: 65.6560129719848 - type: v_measure value: 65.6560129719848 - type: v_measure_std value: 4.781229811487539 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P (default) type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: main_score value: 35.07546243853692 - type: v_measure value: 35.07546243853692 - type: v_measure_std value: 1.1978740356240998 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions (default) type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.771005199508835 - type: mrr value: 52.65443298531534 - type: main_score value: 51.771005199508835 - task: type: Summarization dataset: name: MTEB SummEval (default) type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cosine_pearson value: 29.48686238342228 - type: cosine_spearman value: 29.706543509170054 - type: dot_pearson value: 27.95853155597859 - type: dot_spearman value: 27.604287986935162 - type: main_score value: 29.706543509170054 - type: pearson value: 29.48686238342228 - type: spearman value: 29.706543509170054 - task: type: Summarization dataset: name: MTEB SummEvalFr (default) type: lyon-nlp/summarization-summeval-fr-p2p config: default split: test revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 metrics: - type: cosine_pearson value: 31.551301434917868 - type: cosine_spearman value: 30.709049789175186 - type: dot_pearson value: 27.77050901756549 - type: dot_spearman value: 26.715505953561795 - type: main_score value: 30.709049789175186 - type: pearson value: 31.551301434917868 - type: spearman value: 30.709049789175186 - task: type: Reranking dataset: name: MTEB SyntecReranking (default) type: lyon-nlp/mteb-fr-reranking-syntec-s2p config: default split: test revision: b205c5084a0934ce8af14338bf03feb19499c84d metrics: - type: map value: 73.31666666666666 - type: mrr value: 73.31666666666666 - type: main_score value: 73.31666666666666 - task: type: Retrieval dataset: name: MTEB SyntecRetrieval (default) type: lyon-nlp/mteb-fr-retrieval-syntec-s2p config: default split: test revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9 metrics: - type: main_score value: 83.851 - type: map_at_1 value: 68.0 - type: map_at_10 value: 79.187 - type: map_at_100 value: 79.32900000000001 - type: map_at_1000 value: 79.32900000000001 - type: map_at_20 value: 79.32900000000001 - type: map_at_3 value: 77.333 - type: map_at_5 value: 78.93299999999999 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 79.18730158730159 - type: mrr_at_100 value: 79.32945845004669 - type: mrr_at_1000 value: 79.32945845004669 - type: mrr_at_20 value: 79.32945845004669 - type: mrr_at_3 value: 77.33333333333333 - type: mrr_at_5 value: 78.93333333333332 - type: nauc_map_at_1000_diff1 value: 63.31103256935259 - type: nauc_map_at_1000_max value: 11.073749121365623 - type: nauc_map_at_1000_std value: 7.4973309839738 - type: nauc_map_at_100_diff1 value: 63.31103256935259 - type: nauc_map_at_100_max value: 11.073749121365623 - type: nauc_map_at_100_std value: 7.4973309839738 - type: nauc_map_at_10_diff1 value: 62.91585737195978 - type: nauc_map_at_10_max value: 11.770664508983133 - type: nauc_map_at_10_std value: 8.179883948527962 - type: nauc_map_at_1_diff1 value: 66.1236265634718 - type: nauc_map_at_1_max value: 7.000207311173955 - type: nauc_map_at_1_std value: 6.54412272821497 - type: nauc_map_at_20_diff1 value: 63.31103256935259 - type: nauc_map_at_20_max value: 11.073749121365623 - type: nauc_map_at_20_std value: 7.4973309839738 - type: nauc_map_at_3_diff1 value: 62.14039574010254 - type: nauc_map_at_3_max value: 11.06996398110187 - type: nauc_map_at_3_std value: 7.288759297085769 - type: nauc_map_at_5_diff1 value: 63.0401271126211 - type: nauc_map_at_5_max value: 10.779317801858609 - type: nauc_map_at_5_std value: 6.476660484760681 - type: nauc_mrr_at_1000_diff1 value: 63.31103256935259 - type: nauc_mrr_at_1000_max value: 11.073749121365623 - type: nauc_mrr_at_1000_std value: 7.4973309839738 - type: nauc_mrr_at_100_diff1 value: 63.31103256935259 - type: nauc_mrr_at_100_max value: 11.073749121365623 - type: nauc_mrr_at_100_std value: 7.4973309839738 - type: nauc_mrr_at_10_diff1 value: 62.91585737195978 - type: nauc_mrr_at_10_max value: 11.770664508983133 - type: nauc_mrr_at_10_std value: 8.179883948527962 - type: nauc_mrr_at_1_diff1 value: 66.1236265634718 - type: nauc_mrr_at_1_max value: 7.000207311173955 - type: nauc_mrr_at_1_std value: 6.54412272821497 - type: nauc_mrr_at_20_diff1 value: 63.31103256935259 - type: nauc_mrr_at_20_max value: 11.073749121365623 - type: nauc_mrr_at_20_std value: 7.4973309839738 - type: nauc_mrr_at_3_diff1 value: 62.14039574010254 - type: nauc_mrr_at_3_max value: 11.06996398110187 - type: nauc_mrr_at_3_std value: 7.288759297085769 - type: nauc_mrr_at_5_diff1 value: 63.0401271126211 - type: nauc_mrr_at_5_max value: 10.779317801858609 - type: nauc_mrr_at_5_std value: 6.476660484760681 - type: nauc_ndcg_at_1000_diff1 value: 62.9544299483241 - type: nauc_ndcg_at_1000_max value: 11.577079766964538 - type: nauc_ndcg_at_1000_std value: 7.703856790100716 - type: nauc_ndcg_at_100_diff1 value: 62.9544299483241 - type: nauc_ndcg_at_100_max value: 11.577079766964538 - type: nauc_ndcg_at_100_std value: 7.703856790100716 - type: nauc_ndcg_at_10_diff1 value: 61.29907952217381 - type: nauc_ndcg_at_10_max value: 14.760627422715425 - type: nauc_ndcg_at_10_std value: 10.805573898143368 - type: nauc_ndcg_at_1_diff1 value: 66.1236265634718 - type: nauc_ndcg_at_1_max value: 7.000207311173955 - type: nauc_ndcg_at_1_std value: 6.54412272821497 - type: nauc_ndcg_at_20_diff1 value: 62.9544299483241 - type: nauc_ndcg_at_20_max value: 11.577079766964538 - type: nauc_ndcg_at_20_std value: 7.703856790100716 - type: nauc_ndcg_at_3_diff1 value: 60.25643527856101 - type: nauc_ndcg_at_3_max value: 12.236302709487546 - type: nauc_ndcg_at_3_std value: 7.36883189112067 - type: nauc_ndcg_at_5_diff1 value: 61.65220590318238 - type: nauc_ndcg_at_5_max value: 11.39969101913945 - type: nauc_ndcg_at_5_std value: 5.406207922379402 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: .nan - type: nauc_precision_at_100_max value: .nan - type: nauc_precision_at_100_std value: .nan - type: nauc_precision_at_10_diff1 value: 19.14098972922579 - type: nauc_precision_at_10_max value: 100.0 - type: nauc_precision_at_10_std value: 93.46405228758135 - type: nauc_precision_at_1_diff1 value: 66.1236265634718 - type: nauc_precision_at_1_max value: 7.000207311173955 - type: nauc_precision_at_1_std value: 6.54412272821497 - type: nauc_precision_at_20_diff1 value: 100.0 - type: nauc_precision_at_20_max value: 100.0 - type: nauc_precision_at_20_std value: 100.0 - type: nauc_precision_at_3_diff1 value: 50.29636629155561 - type: nauc_precision_at_3_max value: 18.00532600292076 - type: nauc_precision_at_3_std value: 7.649686453053768 - type: nauc_precision_at_5_diff1 value: 43.522408963585356 - type: nauc_precision_at_5_max value: 16.923436041082983 - type: nauc_precision_at_5_std value: -10.854341736694092 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: 19.1409897292252 - type: nauc_recall_at_10_max value: 100.0 - type: nauc_recall_at_10_std value: 93.46405228758134 - type: nauc_recall_at_1_diff1 value: 66.1236265634718 - type: nauc_recall_at_1_max value: 7.000207311173955 - type: nauc_recall_at_1_std value: 6.54412272821497 - type: nauc_recall_at_20_diff1 value: .nan - type: nauc_recall_at_20_max value: .nan - type: nauc_recall_at_20_std value: .nan - type: nauc_recall_at_3_diff1 value: 50.29636629155569 - type: nauc_recall_at_3_max value: 18.005326002920754 - type: nauc_recall_at_3_std value: 7.649686453053851 - type: nauc_recall_at_5_diff1 value: 43.5224089635856 - type: nauc_recall_at_5_max value: 16.92343604108335 - type: nauc_recall_at_5_std value: -10.854341736694499 - type: ndcg_at_1 value: 68.0 - type: ndcg_at_10 value: 83.851 - type: ndcg_at_100 value: 84.36099999999999 - type: ndcg_at_1000 value: 84.36099999999999 - type: ndcg_at_20 value: 84.36099999999999 - type: ndcg_at_3 value: 80.333 - type: ndcg_at_5 value: 83.21600000000001 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 9.8 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 5.0 - type: precision_at_3 value: 29.666999999999998 - type: precision_at_5 value: 19.2 - type: recall_at_1 value: 68.0 - type: recall_at_10 value: 98.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 100.0 - type: recall_at_3 value: 89.0 - type: recall_at_5 value: 96.0 - task: type: Reranking dataset: name: MTEB T2Reranking (default) type: C-MTEB/T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 65.3088203970324 - type: mrr value: 74.79505862376546 - type: main_score value: 65.3088203970324 - task: type: Retrieval dataset: name: MTEB T2Retrieval (default) type: C-MTEB/T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: main_score value: 83.163 - type: map_at_1 value: 26.875 - type: map_at_10 value: 75.454 - type: map_at_100 value: 79.036 - type: map_at_1000 value: 79.111 - type: map_at_20 value: 78.145 - type: map_at_3 value: 53.181 - type: map_at_5 value: 65.362 - type: mrr_at_1 value: 88.90057864281957 - type: mrr_at_10 value: 91.53186397301344 - type: mrr_at_100 value: 91.62809075510003 - type: mrr_at_1000 value: 91.63198173030787 - type: mrr_at_20 value: 91.59414668799909 - type: mrr_at_3 value: 91.0792565316499 - type: mrr_at_5 value: 91.35718043135199 - type: nauc_map_at_1000_diff1 value: 12.364843957982409 - type: nauc_map_at_1000_max value: 52.07043464458799 - type: nauc_map_at_1000_std value: 16.040095055100494 - type: nauc_map_at_100_diff1 value: 12.370621073823022 - type: nauc_map_at_100_max value: 51.960738727635636 - type: nauc_map_at_100_std value: 15.935832440430747 - type: nauc_map_at_10_diff1 value: 16.852819486606585 - type: nauc_map_at_10_max value: 40.11184760756059 - type: nauc_map_at_10_std value: 0.9306648364102376 - type: nauc_map_at_1_diff1 value: 52.87356542654683 - type: nauc_map_at_1_max value: -22.210039746171255 - type: nauc_map_at_1_std value: -38.11345358035342 - type: nauc_map_at_20_diff1 value: 13.045089059562837 - type: nauc_map_at_20_max value: 49.591383082160036 - type: nauc_map_at_20_std value: 12.54330050352008 - type: nauc_map_at_3_diff1 value: 38.08172234377615 - type: nauc_map_at_3_max value: -6.868621684867697 - type: nauc_map_at_3_std value: -35.4712388845996 - type: nauc_map_at_5_diff1 value: 29.665551705577474 - type: nauc_map_at_5_max value: 10.958628576519045 - type: nauc_map_at_5_std value: -25.113120842097057 - type: nauc_mrr_at_1000_diff1 value: 47.39372999496945 - type: nauc_mrr_at_1000_max value: 83.11274997493808 - type: nauc_mrr_at_1000_std value: 39.74195374546631 - type: nauc_mrr_at_100_diff1 value: 47.396678946057676 - type: nauc_mrr_at_100_max value: 83.1192584274415 - type: nauc_mrr_at_100_std value: 39.75840860374685 - type: nauc_mrr_at_10_diff1 value: 47.35365644138715 - type: nauc_mrr_at_10_max value: 83.189165639531 - type: nauc_mrr_at_10_std value: 39.83653157887758 - type: nauc_mrr_at_1_diff1 value: 47.98740362820094 - type: nauc_mrr_at_1_max value: 80.32340034580369 - type: nauc_mrr_at_1_std value: 34.57857131423388 - type: nauc_mrr_at_20_diff1 value: 47.399132055537194 - type: nauc_mrr_at_20_max value: 83.16329919869686 - type: nauc_mrr_at_20_std value: 39.84204692042734 - type: nauc_mrr_at_3_diff1 value: 47.09295580511751 - type: nauc_mrr_at_3_max value: 82.95831045602642 - type: nauc_mrr_at_3_std value: 38.98036804692351 - type: nauc_mrr_at_5_diff1 value: 47.20100268549764 - type: nauc_mrr_at_5_max value: 83.16652480381642 - type: nauc_mrr_at_5_std value: 39.55690491560902 - type: nauc_ndcg_at_1000_diff1 value: 17.201962509184547 - type: nauc_ndcg_at_1000_max value: 63.75820559259539 - type: nauc_ndcg_at_1000_std value: 29.28676096486067 - type: nauc_ndcg_at_100_diff1 value: 16.76847216096811 - type: nauc_ndcg_at_100_max value: 62.646517934470744 - type: nauc_ndcg_at_100_std value: 28.7441617667637 - type: nauc_ndcg_at_10_diff1 value: 16.559511980751886 - type: nauc_ndcg_at_10_max value: 54.35027464277944 - type: nauc_ndcg_at_10_std value: 16.98089333577716 - type: nauc_ndcg_at_1_diff1 value: 47.98740362820094 - type: nauc_ndcg_at_1_max value: 80.32340034580369 - type: nauc_ndcg_at_1_std value: 34.57857131423388 - type: nauc_ndcg_at_20_diff1 value: 16.721525245428243 - type: nauc_ndcg_at_20_max value: 57.683661870555724 - type: nauc_ndcg_at_20_std value: 21.736044200026853 - type: nauc_ndcg_at_3_diff1 value: 12.488009696556192 - type: nauc_ndcg_at_3_max value: 69.2365575305502 - type: nauc_ndcg_at_3_std value: 30.622418945055323 - type: nauc_ndcg_at_5_diff1 value: 12.364114556230609 - type: nauc_ndcg_at_5_max value: 62.33360746285387 - type: nauc_ndcg_at_5_std value: 24.898000803570227 - type: nauc_precision_at_1000_diff1 value: -35.14745130154524 - type: nauc_precision_at_1000_max value: 48.811507982849065 - type: nauc_precision_at_1000_std value: 62.43036496029399 - type: nauc_precision_at_100_diff1 value: -35.15276411320076 - type: nauc_precision_at_100_max value: 50.87010333741109 - type: nauc_precision_at_100_std value: 63.418221030407175 - type: nauc_precision_at_10_diff1 value: -34.84255710936113 - type: nauc_precision_at_10_max value: 56.588401051428825 - type: nauc_precision_at_10_std value: 57.4763370653757 - type: nauc_precision_at_1_diff1 value: 47.98740362820094 - type: nauc_precision_at_1_max value: 80.32340034580369 - type: nauc_precision_at_1_std value: 34.57857131423388 - type: nauc_precision_at_20_diff1 value: -35.165762365233505 - type: nauc_precision_at_20_max value: 54.148762449660424 - type: nauc_precision_at_20_std value: 61.569719669368716 - type: nauc_precision_at_3_diff1 value: -28.63023175340299 - type: nauc_precision_at_3_max value: 68.69825987618499 - type: nauc_precision_at_3_std value: 48.15479495755423 - type: nauc_precision_at_5_diff1 value: -34.13811355456687 - type: nauc_precision_at_5_max value: 62.369363941490604 - type: nauc_precision_at_5_std value: 52.282904411187914 - type: nauc_recall_at_1000_diff1 value: 8.686444579162663 - type: nauc_recall_at_1000_max value: 59.58864478011338 - type: nauc_recall_at_1000_std value: 56.692774954297455 - type: nauc_recall_at_100_diff1 value: 8.820596225758342 - type: nauc_recall_at_100_max value: 53.15048885657892 - type: nauc_recall_at_100_std value: 39.78931159236714 - type: nauc_recall_at_10_diff1 value: 16.022301106315027 - type: nauc_recall_at_10_max value: 29.83242342459543 - type: nauc_recall_at_10_std value: -4.805965555875844 - type: nauc_recall_at_1_diff1 value: 52.87356542654683 - type: nauc_recall_at_1_max value: -22.210039746171255 - type: nauc_recall_at_1_std value: -38.11345358035342 - type: nauc_recall_at_20_diff1 value: 10.35772828627265 - type: nauc_recall_at_20_max value: 43.06420839754062 - type: nauc_recall_at_20_std value: 15.040522218235692 - type: nauc_recall_at_3_diff1 value: 36.23953684770224 - type: nauc_recall_at_3_max value: -11.709269151700374 - type: nauc_recall_at_3_std value: -38.13943178150384 - type: nauc_recall_at_5_diff1 value: 28.644872415763384 - type: nauc_recall_at_5_max value: 2.062151266111129 - type: nauc_recall_at_5_std value: -30.81114034774277 - type: ndcg_at_1 value: 88.901 - type: ndcg_at_10 value: 83.163 - type: ndcg_at_100 value: 86.854 - type: ndcg_at_1000 value: 87.602 - type: ndcg_at_20 value: 84.908 - type: ndcg_at_3 value: 84.848 - type: ndcg_at_5 value: 83.372 - type: precision_at_1 value: 88.901 - type: precision_at_10 value: 41.343 - type: precision_at_100 value: 4.957000000000001 - type: precision_at_1000 value: 0.513 - type: precision_at_20 value: 22.955000000000002 - type: precision_at_3 value: 74.29599999999999 - type: precision_at_5 value: 62.251999999999995 - type: recall_at_1 value: 26.875 - type: recall_at_10 value: 81.902 - type: recall_at_100 value: 93.988 - type: recall_at_1000 value: 97.801 - type: recall_at_20 value: 87.809 - type: recall_at_3 value: 54.869 - type: recall_at_5 value: 68.728 - task: type: PairClassification dataset: name: MTEB TERRa (default) type: ai-forever/terra-pairclassification config: default split: dev revision: 7b58f24536063837d644aab9a023c62199b2a612 metrics: - type: cosine_accuracy value: 60.586319218241044 - type: cosine_accuracy_threshold value: 82.49806761741638 - type: cosine_ap value: 58.73198048427448 - type: cosine_f1 value: 67.37967914438502 - type: cosine_f1_threshold value: 77.46461033821106 - type: cosine_precision value: 57.01357466063348 - type: cosine_recall value: 82.35294117647058 - type: dot_accuracy value: 60.26058631921825 - type: dot_accuracy_threshold value: 35627.020263671875 - type: dot_ap value: 57.418783612898224 - type: dot_f1 value: 66.51982378854623 - type: dot_f1_threshold value: 27620.843505859375 - type: dot_precision value: 50.16611295681063 - type: dot_recall value: 98.69281045751634 - type: euclidean_accuracy value: 60.26058631921825 - type: euclidean_accuracy_threshold value: 1255.4466247558594 - type: euclidean_ap value: 58.748656145387955 - type: euclidean_f1 value: 66.99029126213591 - type: euclidean_f1_threshold value: 1565.1330947875977 - type: euclidean_precision value: 53.28185328185329 - type: euclidean_recall value: 90.19607843137256 - type: main_score value: 58.8479126365766 - type: manhattan_accuracy value: 59.934853420195445 - type: manhattan_accuracy_threshold value: 29897.271728515625 - type: manhattan_ap value: 58.8479126365766 - type: manhattan_f1 value: 66.81318681318683 - type: manhattan_f1_threshold value: 46291.802978515625 - type: manhattan_precision value: 50.331125827814574 - type: manhattan_recall value: 99.34640522875817 - type: max_accuracy value: 60.586319218241044 - type: max_ap value: 58.8479126365766 - type: max_f1 value: 67.37967914438502 - type: max_precision value: 57.01357466063348 - type: max_recall value: 99.34640522875817 - type: similarity_accuracy value: 60.586319218241044 - type: similarity_accuracy_threshold value: 82.49806761741638 - type: similarity_ap value: 58.73198048427448 - type: similarity_f1 value: 67.37967914438502 - type: similarity_f1_threshold value: 77.46461033821106 - type: similarity_precision value: 57.01357466063348 - type: similarity_recall value: 82.35294117647058 - task: type: Classification dataset: name: MTEB TNews (default) type: C-MTEB/TNews-classification config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 45.967999999999996 - type: f1 value: 44.699306100915706 - type: f1_weighted value: 46.03730319014832 - type: main_score value: 45.967999999999996 - task: type: Retrieval dataset: name: MTEB TRECCOVID (default) type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.251 - type: map_at_10 value: 1.9480000000000002 - type: map_at_100 value: 11.082 - type: map_at_1000 value: 26.700000000000003 - type: map_at_20 value: 3.3529999999999998 - type: map_at_3 value: 0.679 - type: map_at_5 value: 1.079 - type: mrr_at_1 value: 94.0 - type: mrr_at_10 value: 95.786 - type: mrr_at_100 value: 95.786 - type: mrr_at_1000 value: 95.786 - type: mrr_at_20 value: 95.786 - type: mrr_at_3 value: 95.0 - type: mrr_at_5 value: 95.5 - type: ndcg_at_1 value: 91.0 - type: ndcg_at_10 value: 77.71900000000001 - type: ndcg_at_100 value: 57.726 - type: ndcg_at_1000 value: 52.737 - type: ndcg_at_20 value: 72.54 - type: ndcg_at_3 value: 83.397 - type: ndcg_at_5 value: 80.806 - type: precision_at_1 value: 94.0 - type: precision_at_10 value: 81.0 - type: precision_at_100 value: 59.199999999999996 - type: precision_at_1000 value: 23.244 - type: precision_at_20 value: 75.2 - type: precision_at_3 value: 88.0 - type: precision_at_5 value: 84.8 - type: recall_at_1 value: 0.251 - type: recall_at_10 value: 2.1229999999999998 - type: recall_at_100 value: 14.496999999999998 - type: recall_at_1000 value: 50.09 - type: recall_at_20 value: 3.8309999999999995 - type: recall_at_3 value: 0.696 - type: recall_at_5 value: 1.1400000000000001 - type: main_score value: 77.71900000000001 - task: type: Clustering dataset: name: MTEB TenKGnadClusteringP2P (default) type: slvnwhrl/tenkgnad-clustering-p2p config: default split: test revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558 metrics: - type: main_score value: 43.763609722295215 - type: v_measure value: 43.763609722295215 - type: v_measure_std value: 2.8751199473862457 - task: type: Clustering dataset: name: MTEB TenKGnadClusteringS2S (default) type: slvnwhrl/tenkgnad-clustering-s2s config: default split: test revision: 6cddbe003f12b9b140aec477b583ac4191f01786 metrics: - type: main_score value: 39.762424448504355 - type: v_measure value: 39.762424448504355 - type: v_measure_std value: 3.30146124979502 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P (default) type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: main_score value: 63.133819258289456 - type: v_measure value: 63.133819258289456 - type: v_measure_std value: 1.8854253356479695 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S (default) type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: main_score value: 58.98195851785808 - type: v_measure value: 58.98195851785808 - type: v_measure_std value: 1.6237600076393737 - task: type: Retrieval dataset: name: MTEB Touche2020 (default) type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.3550000000000004 - type: map_at_10 value: 10.08 - type: map_at_100 value: 16.136 - type: map_at_1000 value: 17.605 - type: map_at_20 value: 12.561 - type: map_at_3 value: 5.641 - type: map_at_5 value: 7.3260000000000005 - type: mrr_at_1 value: 46.939 - type: mrr_at_10 value: 58.152 - type: mrr_at_100 value: 58.594 - type: mrr_at_1000 value: 58.601000000000006 - type: mrr_at_20 value: 58.279 - type: mrr_at_3 value: 55.102 - type: mrr_at_5 value: 56.531 - type: ndcg_at_1 value: 44.897999999999996 - type: ndcg_at_10 value: 26.298 - type: ndcg_at_100 value: 37.596000000000004 - type: ndcg_at_1000 value: 49.424 - type: ndcg_at_20 value: 27.066000000000003 - type: ndcg_at_3 value: 31.528 - type: ndcg_at_5 value: 28.219 - type: precision_at_1 value: 46.939 - type: precision_at_10 value: 22.245 - type: precision_at_100 value: 7.531000000000001 - type: precision_at_1000 value: 1.5350000000000001 - type: precision_at_20 value: 17.041 - type: precision_at_3 value: 30.612000000000002 - type: precision_at_5 value: 26.122 - type: recall_at_1 value: 3.3550000000000004 - type: recall_at_10 value: 16.41 - type: recall_at_100 value: 47.272 - type: recall_at_1000 value: 83.584 - type: recall_at_20 value: 24.091 - type: recall_at_3 value: 6.8180000000000005 - type: recall_at_5 value: 9.677 - type: main_score value: 26.298 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification (default) type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 91.2890625 - type: ap value: 33.95547153875715 - type: ap_weighted value: 33.95547153875715 - type: f1 value: 75.10768597556462 - type: f1_weighted value: 92.00161208992606 - type: main_score value: 91.2890625 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification (default) type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 71.3978494623656 - type: f1 value: 71.7194818511814 - type: f1_weighted value: 71.13860187349744 - type: main_score value: 71.3978494623656 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering (default) type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: main_score value: 52.4921688720602 - type: v_measure value: 52.4921688720602 - type: v_measure_std value: 0.992768152658908 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 (default) type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cosine_accuracy value: 85.11652858079513 - type: cosine_accuracy_threshold value: 87.90839910507202 - type: cosine_ap value: 70.90459908851724 - type: cosine_f1 value: 65.66581227877457 - type: cosine_f1_threshold value: 85.13308763504028 - type: cosine_precision value: 61.094708153531684 - type: cosine_recall value: 70.97625329815304 - type: dot_accuracy value: 83.41181379269239 - type: dot_accuracy_threshold value: 43110.113525390625 - type: dot_ap value: 65.64869491143095 - type: dot_f1 value: 62.05308447460914 - type: dot_f1_threshold value: 41412.542724609375 - type: dot_precision value: 57.38623626989464 - type: dot_recall value: 67.54617414248021 - type: euclidean_accuracy value: 85.15229182809799 - type: euclidean_accuracy_threshold value: 1043.08500289917 - type: euclidean_ap value: 70.71204383269375 - type: euclidean_f1 value: 65.20304568527919 - type: euclidean_f1_threshold value: 1179.2595863342285 - type: euclidean_precision value: 62.81173594132029 - type: euclidean_recall value: 67.78364116094987 - type: main_score value: 70.90459908851724 - type: manhattan_accuracy value: 85.1820945341837 - type: manhattan_accuracy_threshold value: 26115.0390625 - type: manhattan_ap value: 70.66113937117431 - type: manhattan_f1 value: 65.33383628819313 - type: manhattan_f1_threshold value: 29105.181884765625 - type: manhattan_precision value: 62.40691808791736 - type: manhattan_recall value: 68.54881266490766 - type: max_accuracy value: 85.1820945341837 - type: max_ap value: 70.90459908851724 - type: max_f1 value: 65.66581227877457 - type: max_precision value: 62.81173594132029 - type: max_recall value: 70.97625329815304 - type: similarity_accuracy value: 85.11652858079513 - type: similarity_accuracy_threshold value: 87.90839910507202 - type: similarity_ap value: 70.90459908851724 - type: similarity_f1 value: 65.66581227877457 - type: similarity_f1_threshold value: 85.13308763504028 - type: similarity_precision value: 61.094708153531684 - type: similarity_recall value: 70.97625329815304 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus (default) type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cosine_accuracy value: 88.10299996119068 - type: cosine_accuracy_threshold value: 84.34982895851135 - type: cosine_ap value: 84.13755787769226 - type: cosine_f1 value: 76.0967548076923 - type: cosine_f1_threshold value: 82.8936219215393 - type: cosine_precision value: 74.28864769727193 - type: cosine_recall value: 77.99507237449954 - type: dot_accuracy value: 86.64182869561843 - type: dot_accuracy_threshold value: 38794.677734375 - type: dot_ap value: 80.20301567411457 - type: dot_f1 value: 73.50650291634967 - type: dot_f1_threshold value: 37447.23205566406 - type: dot_precision value: 69.41498460485802 - type: dot_recall value: 78.11056359716662 - type: euclidean_accuracy value: 87.9361198432103 - type: euclidean_accuracy_threshold value: 1184.421157836914 - type: euclidean_ap value: 83.79582690117218 - type: euclidean_f1 value: 75.81431709042175 - type: euclidean_f1_threshold value: 1258.2727432250977 - type: euclidean_precision value: 73.39099099099099 - type: euclidean_recall value: 78.40314136125654 - type: main_score value: 84.13755787769226 - type: manhattan_accuracy value: 87.96134590755618 - type: manhattan_accuracy_threshold value: 29077.291870117188 - type: manhattan_ap value: 83.79487172269923 - type: manhattan_f1 value: 75.82421603424935 - type: manhattan_f1_threshold value: 31224.124145507812 - type: manhattan_precision value: 72.24740255212329 - type: manhattan_recall value: 79.77363720357253 - type: max_accuracy value: 88.10299996119068 - type: max_ap value: 84.13755787769226 - type: max_f1 value: 76.0967548076923 - type: max_precision value: 74.28864769727193 - type: max_recall value: 79.77363720357253 - type: similarity_accuracy value: 88.10299996119068 - type: similarity_accuracy_threshold value: 84.34982895851135 - type: similarity_ap value: 84.13755787769226 - type: similarity_f1 value: 76.0967548076923 - type: similarity_f1_threshold value: 82.8936219215393 - type: similarity_precision value: 74.28864769727193 - type: similarity_recall value: 77.99507237449954 - task: type: Retrieval dataset: name: MTEB VideoRetrieval (default) type: C-MTEB/VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: main_score value: 70.433 - type: map_at_1 value: 55.7 - type: map_at_10 value: 66.013 - type: map_at_100 value: 66.534 - type: map_at_1000 value: 66.547 - type: map_at_20 value: 66.334 - type: map_at_3 value: 64.2 - type: map_at_5 value: 65.445 - type: mrr_at_1 value: 55.7 - type: mrr_at_10 value: 66.01329365079364 - type: mrr_at_100 value: 66.53350061744233 - type: mrr_at_1000 value: 66.54744831962995 - type: mrr_at_20 value: 66.3335147364675 - type: mrr_at_3 value: 64.2 - type: mrr_at_5 value: 65.44500000000002 - type: nauc_map_at_1000_diff1 value: 76.26428836976245 - type: nauc_map_at_1000_max value: 35.41847367373575 - type: nauc_map_at_1000_std value: -33.04639860831992 - type: nauc_map_at_100_diff1 value: 76.25793229023193 - type: nauc_map_at_100_max value: 35.43663260110076 - type: nauc_map_at_100_std value: -33.04238139882945 - type: nauc_map_at_10_diff1 value: 76.2108281297711 - type: nauc_map_at_10_max value: 35.59442419423183 - type: nauc_map_at_10_std value: -33.32346518997277 - type: nauc_map_at_1_diff1 value: 79.17728405262736 - type: nauc_map_at_1_max value: 31.880738163589527 - type: nauc_map_at_1_std value: -30.891888718004584 - type: nauc_map_at_20_diff1 value: 76.2181333410193 - type: nauc_map_at_20_max value: 35.43448818430876 - type: nauc_map_at_20_std value: -33.35682442863193 - type: nauc_map_at_3_diff1 value: 76.10046541433466 - type: nauc_map_at_3_max value: 34.6831278555291 - type: nauc_map_at_3_std value: -34.030826044831116 - type: nauc_map_at_5_diff1 value: 75.96513023582064 - type: nauc_map_at_5_max value: 34.66920832438069 - type: nauc_map_at_5_std value: -33.79799777830796 - type: nauc_mrr_at_1000_diff1 value: 76.26428836976245 - type: nauc_mrr_at_1000_max value: 35.41847367373575 - type: nauc_mrr_at_1000_std value: -33.04639860831992 - type: nauc_mrr_at_100_diff1 value: 76.25793229023193 - type: nauc_mrr_at_100_max value: 35.43663260110076 - type: nauc_mrr_at_100_std value: -33.04238139882945 - type: nauc_mrr_at_10_diff1 value: 76.2108281297711 - type: nauc_mrr_at_10_max value: 35.59442419423183 - type: nauc_mrr_at_10_std value: -33.32346518997277 - type: nauc_mrr_at_1_diff1 value: 79.17728405262736 - type: nauc_mrr_at_1_max value: 31.880738163589527 - type: nauc_mrr_at_1_std value: -30.891888718004584 - type: nauc_mrr_at_20_diff1 value: 76.2181333410193 - type: nauc_mrr_at_20_max value: 35.43448818430876 - type: nauc_mrr_at_20_std value: -33.35682442863193 - type: nauc_mrr_at_3_diff1 value: 76.10046541433466 - type: nauc_mrr_at_3_max value: 34.6831278555291 - type: nauc_mrr_at_3_std value: -34.030826044831116 - type: nauc_mrr_at_5_diff1 value: 75.96513023582064 - type: nauc_mrr_at_5_max value: 34.66920832438069 - type: nauc_mrr_at_5_std value: -33.79799777830796 - type: nauc_ndcg_at_1000_diff1 value: 75.68118206798317 - type: nauc_ndcg_at_1000_max value: 37.12252980787349 - type: nauc_ndcg_at_1000_std value: -31.457578337430505 - type: nauc_ndcg_at_100_diff1 value: 75.46730761564156 - type: nauc_ndcg_at_100_max value: 37.549890025544265 - type: nauc_ndcg_at_100_std value: -31.35066985945112 - type: nauc_ndcg_at_10_diff1 value: 75.09890404887037 - type: nauc_ndcg_at_10_max value: 38.024147790014204 - type: nauc_ndcg_at_10_std value: -33.67408368593356 - type: nauc_ndcg_at_1_diff1 value: 79.17728405262736 - type: nauc_ndcg_at_1_max value: 31.880738163589527 - type: nauc_ndcg_at_1_std value: -30.891888718004584 - type: nauc_ndcg_at_20_diff1 value: 75.12977548171354 - type: nauc_ndcg_at_20_max value: 37.524926748917956 - type: nauc_ndcg_at_20_std value: -33.771344674947485 - type: nauc_ndcg_at_3_diff1 value: 74.94037476984154 - type: nauc_ndcg_at_3_max value: 35.60345554050552 - type: nauc_ndcg_at_3_std value: -35.256991346321854 - type: nauc_ndcg_at_5_diff1 value: 74.54265907753783 - type: nauc_ndcg_at_5_max value: 35.57662819978585 - type: nauc_ndcg_at_5_std value: -34.879794448418465 - type: nauc_precision_at_1000_diff1 value: 74.52277207179142 - type: nauc_precision_at_1000_max value: 94.25510945118707 - type: nauc_precision_at_1000_std value: 91.6874157070222 - type: nauc_precision_at_100_diff1 value: 65.98346655735419 - type: nauc_precision_at_100_max value: 78.81168727653687 - type: nauc_precision_at_100_std value: 27.241465691967708 - type: nauc_precision_at_10_diff1 value: 69.55050319096688 - type: nauc_precision_at_10_max value: 51.827749140893374 - type: nauc_precision_at_10_std value: -34.60818605792837 - type: nauc_precision_at_1_diff1 value: 79.17728405262736 - type: nauc_precision_at_1_max value: 31.880738163589527 - type: nauc_precision_at_1_std value: -30.891888718004584 - type: nauc_precision_at_20_diff1 value: 68.08078305042736 - type: nauc_precision_at_20_max value: 52.83318878288501 - type: nauc_precision_at_20_std value: -35.46070292817927 - type: nauc_precision_at_3_diff1 value: 70.76249609881901 - type: nauc_precision_at_3_max value: 38.86561868624655 - type: nauc_precision_at_3_std value: -39.68917853446992 - type: nauc_precision_at_5_diff1 value: 68.39110629013278 - type: nauc_precision_at_5_max value: 39.28677163904683 - type: nauc_precision_at_5_std value: -39.39101423819562 - type: nauc_recall_at_1000_diff1 value: 74.52277207179175 - type: nauc_recall_at_1000_max value: 94.25510945118776 - type: nauc_recall_at_1000_std value: 91.68741570702382 - type: nauc_recall_at_100_diff1 value: 65.9834665573548 - type: nauc_recall_at_100_max value: 78.81168727653679 - type: nauc_recall_at_100_std value: 27.241465691967598 - type: nauc_recall_at_10_diff1 value: 69.55050319096708 - type: nauc_recall_at_10_max value: 51.82774914089347 - type: nauc_recall_at_10_std value: -34.6081860579283 - type: nauc_recall_at_1_diff1 value: 79.17728405262736 - type: nauc_recall_at_1_max value: 31.880738163589527 - type: nauc_recall_at_1_std value: -30.891888718004584 - type: nauc_recall_at_20_diff1 value: 68.08078305042746 - type: nauc_recall_at_20_max value: 52.833188782885244 - type: nauc_recall_at_20_std value: -35.46070292817895 - type: nauc_recall_at_3_diff1 value: 70.76249609881896 - type: nauc_recall_at_3_max value: 38.865618686246464 - type: nauc_recall_at_3_std value: -39.68917853446999 - type: nauc_recall_at_5_diff1 value: 68.39110629013274 - type: nauc_recall_at_5_max value: 39.28677163904688 - type: nauc_recall_at_5_std value: -39.39101423819562 - type: ndcg_at_1 value: 55.7 - type: ndcg_at_10 value: 70.433 - type: ndcg_at_100 value: 72.975 - type: ndcg_at_1000 value: 73.283 - type: ndcg_at_20 value: 71.58 - type: ndcg_at_3 value: 66.83099999999999 - type: ndcg_at_5 value: 69.085 - type: precision_at_1 value: 55.7 - type: precision_at_10 value: 8.4 - type: precision_at_100 value: 0.959 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.425 - type: precision_at_3 value: 24.8 - type: precision_at_5 value: 15.98 - type: recall_at_1 value: 55.7 - type: recall_at_10 value: 84.0 - type: recall_at_100 value: 95.89999999999999 - type: recall_at_1000 value: 98.2 - type: recall_at_20 value: 88.5 - type: recall_at_3 value: 74.4 - type: recall_at_5 value: 79.9 - task: type: Classification dataset: name: MTEB Waimai (default) type: C-MTEB/waimai-classification config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 86.58999999999999 - type: ap value: 70.02619249927523 - type: ap_weighted value: 70.02619249927523 - type: f1 value: 84.97572770889423 - type: f1_weighted value: 86.6865713531272 - type: main_score value: 86.58999999999999 - task: type: Retrieval dataset: name: MTEB XMarket (en) type: jinaai/xmarket_ml config: en split: test revision: dfe57acff5b62c23732a7b7d3e3fb84ff501708b metrics: - type: main_score value: 34.772999999999996 - type: map_at_1 value: 7.2620000000000005 - type: map_at_10 value: 17.98 - type: map_at_100 value: 24.828 - type: map_at_1000 value: 26.633000000000003 - type: map_at_20 value: 20.699 - type: map_at_3 value: 12.383 - type: map_at_5 value: 14.871 - type: mrr_at_1 value: 34.718100890207715 - type: mrr_at_10 value: 43.9336827525092 - type: mrr_at_100 value: 44.66474011066837 - type: mrr_at_1000 value: 44.7075592197356 - type: mrr_at_20 value: 44.35984436569346 - type: mrr_at_3 value: 41.73901893981052 - type: mrr_at_5 value: 43.025973550207134 - type: nauc_map_at_1000_diff1 value: 13.899869081196364 - type: nauc_map_at_1000_max value: 46.60452816386231 - type: nauc_map_at_1000_std value: 24.87925799401773 - type: nauc_map_at_100_diff1 value: 16.164805650871084 - type: nauc_map_at_100_max value: 44.720912958558095 - type: nauc_map_at_100_std value: 20.236734536210477 - type: nauc_map_at_10_diff1 value: 23.58580520913581 - type: nauc_map_at_10_max value: 31.276151869914216 - type: nauc_map_at_10_std value: -0.1833326246041355 - type: nauc_map_at_1_diff1 value: 37.02663305598722 - type: nauc_map_at_1_max value: 14.931071531116528 - type: nauc_map_at_1_std value: -12.478790028708453 - type: nauc_map_at_20_diff1 value: 20.718297881540593 - type: nauc_map_at_20_max value: 36.62264094841859 - type: nauc_map_at_20_std value: 6.658514770057742 - type: nauc_map_at_3_diff1 value: 29.379034581120006 - type: nauc_map_at_3_max value: 21.387214269548803 - type: nauc_map_at_3_std value: -9.3404121914247 - type: nauc_map_at_5_diff1 value: 26.627169792839485 - type: nauc_map_at_5_max value: 25.393331109666388 - type: nauc_map_at_5_std value: -6.023485287246353 - type: nauc_mrr_at_1000_diff1 value: 12.047232036652295 - type: nauc_mrr_at_1000_max value: 46.611862580860645 - type: nauc_mrr_at_1000_std value: 27.89146066442305 - type: nauc_mrr_at_100_diff1 value: 12.05261747449997 - type: nauc_mrr_at_100_max value: 46.61328535381203 - type: nauc_mrr_at_100_std value: 27.886145596874535 - type: nauc_mrr_at_10_diff1 value: 12.006935553036941 - type: nauc_mrr_at_10_max value: 46.53351686240496 - type: nauc_mrr_at_10_std value: 27.708742470257462 - type: nauc_mrr_at_1_diff1 value: 13.323408127738782 - type: nauc_mrr_at_1_max value: 43.78884661002012 - type: nauc_mrr_at_1_std value: 25.164417588165673 - type: nauc_mrr_at_20_diff1 value: 12.036022973968011 - type: nauc_mrr_at_20_max value: 46.56537838037131 - type: nauc_mrr_at_20_std value: 27.78189157249635 - type: nauc_mrr_at_3_diff1 value: 11.943896700976381 - type: nauc_mrr_at_3_max value: 46.33644663073225 - type: nauc_mrr_at_3_std value: 27.523915405053845 - type: nauc_mrr_at_5_diff1 value: 12.03108009033769 - type: nauc_mrr_at_5_max value: 46.49103616896692 - type: nauc_mrr_at_5_std value: 27.630879129863366 - type: nauc_ndcg_at_1000_diff1 value: 9.766823796017324 - type: nauc_ndcg_at_1000_max value: 52.85844801910602 - type: nauc_ndcg_at_1000_std value: 36.43271437761207 - type: nauc_ndcg_at_100_diff1 value: 12.035059298282036 - type: nauc_ndcg_at_100_max value: 50.05520240705682 - type: nauc_ndcg_at_100_std value: 29.87678724506636 - type: nauc_ndcg_at_10_diff1 value: 10.281893031139424 - type: nauc_ndcg_at_10_max value: 47.02153679426017 - type: nauc_ndcg_at_10_std value: 26.624948330369126 - type: nauc_ndcg_at_1_diff1 value: 13.323408127738782 - type: nauc_ndcg_at_1_max value: 43.78884661002012 - type: nauc_ndcg_at_1_std value: 25.164417588165673 - type: nauc_ndcg_at_20_diff1 value: 11.463524849646598 - type: nauc_ndcg_at_20_max value: 47.415073186019704 - type: nauc_ndcg_at_20_std value: 26.359019620164307 - type: nauc_ndcg_at_3_diff1 value: 9.689199913805394 - type: nauc_ndcg_at_3_max value: 45.68151849572808 - type: nauc_ndcg_at_3_std value: 26.559193219799486 - type: nauc_ndcg_at_5_diff1 value: 9.448823370356575 - type: nauc_ndcg_at_5_max value: 46.19999662690141 - type: nauc_ndcg_at_5_std value: 26.8411706726069 - type: nauc_precision_at_1000_diff1 value: -20.379065598727024 - type: nauc_precision_at_1000_max value: 13.162562437268427 - type: nauc_precision_at_1000_std value: 22.658226157785812 - type: nauc_precision_at_100_diff1 value: -16.458155977309282 - type: nauc_precision_at_100_max value: 35.97956789169889 - type: nauc_precision_at_100_std value: 48.878375009979194 - type: nauc_precision_at_10_diff1 value: -7.810992317607771 - type: nauc_precision_at_10_max value: 49.307339277444754 - type: nauc_precision_at_10_std value: 42.82533951854582 - type: nauc_precision_at_1_diff1 value: 13.323408127738782 - type: nauc_precision_at_1_max value: 43.78884661002012 - type: nauc_precision_at_1_std value: 25.164417588165673 - type: nauc_precision_at_20_diff1 value: -11.43933465149542 - type: nauc_precision_at_20_max value: 46.93722753460038 - type: nauc_precision_at_20_std value: 47.36223769029678 - type: nauc_precision_at_3_diff1 value: 1.3230178593599737 - type: nauc_precision_at_3_max value: 48.49039534395576 - type: nauc_precision_at_3_std value: 33.161384183129194 - type: nauc_precision_at_5_diff1 value: -3.185516457926519 - type: nauc_precision_at_5_max value: 49.5814309394308 - type: nauc_precision_at_5_std value: 37.57637865900281 - type: nauc_recall_at_1000_diff1 value: 7.839499443984168 - type: nauc_recall_at_1000_max value: 52.67165467640894 - type: nauc_recall_at_1000_std value: 48.85318316702583 - type: nauc_recall_at_100_diff1 value: 14.117557049589418 - type: nauc_recall_at_100_max value: 40.59046301348715 - type: nauc_recall_at_100_std value: 24.379680901739505 - type: nauc_recall_at_10_diff1 value: 20.04536052614054 - type: nauc_recall_at_10_max value: 25.54148839721574 - type: nauc_recall_at_10_std value: -1.938182527562211 - type: nauc_recall_at_1_diff1 value: 37.02663305598722 - type: nauc_recall_at_1_max value: 14.931071531116528 - type: nauc_recall_at_1_std value: -12.478790028708453 - type: nauc_recall_at_20_diff1 value: 17.959977483235566 - type: nauc_recall_at_20_max value: 29.88502687870809 - type: nauc_recall_at_20_std value: 4.26527395196852 - type: nauc_recall_at_3_diff1 value: 26.297810954500456 - type: nauc_recall_at_3_max value: 18.819406079307402 - type: nauc_recall_at_3_std value: -10.002237229729081 - type: nauc_recall_at_5_diff1 value: 22.739080899568485 - type: nauc_recall_at_5_max value: 21.0322968243985 - type: nauc_recall_at_5_std value: -6.927749435306422 - type: ndcg_at_1 value: 34.717999999999996 - type: ndcg_at_10 value: 34.772999999999996 - type: ndcg_at_100 value: 39.407 - type: ndcg_at_1000 value: 44.830999999999996 - type: ndcg_at_20 value: 35.667 - type: ndcg_at_3 value: 34.332 - type: ndcg_at_5 value: 34.408 - type: precision_at_1 value: 34.717999999999996 - type: precision_at_10 value: 23.430999999999997 - type: precision_at_100 value: 9.31 - type: precision_at_1000 value: 2.259 - type: precision_at_20 value: 18.826999999999998 - type: precision_at_3 value: 30.553 - type: precision_at_5 value: 27.792 - type: recall_at_1 value: 7.2620000000000005 - type: recall_at_10 value: 26.384 - type: recall_at_100 value: 52.506 - type: recall_at_1000 value: 73.38 - type: recall_at_20 value: 34.032000000000004 - type: recall_at_3 value: 14.821000000000002 - type: recall_at_5 value: 19.481 - task: type: Retrieval dataset: name: MTEB XMarket (de) type: jinaai/xmarket_ml config: de split: test revision: dfe57acff5b62c23732a7b7d3e3fb84ff501708b metrics: - type: main_score value: 28.316000000000003 - type: map_at_1 value: 8.667 - type: map_at_10 value: 17.351 - type: map_at_100 value: 21.02 - type: map_at_1000 value: 21.951 - type: map_at_20 value: 18.994 - type: map_at_3 value: 13.23 - type: map_at_5 value: 15.17 - type: mrr_at_1 value: 27.27272727272727 - type: mrr_at_10 value: 36.10858487561485 - type: mrr_at_100 value: 36.92033814316568 - type: mrr_at_1000 value: 36.972226653870365 - type: mrr_at_20 value: 36.58914906427944 - type: mrr_at_3 value: 33.642969201552305 - type: mrr_at_5 value: 35.13417554289494 - type: nauc_map_at_1000_diff1 value: 23.345116790998063 - type: nauc_map_at_1000_max value: 44.447240670835725 - type: nauc_map_at_1000_std value: 18.34636500680144 - type: nauc_map_at_100_diff1 value: 24.458120909292347 - type: nauc_map_at_100_max value: 43.31851431140378 - type: nauc_map_at_100_std value: 15.654778355549965 - type: nauc_map_at_10_diff1 value: 29.376508937265044 - type: nauc_map_at_10_max value: 36.650196725140795 - type: nauc_map_at_10_std value: 4.682465435374843 - type: nauc_map_at_1_diff1 value: 40.382365672683214 - type: nauc_map_at_1_max value: 22.894341150096785 - type: nauc_map_at_1_std value: -5.610725673968323 - type: nauc_map_at_20_diff1 value: 27.197033425732908 - type: nauc_map_at_20_max value: 39.71672400647207 - type: nauc_map_at_20_std value: 8.944436813309933 - type: nauc_map_at_3_diff1 value: 34.49739294661502 - type: nauc_map_at_3_max value: 29.006972420735284 - type: nauc_map_at_3_std value: -3.0372650571243986 - type: nauc_map_at_5_diff1 value: 32.764901537277105 - type: nauc_map_at_5_max value: 32.658533295918154 - type: nauc_map_at_5_std value: 0.029626452286996906 - type: nauc_mrr_at_1000_diff1 value: 19.521229956280603 - type: nauc_mrr_at_1000_max value: 44.39409866211472 - type: nauc_mrr_at_1000_std value: 23.580697307036058 - type: nauc_mrr_at_100_diff1 value: 19.51312676591073 - type: nauc_mrr_at_100_max value: 44.39559153963895 - type: nauc_mrr_at_100_std value: 23.57913711397437 - type: nauc_mrr_at_10_diff1 value: 19.584635617935145 - type: nauc_mrr_at_10_max value: 44.44842226236198 - type: nauc_mrr_at_10_std value: 23.382684909390434 - type: nauc_mrr_at_1_diff1 value: 20.92594790923806 - type: nauc_mrr_at_1_max value: 40.593939625252816 - type: nauc_mrr_at_1_std value: 20.37467598073644 - type: nauc_mrr_at_20_diff1 value: 19.590641822115725 - type: nauc_mrr_at_20_max value: 44.42512299604718 - type: nauc_mrr_at_20_std value: 23.45564260800024 - type: nauc_mrr_at_3_diff1 value: 20.005307129527232 - type: nauc_mrr_at_3_max value: 43.68300366192776 - type: nauc_mrr_at_3_std value: 22.297190480842005 - type: nauc_mrr_at_5_diff1 value: 19.852896386271716 - type: nauc_mrr_at_5_max value: 44.20641808920062 - type: nauc_mrr_at_5_std value: 22.966517330852895 - type: nauc_ndcg_at_1000_diff1 value: 17.800116251376103 - type: nauc_ndcg_at_1000_max value: 50.98332718061365 - type: nauc_ndcg_at_1000_std value: 31.464484658102577 - type: nauc_ndcg_at_100_diff1 value: 19.555159680541088 - type: nauc_ndcg_at_100_max value: 48.56377130899141 - type: nauc_ndcg_at_100_std value: 25.77572748714817 - type: nauc_ndcg_at_10_diff1 value: 20.003008726679415 - type: nauc_ndcg_at_10_max value: 45.1293725480628 - type: nauc_ndcg_at_10_std value: 21.149213260765872 - type: nauc_ndcg_at_1_diff1 value: 21.00986278773023 - type: nauc_ndcg_at_1_max value: 40.524637076774894 - type: nauc_ndcg_at_1_std value: 20.29682194006685 - type: nauc_ndcg_at_20_diff1 value: 20.659734137312284 - type: nauc_ndcg_at_20_max value: 45.73108736599869 - type: nauc_ndcg_at_20_std value: 21.200736170346133 - type: nauc_ndcg_at_3_diff1 value: 19.200120542882544 - type: nauc_ndcg_at_3_max value: 42.89772612963168 - type: nauc_ndcg_at_3_std value: 20.713292754978983 - type: nauc_ndcg_at_5_diff1 value: 19.96329647992544 - type: nauc_ndcg_at_5_max value: 44.296627037787324 - type: nauc_ndcg_at_5_std value: 21.200135784971973 - type: nauc_precision_at_1000_diff1 value: -11.543221249009427 - type: nauc_precision_at_1000_max value: 9.132801614448221 - type: nauc_precision_at_1000_std value: 21.203720655381055 - type: nauc_precision_at_100_diff1 value: -12.510945425786039 - type: nauc_precision_at_100_max value: 31.42530963666252 - type: nauc_precision_at_100_std value: 44.99672783467617 - type: nauc_precision_at_10_diff1 value: -4.025802651746804 - type: nauc_precision_at_10_max value: 47.50967924227793 - type: nauc_precision_at_10_std value: 41.1558559268985 - type: nauc_precision_at_1_diff1 value: 21.00986278773023 - type: nauc_precision_at_1_max value: 40.524637076774894 - type: nauc_precision_at_1_std value: 20.29682194006685 - type: nauc_precision_at_20_diff1 value: -8.059482951110002 - type: nauc_precision_at_20_max value: 44.28832115946278 - type: nauc_precision_at_20_std value: 45.2005585353651 - type: nauc_precision_at_3_diff1 value: 8.53530005716248 - type: nauc_precision_at_3_max value: 46.48353678905102 - type: nauc_precision_at_3_std value: 28.868791323881972 - type: nauc_precision_at_5_diff1 value: 3.093619954821814 - type: nauc_precision_at_5_max value: 48.43294475817019 - type: nauc_precision_at_5_std value: 34.83430452745434 - type: nauc_recall_at_1000_diff1 value: 9.93680206699751 - type: nauc_recall_at_1000_max value: 52.97840222394363 - type: nauc_recall_at_1000_std value: 46.370023604436255 - type: nauc_recall_at_100_diff1 value: 14.100542445524972 - type: nauc_recall_at_100_max value: 42.853775131475224 - type: nauc_recall_at_100_std value: 26.93029971231028 - type: nauc_recall_at_10_diff1 value: 22.774547475714716 - type: nauc_recall_at_10_max value: 33.984586405015044 - type: nauc_recall_at_10_std value: 5.332325172373655 - type: nauc_recall_at_1_diff1 value: 40.382365672683214 - type: nauc_recall_at_1_max value: 22.894341150096785 - type: nauc_recall_at_1_std value: -5.610725673968323 - type: nauc_recall_at_20_diff1 value: 19.751060483835936 - type: nauc_recall_at_20_max value: 36.18774034635102 - type: nauc_recall_at_20_std value: 10.362242090308577 - type: nauc_recall_at_3_diff1 value: 30.29462372902671 - type: nauc_recall_at_3_max value: 27.377175450099635 - type: nauc_recall_at_3_std value: -3.015752705993425 - type: nauc_recall_at_5_diff1 value: 28.096893312615723 - type: nauc_recall_at_5_max value: 30.485075571512425 - type: nauc_recall_at_5_std value: 0.09106417003502826 - type: ndcg_at_1 value: 27.248 - type: ndcg_at_10 value: 28.316000000000003 - type: ndcg_at_100 value: 33.419 - type: ndcg_at_1000 value: 38.134 - type: ndcg_at_20 value: 29.707 - type: ndcg_at_3 value: 26.93 - type: ndcg_at_5 value: 27.363 - type: precision_at_1 value: 27.248 - type: precision_at_10 value: 15.073 - type: precision_at_100 value: 5.061 - type: precision_at_1000 value: 1.325 - type: precision_at_20 value: 11.407 - type: precision_at_3 value: 21.823 - type: precision_at_5 value: 18.984 - type: recall_at_1 value: 8.667 - type: recall_at_10 value: 26.984 - type: recall_at_100 value: 49.753 - type: recall_at_1000 value: 70.354 - type: recall_at_20 value: 33.955999999999996 - type: recall_at_3 value: 16.086 - type: recall_at_5 value: 20.544999999999998 - task: type: Retrieval dataset: name: MTEB XMarket (es) type: jinaai/xmarket_ml config: es split: test revision: dfe57acff5b62c23732a7b7d3e3fb84ff501708b metrics: - type: main_score value: 26.592 - type: map_at_1 value: 8.081000000000001 - type: map_at_10 value: 16.486 - type: map_at_100 value: 19.996 - type: map_at_1000 value: 20.889 - type: map_at_20 value: 18.088 - type: map_at_3 value: 12.864 - type: map_at_5 value: 14.515 - type: mrr_at_1 value: 24.643356643356643 - type: mrr_at_10 value: 33.755599955599926 - type: mrr_at_100 value: 34.55914769326114 - type: mrr_at_1000 value: 34.614384237219745 - type: mrr_at_20 value: 34.228909650276194 - type: mrr_at_3 value: 31.445221445221456 - type: mrr_at_5 value: 32.71375291375297 - type: nauc_map_at_1000_diff1 value: 19.17751654240679 - type: nauc_map_at_1000_max value: 43.493743561136434 - type: nauc_map_at_1000_std value: 21.14477911550252 - type: nauc_map_at_100_diff1 value: 20.259227234415395 - type: nauc_map_at_100_max value: 42.510860292169106 - type: nauc_map_at_100_std value: 18.63085160442346 - type: nauc_map_at_10_diff1 value: 24.12419385640694 - type: nauc_map_at_10_max value: 35.99892932069915 - type: nauc_map_at_10_std value: 8.488520124325058 - type: nauc_map_at_1_diff1 value: 35.09239143996649 - type: nauc_map_at_1_max value: 23.72498533914286 - type: nauc_map_at_1_std value: -4.164387883546102 - type: nauc_map_at_20_diff1 value: 22.411418237320817 - type: nauc_map_at_20_max value: 39.12496266094892 - type: nauc_map_at_20_std value: 12.371656353894227 - type: nauc_map_at_3_diff1 value: 28.106972376813506 - type: nauc_map_at_3_max value: 29.57824316865409 - type: nauc_map_at_3_std value: 1.8928791254813127 - type: nauc_map_at_5_diff1 value: 26.4958239149419 - type: nauc_map_at_5_max value: 32.45906016649239 - type: nauc_map_at_5_std value: 4.612735963224018 - type: nauc_mrr_at_1000_diff1 value: 17.614812607094446 - type: nauc_mrr_at_1000_max value: 41.13031556228715 - type: nauc_mrr_at_1000_std value: 22.564112871230318 - type: nauc_mrr_at_100_diff1 value: 17.614044568011085 - type: nauc_mrr_at_100_max value: 41.129436273086796 - type: nauc_mrr_at_100_std value: 22.566763500658766 - type: nauc_mrr_at_10_diff1 value: 17.61869494452089 - type: nauc_mrr_at_10_max value: 41.091542329381426 - type: nauc_mrr_at_10_std value: 22.370473458633594 - type: nauc_mrr_at_1_diff1 value: 20.321421442201913 - type: nauc_mrr_at_1_max value: 38.36531448180009 - type: nauc_mrr_at_1_std value: 18.422203207777688 - type: nauc_mrr_at_20_diff1 value: 17.614767736091625 - type: nauc_mrr_at_20_max value: 41.11221420736687 - type: nauc_mrr_at_20_std value: 22.44271891522012 - type: nauc_mrr_at_3_diff1 value: 17.98184651584625 - type: nauc_mrr_at_3_max value: 40.424293610470144 - type: nauc_mrr_at_3_std value: 21.554750947206706 - type: nauc_mrr_at_5_diff1 value: 17.72088314927416 - type: nauc_mrr_at_5_max value: 40.662724739072694 - type: nauc_mrr_at_5_std value: 21.822957528431928 - type: nauc_ndcg_at_1000_diff1 value: 15.310699428328398 - type: nauc_ndcg_at_1000_max value: 48.83921393349997 - type: nauc_ndcg_at_1000_std value: 32.22600294110774 - type: nauc_ndcg_at_100_diff1 value: 16.62672763977423 - type: nauc_ndcg_at_100_max value: 47.36060653537392 - type: nauc_ndcg_at_100_std value: 27.879865162871575 - type: nauc_ndcg_at_10_diff1 value: 16.436684176028116 - type: nauc_ndcg_at_10_max value: 43.00026520872974 - type: nauc_ndcg_at_10_std value: 22.507354939162806 - type: nauc_ndcg_at_1_diff1 value: 20.321421442201913 - type: nauc_ndcg_at_1_max value: 38.36531448180009 - type: nauc_ndcg_at_1_std value: 18.422203207777688 - type: nauc_ndcg_at_20_diff1 value: 17.127747123248835 - type: nauc_ndcg_at_20_max value: 44.57322943752733 - type: nauc_ndcg_at_20_std value: 23.146541187377036 - type: nauc_ndcg_at_3_diff1 value: 16.372742984728514 - type: nauc_ndcg_at_3_max value: 40.91938017883993 - type: nauc_ndcg_at_3_std value: 21.50917089194154 - type: nauc_ndcg_at_5_diff1 value: 16.40486505525073 - type: nauc_ndcg_at_5_max value: 41.94597203181329 - type: nauc_ndcg_at_5_std value: 22.068260809047562 - type: nauc_precision_at_1000_diff1 value: -15.9415313729527 - type: nauc_precision_at_1000_max value: 12.653329948983643 - type: nauc_precision_at_1000_std value: 26.371820703256173 - type: nauc_precision_at_100_diff1 value: -11.851070166675289 - type: nauc_precision_at_100_max value: 32.164365923950115 - type: nauc_precision_at_100_std value: 45.930226426725426 - type: nauc_precision_at_10_diff1 value: -3.1352660378259163 - type: nauc_precision_at_10_max value: 45.48359878733272 - type: nauc_precision_at_10_std value: 40.2917038044196 - type: nauc_precision_at_1_diff1 value: 20.321421442201913 - type: nauc_precision_at_1_max value: 38.36531448180009 - type: nauc_precision_at_1_std value: 18.422203207777688 - type: nauc_precision_at_20_diff1 value: -7.087513342144751 - type: nauc_precision_at_20_max value: 43.66272019058357 - type: nauc_precision_at_20_std value: 44.22863351071686 - type: nauc_precision_at_3_diff1 value: 7.836185032609045 - type: nauc_precision_at_3_max value: 44.85412904097269 - type: nauc_precision_at_3_std value: 30.209139149500057 - type: nauc_precision_at_5_diff1 value: 3.028150537253791 - type: nauc_precision_at_5_max value: 45.73661708882973 - type: nauc_precision_at_5_std value: 34.65500311185052 - type: nauc_recall_at_1000_diff1 value: 9.526124668370704 - type: nauc_recall_at_1000_max value: 51.4190208452196 - type: nauc_recall_at_1000_std value: 45.694891695646426 - type: nauc_recall_at_100_diff1 value: 12.68466215400009 - type: nauc_recall_at_100_max value: 42.79112054268112 - type: nauc_recall_at_100_std value: 28.61954251400998 - type: nauc_recall_at_10_diff1 value: 17.95124413416829 - type: nauc_recall_at_10_max value: 33.1192036755167 - type: nauc_recall_at_10_std value: 9.3588175959525 - type: nauc_recall_at_1_diff1 value: 35.09239143996649 - type: nauc_recall_at_1_max value: 23.72498533914286 - type: nauc_recall_at_1_std value: -4.164387883546102 - type: nauc_recall_at_20_diff1 value: 16.24916980445646 - type: nauc_recall_at_20_max value: 36.51316122236076 - type: nauc_recall_at_20_std value: 13.641588062425736 - type: nauc_recall_at_3_diff1 value: 23.263199724138786 - type: nauc_recall_at_3_max value: 27.67354561610614 - type: nauc_recall_at_3_std value: 3.103127242654415 - type: nauc_recall_at_5_diff1 value: 20.719704839229635 - type: nauc_recall_at_5_max value: 29.66480839111333 - type: nauc_recall_at_5_std value: 5.514884455797986 - type: ndcg_at_1 value: 24.643 - type: ndcg_at_10 value: 26.592 - type: ndcg_at_100 value: 31.887 - type: ndcg_at_1000 value: 36.695 - type: ndcg_at_20 value: 28.166000000000004 - type: ndcg_at_3 value: 25.238 - type: ndcg_at_5 value: 25.545 - type: precision_at_1 value: 24.643 - type: precision_at_10 value: 13.730999999999998 - type: precision_at_100 value: 4.744000000000001 - type: precision_at_1000 value: 1.167 - type: precision_at_20 value: 10.562000000000001 - type: precision_at_3 value: 20.288999999999998 - type: precision_at_5 value: 17.337 - type: recall_at_1 value: 8.081000000000001 - type: recall_at_10 value: 25.911 - type: recall_at_100 value: 48.176 - type: recall_at_1000 value: 69.655 - type: recall_at_20 value: 32.924 - type: recall_at_3 value: 16.125 - type: recall_at_5 value: 19.988 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (deu-deu) type: jinaai/xpqa config: deu-deu split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 84.552 - type: map_at_1 value: 59.023 - type: map_at_10 value: 81.051 - type: map_at_100 value: 81.539 - type: map_at_1000 value: 81.54299999999999 - type: map_at_20 value: 81.401 - type: map_at_3 value: 76.969 - type: map_at_5 value: 80.07600000000001 - type: mrr_at_1 value: 77.67624020887729 - type: mrr_at_10 value: 83.30509967259314 - type: mrr_at_100 value: 83.58599391639456 - type: mrr_at_1000 value: 83.58970114722587 - type: mrr_at_20 value: 83.50275980440317 - type: mrr_at_3 value: 82.07136640557006 - type: mrr_at_5 value: 82.94604003481287 - type: nauc_map_at_1000_diff1 value: 63.12885104269942 - type: nauc_map_at_1000_max value: 57.7017996674959 - type: nauc_map_at_1000_std value: -24.951068985070513 - type: nauc_map_at_100_diff1 value: 63.12866509393162 - type: nauc_map_at_100_max value: 57.70176426013332 - type: nauc_map_at_100_std value: -24.96012290790273 - type: nauc_map_at_10_diff1 value: 62.847709436211204 - type: nauc_map_at_10_max value: 57.408873624779524 - type: nauc_map_at_10_std value: -25.635130363219062 - type: nauc_map_at_1_diff1 value: 71.89683981857102 - type: nauc_map_at_1_max value: 20.204460967432645 - type: nauc_map_at_1_std value: -23.07894656629493 - type: nauc_map_at_20_diff1 value: 63.00504457011043 - type: nauc_map_at_20_max value: 57.66009512514262 - type: nauc_map_at_20_std value: -25.100138593754885 - type: nauc_map_at_3_diff1 value: 63.199874607788274 - type: nauc_map_at_3_max value: 47.54482033763308 - type: nauc_map_at_3_std value: -27.714557098916963 - type: nauc_map_at_5_diff1 value: 63.01006523518669 - type: nauc_map_at_5_max value: 56.501965964288495 - type: nauc_map_at_5_std value: -25.367825762790925 - type: nauc_mrr_at_1000_diff1 value: 66.24988063948112 - type: nauc_mrr_at_1000_max value: 63.56921667744273 - type: nauc_mrr_at_1000_std value: -22.073973768031863 - type: nauc_mrr_at_100_diff1 value: 66.24919554296275 - type: nauc_mrr_at_100_max value: 63.57382447608361 - type: nauc_mrr_at_100_std value: -22.084627248538187 - type: nauc_mrr_at_10_diff1 value: 66.0143885124066 - type: nauc_mrr_at_10_max value: 63.51277586011898 - type: nauc_mrr_at_10_std value: -22.477523960705454 - type: nauc_mrr_at_1_diff1 value: 68.25415199323474 - type: nauc_mrr_at_1_max value: 63.069019003272416 - type: nauc_mrr_at_1_std value: -18.77085924093244 - type: nauc_mrr_at_20_diff1 value: 66.16203167351055 - type: nauc_mrr_at_20_max value: 63.607477776215845 - type: nauc_mrr_at_20_std value: -22.15083176017266 - type: nauc_mrr_at_3_diff1 value: 66.39368842782302 - type: nauc_mrr_at_3_max value: 63.11411066585295 - type: nauc_mrr_at_3_std value: -22.63174342814071 - type: nauc_mrr_at_5_diff1 value: 66.17932562332354 - type: nauc_mrr_at_5_max value: 63.70434825329594 - type: nauc_mrr_at_5_std value: -21.704012812430438 - type: nauc_ndcg_at_1000_diff1 value: 63.958010361549356 - type: nauc_ndcg_at_1000_max value: 60.516445000134624 - type: nauc_ndcg_at_1000_std value: -24.264672248289923 - type: nauc_ndcg_at_100_diff1 value: 63.97654644758022 - type: nauc_ndcg_at_100_max value: 60.62187552803407 - type: nauc_ndcg_at_100_std value: -24.317149225778312 - type: nauc_ndcg_at_10_diff1 value: 62.505321221321566 - type: nauc_ndcg_at_10_max value: 59.77891112351258 - type: nauc_ndcg_at_10_std value: -26.90910005589911 - type: nauc_ndcg_at_1_diff1 value: 68.25415199323474 - type: nauc_ndcg_at_1_max value: 63.069019003272416 - type: nauc_ndcg_at_1_std value: -18.77085924093244 - type: nauc_ndcg_at_20_diff1 value: 63.04281805056225 - type: nauc_ndcg_at_20_max value: 60.600957307444226 - type: nauc_ndcg_at_20_std value: -24.954862079889203 - type: nauc_ndcg_at_3_diff1 value: 62.970441139740316 - type: nauc_ndcg_at_3_max value: 57.543715669055295 - type: nauc_ndcg_at_3_std value: -25.659388431714703 - type: nauc_ndcg_at_5_diff1 value: 62.82652127664541 - type: nauc_ndcg_at_5_max value: 58.6970443258532 - type: nauc_ndcg_at_5_std value: -25.66329354851023 - type: nauc_precision_at_1000_diff1 value: -33.38530947486223 - type: nauc_precision_at_1000_max value: 25.972468024345414 - type: nauc_precision_at_1000_std value: 17.460222955117978 - type: nauc_precision_at_100_diff1 value: -32.45175999251703 - type: nauc_precision_at_100_max value: 26.367996120487337 - type: nauc_precision_at_100_std value: 17.097957946391208 - type: nauc_precision_at_10_diff1 value: -26.97411235289487 - type: nauc_precision_at_10_max value: 31.504961687240762 - type: nauc_precision_at_10_std value: 11.125341183874687 - type: nauc_precision_at_1_diff1 value: 68.25415199323474 - type: nauc_precision_at_1_max value: 63.069019003272416 - type: nauc_precision_at_1_std value: -18.77085924093244 - type: nauc_precision_at_20_diff1 value: -29.8678078736273 - type: nauc_precision_at_20_max value: 29.031222186584504 - type: nauc_precision_at_20_std value: 14.943600563087928 - type: nauc_precision_at_3_diff1 value: -15.92947221299854 - type: nauc_precision_at_3_max value: 37.73833494235097 - type: nauc_precision_at_3_std value: 3.1573228443500847 - type: nauc_precision_at_5_diff1 value: -22.269156821101642 - type: nauc_precision_at_5_max value: 35.65821838116355 - type: nauc_precision_at_5_std value: 9.265930386198972 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 66.17058859539249 - type: nauc_recall_at_100_max value: 78.066942935192 - type: nauc_recall_at_100_std value: -22.213377762074686 - type: nauc_recall_at_10_diff1 value: 50.82149700700275 - type: nauc_recall_at_10_max value: 56.68053325008221 - type: nauc_recall_at_10_std value: -41.81657941433277 - type: nauc_recall_at_1_diff1 value: 71.89683981857102 - type: nauc_recall_at_1_max value: 20.204460967432645 - type: nauc_recall_at_1_std value: -23.07894656629493 - type: nauc_recall_at_20_diff1 value: 48.28076011857885 - type: nauc_recall_at_20_max value: 63.29641555519295 - type: nauc_recall_at_20_std value: -32.953559708819405 - type: nauc_recall_at_3_diff1 value: 58.15516956312558 - type: nauc_recall_at_3_max value: 42.66315890283056 - type: nauc_recall_at_3_std value: -32.16572530544806 - type: nauc_recall_at_5_diff1 value: 55.900844052439766 - type: nauc_recall_at_5_max value: 55.23702018862884 - type: nauc_recall_at_5_std value: -30.105929528165 - type: ndcg_at_1 value: 77.676 - type: ndcg_at_10 value: 84.552 - type: ndcg_at_100 value: 86.232 - type: ndcg_at_1000 value: 86.33800000000001 - type: ndcg_at_20 value: 85.515 - type: ndcg_at_3 value: 81.112 - type: ndcg_at_5 value: 82.943 - type: precision_at_1 value: 77.676 - type: precision_at_10 value: 15.17 - type: precision_at_100 value: 1.6230000000000002 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 7.858999999999999 - type: precision_at_3 value: 42.994 - type: precision_at_5 value: 28.747 - type: recall_at_1 value: 59.023 - type: recall_at_10 value: 92.465 - type: recall_at_100 value: 99.18400000000001 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 95.844 - type: recall_at_3 value: 81.826 - type: recall_at_5 value: 88.22 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (deu-eng) type: jinaai/xpqa config: deu-eng split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 82.149 - type: map_at_1 value: 56.277 - type: map_at_10 value: 78.36999999999999 - type: map_at_100 value: 78.94 - type: map_at_1000 value: 78.95 - type: map_at_20 value: 78.818 - type: map_at_3 value: 74.25 - type: map_at_5 value: 77.11099999999999 - type: mrr_at_1 value: 74.28198433420366 - type: mrr_at_10 value: 80.57487877657589 - type: mrr_at_100 value: 80.94025764149008 - type: mrr_at_1000 value: 80.94608738871234 - type: mrr_at_20 value: 80.86240675885023 - type: mrr_at_3 value: 79.4604003481288 - type: mrr_at_5 value: 80.10008703220191 - type: nauc_map_at_1000_diff1 value: 60.44369249057189 - type: nauc_map_at_1000_max value: 49.822240441830246 - type: nauc_map_at_1000_std value: -27.34026380762817 - type: nauc_map_at_100_diff1 value: 60.44635668050401 - type: nauc_map_at_100_max value: 49.838675926660684 - type: nauc_map_at_100_std value: -27.310365556055583 - type: nauc_map_at_10_diff1 value: 60.18546951726522 - type: nauc_map_at_10_max value: 49.72075398096832 - type: nauc_map_at_10_std value: -27.86056102461558 - type: nauc_map_at_1_diff1 value: 71.2906657099758 - type: nauc_map_at_1_max value: 18.970399251589 - type: nauc_map_at_1_std value: -27.260776614286602 - type: nauc_map_at_20_diff1 value: 60.3525975566164 - type: nauc_map_at_20_max value: 49.852487866710646 - type: nauc_map_at_20_std value: -27.305173830170332 - type: nauc_map_at_3_diff1 value: 60.66803500571236 - type: nauc_map_at_3_max value: 41.18191941521972 - type: nauc_map_at_3_std value: -28.71383593401732 - type: nauc_map_at_5_diff1 value: 60.57216514504887 - type: nauc_map_at_5_max value: 47.99837400446299 - type: nauc_map_at_5_std value: -28.756183015949986 - type: nauc_mrr_at_1000_diff1 value: 63.77031955602516 - type: nauc_mrr_at_1000_max value: 54.26907383811417 - type: nauc_mrr_at_1000_std value: -26.227442087164714 - type: nauc_mrr_at_100_diff1 value: 63.77196650108669 - type: nauc_mrr_at_100_max value: 54.281801457913126 - type: nauc_mrr_at_100_std value: -26.216077891830793 - type: nauc_mrr_at_10_diff1 value: 63.50095284903051 - type: nauc_mrr_at_10_max value: 54.3186301730016 - type: nauc_mrr_at_10_std value: -26.29570241722173 - type: nauc_mrr_at_1_diff1 value: 65.15855770999057 - type: nauc_mrr_at_1_max value: 53.213286738515066 - type: nauc_mrr_at_1_std value: -24.683178252901943 - type: nauc_mrr_at_20_diff1 value: 63.74936550280859 - type: nauc_mrr_at_20_max value: 54.355343751439065 - type: nauc_mrr_at_20_std value: -26.197316900009817 - type: nauc_mrr_at_3_diff1 value: 63.912612979082695 - type: nauc_mrr_at_3_max value: 53.75399024225975 - type: nauc_mrr_at_3_std value: -27.194143264554675 - type: nauc_mrr_at_5_diff1 value: 63.72491059053639 - type: nauc_mrr_at_5_max value: 53.66107604019352 - type: nauc_mrr_at_5_std value: -26.92281560584754 - type: nauc_ndcg_at_1000_diff1 value: 61.304218998714354 - type: nauc_ndcg_at_1000_max value: 52.409135743660386 - type: nauc_ndcg_at_1000_std value: -26.539796489464056 - type: nauc_ndcg_at_100_diff1 value: 61.40355045085304 - type: nauc_ndcg_at_100_max value: 52.79402259608008 - type: nauc_ndcg_at_100_std value: -25.927273456979965 - type: nauc_ndcg_at_10_diff1 value: 59.93675608684116 - type: nauc_ndcg_at_10_max value: 52.617848197542706 - type: nauc_ndcg_at_10_std value: -27.314820020095887 - type: nauc_ndcg_at_1_diff1 value: 65.15855770999057 - type: nauc_ndcg_at_1_max value: 53.213286738515066 - type: nauc_ndcg_at_1_std value: -24.683178252901943 - type: nauc_ndcg_at_20_diff1 value: 60.85093704358376 - type: nauc_ndcg_at_20_max value: 53.14529242671602 - type: nauc_ndcg_at_20_std value: -25.93187916231906 - type: nauc_ndcg_at_3_diff1 value: 60.42301123518882 - type: nauc_ndcg_at_3_max value: 49.59021992975956 - type: nauc_ndcg_at_3_std value: -27.397117967810363 - type: nauc_ndcg_at_5_diff1 value: 60.78655153154219 - type: nauc_ndcg_at_5_max value: 49.54194799556953 - type: nauc_ndcg_at_5_std value: -29.467910172913413 - type: nauc_precision_at_1000_diff1 value: -34.35027108027456 - type: nauc_precision_at_1000_max value: 23.762671066858815 - type: nauc_precision_at_1000_std value: 16.1704780298982 - type: nauc_precision_at_100_diff1 value: -32.66610016754961 - type: nauc_precision_at_100_max value: 25.504044603109588 - type: nauc_precision_at_100_std value: 16.932402988816786 - type: nauc_precision_at_10_diff1 value: -25.720903145017342 - type: nauc_precision_at_10_max value: 30.37029690599926 - type: nauc_precision_at_10_std value: 10.560753160200314 - type: nauc_precision_at_1_diff1 value: 65.15855770999057 - type: nauc_precision_at_1_max value: 53.213286738515066 - type: nauc_precision_at_1_std value: -24.683178252901943 - type: nauc_precision_at_20_diff1 value: -29.577582332619084 - type: nauc_precision_at_20_max value: 27.984145595920417 - type: nauc_precision_at_20_std value: 15.083711704044727 - type: nauc_precision_at_3_diff1 value: -14.736267532892697 - type: nauc_precision_at_3_max value: 36.12211021824307 - type: nauc_precision_at_3_std value: 3.068643876519412 - type: nauc_precision_at_5_diff1 value: -19.846707283120825 - type: nauc_precision_at_5_max value: 33.573804532177896 - type: nauc_precision_at_5_std value: 5.700545622744924 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 68.24749796604452 - type: nauc_recall_at_100_max value: 83.30024864929815 - type: nauc_recall_at_100_std value: 21.23763053711522 - type: nauc_recall_at_10_diff1 value: 50.704049683241436 - type: nauc_recall_at_10_max value: 57.64578984555556 - type: nauc_recall_at_10_std value: -26.632759037746073 - type: nauc_recall_at_1_diff1 value: 71.2906657099758 - type: nauc_recall_at_1_max value: 18.970399251589 - type: nauc_recall_at_1_std value: -27.260776614286602 - type: nauc_recall_at_20_diff1 value: 54.124480837579505 - type: nauc_recall_at_20_max value: 66.4641515433479 - type: nauc_recall_at_20_std value: -14.615911455379393 - type: nauc_recall_at_3_diff1 value: 56.54358788321059 - type: nauc_recall_at_3_max value: 37.765735322465744 - type: nauc_recall_at_3_std value: -30.824147408598574 - type: nauc_recall_at_5_diff1 value: 56.392894535029214 - type: nauc_recall_at_5_max value: 45.959268387521554 - type: nauc_recall_at_5_std value: -33.58175576925282 - type: ndcg_at_1 value: 74.28200000000001 - type: ndcg_at_10 value: 82.149 - type: ndcg_at_100 value: 84.129 - type: ndcg_at_1000 value: 84.307 - type: ndcg_at_20 value: 83.39999999999999 - type: ndcg_at_3 value: 78.583 - type: ndcg_at_5 value: 80.13900000000001 - type: precision_at_1 value: 74.28200000000001 - type: precision_at_10 value: 14.960999999999999 - type: precision_at_100 value: 1.6119999999999999 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 7.813000000000001 - type: precision_at_3 value: 41.819 - type: precision_at_5 value: 27.911 - type: recall_at_1 value: 56.277 - type: recall_at_10 value: 90.729 - type: recall_at_100 value: 98.792 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 95.148 - type: recall_at_3 value: 79.989 - type: recall_at_5 value: 85.603 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (eng-deu) type: jinaai/xpqa config: eng-deu split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 60.428000000000004 - type: map_at_1 value: 33.453 - type: map_at_10 value: 54.217000000000006 - type: map_at_100 value: 55.832 - type: map_at_1000 value: 55.884 - type: map_at_20 value: 55.236 - type: map_at_3 value: 48.302 - type: map_at_5 value: 51.902 - type: mrr_at_1 value: 53.916449086161876 - type: mrr_at_10 value: 61.4685647975465 - type: mrr_at_100 value: 62.13718159287348 - type: mrr_at_1000 value: 62.15799113826325 - type: mrr_at_20 value: 61.885388764243544 - type: mrr_at_3 value: 59.44299390774582 - type: mrr_at_5 value: 60.26544821583981 - type: nauc_map_at_1000_diff1 value: 39.824412602121804 - type: nauc_map_at_1000_max value: 39.49332709959374 - type: nauc_map_at_1000_std value: -17.27462623749702 - type: nauc_map_at_100_diff1 value: 39.80528910003463 - type: nauc_map_at_100_max value: 39.51471609156093 - type: nauc_map_at_100_std value: -17.275536933094937 - type: nauc_map_at_10_diff1 value: 39.28558292349772 - type: nauc_map_at_10_max value: 38.13220294838968 - type: nauc_map_at_10_std value: -18.235985574392863 - type: nauc_map_at_1_diff1 value: 43.68892397816937 - type: nauc_map_at_1_max value: 14.478978190224353 - type: nauc_map_at_1_std value: -18.435031919225477 - type: nauc_map_at_20_diff1 value: 39.8733530971344 - type: nauc_map_at_20_max value: 39.30513202591992 - type: nauc_map_at_20_std value: -17.62362848144766 - type: nauc_map_at_3_diff1 value: 40.31116611188815 - type: nauc_map_at_3_max value: 31.107314675202165 - type: nauc_map_at_3_std value: -19.52930881946966 - type: nauc_map_at_5_diff1 value: 39.1241499095765 - type: nauc_map_at_5_max value: 37.330543901034055 - type: nauc_map_at_5_std value: -17.893862772447548 - type: nauc_mrr_at_1000_diff1 value: 43.07490530140024 - type: nauc_mrr_at_1000_max value: 42.28469195779226 - type: nauc_mrr_at_1000_std value: -15.583217110180737 - type: nauc_mrr_at_100_diff1 value: 43.068836494603886 - type: nauc_mrr_at_100_max value: 42.29612450479168 - type: nauc_mrr_at_100_std value: -15.57218089438229 - type: nauc_mrr_at_10_diff1 value: 42.88685919151777 - type: nauc_mrr_at_10_max value: 41.89944452003811 - type: nauc_mrr_at_10_std value: -15.909673572763165 - type: nauc_mrr_at_1_diff1 value: 45.67646898532131 - type: nauc_mrr_at_1_max value: 43.0541870425035 - type: nauc_mrr_at_1_std value: -15.597124291613563 - type: nauc_mrr_at_20_diff1 value: 43.14141873150977 - type: nauc_mrr_at_20_max value: 42.33063543184022 - type: nauc_mrr_at_20_std value: -15.607612016107304 - type: nauc_mrr_at_3_diff1 value: 43.18370928261982 - type: nauc_mrr_at_3_max value: 42.18529980773961 - type: nauc_mrr_at_3_std value: -15.900151400673629 - type: nauc_mrr_at_5_diff1 value: 42.43443044877765 - type: nauc_mrr_at_5_max value: 42.05818605278972 - type: nauc_mrr_at_5_std value: -15.436502733299893 - type: nauc_ndcg_at_1000_diff1 value: 40.60606676178781 - type: nauc_ndcg_at_1000_max value: 41.71923393878376 - type: nauc_ndcg_at_1000_std value: -15.694740326899556 - type: nauc_ndcg_at_100_diff1 value: 40.15270376312309 - type: nauc_ndcg_at_100_max value: 42.234126305709225 - type: nauc_ndcg_at_100_std value: -15.436051984708952 - type: nauc_ndcg_at_10_diff1 value: 39.142259831299455 - type: nauc_ndcg_at_10_max value: 38.61470104273746 - type: nauc_ndcg_at_10_std value: -18.577452829132742 - type: nauc_ndcg_at_1_diff1 value: 45.67646898532131 - type: nauc_ndcg_at_1_max value: 43.0541870425035 - type: nauc_ndcg_at_1_std value: -15.597124291613563 - type: nauc_ndcg_at_20_diff1 value: 40.805159395901306 - type: nauc_ndcg_at_20_max value: 41.58685629374952 - type: nauc_ndcg_at_20_std value: -16.862408156222592 - type: nauc_ndcg_at_3_diff1 value: 39.12028215488432 - type: nauc_ndcg_at_3_max value: 39.70580596343164 - type: nauc_ndcg_at_3_std value: -16.705546903936213 - type: nauc_ndcg_at_5_diff1 value: 38.42075404927361 - type: nauc_ndcg_at_5_max value: 38.064219879504385 - type: nauc_ndcg_at_5_std value: -17.20282111665876 - type: nauc_precision_at_1000_diff1 value: -4.419224540552891 - type: nauc_precision_at_1000_max value: 35.686022591225246 - type: nauc_precision_at_1000_std value: 15.023520191032972 - type: nauc_precision_at_100_diff1 value: -2.9027602601603895 - type: nauc_precision_at_100_max value: 39.99864013028808 - type: nauc_precision_at_100_std value: 13.863497117255525 - type: nauc_precision_at_10_diff1 value: 5.539104839809501 - type: nauc_precision_at_10_max value: 42.41625740557432 - type: nauc_precision_at_10_std value: 1.0894693748662556 - type: nauc_precision_at_1_diff1 value: 45.67646898532131 - type: nauc_precision_at_1_max value: 43.0541870425035 - type: nauc_precision_at_1_std value: -15.597124291613563 - type: nauc_precision_at_20_diff1 value: 4.734562571681868 - type: nauc_precision_at_20_max value: 44.35081213316202 - type: nauc_precision_at_20_std value: 6.642891478284595 - type: nauc_precision_at_3_diff1 value: 13.936559341472101 - type: nauc_precision_at_3_max value: 45.426668552497524 - type: nauc_precision_at_3_std value: -5.219785419247125 - type: nauc_precision_at_5_diff1 value: 8.366706789546015 - type: nauc_precision_at_5_max value: 46.161942989326896 - type: nauc_precision_at_5_std value: -0.193140343545876 - type: nauc_recall_at_1000_diff1 value: 45.61785312444842 - type: nauc_recall_at_1000_max value: 75.68258976531774 - type: nauc_recall_at_1000_std value: 37.469059422121575 - type: nauc_recall_at_100_diff1 value: 26.798748531805096 - type: nauc_recall_at_100_max value: 54.72134095197765 - type: nauc_recall_at_100_std value: -1.5967608233799417 - type: nauc_recall_at_10_diff1 value: 32.13211696200521 - type: nauc_recall_at_10_max value: 31.13866254975895 - type: nauc_recall_at_10_std value: -22.31404161136118 - type: nauc_recall_at_1_diff1 value: 43.68892397816937 - type: nauc_recall_at_1_max value: 14.478978190224353 - type: nauc_recall_at_1_std value: -18.435031919225477 - type: nauc_recall_at_20_diff1 value: 38.597996930461385 - type: nauc_recall_at_20_max value: 42.49849027366794 - type: nauc_recall_at_20_std value: -16.536471900752154 - type: nauc_recall_at_3_diff1 value: 35.343730012759266 - type: nauc_recall_at_3_max value: 26.898722085043392 - type: nauc_recall_at_3_std value: -19.4459792273884 - type: nauc_recall_at_5_diff1 value: 31.8310298012186 - type: nauc_recall_at_5_max value: 32.67800489655844 - type: nauc_recall_at_5_std value: -16.800929103347283 - type: ndcg_at_1 value: 53.916 - type: ndcg_at_10 value: 60.428000000000004 - type: ndcg_at_100 value: 65.95 - type: ndcg_at_1000 value: 66.88 - type: ndcg_at_20 value: 62.989 - type: ndcg_at_3 value: 55.204 - type: ndcg_at_5 value: 56.42700000000001 - type: precision_at_1 value: 53.916 - type: precision_at_10 value: 14.346999999999998 - type: precision_at_100 value: 1.849 - type: precision_at_1000 value: 0.196 - type: precision_at_20 value: 8.022 - type: precision_at_3 value: 34.552 - type: precision_at_5 value: 24.569 - type: recall_at_1 value: 33.453 - type: recall_at_10 value: 71.07900000000001 - type: recall_at_100 value: 93.207 - type: recall_at_1000 value: 99.60799999999999 - type: recall_at_20 value: 79.482 - type: recall_at_3 value: 53.98 - type: recall_at_5 value: 60.781 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (eng-pol) type: jinaai/xpqa config: eng-pol split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 34.042 - type: map_at_1 value: 13.236 - type: map_at_10 value: 27.839999999999996 - type: map_at_100 value: 30.171999999999997 - type: map_at_1000 value: 30.349999999999998 - type: map_at_20 value: 29.044999999999998 - type: map_at_3 value: 22.58 - type: map_at_5 value: 25.83 - type: mrr_at_1 value: 30.318471337579616 - type: mrr_at_10 value: 37.4983823678091 - type: mrr_at_100 value: 38.5784523175009 - type: mrr_at_1000 value: 38.63608698968148 - type: mrr_at_20 value: 38.02996157871825 - type: mrr_at_3 value: 34.798301486199584 - type: mrr_at_5 value: 36.39702760084925 - type: nauc_map_at_1000_diff1 value: 21.07199789609177 - type: nauc_map_at_1000_max value: 25.959233507893277 - type: nauc_map_at_1000_std value: -28.011925372852826 - type: nauc_map_at_100_diff1 value: 21.086788412737548 - type: nauc_map_at_100_max value: 25.8611620203686 - type: nauc_map_at_100_std value: -28.179239912057515 - type: nauc_map_at_10_diff1 value: 21.23841745922078 - type: nauc_map_at_10_max value: 25.44290342378288 - type: nauc_map_at_10_std value: -28.75578689110275 - type: nauc_map_at_1_diff1 value: 28.87454015638211 - type: nauc_map_at_1_max value: 17.50681123879997 - type: nauc_map_at_1_std value: -30.382831850562432 - type: nauc_map_at_20_diff1 value: 21.076559713540455 - type: nauc_map_at_20_max value: 25.538154202494535 - type: nauc_map_at_20_std value: -28.518764617658555 - type: nauc_map_at_3_diff1 value: 22.159185358766468 - type: nauc_map_at_3_max value: 23.01652660927249 - type: nauc_map_at_3_std value: -29.567722713221862 - type: nauc_map_at_5_diff1 value: 21.35578810370897 - type: nauc_map_at_5_max value: 25.550550437767395 - type: nauc_map_at_5_std value: -28.7889035461355 - type: nauc_mrr_at_1000_diff1 value: 22.28633009221923 - type: nauc_mrr_at_1000_max value: 26.920205393136392 - type: nauc_mrr_at_1000_std value: -25.887791634977642 - type: nauc_mrr_at_100_diff1 value: 22.2754975739755 - type: nauc_mrr_at_100_max value: 26.90235716615346 - type: nauc_mrr_at_100_std value: -25.891596020584345 - type: nauc_mrr_at_10_diff1 value: 22.415076305593534 - type: nauc_mrr_at_10_max value: 26.504643796222222 - type: nauc_mrr_at_10_std value: -26.6046081215833 - type: nauc_mrr_at_1_diff1 value: 23.406748619244368 - type: nauc_mrr_at_1_max value: 29.058228240823553 - type: nauc_mrr_at_1_std value: -26.450169820901078 - type: nauc_mrr_at_20_diff1 value: 22.29233141817678 - type: nauc_mrr_at_20_max value: 26.69021351064081 - type: nauc_mrr_at_20_std value: -26.086596227376656 - type: nauc_mrr_at_3_diff1 value: 22.20746187500145 - type: nauc_mrr_at_3_max value: 27.143725946169457 - type: nauc_mrr_at_3_std value: -26.7017708594376 - type: nauc_mrr_at_5_diff1 value: 22.71898965233195 - type: nauc_mrr_at_5_max value: 26.932386658571662 - type: nauc_mrr_at_5_std value: -26.725541058780234 - type: nauc_ndcg_at_1000_diff1 value: 20.541734305148466 - type: nauc_ndcg_at_1000_max value: 27.180534238090758 - type: nauc_ndcg_at_1000_std value: -23.74197745177845 - type: nauc_ndcg_at_100_diff1 value: 20.570052839937468 - type: nauc_ndcg_at_100_max value: 26.21605034405486 - type: nauc_ndcg_at_100_std value: -25.359817188805028 - type: nauc_ndcg_at_10_diff1 value: 21.241423075073467 - type: nauc_ndcg_at_10_max value: 24.599199195239475 - type: nauc_ndcg_at_10_std value: -28.404540333309008 - type: nauc_ndcg_at_1_diff1 value: 23.406748619244368 - type: nauc_ndcg_at_1_max value: 29.058228240823553 - type: nauc_ndcg_at_1_std value: -26.450169820901078 - type: nauc_ndcg_at_20_diff1 value: 20.740460046196873 - type: nauc_ndcg_at_20_max value: 24.82380195169634 - type: nauc_ndcg_at_20_std value: -27.376298834244313 - type: nauc_ndcg_at_3_diff1 value: 19.994948682426504 - type: nauc_ndcg_at_3_max value: 26.153790759405105 - type: nauc_ndcg_at_3_std value: -27.194548404540885 - type: nauc_ndcg_at_5_diff1 value: 21.48414272096384 - type: nauc_ndcg_at_5_max value: 25.239652015076373 - type: nauc_ndcg_at_5_std value: -28.2620160957961 - type: nauc_precision_at_1000_diff1 value: -0.7557639926687744 - type: nauc_precision_at_1000_max value: 24.265591636994436 - type: nauc_precision_at_1000_std value: 16.833104654292654 - type: nauc_precision_at_100_diff1 value: 4.647847665941115 - type: nauc_precision_at_100_max value: 24.42192644844434 - type: nauc_precision_at_100_std value: 0.2718848568876648 - type: nauc_precision_at_10_diff1 value: 9.465969286722654 - type: nauc_precision_at_10_max value: 27.448993150448043 - type: nauc_precision_at_10_std value: -16.519099596502212 - type: nauc_precision_at_1_diff1 value: 23.406748619244368 - type: nauc_precision_at_1_max value: 29.058228240823553 - type: nauc_precision_at_1_std value: -26.450169820901078 - type: nauc_precision_at_20_diff1 value: 8.021421615668114 - type: nauc_precision_at_20_max value: 26.18556481398635 - type: nauc_precision_at_20_std value: -12.207152108668367 - type: nauc_precision_at_3_diff1 value: 11.783572803634241 - type: nauc_precision_at_3_max value: 29.259715774978893 - type: nauc_precision_at_3_std value: -20.407524967717425 - type: nauc_precision_at_5_diff1 value: 10.371728615220821 - type: nauc_precision_at_5_max value: 30.270642833482864 - type: nauc_precision_at_5_std value: -18.407334880575494 - type: nauc_recall_at_1000_diff1 value: 6.008969959111555 - type: nauc_recall_at_1000_max value: 39.79691734058127 - type: nauc_recall_at_1000_std value: 32.43591825510109 - type: nauc_recall_at_100_diff1 value: 15.2374566058917 - type: nauc_recall_at_100_max value: 23.058785539503717 - type: nauc_recall_at_100_std value: -15.962888794058165 - type: nauc_recall_at_10_diff1 value: 19.46184821807753 - type: nauc_recall_at_10_max value: 19.001003513986866 - type: nauc_recall_at_10_std value: -27.753332786663876 - type: nauc_recall_at_1_diff1 value: 28.87454015638211 - type: nauc_recall_at_1_max value: 17.50681123879997 - type: nauc_recall_at_1_std value: -30.382831850562432 - type: nauc_recall_at_20_diff1 value: 17.237090858517405 - type: nauc_recall_at_20_max value: 18.42118474134871 - type: nauc_recall_at_20_std value: -24.862787724031957 - type: nauc_recall_at_3_diff1 value: 18.813019521758577 - type: nauc_recall_at_3_max value: 19.198572333053544 - type: nauc_recall_at_3_std value: -28.5644958605618 - type: nauc_recall_at_5_diff1 value: 20.247501986329482 - type: nauc_recall_at_5_max value: 21.121526202170358 - type: nauc_recall_at_5_std value: -27.220378617864853 - type: ndcg_at_1 value: 30.318 - type: ndcg_at_10 value: 34.042 - type: ndcg_at_100 value: 42.733 - type: ndcg_at_1000 value: 46.015 - type: ndcg_at_20 value: 37.053999999999995 - type: ndcg_at_3 value: 29.254 - type: ndcg_at_5 value: 30.514000000000003 - type: precision_at_1 value: 30.318 - type: precision_at_10 value: 10.981 - type: precision_at_100 value: 1.889 - type: precision_at_1000 value: 0.234 - type: precision_at_20 value: 6.643000000000001 - type: precision_at_3 value: 22.166 - type: precision_at_5 value: 17.477999999999998 - type: recall_at_1 value: 13.236 - type: recall_at_10 value: 41.461 - type: recall_at_100 value: 75.008 - type: recall_at_1000 value: 96.775 - type: recall_at_20 value: 50.754 - type: recall_at_3 value: 26.081 - type: recall_at_5 value: 33.168 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (eng-cmn) type: jinaai/xpqa config: eng-cmn split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 37.504 - type: map_at_1 value: 16.019 - type: map_at_10 value: 30.794 - type: map_at_100 value: 33.157 - type: map_at_1000 value: 33.324999999999996 - type: map_at_20 value: 32.161 - type: map_at_3 value: 25.372 - type: map_at_5 value: 28.246 - type: mrr_at_1 value: 30.461165048543688 - type: mrr_at_10 value: 39.393107566651224 - type: mrr_at_100 value: 40.570039540602295 - type: mrr_at_1000 value: 40.6306116407744 - type: mrr_at_20 value: 40.09428159978876 - type: mrr_at_3 value: 37.176375404530745 - type: mrr_at_5 value: 38.09870550161812 - type: nauc_map_at_1000_diff1 value: 30.82306881892873 - type: nauc_map_at_1000_max value: 5.877636000666466 - type: nauc_map_at_1000_std value: -30.7140513386797 - type: nauc_map_at_100_diff1 value: 30.85192449151961 - type: nauc_map_at_100_max value: 5.809195131550909 - type: nauc_map_at_100_std value: -30.838556702972063 - type: nauc_map_at_10_diff1 value: 30.50359163635058 - type: nauc_map_at_10_max value: 6.373491595869303 - type: nauc_map_at_10_std value: -29.89368007827676 - type: nauc_map_at_1_diff1 value: 38.60240510083884 - type: nauc_map_at_1_max value: 10.407392664609139 - type: nauc_map_at_1_std value: -17.76327278732833 - type: nauc_map_at_20_diff1 value: 30.897489125753598 - type: nauc_map_at_20_max value: 5.9303381898248 - type: nauc_map_at_20_std value: -30.863345188760515 - type: nauc_map_at_3_diff1 value: 32.8150951852729 - type: nauc_map_at_3_max value: 7.671931402215177 - type: nauc_map_at_3_std value: -25.654809758216533 - type: nauc_map_at_5_diff1 value: 31.19558194781019 - type: nauc_map_at_5_max value: 6.426885613116939 - type: nauc_map_at_5_std value: -28.609027858850016 - type: nauc_mrr_at_1000_diff1 value: 30.7596332048733 - type: nauc_mrr_at_1000_max value: 1.1970748115580212 - type: nauc_mrr_at_1000_std value: -34.647570668150216 - type: nauc_mrr_at_100_diff1 value: 30.74693370788581 - type: nauc_mrr_at_100_max value: 1.1673272262754841 - type: nauc_mrr_at_100_std value: -34.67761028542745 - type: nauc_mrr_at_10_diff1 value: 30.537820575183076 - type: nauc_mrr_at_10_max value: 1.0261868725502707 - type: nauc_mrr_at_10_std value: -34.999990560631204 - type: nauc_mrr_at_1_diff1 value: 35.51868580113285 - type: nauc_mrr_at_1_max value: 5.117103773147307 - type: nauc_mrr_at_1_std value: -30.633913466736956 - type: nauc_mrr_at_20_diff1 value: 30.67318175430903 - type: nauc_mrr_at_20_max value: 1.0979983974981327 - type: nauc_mrr_at_20_std value: -34.8388339739997 - type: nauc_mrr_at_3_diff1 value: 30.884642006045702 - type: nauc_mrr_at_3_max value: 1.7970996544095983 - type: nauc_mrr_at_3_std value: -34.290172894906085 - type: nauc_mrr_at_5_diff1 value: 30.89687518368571 - type: nauc_mrr_at_5_max value: 1.2123714988495347 - type: nauc_mrr_at_5_std value: -35.01704580471926 - type: nauc_ndcg_at_1000_diff1 value: 29.214476799077342 - type: nauc_ndcg_at_1000_max value: 3.6379035546112872 - type: nauc_ndcg_at_1000_std value: -32.35757522049194 - type: nauc_ndcg_at_100_diff1 value: 29.130004541376298 - type: nauc_ndcg_at_100_max value: 2.9580589185293045 - type: nauc_ndcg_at_100_std value: -33.26884643871724 - type: nauc_ndcg_at_10_diff1 value: 28.521001084366393 - type: nauc_ndcg_at_10_max value: 3.630223957267483 - type: nauc_ndcg_at_10_std value: -33.14524140940815 - type: nauc_ndcg_at_1_diff1 value: 35.51868580113285 - type: nauc_ndcg_at_1_max value: 5.117103773147307 - type: nauc_ndcg_at_1_std value: -30.633913466736956 - type: nauc_ndcg_at_20_diff1 value: 29.194462756848782 - type: nauc_ndcg_at_20_max value: 2.61162903136461 - type: nauc_ndcg_at_20_std value: -34.59161403211834 - type: nauc_ndcg_at_3_diff1 value: 30.183555327135203 - type: nauc_ndcg_at_3_max value: 5.61949040917093 - type: nauc_ndcg_at_3_std value: -30.350117794058175 - type: nauc_ndcg_at_5_diff1 value: 29.74420394139971 - type: nauc_ndcg_at_5_max value: 3.952183813937688 - type: nauc_ndcg_at_5_std value: -31.807833795302038 - type: nauc_precision_at_1000_diff1 value: -5.467049121617333 - type: nauc_precision_at_1000_max value: -3.993986884198271 - type: nauc_precision_at_1000_std value: -13.703967324212224 - type: nauc_precision_at_100_diff1 value: 1.5585428307943647 - type: nauc_precision_at_100_max value: -4.250455723613214 - type: nauc_precision_at_100_std value: -22.294689856776493 - type: nauc_precision_at_10_diff1 value: 11.076036917255259 - type: nauc_precision_at_10_max value: -1.5859394644365377 - type: nauc_precision_at_10_std value: -34.94912594413202 - type: nauc_precision_at_1_diff1 value: 35.51868580113285 - type: nauc_precision_at_1_max value: 5.117103773147307 - type: nauc_precision_at_1_std value: -30.633913466736956 - type: nauc_precision_at_20_diff1 value: 9.311484455773828 - type: nauc_precision_at_20_max value: -3.678383428592432 - type: nauc_precision_at_20_std value: -33.700002761401635 - type: nauc_precision_at_3_diff1 value: 19.2787260874381 - type: nauc_precision_at_3_max value: 0.18292109396940018 - type: nauc_precision_at_3_std value: -35.23939824276542 - type: nauc_precision_at_5_diff1 value: 14.97930592298584 - type: nauc_precision_at_5_max value: -1.63540635880963 - type: nauc_precision_at_5_std value: -35.908283558321315 - type: nauc_recall_at_1000_diff1 value: 26.63056473607804 - type: nauc_recall_at_1000_max value: 62.7304558520689 - type: nauc_recall_at_1000_std value: 58.12421701377561 - type: nauc_recall_at_100_diff1 value: 21.42127379898579 - type: nauc_recall_at_100_max value: 1.4748203516921914 - type: nauc_recall_at_100_std value: -27.56467339041136 - type: nauc_recall_at_10_diff1 value: 21.20479652609812 - type: nauc_recall_at_10_max value: 1.7394881489709888 - type: nauc_recall_at_10_std value: -32.15116902585072 - type: nauc_recall_at_1_diff1 value: 38.60240510083884 - type: nauc_recall_at_1_max value: 10.407392664609139 - type: nauc_recall_at_1_std value: -17.76327278732833 - type: nauc_recall_at_20_diff1 value: 23.049652721582632 - type: nauc_recall_at_20_max value: -1.7715787106286838 - type: nauc_recall_at_20_std value: -36.14203686002867 - type: nauc_recall_at_3_diff1 value: 26.522179829461873 - type: nauc_recall_at_3_max value: 6.078208732431124 - type: nauc_recall_at_3_std value: -25.02625711226274 - type: nauc_recall_at_5_diff1 value: 24.19538553561693 - type: nauc_recall_at_5_max value: 2.4963810785503524 - type: nauc_recall_at_5_std value: -30.449635496921257 - type: ndcg_at_1 value: 30.461 - type: ndcg_at_10 value: 37.504 - type: ndcg_at_100 value: 46.156000000000006 - type: ndcg_at_1000 value: 48.985 - type: ndcg_at_20 value: 41.025 - type: ndcg_at_3 value: 32.165 - type: ndcg_at_5 value: 33.072 - type: precision_at_1 value: 30.461 - type: precision_at_10 value: 11.032 - type: precision_at_100 value: 1.8870000000000002 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_20 value: 6.833 - type: precision_at_3 value: 22.532 - type: precision_at_5 value: 16.966 - type: recall_at_1 value: 16.019 - type: recall_at_10 value: 47.557 - type: recall_at_100 value: 80.376 - type: recall_at_1000 value: 98.904 - type: recall_at_20 value: 58.48100000000001 - type: recall_at_3 value: 30.682 - type: recall_at_5 value: 36.714999999999996 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (eng-spa) type: jinaai/xpqa config: eng-spa split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 53.359 - type: map_at_1 value: 22.892000000000003 - type: map_at_10 value: 45.773 - type: map_at_100 value: 47.778999999999996 - type: map_at_1000 value: 47.882999999999996 - type: map_at_20 value: 46.869 - type: map_at_3 value: 37.643 - type: map_at_5 value: 43.120999999999995 - type: mrr_at_1 value: 47.28877679697352 - type: mrr_at_10 value: 56.95890630316857 - type: mrr_at_100 value: 57.71103367009639 - type: mrr_at_1000 value: 57.73661441948852 - type: mrr_at_20 value: 57.37701091311334 - type: mrr_at_3 value: 54.74989491382929 - type: mrr_at_5 value: 56.08659100462372 - type: nauc_map_at_1000_diff1 value: 27.8347129954991 - type: nauc_map_at_1000_max value: 38.04300600762859 - type: nauc_map_at_1000_std value: -18.294653328262868 - type: nauc_map_at_100_diff1 value: 27.818449297770858 - type: nauc_map_at_100_max value: 38.03533462156633 - type: nauc_map_at_100_std value: -18.332989980880644 - type: nauc_map_at_10_diff1 value: 27.520664180018358 - type: nauc_map_at_10_max value: 37.67109855753314 - type: nauc_map_at_10_std value: -18.496721673888683 - type: nauc_map_at_1_diff1 value: 37.56020148060502 - type: nauc_map_at_1_max value: 10.298394230150745 - type: nauc_map_at_1_std value: -20.41359936101547 - type: nauc_map_at_20_diff1 value: 27.615023038189722 - type: nauc_map_at_20_max value: 37.808525116320254 - type: nauc_map_at_20_std value: -18.49235775420803 - type: nauc_map_at_3_diff1 value: 30.797347567428424 - type: nauc_map_at_3_max value: 29.374407828869497 - type: nauc_map_at_3_std value: -19.75905772914969 - type: nauc_map_at_5_diff1 value: 28.431802888884803 - type: nauc_map_at_5_max value: 35.57723911610521 - type: nauc_map_at_5_std value: -19.093588845366824 - type: nauc_mrr_at_1000_diff1 value: 33.263611009054586 - type: nauc_mrr_at_1000_max value: 40.620639901613664 - type: nauc_mrr_at_1000_std value: -17.083016011032036 - type: nauc_mrr_at_100_diff1 value: 33.25375012559163 - type: nauc_mrr_at_100_max value: 40.62376205172005 - type: nauc_mrr_at_100_std value: -17.091930575226684 - type: nauc_mrr_at_10_diff1 value: 33.05787202690095 - type: nauc_mrr_at_10_max value: 40.4516362611674 - type: nauc_mrr_at_10_std value: -17.088910666499892 - type: nauc_mrr_at_1_diff1 value: 36.424151087824555 - type: nauc_mrr_at_1_max value: 40.955715626650445 - type: nauc_mrr_at_1_std value: -16.56636409111209 - type: nauc_mrr_at_20_diff1 value: 33.12029456858138 - type: nauc_mrr_at_20_max value: 40.56409347292635 - type: nauc_mrr_at_20_std value: -17.102034817242068 - type: nauc_mrr_at_3_diff1 value: 33.52377926814156 - type: nauc_mrr_at_3_max value: 40.824911575046876 - type: nauc_mrr_at_3_std value: -16.855935748811092 - type: nauc_mrr_at_5_diff1 value: 33.08646471768442 - type: nauc_mrr_at_5_max value: 40.59323589955881 - type: nauc_mrr_at_5_std value: -16.77829710500156 - type: nauc_ndcg_at_1000_diff1 value: 28.741186244590207 - type: nauc_ndcg_at_1000_max value: 40.0113825410539 - type: nauc_ndcg_at_1000_std value: -17.15655081742458 - type: nauc_ndcg_at_100_diff1 value: 28.680521359782972 - type: nauc_ndcg_at_100_max value: 39.94751899984445 - type: nauc_ndcg_at_100_std value: -17.82813814043932 - type: nauc_ndcg_at_10_diff1 value: 27.22858072673168 - type: nauc_ndcg_at_10_max value: 38.600188968554725 - type: nauc_ndcg_at_10_std value: -18.517203924893614 - type: nauc_ndcg_at_1_diff1 value: 36.424151087824555 - type: nauc_ndcg_at_1_max value: 40.955715626650445 - type: nauc_ndcg_at_1_std value: -16.56636409111209 - type: nauc_ndcg_at_20_diff1 value: 27.56875900623774 - type: nauc_ndcg_at_20_max value: 38.95264310199067 - type: nauc_ndcg_at_20_std value: -18.709973965688445 - type: nauc_ndcg_at_3_diff1 value: 28.682842749851574 - type: nauc_ndcg_at_3_max value: 38.361215408395964 - type: nauc_ndcg_at_3_std value: -16.800291231827515 - type: nauc_ndcg_at_5_diff1 value: 28.178239259093484 - type: nauc_ndcg_at_5_max value: 36.77096292606479 - type: nauc_ndcg_at_5_std value: -18.718861696641145 - type: nauc_precision_at_1000_diff1 value: -7.3686253252869305 - type: nauc_precision_at_1000_max value: 31.98896996987639 - type: nauc_precision_at_1000_std value: 13.125659676392267 - type: nauc_precision_at_100_diff1 value: -2.8239113056969156 - type: nauc_precision_at_100_max value: 36.95062472971812 - type: nauc_precision_at_100_std value: 7.230228733647562 - type: nauc_precision_at_10_diff1 value: 2.5515545798843555 - type: nauc_precision_at_10_max value: 45.46146019314904 - type: nauc_precision_at_10_std value: -1.3249340536211553 - type: nauc_precision_at_1_diff1 value: 36.424151087824555 - type: nauc_precision_at_1_max value: 40.955715626650445 - type: nauc_precision_at_1_std value: -16.56636409111209 - type: nauc_precision_at_20_diff1 value: 0.7202861770489576 - type: nauc_precision_at_20_max value: 41.9937596214609 - type: nauc_precision_at_20_std value: 0.2756400069730064 - type: nauc_precision_at_3_diff1 value: 12.89221206929447 - type: nauc_precision_at_3_max value: 48.57775126381142 - type: nauc_precision_at_3_std value: -8.042242254131068 - type: nauc_precision_at_5_diff1 value: 7.063616193387763 - type: nauc_precision_at_5_max value: 47.26496887331675 - type: nauc_precision_at_5_std value: -4.735805200913049 - type: nauc_recall_at_1000_diff1 value: 2.6650052980682224 - type: nauc_recall_at_1000_max value: 81.94826279951472 - type: nauc_recall_at_1000_std value: 48.46012388224573 - type: nauc_recall_at_100_diff1 value: 24.516371948375827 - type: nauc_recall_at_100_max value: 39.17639620389552 - type: nauc_recall_at_100_std value: -17.884197602579533 - type: nauc_recall_at_10_diff1 value: 19.93892097640112 - type: nauc_recall_at_10_max value: 33.079079440022106 - type: nauc_recall_at_10_std value: -20.22227622801884 - type: nauc_recall_at_1_diff1 value: 37.56020148060502 - type: nauc_recall_at_1_max value: 10.298394230150745 - type: nauc_recall_at_1_std value: -20.41359936101547 - type: nauc_recall_at_20_diff1 value: 20.363784035670633 - type: nauc_recall_at_20_max value: 33.39352971625336 - type: nauc_recall_at_20_std value: -21.712050932168875 - type: nauc_recall_at_3_diff1 value: 26.220072121604655 - type: nauc_recall_at_3_max value: 25.853218030218507 - type: nauc_recall_at_3_std value: -17.830613372910907 - type: nauc_recall_at_5_diff1 value: 22.25850162680252 - type: nauc_recall_at_5_max value: 30.89620539042785 - type: nauc_recall_at_5_std value: -19.16786434439169 - type: ndcg_at_1 value: 47.288999999999994 - type: ndcg_at_10 value: 53.359 - type: ndcg_at_100 value: 60.25899999999999 - type: ndcg_at_1000 value: 61.902 - type: ndcg_at_20 value: 56.025000000000006 - type: ndcg_at_3 value: 47.221999999999994 - type: ndcg_at_5 value: 49.333 - type: precision_at_1 value: 47.288999999999994 - type: precision_at_10 value: 16.003 - type: precision_at_100 value: 2.221 - type: precision_at_1000 value: 0.246 - type: precision_at_20 value: 8.985 - type: precision_at_3 value: 34.510000000000005 - type: precision_at_5 value: 26.961000000000002 - type: recall_at_1 value: 22.892000000000003 - type: recall_at_10 value: 62.928 - type: recall_at_100 value: 89.105 - type: recall_at_1000 value: 99.319 - type: recall_at_20 value: 71.387 - type: recall_at_3 value: 43.492999999999995 - type: recall_at_5 value: 53.529 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (eng-fra) type: jinaai/xpqa config: eng-fra split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 54.888000000000005 - type: map_at_1 value: 26.079 - type: map_at_10 value: 47.434 - type: map_at_100 value: 49.376 - type: map_at_1000 value: 49.461 - type: map_at_20 value: 48.634 - type: map_at_3 value: 40.409 - type: map_at_5 value: 44.531 - type: mrr_at_1 value: 46.86248331108144 - type: mrr_at_10 value: 56.45506177548896 - type: mrr_at_100 value: 57.20360629445577 - type: mrr_at_1000 value: 57.227004696897986 - type: mrr_at_20 value: 56.905302765737865 - type: mrr_at_3 value: 54.09434801958164 - type: mrr_at_5 value: 55.40943480195811 - type: nauc_map_at_1000_diff1 value: 37.739936045535885 - type: nauc_map_at_1000_max value: 35.92625003516368 - type: nauc_map_at_1000_std value: -15.825119611638398 - type: nauc_map_at_100_diff1 value: 37.71697833661983 - type: nauc_map_at_100_max value: 35.91174068136317 - type: nauc_map_at_100_std value: -15.838841891589006 - type: nauc_map_at_10_diff1 value: 37.52309268219689 - type: nauc_map_at_10_max value: 35.4887130483351 - type: nauc_map_at_10_std value: -16.61132378136234 - type: nauc_map_at_1_diff1 value: 42.705087329207984 - type: nauc_map_at_1_max value: 12.047671550242974 - type: nauc_map_at_1_std value: -17.156030827065834 - type: nauc_map_at_20_diff1 value: 37.59446680137666 - type: nauc_map_at_20_max value: 35.80559546695052 - type: nauc_map_at_20_std value: -16.158338316249786 - type: nauc_map_at_3_diff1 value: 38.618415267131816 - type: nauc_map_at_3_max value: 27.030227996183925 - type: nauc_map_at_3_std value: -18.962500694157857 - type: nauc_map_at_5_diff1 value: 37.980845601534256 - type: nauc_map_at_5_max value: 32.82374761283266 - type: nauc_map_at_5_std value: -17.856875825229565 - type: nauc_mrr_at_1000_diff1 value: 40.26059509279346 - type: nauc_mrr_at_1000_max value: 39.28453752990871 - type: nauc_mrr_at_1000_std value: -13.306217279524212 - type: nauc_mrr_at_100_diff1 value: 40.23390833398881 - type: nauc_mrr_at_100_max value: 39.26041461025653 - type: nauc_mrr_at_100_std value: -13.317700798873153 - type: nauc_mrr_at_10_diff1 value: 40.163737640180145 - type: nauc_mrr_at_10_max value: 39.27138538165913 - type: nauc_mrr_at_10_std value: -13.472971360323038 - type: nauc_mrr_at_1_diff1 value: 42.95339241383707 - type: nauc_mrr_at_1_max value: 40.62982307619158 - type: nauc_mrr_at_1_std value: -10.429597045942748 - type: nauc_mrr_at_20_diff1 value: 40.23703505923782 - type: nauc_mrr_at_20_max value: 39.27051308063652 - type: nauc_mrr_at_20_std value: -13.390197643922038 - type: nauc_mrr_at_3_diff1 value: 40.5721313555661 - type: nauc_mrr_at_3_max value: 39.254774354468594 - type: nauc_mrr_at_3_std value: -13.773803807863827 - type: nauc_mrr_at_5_diff1 value: 40.41081287079734 - type: nauc_mrr_at_5_max value: 39.515241132077335 - type: nauc_mrr_at_5_std value: -13.306544090087336 - type: nauc_ndcg_at_1000_diff1 value: 38.04772268296103 - type: nauc_ndcg_at_1000_max value: 38.03364565521176 - type: nauc_ndcg_at_1000_std value: -14.203182726102263 - type: nauc_ndcg_at_100_diff1 value: 37.51752795463643 - type: nauc_ndcg_at_100_max value: 37.809671511710604 - type: nauc_ndcg_at_100_std value: -13.880578225081408 - type: nauc_ndcg_at_10_diff1 value: 36.78438984005559 - type: nauc_ndcg_at_10_max value: 36.98105155993232 - type: nauc_ndcg_at_10_std value: -16.886308645939113 - type: nauc_ndcg_at_1_diff1 value: 42.95339241383707 - type: nauc_ndcg_at_1_max value: 40.62982307619158 - type: nauc_ndcg_at_1_std value: -10.429597045942748 - type: nauc_ndcg_at_20_diff1 value: 36.94164323893683 - type: nauc_ndcg_at_20_max value: 37.333583379288285 - type: nauc_ndcg_at_20_std value: -15.853318071434716 - type: nauc_ndcg_at_3_diff1 value: 36.905604845477384 - type: nauc_ndcg_at_3_max value: 35.10252586688781 - type: nauc_ndcg_at_3_std value: -17.128435988977742 - type: nauc_ndcg_at_5_diff1 value: 37.96742463612705 - type: nauc_ndcg_at_5_max value: 34.65945109443365 - type: nauc_ndcg_at_5_std value: -17.916428667861183 - type: nauc_precision_at_1000_diff1 value: -3.740861894117653 - type: nauc_precision_at_1000_max value: 31.993854396874177 - type: nauc_precision_at_1000_std value: 17.445629474196448 - type: nauc_precision_at_100_diff1 value: -0.4825948747911606 - type: nauc_precision_at_100_max value: 35.834638448782954 - type: nauc_precision_at_100_std value: 16.82718796079511 - type: nauc_precision_at_10_diff1 value: 8.285949866268147 - type: nauc_precision_at_10_max value: 45.3292519726866 - type: nauc_precision_at_10_std value: 4.5574850748441555 - type: nauc_precision_at_1_diff1 value: 42.95339241383707 - type: nauc_precision_at_1_max value: 40.62982307619158 - type: nauc_precision_at_1_std value: -10.429597045942748 - type: nauc_precision_at_20_diff1 value: 4.890590733611442 - type: nauc_precision_at_20_max value: 41.83051757078859 - type: nauc_precision_at_20_std value: 9.197347125630467 - type: nauc_precision_at_3_diff1 value: 17.79940075411976 - type: nauc_precision_at_3_max value: 45.224103632426946 - type: nauc_precision_at_3_std value: -5.017203435609909 - type: nauc_precision_at_5_diff1 value: 13.548063145911929 - type: nauc_precision_at_5_max value: 46.84837547409909 - type: nauc_precision_at_5_std value: -0.8925939386354484 - type: nauc_recall_at_1000_diff1 value: 74.48441717138078 - type: nauc_recall_at_1000_max value: 74.66717137705027 - type: nauc_recall_at_1000_std value: 0.24030117471512125 - type: nauc_recall_at_100_diff1 value: 22.553777341988656 - type: nauc_recall_at_100_max value: 31.67861029246527 - type: nauc_recall_at_100_std value: 0.2707450517253687 - type: nauc_recall_at_10_diff1 value: 28.490866614443235 - type: nauc_recall_at_10_max value: 31.722970141434352 - type: nauc_recall_at_10_std value: -21.97893365028007 - type: nauc_recall_at_1_diff1 value: 42.705087329207984 - type: nauc_recall_at_1_max value: 12.047671550242974 - type: nauc_recall_at_1_std value: -17.156030827065834 - type: nauc_recall_at_20_diff1 value: 27.44043454173112 - type: nauc_recall_at_20_max value: 31.454281772040716 - type: nauc_recall_at_20_std value: -20.1735695305415 - type: nauc_recall_at_3_diff1 value: 34.08447534706394 - type: nauc_recall_at_3_max value: 21.793973773840865 - type: nauc_recall_at_3_std value: -22.753978372378906 - type: nauc_recall_at_5_diff1 value: 33.59686526199479 - type: nauc_recall_at_5_max value: 29.188889073761302 - type: nauc_recall_at_5_std value: -21.96156333744562 - type: ndcg_at_1 value: 46.861999999999995 - type: ndcg_at_10 value: 54.888000000000005 - type: ndcg_at_100 value: 61.477000000000004 - type: ndcg_at_1000 value: 62.768 - type: ndcg_at_20 value: 57.812 - type: ndcg_at_3 value: 48.721 - type: ndcg_at_5 value: 50.282000000000004 - type: precision_at_1 value: 46.861999999999995 - type: precision_at_10 value: 15.167 - type: precision_at_100 value: 2.072 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_20 value: 8.672 - type: precision_at_3 value: 33.066 - type: precision_at_5 value: 24.726 - type: recall_at_1 value: 26.079 - type: recall_at_10 value: 66.095 - type: recall_at_100 value: 91.65299999999999 - type: recall_at_1000 value: 99.83999999999999 - type: recall_at_20 value: 75.28 - type: recall_at_3 value: 46.874 - type: recall_at_5 value: 55.062 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (pol-eng) type: jinaai/xpqa config: pol-eng split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 50.831 - type: map_at_1 value: 25.549 - type: map_at_10 value: 44.432 - type: map_at_100 value: 46.431 - type: map_at_1000 value: 46.525 - type: map_at_20 value: 45.595 - type: map_at_3 value: 38.574000000000005 - type: map_at_5 value: 42.266999999999996 - type: mrr_at_1 value: 43.5006435006435 - type: mrr_at_10 value: 51.561255132683684 - type: mrr_at_100 value: 52.59912482635216 - type: mrr_at_1000 value: 52.631337587043056 - type: mrr_at_20 value: 52.23234440063273 - type: mrr_at_3 value: 48.97039897039895 - type: mrr_at_5 value: 50.31531531531527 - type: nauc_map_at_1000_diff1 value: 35.907901295900174 - type: nauc_map_at_1000_max value: 24.573763602041687 - type: nauc_map_at_1000_std value: -29.524077960309313 - type: nauc_map_at_100_diff1 value: 35.86869121827827 - type: nauc_map_at_100_max value: 24.532343818487494 - type: nauc_map_at_100_std value: -29.613979124488864 - type: nauc_map_at_10_diff1 value: 35.90171794022391 - type: nauc_map_at_10_max value: 23.90914892943268 - type: nauc_map_at_10_std value: -30.43698820061533 - type: nauc_map_at_1_diff1 value: 50.80313333312038 - type: nauc_map_at_1_max value: 16.649890421888156 - type: nauc_map_at_1_std value: -22.323989416471683 - type: nauc_map_at_20_diff1 value: 35.77755470212964 - type: nauc_map_at_20_max value: 24.199895270297034 - type: nauc_map_at_20_std value: -30.223411960170647 - type: nauc_map_at_3_diff1 value: 38.964124882315936 - type: nauc_map_at_3_max value: 21.187432510177167 - type: nauc_map_at_3_std value: -28.976663506389887 - type: nauc_map_at_5_diff1 value: 36.04644236616672 - type: nauc_map_at_5_max value: 23.501186429317094 - type: nauc_map_at_5_std value: -30.068144596060748 - type: nauc_mrr_at_1000_diff1 value: 41.36555452105447 - type: nauc_mrr_at_1000_max value: 26.376799280402867 - type: nauc_mrr_at_1000_std value: -30.008603028757424 - type: nauc_mrr_at_100_diff1 value: 41.35523965220727 - type: nauc_mrr_at_100_max value: 26.402612115967706 - type: nauc_mrr_at_100_std value: -29.991754627128024 - type: nauc_mrr_at_10_diff1 value: 41.001395127259315 - type: nauc_mrr_at_10_max value: 26.104860505051384 - type: nauc_mrr_at_10_std value: -30.38420449487516 - type: nauc_mrr_at_1_diff1 value: 44.882846373248206 - type: nauc_mrr_at_1_max value: 26.61905322890808 - type: nauc_mrr_at_1_std value: -28.724565662206153 - type: nauc_mrr_at_20_diff1 value: 41.278009142648834 - type: nauc_mrr_at_20_max value: 26.284565529087295 - type: nauc_mrr_at_20_std value: -30.19549140549242 - type: nauc_mrr_at_3_diff1 value: 41.74663893951077 - type: nauc_mrr_at_3_max value: 26.263048464325884 - type: nauc_mrr_at_3_std value: -30.676733442965688 - type: nauc_mrr_at_5_diff1 value: 41.11461477846568 - type: nauc_mrr_at_5_max value: 25.94713927964926 - type: nauc_mrr_at_5_std value: -30.317066480767817 - type: nauc_ndcg_at_1000_diff1 value: 36.34161052445199 - type: nauc_ndcg_at_1000_max value: 26.321036033696206 - type: nauc_ndcg_at_1000_std value: -27.59146917115399 - type: nauc_ndcg_at_100_diff1 value: 35.66557800007035 - type: nauc_ndcg_at_100_max value: 26.282211208336136 - type: nauc_ndcg_at_100_std value: -27.905634124461333 - type: nauc_ndcg_at_10_diff1 value: 35.34872687407275 - type: nauc_ndcg_at_10_max value: 24.018561915792272 - type: nauc_ndcg_at_10_std value: -31.57712772869015 - type: nauc_ndcg_at_1_diff1 value: 44.882846373248206 - type: nauc_ndcg_at_1_max value: 26.865602442152554 - type: nauc_ndcg_at_1_std value: -28.509295454329152 - type: nauc_ndcg_at_20_diff1 value: 35.46177768045546 - type: nauc_ndcg_at_20_max value: 24.921273675141542 - type: nauc_ndcg_at_20_std value: -30.84348812979793 - type: nauc_ndcg_at_3_diff1 value: 36.84688489063923 - type: nauc_ndcg_at_3_max value: 24.088513229463736 - type: nauc_ndcg_at_3_std value: -30.05640995379297 - type: nauc_ndcg_at_5_diff1 value: 35.623143276796185 - type: nauc_ndcg_at_5_max value: 23.76654250474061 - type: nauc_ndcg_at_5_std value: -30.87847710074466 - type: nauc_precision_at_1000_diff1 value: -16.270532533886932 - type: nauc_precision_at_1000_max value: 17.37365042394671 - type: nauc_precision_at_1000_std value: 16.27166715693082 - type: nauc_precision_at_100_diff1 value: -13.175264889436313 - type: nauc_precision_at_100_max value: 19.488571046893963 - type: nauc_precision_at_100_std value: 9.055429698007798 - type: nauc_precision_at_10_diff1 value: 0.6806938753592942 - type: nauc_precision_at_10_max value: 21.933083960522616 - type: nauc_precision_at_10_std value: -18.2147036942157 - type: nauc_precision_at_1_diff1 value: 44.882846373248206 - type: nauc_precision_at_1_max value: 26.865602442152554 - type: nauc_precision_at_1_std value: -28.509295454329152 - type: nauc_precision_at_20_diff1 value: -4.318119150162302 - type: nauc_precision_at_20_max value: 21.089702301041687 - type: nauc_precision_at_20_std value: -10.333077681479546 - type: nauc_precision_at_3_diff1 value: 11.496076462671107 - type: nauc_precision_at_3_max value: 23.018301549827008 - type: nauc_precision_at_3_std value: -23.98652995416454 - type: nauc_precision_at_5_diff1 value: 4.271050668117355 - type: nauc_precision_at_5_max value: 23.61051327966779 - type: nauc_precision_at_5_std value: -21.557618503107847 - type: nauc_recall_at_1000_diff1 value: 62.23955911850697 - type: nauc_recall_at_1000_max value: 83.20491723365542 - type: nauc_recall_at_1000_std value: 66.5173462601958 - type: nauc_recall_at_100_diff1 value: 20.503778602988177 - type: nauc_recall_at_100_max value: 29.379026288767506 - type: nauc_recall_at_100_std value: -16.139120874540573 - type: nauc_recall_at_10_diff1 value: 27.659110249896557 - type: nauc_recall_at_10_max value: 19.69557968026332 - type: nauc_recall_at_10_std value: -33.95657132767551 - type: nauc_recall_at_1_diff1 value: 50.80313333312038 - type: nauc_recall_at_1_max value: 16.649890421888156 - type: nauc_recall_at_1_std value: -22.323989416471683 - type: nauc_recall_at_20_diff1 value: 27.084453724565176 - type: nauc_recall_at_20_max value: 21.40080632474994 - type: nauc_recall_at_20_std value: -32.83683639340239 - type: nauc_recall_at_3_diff1 value: 34.32950941333572 - type: nauc_recall_at_3_max value: 18.55616615958199 - type: nauc_recall_at_3_std value: -30.375983327454076 - type: nauc_recall_at_5_diff1 value: 29.44516734974564 - type: nauc_recall_at_5_max value: 20.630543534300312 - type: nauc_recall_at_5_std value: -31.30763062499127 - type: ndcg_at_1 value: 43.501 - type: ndcg_at_10 value: 50.831 - type: ndcg_at_100 value: 58.17099999999999 - type: ndcg_at_1000 value: 59.705 - type: ndcg_at_20 value: 54.047999999999995 - type: ndcg_at_3 value: 44.549 - type: ndcg_at_5 value: 46.861000000000004 - type: precision_at_1 value: 43.501 - type: precision_at_10 value: 12.895999999999999 - type: precision_at_100 value: 1.9 - type: precision_at_1000 value: 0.21 - type: precision_at_20 value: 7.593 - type: precision_at_3 value: 29.215000000000003 - type: precision_at_5 value: 21.57 - type: recall_at_1 value: 25.549 - type: recall_at_10 value: 61.795 - type: recall_at_100 value: 90.019 - type: recall_at_1000 value: 99.807 - type: recall_at_20 value: 72.096 - type: recall_at_3 value: 43.836999999999996 - type: recall_at_5 value: 51.714000000000006 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (pol-pol) type: jinaai/xpqa config: pol-pol split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 53.70399999999999 - type: map_at_1 value: 27.739000000000004 - type: map_at_10 value: 47.469 - type: map_at_100 value: 49.392 - type: map_at_1000 value: 49.483 - type: map_at_20 value: 48.646 - type: map_at_3 value: 41.467 - type: map_at_5 value: 45.467 - type: mrr_at_1 value: 47.00636942675159 - type: mrr_at_10 value: 54.63699322616519 - type: mrr_at_100 value: 55.54525182833755 - type: mrr_at_1000 value: 55.581331515356155 - type: mrr_at_20 value: 55.22918377451415 - type: mrr_at_3 value: 52.03821656050952 - type: mrr_at_5 value: 53.38216560509549 - type: nauc_map_at_1000_diff1 value: 45.03530825034854 - type: nauc_map_at_1000_max value: 34.22740272603397 - type: nauc_map_at_1000_std value: -30.428880484199244 - type: nauc_map_at_100_diff1 value: 44.978704455592805 - type: nauc_map_at_100_max value: 34.20908357964765 - type: nauc_map_at_100_std value: -30.47325365059666 - type: nauc_map_at_10_diff1 value: 44.9560579177672 - type: nauc_map_at_10_max value: 33.70097588985278 - type: nauc_map_at_10_std value: -31.205563222357885 - type: nauc_map_at_1_diff1 value: 57.94711780881773 - type: nauc_map_at_1_max value: 21.60278071836319 - type: nauc_map_at_1_std value: -23.273741268035923 - type: nauc_map_at_20_diff1 value: 44.97859054699532 - type: nauc_map_at_20_max value: 34.153729150181846 - type: nauc_map_at_20_std value: -30.97482545902907 - type: nauc_map_at_3_diff1 value: 47.52016138686765 - type: nauc_map_at_3_max value: 30.176197065298417 - type: nauc_map_at_3_std value: -29.90628984041898 - type: nauc_map_at_5_diff1 value: 45.36581638257985 - type: nauc_map_at_5_max value: 33.697200263698036 - type: nauc_map_at_5_std value: -31.165331120088453 - type: nauc_mrr_at_1000_diff1 value: 53.32889526818364 - type: nauc_mrr_at_1000_max value: 36.104118340589736 - type: nauc_mrr_at_1000_std value: -31.321132494516984 - type: nauc_mrr_at_100_diff1 value: 53.30695875258367 - type: nauc_mrr_at_100_max value: 36.114890079024455 - type: nauc_mrr_at_100_std value: -31.291749322117447 - type: nauc_mrr_at_10_diff1 value: 53.189084772141435 - type: nauc_mrr_at_10_max value: 35.939061062282484 - type: nauc_mrr_at_10_std value: -31.502185884653645 - type: nauc_mrr_at_1_diff1 value: 56.89368291041337 - type: nauc_mrr_at_1_max value: 36.07581125496313 - type: nauc_mrr_at_1_std value: -29.703764232519475 - type: nauc_mrr_at_20_diff1 value: 53.23955737199497 - type: nauc_mrr_at_20_max value: 36.068824838215676 - type: nauc_mrr_at_20_std value: -31.420039428197594 - type: nauc_mrr_at_3_diff1 value: 53.74385074861207 - type: nauc_mrr_at_3_max value: 35.57054587735015 - type: nauc_mrr_at_3_std value: -32.356894834537684 - type: nauc_mrr_at_5_diff1 value: 53.66669556981826 - type: nauc_mrr_at_5_max value: 36.02102289605049 - type: nauc_mrr_at_5_std value: -32.030437067359124 - type: nauc_ndcg_at_1000_diff1 value: 46.34900536768847 - type: nauc_ndcg_at_1000_max value: 35.6314995837715 - type: nauc_ndcg_at_1000_std value: -28.965103958822624 - type: nauc_ndcg_at_100_diff1 value: 45.1587893788861 - type: nauc_ndcg_at_100_max value: 35.62430753595297 - type: nauc_ndcg_at_100_std value: -28.77303405812772 - type: nauc_ndcg_at_10_diff1 value: 44.928781590765965 - type: nauc_ndcg_at_10_max value: 34.315200006430366 - type: nauc_ndcg_at_10_std value: -32.05164097076614 - type: nauc_ndcg_at_1_diff1 value: 57.228262350455125 - type: nauc_ndcg_at_1_max value: 35.645285703387366 - type: nauc_ndcg_at_1_std value: -29.893553821348718 - type: nauc_ndcg_at_20_diff1 value: 44.959903633039865 - type: nauc_ndcg_at_20_max value: 35.493022926282755 - type: nauc_ndcg_at_20_std value: -31.54989291850644 - type: nauc_ndcg_at_3_diff1 value: 46.65266185996905 - type: nauc_ndcg_at_3_max value: 33.74458119579594 - type: nauc_ndcg_at_3_std value: -31.493683304534176 - type: nauc_ndcg_at_5_diff1 value: 46.08707037187612 - type: nauc_ndcg_at_5_max value: 34.7401426055243 - type: nauc_ndcg_at_5_std value: -32.44390676345172 - type: nauc_precision_at_1000_diff1 value: -12.11355300492561 - type: nauc_precision_at_1000_max value: 14.490738062121233 - type: nauc_precision_at_1000_std value: 14.448811005059097 - type: nauc_precision_at_100_diff1 value: -9.742085657181239 - type: nauc_precision_at_100_max value: 18.030305489251223 - type: nauc_precision_at_100_std value: 8.213089709529765 - type: nauc_precision_at_10_diff1 value: 5.153466672774969 - type: nauc_precision_at_10_max value: 27.29412644661678 - type: nauc_precision_at_10_std value: -15.505053884112355 - type: nauc_precision_at_1_diff1 value: 57.228262350455125 - type: nauc_precision_at_1_max value: 35.645285703387366 - type: nauc_precision_at_1_std value: -29.893553821348718 - type: nauc_precision_at_20_diff1 value: -0.6812430761066635 - type: nauc_precision_at_20_max value: 25.81911286466295 - type: nauc_precision_at_20_std value: -8.388506222482595 - type: nauc_precision_at_3_diff1 value: 18.263873866510576 - type: nauc_precision_at_3_max value: 30.879576105862345 - type: nauc_precision_at_3_std value: -24.0342929870108 - type: nauc_precision_at_5_diff1 value: 10.9905804265327 - type: nauc_precision_at_5_max value: 30.88468087429045 - type: nauc_precision_at_5_std value: -20.458684056213507 - type: nauc_recall_at_1000_diff1 value: -64.887668417171 - type: nauc_recall_at_1000_max value: 52.25501730358092 - type: nauc_recall_at_1000_std value: 85.13647916200132 - type: nauc_recall_at_100_diff1 value: 18.956777346127655 - type: nauc_recall_at_100_max value: 36.10473493564588 - type: nauc_recall_at_100_std value: -10.007474558899949 - type: nauc_recall_at_10_diff1 value: 33.810344497568046 - type: nauc_recall_at_10_max value: 31.395430183214245 - type: nauc_recall_at_10_std value: -33.12920524433795 - type: nauc_recall_at_1_diff1 value: 57.94711780881773 - type: nauc_recall_at_1_max value: 21.60278071836319 - type: nauc_recall_at_1_std value: -23.273741268035923 - type: nauc_recall_at_20_diff1 value: 31.449657437065397 - type: nauc_recall_at_20_max value: 34.519574934321945 - type: nauc_recall_at_20_std value: -33.43406862055647 - type: nauc_recall_at_3_diff1 value: 42.07841848382365 - type: nauc_recall_at_3_max value: 28.7648772833266 - type: nauc_recall_at_3_std value: -31.56367736320086 - type: nauc_recall_at_5_diff1 value: 39.21392858246301 - type: nauc_recall_at_5_max value: 34.28338202081927 - type: nauc_recall_at_5_std value: -33.725680523721906 - type: ndcg_at_1 value: 46.879 - type: ndcg_at_10 value: 53.70399999999999 - type: ndcg_at_100 value: 60.532 - type: ndcg_at_1000 value: 61.997 - type: ndcg_at_20 value: 56.818999999999996 - type: ndcg_at_3 value: 47.441 - type: ndcg_at_5 value: 49.936 - type: precision_at_1 value: 46.879 - type: precision_at_10 value: 13.376 - type: precision_at_100 value: 1.8980000000000001 - type: precision_at_1000 value: 0.208 - type: precision_at_20 value: 7.771 - type: precision_at_3 value: 30.658 - type: precision_at_5 value: 22.828 - type: recall_at_1 value: 27.739000000000004 - type: recall_at_10 value: 64.197 - type: recall_at_100 value: 90.54100000000001 - type: recall_at_1000 value: 99.90400000000001 - type: recall_at_20 value: 74.178 - type: recall_at_3 value: 46.312 - type: recall_at_5 value: 54.581999999999994 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (cmn-eng) type: jinaai/xpqa config: cmn-eng split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 64.64 - type: map_at_1 value: 35.858000000000004 - type: map_at_10 value: 58.547000000000004 - type: map_at_100 value: 60.108 - type: map_at_1000 value: 60.153999999999996 - type: map_at_20 value: 59.528000000000006 - type: map_at_3 value: 51.578 - type: map_at_5 value: 56.206999999999994 - type: mrr_at_1 value: 56.95121951219512 - type: mrr_at_10 value: 64.93975029036001 - type: mrr_at_100 value: 65.63357055718294 - type: mrr_at_1000 value: 65.64844109026834 - type: mrr_at_20 value: 65.41280668715439 - type: mrr_at_3 value: 62.68292682926826 - type: mrr_at_5 value: 64.1585365853658 - type: nauc_map_at_1000_diff1 value: 45.82740870907091 - type: nauc_map_at_1000_max value: 21.9696540066807 - type: nauc_map_at_1000_std value: -32.028262356639495 - type: nauc_map_at_100_diff1 value: 45.802053117616396 - type: nauc_map_at_100_max value: 21.946002070290966 - type: nauc_map_at_100_std value: -32.06190418866229 - type: nauc_map_at_10_diff1 value: 46.017774155748945 - type: nauc_map_at_10_max value: 21.876909086095544 - type: nauc_map_at_10_std value: -32.13913568843985 - type: nauc_map_at_1_diff1 value: 56.34671160956164 - type: nauc_map_at_1_max value: 17.6796949796236 - type: nauc_map_at_1_std value: -13.741140688066045 - type: nauc_map_at_20_diff1 value: 46.027469176858716 - type: nauc_map_at_20_max value: 21.80738432042703 - type: nauc_map_at_20_std value: -32.430379634015395 - type: nauc_map_at_3_diff1 value: 48.40096725254027 - type: nauc_map_at_3_max value: 21.15442803574233 - type: nauc_map_at_3_std value: -26.205850292181417 - type: nauc_map_at_5_diff1 value: 45.77800041356389 - type: nauc_map_at_5_max value: 22.11718771798752 - type: nauc_map_at_5_std value: -30.32876338031471 - type: nauc_mrr_at_1000_diff1 value: 49.748274798877944 - type: nauc_mrr_at_1000_max value: 24.547774167219906 - type: nauc_mrr_at_1000_std value: -32.728447209433504 - type: nauc_mrr_at_100_diff1 value: 49.734549290377856 - type: nauc_mrr_at_100_max value: 24.536933315055222 - type: nauc_mrr_at_100_std value: -32.74076335880697 - type: nauc_mrr_at_10_diff1 value: 49.82827711456392 - type: nauc_mrr_at_10_max value: 24.536773657485075 - type: nauc_mrr_at_10_std value: -33.05707547166962 - type: nauc_mrr_at_1_diff1 value: 51.954289992321044 - type: nauc_mrr_at_1_max value: 26.336255074856886 - type: nauc_mrr_at_1_std value: -29.042962019692446 - type: nauc_mrr_at_20_diff1 value: 49.70938465628863 - type: nauc_mrr_at_20_max value: 24.433219849576947 - type: nauc_mrr_at_20_std value: -32.94123791846049 - type: nauc_mrr_at_3_diff1 value: 50.289486880347134 - type: nauc_mrr_at_3_max value: 24.978796972860142 - type: nauc_mrr_at_3_std value: -32.11305594784892 - type: nauc_mrr_at_5_diff1 value: 49.95013396316144 - type: nauc_mrr_at_5_max value: 24.514452761198303 - type: nauc_mrr_at_5_std value: -32.865859962984146 - type: nauc_ndcg_at_1000_diff1 value: 45.73806489233998 - type: nauc_ndcg_at_1000_max value: 22.404941391043867 - type: nauc_ndcg_at_1000_std value: -33.063445720849685 - type: nauc_ndcg_at_100_diff1 value: 45.1046206923062 - type: nauc_ndcg_at_100_max value: 22.081133719684658 - type: nauc_ndcg_at_100_std value: -33.299291459450146 - type: nauc_ndcg_at_10_diff1 value: 46.140608688357496 - type: nauc_ndcg_at_10_max value: 21.442489279388916 - type: nauc_ndcg_at_10_std value: -35.115870342856006 - type: nauc_ndcg_at_1_diff1 value: 51.954289992321044 - type: nauc_ndcg_at_1_max value: 26.336255074856886 - type: nauc_ndcg_at_1_std value: -29.042962019692446 - type: nauc_ndcg_at_20_diff1 value: 45.966784725457046 - type: nauc_ndcg_at_20_max value: 21.166632858613145 - type: nauc_ndcg_at_20_std value: -35.65112890375392 - type: nauc_ndcg_at_3_diff1 value: 46.7404863978999 - type: nauc_ndcg_at_3_max value: 22.701743709129456 - type: nauc_ndcg_at_3_std value: -30.907633466983192 - type: nauc_ndcg_at_5_diff1 value: 45.86487199083486 - type: nauc_ndcg_at_5_max value: 22.088804840002513 - type: nauc_ndcg_at_5_std value: -32.3853481632832 - type: nauc_precision_at_1000_diff1 value: -25.69710612774455 - type: nauc_precision_at_1000_max value: 1.3964400247388091 - type: nauc_precision_at_1000_std value: -8.873947511634814 - type: nauc_precision_at_100_diff1 value: -24.013497191077978 - type: nauc_precision_at_100_max value: 2.0197725715909343 - type: nauc_precision_at_100_std value: -11.387423148770633 - type: nauc_precision_at_10_diff1 value: -6.47728645242781 - type: nauc_precision_at_10_max value: 6.815261443768304 - type: nauc_precision_at_10_std value: -26.825062292855943 - type: nauc_precision_at_1_diff1 value: 51.954289992321044 - type: nauc_precision_at_1_max value: 26.336255074856886 - type: nauc_precision_at_1_std value: -29.042962019692446 - type: nauc_precision_at_20_diff1 value: -12.355232044747511 - type: nauc_precision_at_20_max value: 4.022126850949725 - type: nauc_precision_at_20_std value: -23.688935769326772 - type: nauc_precision_at_3_diff1 value: 7.662671665835864 - type: nauc_precision_at_3_max value: 14.372394760986248 - type: nauc_precision_at_3_std value: -28.635125665532453 - type: nauc_precision_at_5_diff1 value: -1.4592476425511611 - type: nauc_precision_at_5_max value: 11.124310161474174 - type: nauc_precision_at_5_std value: -27.89526669318053 - type: nauc_recall_at_1000_diff1 value: -19.58450046684932 - type: nauc_recall_at_1000_max value: 70.71661998133165 - type: nauc_recall_at_1000_std value: 93.05555555556315 - type: nauc_recall_at_100_diff1 value: 15.06356457571853 - type: nauc_recall_at_100_max value: 14.051414749344806 - type: nauc_recall_at_100_std value: -29.461874235153008 - type: nauc_recall_at_10_diff1 value: 41.29842726117901 - type: nauc_recall_at_10_max value: 15.768699673830898 - type: nauc_recall_at_10_std value: -42.11585661287712 - type: nauc_recall_at_1_diff1 value: 56.34671160956164 - type: nauc_recall_at_1_max value: 17.6796949796236 - type: nauc_recall_at_1_std value: -13.741140688066045 - type: nauc_recall_at_20_diff1 value: 38.8078283585263 - type: nauc_recall_at_20_max value: 12.06816084005326 - type: nauc_recall_at_20_std value: -48.20956170056591 - type: nauc_recall_at_3_diff1 value: 44.71028758038993 - type: nauc_recall_at_3_max value: 19.1059093689162 - type: nauc_recall_at_3_std value: -26.795164453784253 - type: nauc_recall_at_5_diff1 value: 41.06320797773054 - type: nauc_recall_at_5_max value: 19.117028272530998 - type: nauc_recall_at_5_std value: -33.985747504612156 - type: ndcg_at_1 value: 56.95099999999999 - type: ndcg_at_10 value: 64.64 - type: ndcg_at_100 value: 70.017 - type: ndcg_at_1000 value: 70.662 - type: ndcg_at_20 value: 67.256 - type: ndcg_at_3 value: 58.269000000000005 - type: ndcg_at_5 value: 60.94199999999999 - type: precision_at_1 value: 56.95099999999999 - type: precision_at_10 value: 15.671 - type: precision_at_100 value: 2.002 - type: precision_at_1000 value: 0.208 - type: precision_at_20 value: 8.689 - type: precision_at_3 value: 36.341 - type: precision_at_5 value: 26.854 - type: recall_at_1 value: 35.858000000000004 - type: recall_at_10 value: 75.02 - type: recall_at_100 value: 95.76 - type: recall_at_1000 value: 99.837 - type: recall_at_20 value: 83.732 - type: recall_at_3 value: 57.093 - type: recall_at_5 value: 66.193 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (cmn-cmn) type: jinaai/xpqa config: cmn-cmn split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 69.446 - type: map_at_1 value: 39.995999999999995 - type: map_at_10 value: 64.033 - type: map_at_100 value: 65.51599999999999 - type: map_at_1000 value: 65.545 - type: map_at_20 value: 64.958 - type: map_at_3 value: 57.767 - type: map_at_5 value: 61.998 - type: mrr_at_1 value: 63.3495145631068 - type: mrr_at_10 value: 70.21146363075978 - type: mrr_at_100 value: 70.82810974202124 - type: mrr_at_1000 value: 70.83816803303915 - type: mrr_at_20 value: 70.60140248428802 - type: mrr_at_3 value: 68.66909385113267 - type: mrr_at_5 value: 69.56108414239482 - type: nauc_map_at_1000_diff1 value: 51.649897072831465 - type: nauc_map_at_1000_max value: 38.25222728655331 - type: nauc_map_at_1000_std value: -39.10327919949334 - type: nauc_map_at_100_diff1 value: 51.644205886401465 - type: nauc_map_at_100_max value: 38.23611154355255 - type: nauc_map_at_100_std value: -39.1677073977285 - type: nauc_map_at_10_diff1 value: 51.81444145636039 - type: nauc_map_at_10_max value: 38.03382104326485 - type: nauc_map_at_10_std value: -38.999395639812015 - type: nauc_map_at_1_diff1 value: 59.785298201044704 - type: nauc_map_at_1_max value: 23.273537759937785 - type: nauc_map_at_1_std value: -17.838712689290194 - type: nauc_map_at_20_diff1 value: 51.680208795601004 - type: nauc_map_at_20_max value: 38.23334583518634 - type: nauc_map_at_20_std value: -39.24344495939061 - type: nauc_map_at_3_diff1 value: 52.180913298194056 - type: nauc_map_at_3_max value: 33.45482478000481 - type: nauc_map_at_3_std value: -31.682911030586297 - type: nauc_map_at_5_diff1 value: 50.804900676175436 - type: nauc_map_at_5_max value: 37.68924816012326 - type: nauc_map_at_5_std value: -36.85016896616712 - type: nauc_mrr_at_1000_diff1 value: 56.371477471577535 - type: nauc_mrr_at_1000_max value: 42.773877962050086 - type: nauc_mrr_at_1000_std value: -40.41765081873682 - type: nauc_mrr_at_100_diff1 value: 56.3619751528192 - type: nauc_mrr_at_100_max value: 42.76298794859916 - type: nauc_mrr_at_100_std value: -40.44070582448831 - type: nauc_mrr_at_10_diff1 value: 56.33810523477712 - type: nauc_mrr_at_10_max value: 42.76591937795783 - type: nauc_mrr_at_10_std value: -40.69339583030244 - type: nauc_mrr_at_1_diff1 value: 58.90399906884378 - type: nauc_mrr_at_1_max value: 43.38806571165292 - type: nauc_mrr_at_1_std value: -38.224015285584 - type: nauc_mrr_at_20_diff1 value: 56.32629070537032 - type: nauc_mrr_at_20_max value: 42.79615263472604 - type: nauc_mrr_at_20_std value: -40.496777397603076 - type: nauc_mrr_at_3_diff1 value: 55.96989454480743 - type: nauc_mrr_at_3_max value: 42.49832220744744 - type: nauc_mrr_at_3_std value: -39.883799467132384 - type: nauc_mrr_at_5_diff1 value: 56.003080766475755 - type: nauc_mrr_at_5_max value: 42.73308051011805 - type: nauc_mrr_at_5_std value: -39.87179511166683 - type: nauc_ndcg_at_1000_diff1 value: 52.49054229225255 - type: nauc_ndcg_at_1000_max value: 39.61644750719859 - type: nauc_ndcg_at_1000_std value: -40.89845763194674 - type: nauc_ndcg_at_100_diff1 value: 52.33511250864434 - type: nauc_ndcg_at_100_max value: 39.25530146124452 - type: nauc_ndcg_at_100_std value: -41.92444498004374 - type: nauc_ndcg_at_10_diff1 value: 52.62031505931842 - type: nauc_ndcg_at_10_max value: 38.667195545396766 - type: nauc_ndcg_at_10_std value: -42.59503924641507 - type: nauc_ndcg_at_1_diff1 value: 58.90399906884378 - type: nauc_ndcg_at_1_max value: 43.38806571165292 - type: nauc_ndcg_at_1_std value: -38.224015285584 - type: nauc_ndcg_at_20_diff1 value: 52.15061629809436 - type: nauc_ndcg_at_20_max value: 39.09332400054708 - type: nauc_ndcg_at_20_std value: -42.80018671618001 - type: nauc_ndcg_at_3_diff1 value: 51.04210728138207 - type: nauc_ndcg_at_3_max value: 38.19034802567046 - type: nauc_ndcg_at_3_std value: -38.179821090765216 - type: nauc_ndcg_at_5_diff1 value: 51.04399574045204 - type: nauc_ndcg_at_5_max value: 38.42492210204548 - type: nauc_ndcg_at_5_std value: -38.868073241617715 - type: nauc_precision_at_1000_diff1 value: -25.151369907213734 - type: nauc_precision_at_1000_max value: 9.012549147054989 - type: nauc_precision_at_1000_std value: -9.319786589947698 - type: nauc_precision_at_100_diff1 value: -23.20945211843088 - type: nauc_precision_at_100_max value: 9.860701593969862 - type: nauc_precision_at_100_std value: -13.073877818347231 - type: nauc_precision_at_10_diff1 value: -6.970781124246847 - type: nauc_precision_at_10_max value: 19.392675322254487 - type: nauc_precision_at_10_std value: -26.74943490717657 - type: nauc_precision_at_1_diff1 value: 58.90399906884378 - type: nauc_precision_at_1_max value: 43.38806571165292 - type: nauc_precision_at_1_std value: -38.224015285584 - type: nauc_precision_at_20_diff1 value: -13.046456108081102 - type: nauc_precision_at_20_max value: 15.69439950383875 - type: nauc_precision_at_20_std value: -23.836004512018093 - type: nauc_precision_at_3_diff1 value: 3.5444232965528846 - type: nauc_precision_at_3_max value: 27.08858445453865 - type: nauc_precision_at_3_std value: -29.12757283665593 - type: nauc_precision_at_5_diff1 value: -3.6853986353320267 - type: nauc_precision_at_5_max value: 24.32059689571271 - type: nauc_precision_at_5_std value: -27.46188072134163 - type: nauc_recall_at_1000_diff1 value: 86.93515141907919 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 100.0 - type: nauc_recall_at_100_diff1 value: 39.7052887613879 - type: nauc_recall_at_100_max value: 18.40943977796887 - type: nauc_recall_at_100_std value: -88.74014854144974 - type: nauc_recall_at_10_diff1 value: 48.85342500870892 - type: nauc_recall_at_10_max value: 32.69617204234419 - type: nauc_recall_at_10_std value: -51.9937231860804 - type: nauc_recall_at_1_diff1 value: 59.785298201044704 - type: nauc_recall_at_1_max value: 23.273537759937785 - type: nauc_recall_at_1_std value: -17.838712689290194 - type: nauc_recall_at_20_diff1 value: 45.40839773314378 - type: nauc_recall_at_20_max value: 33.02458321493215 - type: nauc_recall_at_20_std value: -55.97800739448166 - type: nauc_recall_at_3_diff1 value: 47.05565693416531 - type: nauc_recall_at_3_max value: 28.743850400344297 - type: nauc_recall_at_3_std value: -32.436470486397475 - type: nauc_recall_at_5_diff1 value: 45.30223758669577 - type: nauc_recall_at_5_max value: 33.6567274747059 - type: nauc_recall_at_5_std value: -39.946712017948514 - type: ndcg_at_1 value: 63.349999999999994 - type: ndcg_at_10 value: 69.446 - type: ndcg_at_100 value: 74.439 - type: ndcg_at_1000 value: 74.834 - type: ndcg_at_20 value: 71.763 - type: ndcg_at_3 value: 64.752 - type: ndcg_at_5 value: 66.316 - type: precision_at_1 value: 63.349999999999994 - type: precision_at_10 value: 16.286 - type: precision_at_100 value: 2.024 - type: precision_at_1000 value: 0.207 - type: precision_at_20 value: 8.908000000000001 - type: precision_at_3 value: 40.655 - type: precision_at_5 value: 28.859 - type: recall_at_1 value: 39.995999999999995 - type: recall_at_10 value: 78.107 - type: recall_at_100 value: 97.538 - type: recall_at_1000 value: 99.96000000000001 - type: recall_at_20 value: 85.72 - type: recall_at_3 value: 63.291 - type: recall_at_5 value: 70.625 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (spa-eng) type: jinaai/xpqa config: spa-eng split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 68.258 - type: map_at_1 value: 33.06 - type: map_at_10 value: 61.590999999999994 - type: map_at_100 value: 63.341 - type: map_at_1000 value: 63.385999999999996 - type: map_at_20 value: 62.77700000000001 - type: map_at_3 value: 52.547999999999995 - type: map_at_5 value: 58.824 - type: mrr_at_1 value: 63.80832282471627 - type: mrr_at_10 value: 70.76848015372607 - type: mrr_at_100 value: 71.33996704518061 - type: mrr_at_1000 value: 71.35368444388072 - type: mrr_at_20 value: 71.18191741103522 - type: mrr_at_3 value: 68.83144178226142 - type: mrr_at_5 value: 69.88440521227405 - type: nauc_map_at_1000_diff1 value: 41.59255746310511 - type: nauc_map_at_1000_max value: 42.064075373358065 - type: nauc_map_at_1000_std value: -25.130730194381723 - type: nauc_map_at_100_diff1 value: 41.56447648820406 - type: nauc_map_at_100_max value: 42.06711634651607 - type: nauc_map_at_100_std value: -25.14871585556968 - type: nauc_map_at_10_diff1 value: 41.28968387107058 - type: nauc_map_at_10_max value: 41.511538272139774 - type: nauc_map_at_10_std value: -25.99906440164276 - type: nauc_map_at_1_diff1 value: 51.09859596320021 - type: nauc_map_at_1_max value: 12.406789321338222 - type: nauc_map_at_1_std value: -18.227486548655076 - type: nauc_map_at_20_diff1 value: 41.39469672947315 - type: nauc_map_at_20_max value: 41.98309315808902 - type: nauc_map_at_20_std value: -25.44704720985219 - type: nauc_map_at_3_diff1 value: 43.16164995512842 - type: nauc_map_at_3_max value: 30.935400935562818 - type: nauc_map_at_3_std value: -23.53095555148866 - type: nauc_map_at_5_diff1 value: 41.23474352142375 - type: nauc_map_at_5_max value: 39.03088859147947 - type: nauc_map_at_5_std value: -26.046526443708366 - type: nauc_mrr_at_1000_diff1 value: 51.79649678213789 - type: nauc_mrr_at_1000_max value: 50.50340748045259 - type: nauc_mrr_at_1000_std value: -24.777183703493407 - type: nauc_mrr_at_100_diff1 value: 51.78609028166551 - type: nauc_mrr_at_100_max value: 50.51732896833555 - type: nauc_mrr_at_100_std value: -24.760054686874717 - type: nauc_mrr_at_10_diff1 value: 51.705268395036995 - type: nauc_mrr_at_10_max value: 50.35818415293149 - type: nauc_mrr_at_10_std value: -25.170367120250404 - type: nauc_mrr_at_1_diff1 value: 53.91475115581825 - type: nauc_mrr_at_1_max value: 49.122529616282016 - type: nauc_mrr_at_1_std value: -22.377647552937155 - type: nauc_mrr_at_20_diff1 value: 51.778984221197774 - type: nauc_mrr_at_20_max value: 50.5070957827813 - type: nauc_mrr_at_20_std value: -24.908935023607285 - type: nauc_mrr_at_3_diff1 value: 51.82683773090423 - type: nauc_mrr_at_3_max value: 50.77993196421369 - type: nauc_mrr_at_3_std value: -24.3925832021831 - type: nauc_mrr_at_5_diff1 value: 51.722232683543034 - type: nauc_mrr_at_5_max value: 50.334865493961864 - type: nauc_mrr_at_5_std value: -25.513593495703297 - type: nauc_ndcg_at_1000_diff1 value: 44.21851582991263 - type: nauc_ndcg_at_1000_max value: 45.73539068637836 - type: nauc_ndcg_at_1000_std value: -24.716522467580397 - type: nauc_ndcg_at_100_diff1 value: 43.8002401615357 - type: nauc_ndcg_at_100_max value: 45.801409410061915 - type: nauc_ndcg_at_100_std value: -24.73171742499903 - type: nauc_ndcg_at_10_diff1 value: 42.540922778755885 - type: nauc_ndcg_at_10_max value: 44.348836943874595 - type: nauc_ndcg_at_10_std value: -28.05403666494785 - type: nauc_ndcg_at_1_diff1 value: 53.91475115581825 - type: nauc_ndcg_at_1_max value: 49.122529616282016 - type: nauc_ndcg_at_1_std value: -22.377647552937155 - type: nauc_ndcg_at_20_diff1 value: 43.10347921163421 - type: nauc_ndcg_at_20_max value: 45.53253270265022 - type: nauc_ndcg_at_20_std value: -26.63902791862846 - type: nauc_ndcg_at_3_diff1 value: 42.41720274782384 - type: nauc_ndcg_at_3_max value: 42.91778219334943 - type: nauc_ndcg_at_3_std value: -24.793252033594076 - type: nauc_ndcg_at_5_diff1 value: 42.51515034945093 - type: nauc_ndcg_at_5_max value: 41.62080576508792 - type: nauc_ndcg_at_5_std value: -28.209669314955065 - type: nauc_precision_at_1000_diff1 value: -14.89794075433148 - type: nauc_precision_at_1000_max value: 27.85387929356412 - type: nauc_precision_at_1000_std value: 10.728618597190849 - type: nauc_precision_at_100_diff1 value: -13.075270046295856 - type: nauc_precision_at_100_max value: 29.77208946756632 - type: nauc_precision_at_100_std value: 8.491662697326039 - type: nauc_precision_at_10_diff1 value: -4.0826025188781205 - type: nauc_precision_at_10_max value: 39.04278085180075 - type: nauc_precision_at_10_std value: -5.925408651372333 - type: nauc_precision_at_1_diff1 value: 53.91475115581825 - type: nauc_precision_at_1_max value: 49.122529616282016 - type: nauc_precision_at_1_std value: -22.377647552937155 - type: nauc_precision_at_20_diff1 value: -7.93186440645135 - type: nauc_precision_at_20_max value: 35.81281308891365 - type: nauc_precision_at_20_std value: 0.1241277857515697 - type: nauc_precision_at_3_diff1 value: 7.563562511484409 - type: nauc_precision_at_3_max value: 43.43738862378524 - type: nauc_precision_at_3_std value: -11.958059731912615 - type: nauc_precision_at_5_diff1 value: -0.1801152449011624 - type: nauc_precision_at_5_max value: 41.32486715619513 - type: nauc_precision_at_5_std value: -10.088699021919552 - type: nauc_recall_at_1000_diff1 value: 86.93359696819986 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 72.21843645604022 - type: nauc_recall_at_100_diff1 value: 29.86050842714198 - type: nauc_recall_at_100_max value: 48.106658251136245 - type: nauc_recall_at_100_std value: -14.981886214880035 - type: nauc_recall_at_10_diff1 value: 33.67119240737528 - type: nauc_recall_at_10_max value: 39.271984859561414 - type: nauc_recall_at_10_std value: -35.6434883839217 - type: nauc_recall_at_1_diff1 value: 51.09859596320021 - type: nauc_recall_at_1_max value: 12.406789321338222 - type: nauc_recall_at_1_std value: -18.227486548655076 - type: nauc_recall_at_20_diff1 value: 33.211979983240724 - type: nauc_recall_at_20_max value: 43.47676074743184 - type: nauc_recall_at_20_std value: -33.88107138395349 - type: nauc_recall_at_3_diff1 value: 39.22513750146998 - type: nauc_recall_at_3_max value: 27.066674083840166 - type: nauc_recall_at_3_std value: -26.963282529629893 - type: nauc_recall_at_5_diff1 value: 36.53718917129459 - type: nauc_recall_at_5_max value: 35.40550013169686 - type: nauc_recall_at_5_std value: -34.209159379410806 - type: ndcg_at_1 value: 63.808 - type: ndcg_at_10 value: 68.258 - type: ndcg_at_100 value: 73.38799999999999 - type: ndcg_at_1000 value: 74.03 - type: ndcg_at_20 value: 70.968 - type: ndcg_at_3 value: 62.33 - type: ndcg_at_5 value: 64.096 - type: precision_at_1 value: 63.808 - type: precision_at_10 value: 19.243 - type: precision_at_100 value: 2.367 - type: precision_at_1000 value: 0.245 - type: precision_at_20 value: 10.599 - type: precision_at_3 value: 44.515 - type: precision_at_5 value: 33.467999999999996 - type: recall_at_1 value: 33.06 - type: recall_at_10 value: 77.423 - type: recall_at_100 value: 95.923 - type: recall_at_1000 value: 99.874 - type: recall_at_20 value: 85.782 - type: recall_at_3 value: 57.098000000000006 - type: recall_at_5 value: 67.472 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (spa-spa) type: jinaai/xpqa config: spa-spa split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 72.004 - type: map_at_1 value: 36.248000000000005 - type: map_at_10 value: 65.679 - type: map_at_100 value: 67.22399999999999 - type: map_at_1000 value: 67.264 - type: map_at_20 value: 66.705 - type: map_at_3 value: 56.455 - type: map_at_5 value: 62.997 - type: mrr_at_1 value: 67.71752837326608 - type: mrr_at_10 value: 74.59782021257429 - type: mrr_at_100 value: 75.0640960767943 - type: mrr_at_1000 value: 75.07324799466076 - type: mrr_at_20 value: 74.9323963386884 - type: mrr_at_3 value: 72.95081967213115 - type: mrr_at_5 value: 73.82723833543506 - type: nauc_map_at_1000_diff1 value: 43.111810717567714 - type: nauc_map_at_1000_max value: 44.835247208972476 - type: nauc_map_at_1000_std value: -32.798405973931985 - type: nauc_map_at_100_diff1 value: 43.090223482932764 - type: nauc_map_at_100_max value: 44.83392441557943 - type: nauc_map_at_100_std value: -32.81149166676563 - type: nauc_map_at_10_diff1 value: 42.87841934951979 - type: nauc_map_at_10_max value: 43.9838653389494 - type: nauc_map_at_10_std value: -33.588084643627084 - type: nauc_map_at_1_diff1 value: 54.509245848379095 - type: nauc_map_at_1_max value: 10.05921648322742 - type: nauc_map_at_1_std value: -24.652326014826762 - type: nauc_map_at_20_diff1 value: 43.07468612984794 - type: nauc_map_at_20_max value: 44.75663122615032 - type: nauc_map_at_20_std value: -33.11788887878321 - type: nauc_map_at_3_diff1 value: 44.63272828938906 - type: nauc_map_at_3_max value: 32.1584369869227 - type: nauc_map_at_3_std value: -30.761662210142944 - type: nauc_map_at_5_diff1 value: 42.77296997803048 - type: nauc_map_at_5_max value: 41.78894616737652 - type: nauc_map_at_5_std value: -33.56459774477362 - type: nauc_mrr_at_1000_diff1 value: 53.097544131833494 - type: nauc_mrr_at_1000_max value: 50.61134979184588 - type: nauc_mrr_at_1000_std value: -35.6221191487669 - type: nauc_mrr_at_100_diff1 value: 53.096609856182106 - type: nauc_mrr_at_100_max value: 50.61951585642645 - type: nauc_mrr_at_100_std value: -35.62396157508327 - type: nauc_mrr_at_10_diff1 value: 52.771534471912304 - type: nauc_mrr_at_10_max value: 50.430863224435726 - type: nauc_mrr_at_10_std value: -36.027992076620365 - type: nauc_mrr_at_1_diff1 value: 55.05316238884337 - type: nauc_mrr_at_1_max value: 49.461858515275196 - type: nauc_mrr_at_1_std value: -31.87492636319712 - type: nauc_mrr_at_20_diff1 value: 53.083253469629746 - type: nauc_mrr_at_20_max value: 50.62156424256193 - type: nauc_mrr_at_20_std value: -35.879153692447154 - type: nauc_mrr_at_3_diff1 value: 52.98283109188415 - type: nauc_mrr_at_3_max value: 50.83561260429378 - type: nauc_mrr_at_3_std value: -35.30839538038797 - type: nauc_mrr_at_5_diff1 value: 52.93270510879709 - type: nauc_mrr_at_5_max value: 50.54595596761199 - type: nauc_mrr_at_5_std value: -35.84059376434395 - type: nauc_ndcg_at_1000_diff1 value: 45.343685089209416 - type: nauc_ndcg_at_1000_max value: 47.801141576669465 - type: nauc_ndcg_at_1000_std value: -33.512958862879195 - type: nauc_ndcg_at_100_diff1 value: 45.255590461515894 - type: nauc_ndcg_at_100_max value: 47.99240031881967 - type: nauc_ndcg_at_100_std value: -33.614465006695205 - type: nauc_ndcg_at_10_diff1 value: 43.93472511731019 - type: nauc_ndcg_at_10_max value: 45.92599752897053 - type: nauc_ndcg_at_10_std value: -36.43629114491574 - type: nauc_ndcg_at_1_diff1 value: 55.05316238884337 - type: nauc_ndcg_at_1_max value: 49.461858515275196 - type: nauc_ndcg_at_1_std value: -31.87492636319712 - type: nauc_ndcg_at_20_diff1 value: 44.93534591273201 - type: nauc_ndcg_at_20_max value: 47.55153940713458 - type: nauc_ndcg_at_20_std value: -35.56392448745206 - type: nauc_ndcg_at_3_diff1 value: 43.17916122133396 - type: nauc_ndcg_at_3_max value: 45.603634205103276 - type: nauc_ndcg_at_3_std value: -32.473227507181214 - type: nauc_ndcg_at_5_diff1 value: 44.10242961669216 - type: nauc_ndcg_at_5_max value: 43.61666669031808 - type: nauc_ndcg_at_5_std value: -35.98808321497782 - type: nauc_precision_at_1000_diff1 value: -23.264714449991146 - type: nauc_precision_at_1000_max value: 28.505729576735465 - type: nauc_precision_at_1000_std value: 11.987379232920926 - type: nauc_precision_at_100_diff1 value: -21.156119174614627 - type: nauc_precision_at_100_max value: 30.711646221646255 - type: nauc_precision_at_100_std value: 9.650486536340322 - type: nauc_precision_at_10_diff1 value: -10.98001328477502 - type: nauc_precision_at_10_max value: 39.25638073760597 - type: nauc_precision_at_10_std value: -4.3456859257488 - type: nauc_precision_at_1_diff1 value: 55.05316238884337 - type: nauc_precision_at_1_max value: 49.461858515275196 - type: nauc_precision_at_1_std value: -31.87492636319712 - type: nauc_precision_at_20_diff1 value: -14.97565390664424 - type: nauc_precision_at_20_max value: 36.383835295942355 - type: nauc_precision_at_20_std value: 1.525158880381114 - type: nauc_precision_at_3_diff1 value: 1.0448345623903483 - type: nauc_precision_at_3_max value: 45.69772060667404 - type: nauc_precision_at_3_std value: -13.002685018948293 - type: nauc_precision_at_5_diff1 value: -5.434185597628904 - type: nauc_precision_at_5_max value: 42.99162431099203 - type: nauc_precision_at_5_std value: -9.789308817624534 - type: nauc_recall_at_1000_diff1 value: 12.309303236094845 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 86.93359696819986 - type: nauc_recall_at_100_diff1 value: 39.093544920901415 - type: nauc_recall_at_100_max value: 55.62814395062938 - type: nauc_recall_at_100_std value: -22.6919033301514 - type: nauc_recall_at_10_diff1 value: 35.50100141633622 - type: nauc_recall_at_10_max value: 39.25750019586647 - type: nauc_recall_at_10_std value: -43.01273078031791 - type: nauc_recall_at_1_diff1 value: 54.509245848379095 - type: nauc_recall_at_1_max value: 10.05921648322742 - type: nauc_recall_at_1_std value: -24.652326014826762 - type: nauc_recall_at_20_diff1 value: 38.1281707132327 - type: nauc_recall_at_20_max value: 43.97950642900301 - type: nauc_recall_at_20_std value: -44.049952771307574 - type: nauc_recall_at_3_diff1 value: 40.01986938242728 - type: nauc_recall_at_3_max value: 27.517114421061173 - type: nauc_recall_at_3_std value: -32.99056780232045 - type: nauc_recall_at_5_diff1 value: 38.52035606499483 - type: nauc_recall_at_5_max value: 37.05834604678859 - type: nauc_recall_at_5_std value: -39.86196378897912 - type: ndcg_at_1 value: 67.718 - type: ndcg_at_10 value: 72.004 - type: ndcg_at_100 value: 76.554 - type: ndcg_at_1000 value: 77.07300000000001 - type: ndcg_at_20 value: 74.37899999999999 - type: ndcg_at_3 value: 66.379 - type: ndcg_at_5 value: 68.082 - type: precision_at_1 value: 67.718 - type: precision_at_10 value: 19.849 - type: precision_at_100 value: 2.3800000000000003 - type: precision_at_1000 value: 0.245 - type: precision_at_20 value: 10.813 - type: precision_at_3 value: 46.574 - type: precision_at_5 value: 34.83 - type: recall_at_1 value: 36.248000000000005 - type: recall_at_10 value: 80.252 - type: recall_at_100 value: 96.73 - type: recall_at_1000 value: 99.874 - type: recall_at_20 value: 87.703 - type: recall_at_3 value: 60.815 - type: recall_at_5 value: 71.16 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (fra-eng) type: jinaai/xpqa config: fra-eng split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 73.729 - type: map_at_1 value: 43.964999999999996 - type: map_at_10 value: 67.803 - type: map_at_100 value: 69.188 - type: map_at_1000 value: 69.21000000000001 - type: map_at_20 value: 68.747 - type: map_at_3 value: 60.972 - type: map_at_5 value: 65.39399999999999 - type: mrr_at_1 value: 68.4913217623498 - type: mrr_at_10 value: 75.2600822260368 - type: mrr_at_100 value: 75.6599169808848 - type: mrr_at_1000 value: 75.66720883727534 - type: mrr_at_20 value: 75.52375865860405 - type: mrr_at_3 value: 73.54250111259452 - type: mrr_at_5 value: 74.51713395638626 - type: nauc_map_at_1000_diff1 value: 46.81533703002097 - type: nauc_map_at_1000_max value: 46.30794757084772 - type: nauc_map_at_1000_std value: -14.953470500312335 - type: nauc_map_at_100_diff1 value: 46.82464740277745 - type: nauc_map_at_100_max value: 46.32852879948254 - type: nauc_map_at_100_std value: -14.950035098066172 - type: nauc_map_at_10_diff1 value: 46.31406143369831 - type: nauc_map_at_10_max value: 45.337593270786634 - type: nauc_map_at_10_std value: -16.011789445907876 - type: nauc_map_at_1_diff1 value: 57.097134715065835 - type: nauc_map_at_1_max value: 21.93931500350721 - type: nauc_map_at_1_std value: -15.134457251301637 - type: nauc_map_at_20_diff1 value: 46.47030891134173 - type: nauc_map_at_20_max value: 46.29169960276292 - type: nauc_map_at_20_std value: -15.14241106541829 - type: nauc_map_at_3_diff1 value: 50.27064228648596 - type: nauc_map_at_3_max value: 39.43058773971639 - type: nauc_map_at_3_std value: -16.16545993089126 - type: nauc_map_at_5_diff1 value: 46.974867679747426 - type: nauc_map_at_5_max value: 44.31091104855002 - type: nauc_map_at_5_std value: -16.50175337658926 - type: nauc_mrr_at_1000_diff1 value: 55.20294005110399 - type: nauc_mrr_at_1000_max value: 51.947725719119966 - type: nauc_mrr_at_1000_std value: -14.586112939597232 - type: nauc_mrr_at_100_diff1 value: 55.20426251109304 - type: nauc_mrr_at_100_max value: 51.95648725402534 - type: nauc_mrr_at_100_std value: -14.579769236539143 - type: nauc_mrr_at_10_diff1 value: 54.93870506205835 - type: nauc_mrr_at_10_max value: 51.89312772900638 - type: nauc_mrr_at_10_std value: -14.692635010092939 - type: nauc_mrr_at_1_diff1 value: 56.54945935175171 - type: nauc_mrr_at_1_max value: 51.28134504197991 - type: nauc_mrr_at_1_std value: -12.909042186563061 - type: nauc_mrr_at_20_diff1 value: 55.10667018041461 - type: nauc_mrr_at_20_max value: 51.98236870783707 - type: nauc_mrr_at_20_std value: -14.599377575198025 - type: nauc_mrr_at_3_diff1 value: 55.67124311746892 - type: nauc_mrr_at_3_max value: 51.77903236246767 - type: nauc_mrr_at_3_std value: -14.94452633860763 - type: nauc_mrr_at_5_diff1 value: 55.42849172366371 - type: nauc_mrr_at_5_max value: 51.76902965753959 - type: nauc_mrr_at_5_std value: -15.357993534727072 - type: nauc_ndcg_at_1000_diff1 value: 48.736844959280326 - type: nauc_ndcg_at_1000_max value: 48.92891159935398 - type: nauc_ndcg_at_1000_std value: -13.983968675611056 - type: nauc_ndcg_at_100_diff1 value: 48.73859328503975 - type: nauc_ndcg_at_100_max value: 49.31867149556439 - type: nauc_ndcg_at_100_std value: -13.72387564912742 - type: nauc_ndcg_at_10_diff1 value: 46.50313862975287 - type: nauc_ndcg_at_10_max value: 47.13599793554596 - type: nauc_ndcg_at_10_std value: -16.317919977400113 - type: nauc_ndcg_at_1_diff1 value: 56.54945935175171 - type: nauc_ndcg_at_1_max value: 51.28134504197991 - type: nauc_ndcg_at_1_std value: -12.909042186563061 - type: nauc_ndcg_at_20_diff1 value: 47.01727117133912 - type: nauc_ndcg_at_20_max value: 49.121366036709105 - type: nauc_ndcg_at_20_std value: -14.411078677638775 - type: nauc_ndcg_at_3_diff1 value: 49.229581145458276 - type: nauc_ndcg_at_3_max value: 47.427609717032 - type: nauc_ndcg_at_3_std value: -16.52066627289908 - type: nauc_ndcg_at_5_diff1 value: 48.0152514127505 - type: nauc_ndcg_at_5_max value: 46.12152407850816 - type: nauc_ndcg_at_5_std value: -17.613295491954656 - type: nauc_precision_at_1000_diff1 value: -25.959006032642463 - type: nauc_precision_at_1000_max value: 12.81002362947137 - type: nauc_precision_at_1000_std value: 12.575312826061513 - type: nauc_precision_at_100_diff1 value: -24.35413527283394 - type: nauc_precision_at_100_max value: 14.878359236477303 - type: nauc_precision_at_100_std value: 12.384426050018428 - type: nauc_precision_at_10_diff1 value: -17.93220761770618 - type: nauc_precision_at_10_max value: 23.523485811847294 - type: nauc_precision_at_10_std value: 4.424456968716939 - type: nauc_precision_at_1_diff1 value: 56.54945935175171 - type: nauc_precision_at_1_max value: 51.28134504197991 - type: nauc_precision_at_1_std value: -12.909042186563061 - type: nauc_precision_at_20_diff1 value: -21.776871398686936 - type: nauc_precision_at_20_max value: 21.18436338264366 - type: nauc_precision_at_20_std value: 9.937274986573321 - type: nauc_precision_at_3_diff1 value: -1.2411845580934435 - type: nauc_precision_at_3_max value: 34.962281941875 - type: nauc_precision_at_3_std value: -2.447892908501237 - type: nauc_precision_at_5_diff1 value: -11.134164534114085 - type: nauc_precision_at_5_max value: 30.22079740070525 - type: nauc_precision_at_5_std value: -0.24232594421765946 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 43.3647412452869 - type: nauc_recall_at_100_max value: 63.50094950500327 - type: nauc_recall_at_100_std value: 2.3911909633714044 - type: nauc_recall_at_10_diff1 value: 33.993445071666855 - type: nauc_recall_at_10_max value: 41.38694129134144 - type: nauc_recall_at_10_std value: -19.308698266099096 - type: nauc_recall_at_1_diff1 value: 57.097134715065835 - type: nauc_recall_at_1_max value: 21.93931500350721 - type: nauc_recall_at_1_std value: -15.134457251301637 - type: nauc_recall_at_20_diff1 value: 32.03888531880772 - type: nauc_recall_at_20_max value: 49.660787482562085 - type: nauc_recall_at_20_std value: -12.641456758778382 - type: nauc_recall_at_3_diff1 value: 47.94527082900579 - type: nauc_recall_at_3_max value: 36.51733131437679 - type: nauc_recall_at_3_std value: -18.65511713247495 - type: nauc_recall_at_5_diff1 value: 42.04545772092305 - type: nauc_recall_at_5_max value: 41.21440912972303 - type: nauc_recall_at_5_std value: -21.47386527081128 - type: ndcg_at_1 value: 68.491 - type: ndcg_at_10 value: 73.729 - type: ndcg_at_100 value: 77.684 - type: ndcg_at_1000 value: 78.084 - type: ndcg_at_20 value: 75.795 - type: ndcg_at_3 value: 68.568 - type: ndcg_at_5 value: 70.128 - type: precision_at_1 value: 68.491 - type: precision_at_10 value: 16.996 - type: precision_at_100 value: 2.023 - type: precision_at_1000 value: 0.207 - type: precision_at_20 value: 9.246 - type: precision_at_3 value: 41.923 - type: precision_at_5 value: 29.826000000000004 - type: recall_at_1 value: 43.964999999999996 - type: recall_at_10 value: 82.777 - type: recall_at_100 value: 97.287 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 89.183 - type: recall_at_3 value: 65.803 - type: recall_at_5 value: 74.119 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (fr) type: jinaai/xpqa config: fra-fra split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: main_score value: 77.581 - type: map_at_1 value: 46.444 - type: map_at_10 value: 72.084 - type: map_at_100 value: 73.175 - type: map_at_1000 value: 73.193 - type: map_at_20 value: 72.77799999999999 - type: map_at_3 value: 65.242 - type: map_at_5 value: 69.926 - type: mrr_at_1 value: 71.82910547396529 - type: mrr_at_10 value: 78.66594612923046 - type: mrr_at_100 value: 78.97334934049613 - type: mrr_at_1000 value: 78.97687021803557 - type: mrr_at_20 value: 78.85701141744282 - type: mrr_at_3 value: 76.96929238985311 - type: mrr_at_5 value: 77.99732977303067 - type: nauc_map_at_1000_diff1 value: 49.090956807097804 - type: nauc_map_at_1000_max value: 52.01095354889508 - type: nauc_map_at_1000_std value: -12.182870421711026 - type: nauc_map_at_100_diff1 value: 49.091664766684566 - type: nauc_map_at_100_max value: 52.017499797253755 - type: nauc_map_at_100_std value: -12.188342487271528 - type: nauc_map_at_10_diff1 value: 48.6619338205362 - type: nauc_map_at_10_max value: 50.93591260329888 - type: nauc_map_at_10_std value: -12.899399261673365 - type: nauc_map_at_1_diff1 value: 61.89699552471587 - type: nauc_map_at_1_max value: 22.387748207421946 - type: nauc_map_at_1_std value: -17.139518194308437 - type: nauc_map_at_20_diff1 value: 48.72828404686453 - type: nauc_map_at_20_max value: 51.781074586075434 - type: nauc_map_at_20_std value: -12.174270605093136 - type: nauc_map_at_3_diff1 value: 53.11509580126934 - type: nauc_map_at_3_max value: 42.1768380145106 - type: nauc_map_at_3_std value: -14.98340833032363 - type: nauc_map_at_5_diff1 value: 49.60521390803235 - type: nauc_map_at_5_max value: 49.80360562029127 - type: nauc_map_at_5_std value: -13.900652140457618 - type: nauc_mrr_at_1000_diff1 value: 58.10782478654255 - type: nauc_mrr_at_1000_max value: 61.31083013535486 - type: nauc_mrr_at_1000_std value: -9.624904298545921 - type: nauc_mrr_at_100_diff1 value: 58.11041683306092 - type: nauc_mrr_at_100_max value: 61.31590199755797 - type: nauc_mrr_at_100_std value: -9.625991053580865 - type: nauc_mrr_at_10_diff1 value: 57.883701815695375 - type: nauc_mrr_at_10_max value: 61.36276126424689 - type: nauc_mrr_at_10_std value: -9.495072468420386 - type: nauc_mrr_at_1_diff1 value: 60.18176977079093 - type: nauc_mrr_at_1_max value: 59.697615236642555 - type: nauc_mrr_at_1_std value: -9.396133077966779 - type: nauc_mrr_at_20_diff1 value: 57.964817434006754 - type: nauc_mrr_at_20_max value: 61.34073539502932 - type: nauc_mrr_at_20_std value: -9.602378876645131 - type: nauc_mrr_at_3_diff1 value: 58.44338049427257 - type: nauc_mrr_at_3_max value: 60.92272989411293 - type: nauc_mrr_at_3_std value: -9.928970439416162 - type: nauc_mrr_at_5_diff1 value: 58.01513016866578 - type: nauc_mrr_at_5_max value: 61.46805302986586 - type: nauc_mrr_at_5_std value: -9.842227002440984 - type: nauc_ndcg_at_1000_diff1 value: 50.99293152828167 - type: nauc_ndcg_at_1000_max value: 56.14232784664811 - type: nauc_ndcg_at_1000_std value: -10.529213072410288 - type: nauc_ndcg_at_100_diff1 value: 50.99385944312529 - type: nauc_ndcg_at_100_max value: 56.34825518954588 - type: nauc_ndcg_at_100_std value: -10.398943874846047 - type: nauc_ndcg_at_10_diff1 value: 48.51273364357823 - type: nauc_ndcg_at_10_max value: 53.77871849486298 - type: nauc_ndcg_at_10_std value: -11.82105972112472 - type: nauc_ndcg_at_1_diff1 value: 60.18176977079093 - type: nauc_ndcg_at_1_max value: 59.697615236642555 - type: nauc_ndcg_at_1_std value: -9.396133077966779 - type: nauc_ndcg_at_20_diff1 value: 49.04268319033412 - type: nauc_ndcg_at_20_max value: 55.47011381097071 - type: nauc_ndcg_at_20_std value: -10.486452945493042 - type: nauc_ndcg_at_3_diff1 value: 50.95112745400584 - type: nauc_ndcg_at_3_max value: 53.45473828705577 - type: nauc_ndcg_at_3_std value: -13.420699384045728 - type: nauc_ndcg_at_5_diff1 value: 50.313156212000074 - type: nauc_ndcg_at_5_max value: 52.78539129309866 - type: nauc_ndcg_at_5_std value: -13.586274096509122 - type: nauc_precision_at_1000_diff1 value: -31.13772049254778 - type: nauc_precision_at_1000_max value: 17.2847598361294 - type: nauc_precision_at_1000_std value: 15.497531773816887 - type: nauc_precision_at_100_diff1 value: -29.98812263553739 - type: nauc_precision_at_100_max value: 19.048620003227654 - type: nauc_precision_at_100_std value: 15.38499952171958 - type: nauc_precision_at_10_diff1 value: -25.33028097412579 - type: nauc_precision_at_10_max value: 26.077919168306853 - type: nauc_precision_at_10_std value: 11.35352933466097 - type: nauc_precision_at_1_diff1 value: 60.18176977079093 - type: nauc_precision_at_1_max value: 59.697615236642555 - type: nauc_precision_at_1_std value: -9.396133077966779 - type: nauc_precision_at_20_diff1 value: -28.417606311068905 - type: nauc_precision_at_20_max value: 23.958679828637692 - type: nauc_precision_at_20_std value: 14.442021499194205 - type: nauc_precision_at_3_diff1 value: -8.127396049790482 - type: nauc_precision_at_3_max value: 37.348067982957076 - type: nauc_precision_at_3_std value: 4.747913619596849 - type: nauc_precision_at_5_diff1 value: -16.902418446058395 - type: nauc_precision_at_5_max value: 32.73583852552014 - type: nauc_precision_at_5_std value: 7.031446423850052 - type: nauc_recall_at_1000_diff1 value: -14.485978369112514 - type: nauc_recall_at_1000_max value: 78.59123887333172 - type: nauc_recall_at_1000_std value: 90.7384575424963 - type: nauc_recall_at_100_diff1 value: 41.47842281590715 - type: nauc_recall_at_100_max value: 67.47271545727422 - type: nauc_recall_at_100_std value: 14.555561992253999 - type: nauc_recall_at_10_diff1 value: 33.05308907973924 - type: nauc_recall_at_10_max value: 45.49878918493155 - type: nauc_recall_at_10_std value: -11.560069806810926 - type: nauc_recall_at_1_diff1 value: 61.89699552471587 - type: nauc_recall_at_1_max value: 22.387748207421946 - type: nauc_recall_at_1_std value: -17.139518194308437 - type: nauc_recall_at_20_diff1 value: 31.305721376453754 - type: nauc_recall_at_20_max value: 51.24817763724019 - type: nauc_recall_at_20_std value: -5.0809908162023145 - type: nauc_recall_at_3_diff1 value: 49.27109038342917 - type: nauc_recall_at_3_max value: 37.69188317998447 - type: nauc_recall_at_3_std value: -17.119900758664336 - type: nauc_recall_at_5_diff1 value: 42.74501803377967 - type: nauc_recall_at_5_max value: 46.877008503354844 - type: nauc_recall_at_5_std value: -15.704892082115975 - type: ndcg_at_1 value: 71.829 - type: ndcg_at_10 value: 77.581 - type: ndcg_at_100 value: 80.75 - type: ndcg_at_1000 value: 81.026 - type: ndcg_at_20 value: 79.092 - type: ndcg_at_3 value: 72.81 - type: ndcg_at_5 value: 74.22999999999999 - type: precision_at_1 value: 71.829 - type: precision_at_10 value: 17.717 - type: precision_at_100 value: 2.031 - type: precision_at_1000 value: 0.207 - type: precision_at_20 value: 9.399000000000001 - type: precision_at_3 value: 44.458999999999996 - type: precision_at_5 value: 31.535000000000004 - type: recall_at_1 value: 46.444 - type: recall_at_10 value: 86.275 - type: recall_at_100 value: 98.017 - type: recall_at_1000 value: 99.8 - type: recall_at_20 value: 90.935 - type: recall_at_3 value: 70.167 - type: recall_at_5 value: 78.2 --- <br><br> <p align="center"> <img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px"> </p> <p align="center"> <b>The embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> </p> <p align="center"> <b>jina-embeddings-v3: Multilingual Embeddings With Task LoRA</b> </p> ## Quick Start [Blog](https://jina.ai/news/jina-embeddings-v3-a-frontier-multilingual-embedding-model/#parameter-dimensions) | [Azure](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/jinaai.jina-embeddings-v3-vm) | [AWS SageMaker](https://aws.amazon.com/marketplace/pp/prodview-kdi3xkt62lo32) | [API](https://jina.ai/embeddings) ## Intended Usage & Model Info `jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications. Based on the [Jina-XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation), this model supports Rotary Position Embeddings to handle long input sequences up to **8192 tokens**. Additionally, it features 5 LoRA adapters to generate task-specific embeddings efficiently. ### Key Features: - **Extended Sequence Length:** Supports up to 8192 tokens with RoPE. - **Task-Specific Embedding:** Customize embeddings through the `task` argument with the following options: - `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks - `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks - `separation`: Used for embeddings in clustering and re-ranking applications - `classification`: Used for embeddings in classification tasks - `text-matching`: Used for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks - **Matryoshka Embeddings**: Supports flexible embedding sizes (`32, 64, 128, 256, 512, 768, 1024`), allowing for truncating embeddings to fit your application. ### Supported Languages: While the foundation model supports 100 languages, we've focused our tuning efforts on the following 30 languages: **Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, Georgian, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu,** and **Vietnamese.** > **⚠️ Important Notice:** > We fixed a bug in the `encode` function [#60](https://huggingface.co/jinaai/jina-embeddings-v3/discussions/60) where **Matryoshka embedding truncation** occurred *after normalization*, leading to non-normalized truncated embeddings. This issue has been resolved in the latest code revision. > > If you have encoded data using the previous version and wish to maintain consistency, please use the specific code revision when loading the model: `AutoModel.from_pretrained('jinaai/jina-embeddings-v3', code_revision='da863dd04a4e5dce6814c6625adfba87b83838aa', ...)` ## Usage **<details><summary>Apply mean pooling when integrating the model.</summary>** <p> ### Why Use Mean Pooling? Mean pooling takes all token embeddings from the model's output and averages them at the sentence or paragraph level. This approach has been shown to produce high-quality sentence embeddings. We provide an `encode` function that handles this for you automatically. However, if you're working with the model directly, outside of the `encode` function, you'll need to apply mean pooling manually. Here's how you can do it: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) sentences = ["How is the weather today?", "What is the current weather like today?"] tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v3") model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") task = 'retrieval.query' task_id = model._adaptation_map[task] adapter_mask = torch.full((len(sentences),), task_id, dtype=torch.int32) with torch.no_grad(): model_output = model(**encoded_input, adapter_mask=adapter_mask) embeddings = mean_pooling(model_output, encoded_input["attention_mask"]) embeddings = F.normalize(embeddings, p=2, dim=1) ``` </p> </details> The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding API](https://jina.ai/embeddings/). Alternatively, you can use `jina-embeddings-v3` directly via Transformers package: ```bash !pip install transformers torch einops !pip install 'numpy<2' ``` If you run it on a GPU that support [FlashAttention-2](https://github.com/Dao-AILab/flash-attention). By 2024.9.12, it supports Ampere, Ada, or Hopper GPUs (e.g., A100, RTX 3090, RTX 4090, H100), ```bash !pip install flash-attn --no-build-isolation ``` ```python from transformers import AutoModel # Initialize the model model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True) texts = [ "Follow the white rabbit.", # English "Sigue al conejo blanco.", # Spanish "Suis le lapin blanc.", # French "跟着白兔走。", # Chinese "اتبع الأرنب الأبيض.", # Arabic "Folge dem weißen Kaninchen.", # German ] # When calling the `encode` function, you can choose a `task` based on the use case: # 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching' # Alternatively, you can choose not to pass a `task`, and no specific LoRA adapter will be used. embeddings = model.encode(texts, task="text-matching") # Compute similarities print(embeddings[0] @ embeddings[1].T) ``` By default, the model supports a maximum sequence length of 8192 tokens. However, if you want to truncate your input texts to a shorter length, you can pass the `max_length` parameter to the `encode` function: ```python embeddings = model.encode(["Very long ... document"], max_length=2048) ``` In case you want to use **Matryoshka embeddings** and switch to a different dimension, you can adjust it by passing the `truncate_dim` parameter to the `encode` function: ```python embeddings = model.encode(['Sample text'], truncate_dim=256) ``` The latest version (3.1.0) of [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) also supports `jina-embeddings-v3`: ```bash !pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True) task = "retrieval.query" embeddings = model.encode( ["What is the weather like in Berlin today?"], task=task, prompt_name=task, ) ``` You can fine-tune `jina-embeddings-v3` using [SentenceTransformerTrainer](https://sbert.net/docs/package_reference/sentence_transformer/trainer.html). To fine-tune for a specific task, you should set the task before passing the model to the ST Trainer, either during initialization: ```python model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'default_task': 'classification'}) ``` Or afterwards: ```python model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True) model[0].default_task = 'classification' ``` This way you can fine-tune the LoRA adapter for the chosen task. However, If you want to fine-tune the entire model, make sure the main parameters are set as trainable when loading the model: ```python model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'lora_main_params_trainable': True}) ``` This will allow fine-tuning the whole model instead of just the LoRA adapters. **<details><summary>ONNX Inference.</summary>** <p> You can use ONNX for efficient inference with `jina-embeddings-v3`: ```python import onnxruntime import numpy as np from transformers import AutoTokenizer, PretrainedConfig # Mean pool function def mean_pooling(model_output: np.ndarray, attention_mask: np.ndarray): token_embeddings = model_output input_mask_expanded = np.expand_dims(attention_mask, axis=-1) input_mask_expanded = np.broadcast_to(input_mask_expanded, token_embeddings.shape) sum_embeddings = np.sum(token_embeddings * input_mask_expanded, axis=1) sum_mask = np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None) return sum_embeddings / sum_mask # Load tokenizer and model config tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v3') config = PretrainedConfig.from_pretrained('jinaai/jina-embeddings-v3') # Tokenize input input_text = tokenizer('sample text', return_tensors='np') # ONNX session model_path = 'jina-embeddings-v3/onnx/model.onnx' session = onnxruntime.InferenceSession(model_path) # Prepare inputs for ONNX model task_type = 'text-matching' task_id = np.array(config.lora_adaptations.index(task_type), dtype=np.int64) inputs = { 'input_ids': input_text['input_ids'], 'attention_mask': input_text['attention_mask'], 'task_id': task_id } # Run model outputs = session.run(None, inputs)[0] # Apply mean pooling and normalization to the model outputs embeddings = mean_pooling(outputs, input_text["attention_mask"]) embeddings = embeddings / np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True) ``` </p> </details> ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## License `jina-embeddings-v3` is listed on AWS & Azure. If you need to use it beyond those platforms or on-premises within your company, note that the models is licensed under CC BY-NC 4.0. For commercial usage inquiries, feel free to [contact us](https://jina.ai/contact-sales/). ## Citation If you find `jina-embeddings-v3` useful in your research, please cite the following paper: ```bibtex @misc{sturua2024jinaembeddingsv3multilingualembeddingstask, title={jina-embeddings-v3: Multilingual Embeddings With Task LoRA}, author={Saba Sturua and Isabelle Mohr and Mohammad Kalim Akram and Michael Günther and Bo Wang and Markus Krimmel and Feng Wang and Georgios Mastrapas and Andreas Koukounas and Andreas Koukounas and Nan Wang and Han Xiao}, year={2024}, eprint={2409.10173}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.10173}, } ```
[ "BIOSSES", "SCIFACT" ]
RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel
RomainDarous
sentence-similarity
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4460010", "loss:CoSENTLoss", "dataset:RomainDarous/corrupted_os_by_language", "arxiv:1908.10084", "base_model:RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel", "base_model:finetune:RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-02-14T17:26:45Z
2025-02-14T17:27:22+00:00
30
0
--- base_model: RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel datasets: - RomainDarous/corrupted_os_by_language library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4460010 - loss:CoSENTLoss widget: - source_sentence: Malformed target specific variable definition sentences: - Hedefe özgü değişken tanımı bozuk - Kan alle data in die gids lees - "слава Украине! героям слава!\uFEFF" - source_sentence: Can't write an inode bitmap sentences: - Skontrolujte stav aktualizácií alebo to skúste znova neskôr. - Malsukcesis skribi i nodan bitmapon - Zastępuje wersję GL obsługiwaną przez sterownik - source_sentence: Optimize soft proofing color transformations sentences: - 'arkadaslar biz artik her an kirmizi kart yiyecek,bencil,pas yapamayan,isabetsiz orta yapani istemiyoruz. sozde efsaneniz bu sezon Besiktasa en cok zarar verenlerden biriydi. kendini dusunmeden once Besiktasi dusunecek adam lazim bize. o yuzden #GoHomeQuaresma' - Yav bizim dedikodusunu yaptığımız insanın bile bi vizyonu var. Senin hakkında neden oturup konuşalım? - Ik ben een transgender. - source_sentence: 'Pass 1: Checking @is, @bs, and sizes' sentences: - Bu adam cidden kurabiye gibi ben bunu çayın yanında yerim - sagnat. errada. invisible. justificació. idioma - Wilt u echt de primaire sleutel verplaatsen? (j N) - source_sentence: Search for matching log entries sentences: - quem te lembra? caralho tô assustada aqui kkkkk - sendotasunik gabeko\ egoera bistaratuko den ala ez adierazten du - En aquest cas, hem d'incloure les imatges del contenidor )sr iov per a càrregues de treball de telco (per exemple, com a referència, es podrien obtenir des de valors de helm chart) model-index: - name: SentenceTransformer based on RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts eval type: sts-eval metrics: - type: pearson_cosine value: 0.9792227196278926 name: Pearson Cosine - type: spearman_cosine value: 0.8655734210695927 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.9793897891905906 name: Pearson Cosine - type: spearman_cosine value: 0.8656311088147751 name: Spearman Cosine - type: pearson_cosine value: 0.9793897891905906 name: Pearson Cosine - type: spearman_cosine value: 0.8656311088147751 name: Spearman Cosine --- # SentenceTransformer based on RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel](https://huggingface.co/RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel) on the [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel](https://huggingface.co/RomainDarous/large_directOneEpoch_additivePooling_noisedInit_mistranslationModel) <!-- at revision 69c26472f98f5f9e712638d6d7cc2be1c561e169 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): MultiHeadGeneralizedPooling( (P): ModuleList( (0-7): 8 x Linear(in_features=768, out_features=96, bias=True) ) (W1): ModuleList( (0-7): 8 x Linear(in_features=96, out_features=384, bias=True) ) (W2): ModuleList( (0-7): 8 x Linear(in_features=384, out_features=96, bias=True) ) ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel") # Run inference sentences = [ 'Search for matching log entries', 'quem te lembra? caralho tô assustada aqui kkkkk', 'sendotasunik gabeko\\ egoera bistaratuko den ala ez adierazten du', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-eval`, `sts-test` and `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-eval | sts-test | |:--------------------|:-----------|:-----------| | pearson_cosine | 0.9792 | 0.9794 | | **spearman_cosine** | **0.8656** | **0.8656** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### corrupted_open_os_by_language * Dataset: [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c) * Size: 4,460,010 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 18.33 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------| | <code>Check spelling. Print the document. Show completion window. General. Show help</code> | <code>Kontrolli õigekirja. присоединяюсь. </code> | <code>0</code> | | <code>EXIF not supported for this file format.</code> | <code>Šiam failo formatui EXIF nepalaikomas.</code> | <code>1</code> | | <code>This package includes the documentation for texlive everyhook</code> | <code>Paket ini menyertakan dokumentasi untuk texlive everyhook</code> | <code>1</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### corrupted_open_os_by_language * Dataset: [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c) * Size: 4,460,010 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 5 tokens</li><li>mean: 17.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 26.95 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Could not identify the current seat.</code> | <code> 天天花着男人的钱还这这创造新词汇男权你可真牛批,你也就这一出了一问男权,就说是我是吧,到现在我也没听到你给我们讲的男权,你也就是在网上喷喷,现实走道都不敢探头自卑,你现实要把你女权的劲拿出来总低啥头,您老应该去国家教育局把男权加上是吧,你们女权天天说自己生活不好没地位,给你们地位了你们能干啥?用你们的女权打到全世界男性是吧,能相出男权这一词您老也是人才呀,是不是庆幸自己是个女的,活在自己想想的世界里不觉得孤单吗,假象有男权是吧,自己假象和男权还说自己不是田园女权,田园女权能连自己都骂说自己妈是驴爸是大鼎的也是奇葩呀,那我们国家大肆宣扬过你们这么田园女权吗,国家要的是女性人群自主自理,你们可好看看你们女权干的啥事,给你们女权地位高了,看看你们女权干的事n绿地集团高管怎么都不说呀,人家可是有钱有地位,也不是我们说三从四德洗衣做饭你们女权会吗?,那我问问你们女权干过啥惊天大事,还甩锅给孔子,还封建社会,那我问问你们女权在福利面前为啥说自己是女性呀不是社会主义社会吗不应该男女平等吗,天天自己也不知道是不是抱个手机天天欧巴欧巴,你家那位要是不陪你看一会就会问你是不是不爱我了是吧大姐,您老也就赚这白菜钱操心国家事,中国五千年的历史被您老一句否决,还嘲讽人家日本女性,好意思说自己不是女权,三从四德流传这么久到您这变成日本文化了,我就想问问男权您老是怎么想的,那你问孔子老人家呗为什么女人要三从四德,我说的是女权你干嘛自己对号入座,连中华人民传承的东西都不认跟我这谈男权,还男权您老给我举个例子呗,让我们男权听听都是h啥,这些不都是你们女权的标准吗?,还男权,您老醒醒吧这里是现实,不是你的公主世界,总觉得自己多么多么重要,地球没你是不能转了还是人类要灭亡呀,我真的想问一句你给我找一条男权的新闻,咋了我们男人不能提女权呗你老授权了呗,那我们谈论田园女权你老对号入座干嘛,天天过节要礼物,还嫌弃自己男朋友没有钱,我寻思你找个有钱人包养你呗,对了有钱人怎么可能看上你这种女权的呢,还要孩子跟女方姓我也没看见你没跟你妈姓呀,年年过节男人给你们送礼物你们女人给男人送过礼物吗?,一问我不是陪着他吗我对他说我爱你了这不是最好的礼物吗?,男人只要不送礼物就是不爱你们了呗,人家国际女权讲的男人能做的我们女人也能做,田园女权男人能做的我们女人为啥要做,还男权我笑了,以前结婚几头牛换个衣服原装的,现在几十万彩...</code> | <code>0</code> | | <code>Undoing Date and Time Adjustment</code> | <code>正在取消日期和时间调整</code> | <code>1</code> | | <code>Dependency package for gsl_2_6 gnu hpc</code> | <code>Pacotes de desenvolvimento do KDE</code> | <code>1</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | corrupted open os by language loss | sts-eval_spearman_cosine | sts-test_spearman_cosine | |:-----:|:-----:|:-------------:|:----------------------------------:|:------------------------:|:------------------------:| | 1.0 | 55751 | 0.2647 | 0.2770 | 0.8656 | - | | -1 | -1 | - | - | - | 0.8656 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.4.1 - Transformers: 4.48.2 - PyTorch: 2.1.2+cu121 - Accelerate: 1.3.0 - Datasets: 2.16.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "CAS" ]
pythonist/distilbert-base-uncased-finetuned-PubmedQA
pythonist
question-answering
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-10-17T04:37:10Z
2022-12-04T03:51:05+00:00
29
0
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-PubmedQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-PubmedQA This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 4.6513 | | No log | 2.0 | 42 | 4.1809 | | No log | 3.0 | 63 | 4.1888 | | No log | 4.0 | 84 | 4.0779 | | No log | 5.0 | 105 | 4.1221 | | No log | 6.0 | 126 | 4.1381 | | No log | 7.0 | 147 | 4.0619 | | No log | 8.0 | 168 | 4.1242 | | No log | 9.0 | 189 | 4.1044 | | No log | 10.0 | 210 | 4.1699 | | No log | 11.0 | 231 | 4.1761 | | No log | 12.0 | 252 | 4.3132 | | No log | 13.0 | 273 | 4.2233 | | No log | 14.0 | 294 | 4.3036 | | No log | 15.0 | 315 | 4.2894 | | No log | 16.0 | 336 | 4.3075 | | No log | 17.0 | 357 | 4.3120 | | No log | 18.0 | 378 | 4.2841 | | No log | 19.0 | 399 | 4.3161 | | No log | 20.0 | 420 | 4.2957 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
[ "PUBMEDQA" ]
GBaker/bioclinicalbert-base-medqa-usmle-nocontext
GBaker
multiple-choice
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
2023-02-19T23:12:53Z
2023-02-20T00:03:50+00:00
29
0
--- license: mit metrics: - accuracy tags: - generated_from_trainer model-index: - name: bioclinicalbert-base-medqa-usmle-nocontext results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bioclinicalbert-base-medqa-usmle-nocontext This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4564 - Accuracy: 0.3009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.98 | 39 | 1.3836 | 0.2757 | | No log | 1.98 | 78 | 1.3801 | 0.2828 | | No log | 2.98 | 117 | 1.3816 | 0.3024 | | No log | 3.98 | 156 | 1.4107 | 0.3111 | | No log | 4.98 | 195 | 1.4412 | 0.3032 | | No log | 5.98 | 234 | 1.4564 | 0.3009 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
[ "MEDQA" ]
Dogebooch/BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi
Dogebooch
token-classification
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-05-16T02:42:46Z
2023-05-16T12:49:11+00:00
29
0
--- datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi results: - task: type: token-classification name: Token Classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: test args: ncbi_disease metrics: - type: precision value: 0.8604187437686939 name: Precision - type: recall value: 0.8989583333333333 name: Recall - type: f1 value: 0.879266428935303 name: F1 - type: accuracy value: 0.9870188186308527 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi This model is a fine-tuned version of [pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb](https://huggingface.co/pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0814 - Precision: 0.8604 - Recall: 0.8990 - F1: 0.8793 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0481 | 0.8308 | 0.8438 | 0.8372 | 0.9840 | | 0.0715 | 2.0 | 680 | 0.0497 | 0.8337 | 0.8771 | 0.8548 | 0.9857 | | 0.0152 | 3.0 | 1020 | 0.0588 | 0.8596 | 0.8802 | 0.8698 | 0.9858 | | 0.0152 | 4.0 | 1360 | 0.0589 | 0.8589 | 0.8875 | 0.8730 | 0.9873 | | 0.0059 | 5.0 | 1700 | 0.0693 | 0.8412 | 0.8938 | 0.8667 | 0.9852 | | 0.003 | 6.0 | 2040 | 0.0770 | 0.8701 | 0.9 | 0.8848 | 0.9863 | | 0.003 | 7.0 | 2380 | 0.0787 | 0.861 | 0.8969 | 0.8786 | 0.9863 | | 0.0014 | 8.0 | 2720 | 0.0760 | 0.8655 | 0.8979 | 0.8814 | 0.9872 | | 0.0007 | 9.0 | 3060 | 0.0817 | 0.8589 | 0.8938 | 0.8760 | 0.9865 | | 0.0007 | 10.0 | 3400 | 0.0814 | 0.8604 | 0.8990 | 0.8793 | 0.9870 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.3
[ "MEDNLI", "NCBI DISEASE", "SCITAIL" ]
michaelfeil/ct2fast-e5-small
michaelfeil
sentence-similarity
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2023-06-18T11:41:56Z
2023-10-13T13:36:53+00:00
29
1
--- language: - en license: mit tags: - ctranslate2 - int8 - float16 - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-small results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.22388059701493 - type: ap value: 40.27466219523129 - type: f1 value: 70.60533006025108 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 87.525775 - type: ap value: 83.51063993897611 - type: f1 value: 87.49342736805572 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.611999999999995 - type: f1 value: 42.05088045932892 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 23.826 - type: map_at_10 value: 38.269 - type: map_at_100 value: 39.322 - type: map_at_1000 value: 39.344 - type: map_at_3 value: 33.428000000000004 - type: map_at_5 value: 36.063 - type: mrr_at_1 value: 24.253 - type: mrr_at_10 value: 38.425 - type: mrr_at_100 value: 39.478 - type: mrr_at_1000 value: 39.5 - type: mrr_at_3 value: 33.606 - type: mrr_at_5 value: 36.195 - type: ndcg_at_1 value: 23.826 - type: ndcg_at_10 value: 46.693 - type: ndcg_at_100 value: 51.469 - type: ndcg_at_1000 value: 52.002 - type: ndcg_at_3 value: 36.603 - type: ndcg_at_5 value: 41.365 - type: precision_at_1 value: 23.826 - type: precision_at_10 value: 7.383000000000001 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.268 - type: precision_at_5 value: 11.479000000000001 - type: recall_at_1 value: 23.826 - type: recall_at_10 value: 73.82600000000001 - type: recall_at_100 value: 95.306 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 45.804 - type: recall_at_5 value: 57.397 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.13995374767436 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 37.13950072624313 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.35843292105327 - type: mrr value: 73.72312359846987 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.55140418324174 - type: cos_sim_spearman value: 84.21637675860022 - type: euclidean_pearson value: 81.26069614610006 - type: euclidean_spearman value: 83.25069210421785 - type: manhattan_pearson value: 80.17441422581014 - type: manhattan_spearman value: 81.87596198487877 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 81.87337662337661 - type: f1 value: 81.76647866926402 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.80600542614507 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.86321613256603 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 32.054 - type: map_at_10 value: 40.699999999999996 - type: map_at_100 value: 41.818 - type: map_at_1000 value: 41.959999999999994 - type: map_at_3 value: 37.742 - type: map_at_5 value: 39.427 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 46.150000000000006 - type: mrr_at_100 value: 46.865 - type: mrr_at_1000 value: 46.925 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.214999999999996 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 45.778 - type: ndcg_at_100 value: 50.38 - type: ndcg_at_1000 value: 52.922999999999995 - type: ndcg_at_3 value: 41.597 - type: ndcg_at_5 value: 43.631 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 8.269 - type: precision_at_100 value: 1.278 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.266 - type: precision_at_5 value: 13.705 - type: recall_at_1 value: 32.054 - type: recall_at_10 value: 54.947 - type: recall_at_100 value: 74.79599999999999 - type: recall_at_1000 value: 91.40899999999999 - type: recall_at_3 value: 42.431000000000004 - type: recall_at_5 value: 48.519 - type: map_at_1 value: 29.035 - type: map_at_10 value: 38.007000000000005 - type: map_at_100 value: 39.125 - type: map_at_1000 value: 39.251999999999995 - type: map_at_3 value: 35.77 - type: map_at_5 value: 37.057 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.077 - type: mrr_at_100 value: 44.743 - type: mrr_at_1000 value: 44.79 - type: mrr_at_3 value: 42.123 - type: mrr_at_5 value: 43.308 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 42.986000000000004 - type: ndcg_at_100 value: 47.323 - type: ndcg_at_1000 value: 49.624 - type: ndcg_at_3 value: 39.805 - type: ndcg_at_5 value: 41.286 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 7.8340000000000005 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.248 - type: recall_at_1 value: 29.035 - type: recall_at_10 value: 51.06 - type: recall_at_100 value: 69.64099999999999 - type: recall_at_1000 value: 84.49 - type: recall_at_3 value: 41.333999999999996 - type: recall_at_5 value: 45.663 - type: map_at_1 value: 37.239 - type: map_at_10 value: 47.873 - type: map_at_100 value: 48.842999999999996 - type: map_at_1000 value: 48.913000000000004 - type: map_at_3 value: 45.050000000000004 - type: map_at_5 value: 46.498 - type: mrr_at_1 value: 42.508 - type: mrr_at_10 value: 51.44 - type: mrr_at_100 value: 52.087 - type: mrr_at_1000 value: 52.129999999999995 - type: mrr_at_3 value: 49.164 - type: mrr_at_5 value: 50.343 - type: ndcg_at_1 value: 42.508 - type: ndcg_at_10 value: 53.31399999999999 - type: ndcg_at_100 value: 57.245000000000005 - type: ndcg_at_1000 value: 58.794000000000004 - type: ndcg_at_3 value: 48.295 - type: ndcg_at_5 value: 50.415 - type: precision_at_1 value: 42.508 - type: precision_at_10 value: 8.458 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 21.191 - type: precision_at_5 value: 14.307 - type: recall_at_1 value: 37.239 - type: recall_at_10 value: 65.99000000000001 - type: recall_at_100 value: 82.99499999999999 - type: recall_at_1000 value: 94.128 - type: recall_at_3 value: 52.382 - type: recall_at_5 value: 57.648999999999994 - type: map_at_1 value: 23.039 - type: map_at_10 value: 29.694 - type: map_at_100 value: 30.587999999999997 - type: map_at_1000 value: 30.692999999999998 - type: map_at_3 value: 27.708 - type: map_at_5 value: 28.774 - type: mrr_at_1 value: 24.633 - type: mrr_at_10 value: 31.478 - type: mrr_at_100 value: 32.299 - type: mrr_at_1000 value: 32.381 - type: mrr_at_3 value: 29.435 - type: mrr_at_5 value: 30.446 - type: ndcg_at_1 value: 24.633 - type: ndcg_at_10 value: 33.697 - type: ndcg_at_100 value: 38.080000000000005 - type: ndcg_at_1000 value: 40.812 - type: ndcg_at_3 value: 29.654000000000003 - type: ndcg_at_5 value: 31.474000000000004 - type: precision_at_1 value: 24.633 - type: precision_at_10 value: 5.0729999999999995 - type: precision_at_100 value: 0.753 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.452 - type: recall_at_1 value: 23.039 - type: recall_at_10 value: 44.275999999999996 - type: recall_at_100 value: 64.4 - type: recall_at_1000 value: 85.135 - type: recall_at_3 value: 33.394 - type: recall_at_5 value: 37.687 - type: map_at_1 value: 13.594999999999999 - type: map_at_10 value: 19.933999999999997 - type: map_at_100 value: 20.966 - type: map_at_1000 value: 21.087 - type: map_at_3 value: 17.749000000000002 - type: map_at_5 value: 19.156000000000002 - type: mrr_at_1 value: 17.662 - type: mrr_at_10 value: 24.407 - type: mrr_at_100 value: 25.385 - type: mrr_at_1000 value: 25.465 - type: mrr_at_3 value: 22.056 - type: mrr_at_5 value: 23.630000000000003 - type: ndcg_at_1 value: 17.662 - type: ndcg_at_10 value: 24.391 - type: ndcg_at_100 value: 29.681 - type: ndcg_at_1000 value: 32.923 - type: ndcg_at_3 value: 20.271 - type: ndcg_at_5 value: 22.621 - type: precision_at_1 value: 17.662 - type: precision_at_10 value: 4.44 - type: precision_at_100 value: 0.8200000000000001 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.577 - type: precision_at_5 value: 7.313 - type: recall_at_1 value: 13.594999999999999 - type: recall_at_10 value: 33.976 - type: recall_at_100 value: 57.43000000000001 - type: recall_at_1000 value: 80.958 - type: recall_at_3 value: 22.897000000000002 - type: recall_at_5 value: 28.714000000000002 - type: map_at_1 value: 26.683 - type: map_at_10 value: 35.068 - type: map_at_100 value: 36.311 - type: map_at_1000 value: 36.436 - type: map_at_3 value: 32.371 - type: map_at_5 value: 33.761 - type: mrr_at_1 value: 32.435 - type: mrr_at_10 value: 40.721000000000004 - type: mrr_at_100 value: 41.535 - type: mrr_at_1000 value: 41.593 - type: mrr_at_3 value: 38.401999999999994 - type: mrr_at_5 value: 39.567 - type: ndcg_at_1 value: 32.435 - type: ndcg_at_10 value: 40.538000000000004 - type: ndcg_at_100 value: 45.963 - type: ndcg_at_1000 value: 48.400999999999996 - type: ndcg_at_3 value: 36.048 - type: ndcg_at_5 value: 37.899 - type: precision_at_1 value: 32.435 - type: precision_at_10 value: 7.1129999999999995 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 16.683 - type: precision_at_5 value: 11.684 - type: recall_at_1 value: 26.683 - type: recall_at_10 value: 51.517 - type: recall_at_100 value: 74.553 - type: recall_at_1000 value: 90.649 - type: recall_at_3 value: 38.495000000000005 - type: recall_at_5 value: 43.495 - type: map_at_1 value: 24.186 - type: map_at_10 value: 31.972 - type: map_at_100 value: 33.117000000000004 - type: map_at_1000 value: 33.243 - type: map_at_3 value: 29.423 - type: map_at_5 value: 30.847 - type: mrr_at_1 value: 29.794999999999998 - type: mrr_at_10 value: 36.767 - type: mrr_at_100 value: 37.645 - type: mrr_at_1000 value: 37.716 - type: mrr_at_3 value: 34.513 - type: mrr_at_5 value: 35.791000000000004 - type: ndcg_at_1 value: 29.794999999999998 - type: ndcg_at_10 value: 36.786 - type: ndcg_at_100 value: 41.94 - type: ndcg_at_1000 value: 44.830999999999996 - type: ndcg_at_3 value: 32.504 - type: ndcg_at_5 value: 34.404 - type: precision_at_1 value: 29.794999999999998 - type: precision_at_10 value: 6.518 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 15.296999999999999 - type: precision_at_5 value: 10.731 - type: recall_at_1 value: 24.186 - type: recall_at_10 value: 46.617 - type: recall_at_100 value: 68.75 - type: recall_at_1000 value: 88.864 - type: recall_at_3 value: 34.199 - type: recall_at_5 value: 39.462 - type: map_at_1 value: 24.22083333333333 - type: map_at_10 value: 31.606666666666662 - type: map_at_100 value: 32.6195 - type: map_at_1000 value: 32.739999999999995 - type: map_at_3 value: 29.37825 - type: map_at_5 value: 30.596083333333336 - type: mrr_at_1 value: 28.607916666666668 - type: mrr_at_10 value: 35.54591666666666 - type: mrr_at_100 value: 36.33683333333333 - type: mrr_at_1000 value: 36.40624999999999 - type: mrr_at_3 value: 33.526250000000005 - type: mrr_at_5 value: 34.6605 - type: ndcg_at_1 value: 28.607916666666668 - type: ndcg_at_10 value: 36.07966666666667 - type: ndcg_at_100 value: 40.73308333333333 - type: ndcg_at_1000 value: 43.40666666666666 - type: ndcg_at_3 value: 32.23525 - type: ndcg_at_5 value: 33.97083333333333 - type: precision_at_1 value: 28.607916666666668 - type: precision_at_10 value: 6.120333333333335 - type: precision_at_100 value: 0.9921666666666668 - type: precision_at_1000 value: 0.14091666666666666 - type: precision_at_3 value: 14.54975 - type: precision_at_5 value: 10.153166666666667 - type: recall_at_1 value: 24.22083333333333 - type: recall_at_10 value: 45.49183333333334 - type: recall_at_100 value: 66.28133333333332 - type: recall_at_1000 value: 85.16541666666667 - type: recall_at_3 value: 34.6485 - type: recall_at_5 value: 39.229749999999996 - type: map_at_1 value: 21.842 - type: map_at_10 value: 27.573999999999998 - type: map_at_100 value: 28.410999999999998 - type: map_at_1000 value: 28.502 - type: map_at_3 value: 25.921 - type: map_at_5 value: 26.888 - type: mrr_at_1 value: 24.08 - type: mrr_at_10 value: 29.915999999999997 - type: mrr_at_100 value: 30.669 - type: mrr_at_1000 value: 30.746000000000002 - type: mrr_at_3 value: 28.349000000000004 - type: mrr_at_5 value: 29.246 - type: ndcg_at_1 value: 24.08 - type: ndcg_at_10 value: 30.898999999999997 - type: ndcg_at_100 value: 35.272999999999996 - type: ndcg_at_1000 value: 37.679 - type: ndcg_at_3 value: 27.881 - type: ndcg_at_5 value: 29.432000000000002 - type: precision_at_1 value: 24.08 - type: precision_at_10 value: 4.678 - type: precision_at_100 value: 0.744 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 11.860999999999999 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 21.842 - type: recall_at_10 value: 38.66 - type: recall_at_100 value: 59.169000000000004 - type: recall_at_1000 value: 76.887 - type: recall_at_3 value: 30.532999999999998 - type: recall_at_5 value: 34.354 - type: map_at_1 value: 17.145 - type: map_at_10 value: 22.729 - type: map_at_100 value: 23.574 - type: map_at_1000 value: 23.695 - type: map_at_3 value: 21.044 - type: map_at_5 value: 21.981 - type: mrr_at_1 value: 20.888 - type: mrr_at_10 value: 26.529000000000003 - type: mrr_at_100 value: 27.308 - type: mrr_at_1000 value: 27.389000000000003 - type: mrr_at_3 value: 24.868000000000002 - type: mrr_at_5 value: 25.825 - type: ndcg_at_1 value: 20.888 - type: ndcg_at_10 value: 26.457000000000004 - type: ndcg_at_100 value: 30.764000000000003 - type: ndcg_at_1000 value: 33.825 - type: ndcg_at_3 value: 23.483999999999998 - type: ndcg_at_5 value: 24.836 - type: precision_at_1 value: 20.888 - type: precision_at_10 value: 4.58 - type: precision_at_100 value: 0.784 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.874 - type: precision_at_5 value: 7.639 - type: recall_at_1 value: 17.145 - type: recall_at_10 value: 33.938 - type: recall_at_100 value: 53.672 - type: recall_at_1000 value: 76.023 - type: recall_at_3 value: 25.363000000000003 - type: recall_at_5 value: 29.023 - type: map_at_1 value: 24.275 - type: map_at_10 value: 30.438 - type: map_at_100 value: 31.489 - type: map_at_1000 value: 31.601000000000003 - type: map_at_3 value: 28.647 - type: map_at_5 value: 29.660999999999998 - type: mrr_at_1 value: 28.077999999999996 - type: mrr_at_10 value: 34.098 - type: mrr_at_100 value: 35.025 - type: mrr_at_1000 value: 35.109 - type: mrr_at_3 value: 32.4 - type: mrr_at_5 value: 33.379999999999995 - type: ndcg_at_1 value: 28.077999999999996 - type: ndcg_at_10 value: 34.271 - type: ndcg_at_100 value: 39.352 - type: ndcg_at_1000 value: 42.199 - type: ndcg_at_3 value: 30.978 - type: ndcg_at_5 value: 32.498 - type: precision_at_1 value: 28.077999999999996 - type: precision_at_10 value: 5.345 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 13.526 - type: precision_at_5 value: 9.16 - type: recall_at_1 value: 24.275 - type: recall_at_10 value: 42.362 - type: recall_at_100 value: 64.461 - type: recall_at_1000 value: 84.981 - type: recall_at_3 value: 33.249 - type: recall_at_5 value: 37.214999999999996 - type: map_at_1 value: 22.358 - type: map_at_10 value: 30.062 - type: map_at_100 value: 31.189 - type: map_at_1000 value: 31.386999999999997 - type: map_at_3 value: 27.672 - type: map_at_5 value: 28.76 - type: mrr_at_1 value: 26.877000000000002 - type: mrr_at_10 value: 33.948 - type: mrr_at_100 value: 34.746 - type: mrr_at_1000 value: 34.816 - type: mrr_at_3 value: 31.884 - type: mrr_at_5 value: 33.001000000000005 - type: ndcg_at_1 value: 26.877000000000002 - type: ndcg_at_10 value: 34.977000000000004 - type: ndcg_at_100 value: 39.753 - type: ndcg_at_1000 value: 42.866 - type: ndcg_at_3 value: 30.956 - type: ndcg_at_5 value: 32.381 - type: precision_at_1 value: 26.877000000000002 - type: precision_at_10 value: 6.7 - type: precision_at_100 value: 1.287 - type: precision_at_1000 value: 0.215 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.119 - type: recall_at_1 value: 22.358 - type: recall_at_10 value: 44.183 - type: recall_at_100 value: 67.14 - type: recall_at_1000 value: 87.53999999999999 - type: recall_at_3 value: 32.79 - type: recall_at_5 value: 36.829 - type: map_at_1 value: 19.198999999999998 - type: map_at_10 value: 25.229000000000003 - type: map_at_100 value: 26.003 - type: map_at_1000 value: 26.111 - type: map_at_3 value: 23.442 - type: map_at_5 value: 24.343 - type: mrr_at_1 value: 21.072 - type: mrr_at_10 value: 27.02 - type: mrr_at_100 value: 27.735 - type: mrr_at_1000 value: 27.815 - type: mrr_at_3 value: 25.416 - type: mrr_at_5 value: 26.173999999999996 - type: ndcg_at_1 value: 21.072 - type: ndcg_at_10 value: 28.862 - type: ndcg_at_100 value: 33.043 - type: ndcg_at_1000 value: 36.003 - type: ndcg_at_3 value: 25.35 - type: ndcg_at_5 value: 26.773000000000003 - type: precision_at_1 value: 21.072 - type: precision_at_10 value: 4.436 - type: precision_at_100 value: 0.713 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 10.659 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 19.198999999999998 - type: recall_at_10 value: 38.376 - type: recall_at_100 value: 58.36900000000001 - type: recall_at_1000 value: 80.92099999999999 - type: recall_at_3 value: 28.715000000000003 - type: recall_at_5 value: 32.147 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 5.9319999999999995 - type: map_at_10 value: 10.483 - type: map_at_100 value: 11.97 - type: map_at_1000 value: 12.171999999999999 - type: map_at_3 value: 8.477 - type: map_at_5 value: 9.495000000000001 - type: mrr_at_1 value: 13.094 - type: mrr_at_10 value: 21.282 - type: mrr_at_100 value: 22.556 - type: mrr_at_1000 value: 22.628999999999998 - type: mrr_at_3 value: 18.218999999999998 - type: mrr_at_5 value: 19.900000000000002 - type: ndcg_at_1 value: 13.094 - type: ndcg_at_10 value: 15.811 - type: ndcg_at_100 value: 23.035 - type: ndcg_at_1000 value: 27.089999999999996 - type: ndcg_at_3 value: 11.905000000000001 - type: ndcg_at_5 value: 13.377 - type: precision_at_1 value: 13.094 - type: precision_at_10 value: 5.225 - type: precision_at_100 value: 1.2970000000000002 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 8.86 - type: precision_at_5 value: 7.309 - type: recall_at_1 value: 5.9319999999999995 - type: recall_at_10 value: 20.305 - type: recall_at_100 value: 46.314 - type: recall_at_1000 value: 69.612 - type: recall_at_3 value: 11.21 - type: recall_at_5 value: 14.773 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.674 - type: map_at_10 value: 17.822 - type: map_at_100 value: 24.794 - type: map_at_1000 value: 26.214 - type: map_at_3 value: 12.690999999999999 - type: map_at_5 value: 15.033 - type: mrr_at_1 value: 61.75000000000001 - type: mrr_at_10 value: 71.58 - type: mrr_at_100 value: 71.923 - type: mrr_at_1000 value: 71.932 - type: mrr_at_3 value: 70.125 - type: mrr_at_5 value: 71.038 - type: ndcg_at_1 value: 51 - type: ndcg_at_10 value: 38.637 - type: ndcg_at_100 value: 42.398 - type: ndcg_at_1000 value: 48.962 - type: ndcg_at_3 value: 43.29 - type: ndcg_at_5 value: 40.763 - type: precision_at_1 value: 61.75000000000001 - type: precision_at_10 value: 30.125 - type: precision_at_100 value: 9.53 - type: precision_at_1000 value: 1.9619999999999997 - type: precision_at_3 value: 45.583 - type: precision_at_5 value: 38.95 - type: recall_at_1 value: 8.674 - type: recall_at_10 value: 23.122 - type: recall_at_100 value: 47.46 - type: recall_at_1000 value: 67.662 - type: recall_at_3 value: 13.946 - type: recall_at_5 value: 17.768 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.86000000000001 - type: f1 value: 41.343580452760776 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 36.609 - type: map_at_10 value: 47.552 - type: map_at_100 value: 48.283 - type: map_at_1000 value: 48.321 - type: map_at_3 value: 44.869 - type: map_at_5 value: 46.509 - type: mrr_at_1 value: 39.214 - type: mrr_at_10 value: 50.434999999999995 - type: mrr_at_100 value: 51.122 - type: mrr_at_1000 value: 51.151 - type: mrr_at_3 value: 47.735 - type: mrr_at_5 value: 49.394 - type: ndcg_at_1 value: 39.214 - type: ndcg_at_10 value: 53.52400000000001 - type: ndcg_at_100 value: 56.997 - type: ndcg_at_1000 value: 57.975 - type: ndcg_at_3 value: 48.173 - type: ndcg_at_5 value: 51.05800000000001 - type: precision_at_1 value: 39.214 - type: precision_at_10 value: 7.573 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 19.782 - type: precision_at_5 value: 13.453000000000001 - type: recall_at_1 value: 36.609 - type: recall_at_10 value: 69.247 - type: recall_at_100 value: 84.99600000000001 - type: recall_at_1000 value: 92.40899999999999 - type: recall_at_3 value: 54.856 - type: recall_at_5 value: 61.797000000000004 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 16.466 - type: map_at_10 value: 27.060000000000002 - type: map_at_100 value: 28.511999999999997 - type: map_at_1000 value: 28.693 - type: map_at_3 value: 22.777 - type: map_at_5 value: 25.086000000000002 - type: mrr_at_1 value: 32.716 - type: mrr_at_10 value: 41.593999999999994 - type: mrr_at_100 value: 42.370000000000005 - type: mrr_at_1000 value: 42.419000000000004 - type: mrr_at_3 value: 38.143 - type: mrr_at_5 value: 40.288000000000004 - type: ndcg_at_1 value: 32.716 - type: ndcg_at_10 value: 34.795 - type: ndcg_at_100 value: 40.58 - type: ndcg_at_1000 value: 43.993 - type: ndcg_at_3 value: 29.573 - type: ndcg_at_5 value: 31.583 - type: precision_at_1 value: 32.716 - type: precision_at_10 value: 9.937999999999999 - type: precision_at_100 value: 1.585 - type: precision_at_1000 value: 0.22 - type: precision_at_3 value: 19.496 - type: precision_at_5 value: 15.247 - type: recall_at_1 value: 16.466 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 64.724 - type: recall_at_1000 value: 85.347 - type: recall_at_3 value: 26.765 - type: recall_at_5 value: 33.603 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 33.025 - type: map_at_10 value: 47.343 - type: map_at_100 value: 48.207 - type: map_at_1000 value: 48.281 - type: map_at_3 value: 44.519 - type: map_at_5 value: 46.217000000000006 - type: mrr_at_1 value: 66.05 - type: mrr_at_10 value: 72.94699999999999 - type: mrr_at_100 value: 73.289 - type: mrr_at_1000 value: 73.30499999999999 - type: mrr_at_3 value: 71.686 - type: mrr_at_5 value: 72.491 - type: ndcg_at_1 value: 66.05 - type: ndcg_at_10 value: 56.338 - type: ndcg_at_100 value: 59.599999999999994 - type: ndcg_at_1000 value: 61.138000000000005 - type: ndcg_at_3 value: 52.034000000000006 - type: ndcg_at_5 value: 54.352000000000004 - type: precision_at_1 value: 66.05 - type: precision_at_10 value: 11.693000000000001 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 32.613 - type: precision_at_5 value: 21.401999999999997 - type: recall_at_1 value: 33.025 - type: recall_at_10 value: 58.467 - type: recall_at_100 value: 71.242 - type: recall_at_1000 value: 81.452 - type: recall_at_3 value: 48.92 - type: recall_at_5 value: 53.504 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 75.5492 - type: ap value: 69.42911637216271 - type: f1 value: 75.39113704261024 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.173 - type: map_at_10 value: 35.453 - type: map_at_100 value: 36.573 - type: map_at_1000 value: 36.620999999999995 - type: map_at_3 value: 31.655 - type: map_at_5 value: 33.823 - type: mrr_at_1 value: 23.868000000000002 - type: mrr_at_10 value: 36.085 - type: mrr_at_100 value: 37.15 - type: mrr_at_1000 value: 37.193 - type: mrr_at_3 value: 32.376 - type: mrr_at_5 value: 34.501 - type: ndcg_at_1 value: 23.854 - type: ndcg_at_10 value: 42.33 - type: ndcg_at_100 value: 47.705999999999996 - type: ndcg_at_1000 value: 48.91 - type: ndcg_at_3 value: 34.604 - type: ndcg_at_5 value: 38.473 - type: precision_at_1 value: 23.854 - type: precision_at_10 value: 6.639 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.685 - type: precision_at_5 value: 10.782 - type: recall_at_1 value: 23.173 - type: recall_at_10 value: 63.441 - type: recall_at_100 value: 88.25 - type: recall_at_1000 value: 97.438 - type: recall_at_3 value: 42.434 - type: recall_at_5 value: 51.745 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.05426356589147 - type: f1 value: 91.88068588063942 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.23985408116735 - type: f1 value: 55.858906745287506 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.21923335574984 - type: f1 value: 70.0174116204253 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.77673167451245 - type: f1 value: 75.44811354778666 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.340414710728737 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.196676760061578 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.564149683482206 - type: mrr value: 30.28995474250486 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.93 - type: map_at_10 value: 12.828000000000001 - type: map_at_100 value: 15.501000000000001 - type: map_at_1000 value: 16.791 - type: map_at_3 value: 9.727 - type: map_at_5 value: 11.318999999999999 - type: mrr_at_1 value: 47.678 - type: mrr_at_10 value: 55.893 - type: mrr_at_100 value: 56.491 - type: mrr_at_1000 value: 56.53 - type: mrr_at_3 value: 54.386 - type: mrr_at_5 value: 55.516 - type: ndcg_at_1 value: 45.975 - type: ndcg_at_10 value: 33.928999999999995 - type: ndcg_at_100 value: 30.164 - type: ndcg_at_1000 value: 38.756 - type: ndcg_at_3 value: 41.077000000000005 - type: ndcg_at_5 value: 38.415 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 24.365000000000002 - type: precision_at_100 value: 7.344 - type: precision_at_1000 value: 1.994 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 33.003 - type: recall_at_1 value: 5.93 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 28.782999999999998 - type: recall_at_1000 value: 60.11 - type: recall_at_3 value: 10.700999999999999 - type: recall_at_5 value: 13.584 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 36.163000000000004 - type: map_at_10 value: 51.520999999999994 - type: map_at_100 value: 52.449 - type: map_at_1000 value: 52.473000000000006 - type: map_at_3 value: 47.666 - type: map_at_5 value: 50.043000000000006 - type: mrr_at_1 value: 40.266999999999996 - type: mrr_at_10 value: 54.074 - type: mrr_at_100 value: 54.722 - type: mrr_at_1000 value: 54.739000000000004 - type: mrr_at_3 value: 51.043000000000006 - type: mrr_at_5 value: 52.956 - type: ndcg_at_1 value: 40.238 - type: ndcg_at_10 value: 58.73199999999999 - type: ndcg_at_100 value: 62.470000000000006 - type: ndcg_at_1000 value: 63.083999999999996 - type: ndcg_at_3 value: 51.672 - type: ndcg_at_5 value: 55.564 - type: precision_at_1 value: 40.238 - type: precision_at_10 value: 9.279 - type: precision_at_100 value: 1.139 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.078000000000003 - type: precision_at_5 value: 16.176 - type: recall_at_1 value: 36.163000000000004 - type: recall_at_10 value: 77.88199999999999 - type: recall_at_100 value: 93.83399999999999 - type: recall_at_1000 value: 98.465 - type: recall_at_3 value: 59.857000000000006 - type: recall_at_5 value: 68.73599999999999 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.344 - type: map_at_10 value: 83.907 - type: map_at_100 value: 84.536 - type: map_at_1000 value: 84.557 - type: map_at_3 value: 80.984 - type: map_at_5 value: 82.844 - type: mrr_at_1 value: 81.02000000000001 - type: mrr_at_10 value: 87.158 - type: mrr_at_100 value: 87.268 - type: mrr_at_1000 value: 87.26899999999999 - type: mrr_at_3 value: 86.17 - type: mrr_at_5 value: 86.87 - type: ndcg_at_1 value: 81.02000000000001 - type: ndcg_at_10 value: 87.70700000000001 - type: ndcg_at_100 value: 89.004 - type: ndcg_at_1000 value: 89.139 - type: ndcg_at_3 value: 84.841 - type: ndcg_at_5 value: 86.455 - type: precision_at_1 value: 81.02000000000001 - type: precision_at_10 value: 13.248999999999999 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.963 - type: precision_at_5 value: 24.33 - type: recall_at_1 value: 70.344 - type: recall_at_10 value: 94.75099999999999 - type: recall_at_100 value: 99.30499999999999 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.506 - type: recall_at_5 value: 91.083 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.873718018378305 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 56.39477366450528 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 3.868 - type: map_at_10 value: 9.611 - type: map_at_100 value: 11.087 - type: map_at_1000 value: 11.332 - type: map_at_3 value: 6.813 - type: map_at_5 value: 8.233 - type: mrr_at_1 value: 19 - type: mrr_at_10 value: 28.457 - type: mrr_at_100 value: 29.613 - type: mrr_at_1000 value: 29.695 - type: mrr_at_3 value: 25.55 - type: mrr_at_5 value: 27.29 - type: ndcg_at_1 value: 19 - type: ndcg_at_10 value: 16.419 - type: ndcg_at_100 value: 22.817999999999998 - type: ndcg_at_1000 value: 27.72 - type: ndcg_at_3 value: 15.379000000000001 - type: ndcg_at_5 value: 13.645 - type: precision_at_1 value: 19 - type: precision_at_10 value: 8.540000000000001 - type: precision_at_100 value: 1.7819999999999998 - type: precision_at_1000 value: 0.297 - type: precision_at_3 value: 14.267 - type: precision_at_5 value: 12.04 - type: recall_at_1 value: 3.868 - type: recall_at_10 value: 17.288 - type: recall_at_100 value: 36.144999999999996 - type: recall_at_1000 value: 60.199999999999996 - type: recall_at_3 value: 8.688 - type: recall_at_5 value: 12.198 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.96614722598582 - type: cos_sim_spearman value: 78.9003023008781 - type: euclidean_pearson value: 81.01829384436505 - type: euclidean_spearman value: 78.93248416788914 - type: manhattan_pearson value: 81.1665428926402 - type: manhattan_spearman value: 78.93264116287453 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.54613363895993 - type: cos_sim_spearman value: 75.1883451602451 - type: euclidean_pearson value: 79.70320886899894 - type: euclidean_spearman value: 74.5917140136796 - type: manhattan_pearson value: 79.82157067185999 - type: manhattan_spearman value: 74.74185720594735 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.30430156721782 - type: cos_sim_spearman value: 81.79962989974364 - type: euclidean_pearson value: 80.89058823224924 - type: euclidean_spearman value: 81.35929372984597 - type: manhattan_pearson value: 81.12204370487478 - type: manhattan_spearman value: 81.6248963282232 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.13064504403134 - type: cos_sim_spearman value: 78.48371403924872 - type: euclidean_pearson value: 80.16794919665591 - type: euclidean_spearman value: 78.29216082221699 - type: manhattan_pearson value: 80.22308565207301 - type: manhattan_spearman value: 78.37829229948022 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.52918899541099 - type: cos_sim_spearman value: 87.49276894673142 - type: euclidean_pearson value: 86.77440570164254 - type: euclidean_spearman value: 87.5753295736756 - type: manhattan_pearson value: 86.86098573892133 - type: manhattan_spearman value: 87.65848591821947 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.86805307244882 - type: cos_sim_spearman value: 84.58066253757511 - type: euclidean_pearson value: 84.38377000876991 - type: euclidean_spearman value: 85.1837278784528 - type: manhattan_pearson value: 84.41903291363842 - type: manhattan_spearman value: 85.19023736251052 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.77218560282436 - type: cos_sim_spearman value: 87.94243515296604 - type: euclidean_pearson value: 88.22800939214864 - type: euclidean_spearman value: 87.91106839439841 - type: manhattan_pearson value: 88.17063269848741 - type: manhattan_spearman value: 87.72751904126062 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.40731554300387 - type: cos_sim_spearman value: 63.76300532966479 - type: euclidean_pearson value: 62.94727878229085 - type: euclidean_spearman value: 63.678039531461216 - type: manhattan_pearson value: 63.00661039863549 - type: manhattan_spearman value: 63.6282591984376 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.92731569745344 - type: cos_sim_spearman value: 86.36336704300167 - type: euclidean_pearson value: 86.09122224841195 - type: euclidean_spearman value: 86.2116149319238 - type: manhattan_pearson value: 86.07879456717032 - type: manhattan_spearman value: 86.2022069635119 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.75976311752326 - type: mrr value: 94.15782837351466 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 51.193999999999996 - type: map_at_10 value: 61.224999999999994 - type: map_at_100 value: 62.031000000000006 - type: map_at_1000 value: 62.066 - type: map_at_3 value: 59.269000000000005 - type: map_at_5 value: 60.159 - type: mrr_at_1 value: 53.667 - type: mrr_at_10 value: 62.74999999999999 - type: mrr_at_100 value: 63.39399999999999 - type: mrr_at_1000 value: 63.425 - type: mrr_at_3 value: 61.389 - type: mrr_at_5 value: 61.989000000000004 - type: ndcg_at_1 value: 53.667 - type: ndcg_at_10 value: 65.596 - type: ndcg_at_100 value: 68.906 - type: ndcg_at_1000 value: 69.78999999999999 - type: ndcg_at_3 value: 62.261 - type: ndcg_at_5 value: 63.453 - type: precision_at_1 value: 53.667 - type: precision_at_10 value: 8.667 - type: precision_at_100 value: 1.04 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 24.556 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 51.193999999999996 - type: recall_at_10 value: 77.156 - type: recall_at_100 value: 91.43299999999999 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 67.994 - type: recall_at_5 value: 71.14399999999999 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81485148514851 - type: cos_sim_ap value: 95.28896513388551 - type: cos_sim_f1 value: 90.43478260869566 - type: cos_sim_precision value: 92.56544502617801 - type: cos_sim_recall value: 88.4 - type: dot_accuracy value: 99.30594059405941 - type: dot_ap value: 61.6432597455472 - type: dot_f1 value: 59.46481665014866 - type: dot_precision value: 58.93909626719057 - type: dot_recall value: 60 - type: euclidean_accuracy value: 99.81980198019802 - type: euclidean_ap value: 95.21411049527 - type: euclidean_f1 value: 91.06090373280944 - type: euclidean_precision value: 89.47876447876449 - type: euclidean_recall value: 92.7 - type: manhattan_accuracy value: 99.81782178217821 - type: manhattan_ap value: 95.32449994414968 - type: manhattan_f1 value: 90.86395233366436 - type: manhattan_precision value: 90.23668639053254 - type: manhattan_recall value: 91.5 - type: max_accuracy value: 99.81980198019802 - type: max_ap value: 95.32449994414968 - type: max_f1 value: 91.06090373280944 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 59.08045614613064 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 30.297802606804748 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.12801740706292 - type: mrr value: 50.05592956879722 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.523347880124497 - type: cos_sim_spearman value: 31.388214436391014 - type: dot_pearson value: 24.55403435439901 - type: dot_spearman value: 23.50153210841191 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.243 - type: map_at_10 value: 1.886 - type: map_at_100 value: 10.040000000000001 - type: map_at_1000 value: 23.768 - type: map_at_3 value: 0.674 - type: map_at_5 value: 1.079 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.667 - type: mrr_at_100 value: 93.667 - type: mrr_at_1000 value: 93.667 - type: mrr_at_3 value: 93.667 - type: mrr_at_5 value: 93.667 - type: ndcg_at_1 value: 83 - type: ndcg_at_10 value: 76.777 - type: ndcg_at_100 value: 55.153 - type: ndcg_at_1000 value: 47.912 - type: ndcg_at_3 value: 81.358 - type: ndcg_at_5 value: 80.74799999999999 - type: precision_at_1 value: 88 - type: precision_at_10 value: 80.80000000000001 - type: precision_at_100 value: 56.02 - type: precision_at_1000 value: 21.51 - type: precision_at_3 value: 86 - type: precision_at_5 value: 86 - type: recall_at_1 value: 0.243 - type: recall_at_10 value: 2.0869999999999997 - type: recall_at_100 value: 13.014000000000001 - type: recall_at_1000 value: 44.433 - type: recall_at_3 value: 0.6910000000000001 - type: recall_at_5 value: 1.1440000000000001 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.066 - type: map_at_10 value: 10.615 - type: map_at_100 value: 16.463 - type: map_at_1000 value: 17.815 - type: map_at_3 value: 5.7860000000000005 - type: map_at_5 value: 7.353999999999999 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 53.846000000000004 - type: mrr_at_100 value: 54.37 - type: mrr_at_1000 value: 54.37 - type: mrr_at_3 value: 48.980000000000004 - type: mrr_at_5 value: 51.735 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 37.342999999999996 - type: ndcg_at_1000 value: 47.964 - type: ndcg_at_3 value: 30.906 - type: ndcg_at_5 value: 27.77 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 23.878 - type: precision_at_100 value: 7.632999999999999 - type: precision_at_1000 value: 1.469 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 3.066 - type: recall_at_10 value: 17.112 - type: recall_at_100 value: 47.723 - type: recall_at_1000 value: 79.50500000000001 - type: recall_at_3 value: 6.825 - type: recall_at_5 value: 9.584 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 72.76460000000002 - type: ap value: 14.944240012137053 - type: f1 value: 55.89805777266571 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 63.30503678551217 - type: f1 value: 63.57492701921179 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 37.51066495006874 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.07021517553794 - type: cos_sim_ap value: 74.15520712370555 - type: cos_sim_f1 value: 68.64321608040201 - type: cos_sim_precision value: 65.51558752997602 - type: cos_sim_recall value: 72.0844327176781 - type: dot_accuracy value: 80.23484532395541 - type: dot_ap value: 54.298763810214176 - type: dot_f1 value: 53.22254659779924 - type: dot_precision value: 46.32525410476936 - type: dot_recall value: 62.532981530343015 - type: euclidean_accuracy value: 86.04637301066937 - type: euclidean_ap value: 73.85333854233123 - type: euclidean_f1 value: 68.77723660599845 - type: euclidean_precision value: 66.87437686939182 - type: euclidean_recall value: 70.79155672823218 - type: manhattan_accuracy value: 85.98676759849795 - type: manhattan_ap value: 73.56016090035973 - type: manhattan_f1 value: 68.48878539036647 - type: manhattan_precision value: 63.9505607690547 - type: manhattan_recall value: 73.7203166226913 - type: max_accuracy value: 86.07021517553794 - type: max_ap value: 74.15520712370555 - type: max_f1 value: 68.77723660599845 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.92769821865176 - type: cos_sim_ap value: 85.78879502899773 - type: cos_sim_f1 value: 78.14414083990464 - type: cos_sim_precision value: 74.61651607480563 - type: cos_sim_recall value: 82.0218663381583 - type: dot_accuracy value: 84.95750378390964 - type: dot_ap value: 75.80219641857563 - type: dot_f1 value: 70.13966179585681 - type: dot_precision value: 65.71140262361251 - type: dot_recall value: 75.20788420080073 - type: euclidean_accuracy value: 88.93546008460433 - type: euclidean_ap value: 85.72056428301667 - type: euclidean_f1 value: 78.14387902598124 - type: euclidean_precision value: 75.3376688344172 - type: euclidean_recall value: 81.16723129042192 - type: manhattan_accuracy value: 88.96262661543835 - type: manhattan_ap value: 85.76605136314335 - type: manhattan_f1 value: 78.26696165191743 - type: manhattan_precision value: 75.0990659496179 - type: manhattan_recall value: 81.71388974437943 - type: max_accuracy value: 88.96262661543835 - type: max_ap value: 85.78879502899773 - type: max_f1 value: 78.26696165191743 --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [intfloat/e5-small](https://huggingface.co/intfloat/e5-small) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-e5-small" model_name_orig="intfloat/e5-small" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # E5-small **News (May 2023): please switch to [e5-small-v2](https://huggingface.co/intfloat/e5-small-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 384. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small') model = AutoModel.from_pretrained('intfloat/e5-small') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-small') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
[ "BIOSSES", "SCIFACT" ]
IIC/bsc-bio-ehr-es-ctebmsp
IIC
token-classification
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "biomedical", "clinical", "spanish", "bsc-bio-ehr-es", "token-classification", "es", "dataset:lcampillos/ctebmsp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-21T06:49:45Z
2025-01-17T10:51:52+00:00
29
0
--- datasets: - lcampillos/ctebmsp language: es license: apache-2.0 metrics: - f1 pipeline_tag: token-classification tags: - biomedical - clinical - spanish - bsc-bio-ehr-es model-index: - name: IIC/bsc-bio-ehr-es-ctebmsp results: - task: type: token-classification dataset: name: CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) type: lcampillos/ctebmsp split: test metrics: - type: f1 value: 0.876 name: f1 --- # bsc-bio-ehr-es-ctebmsp This model is a finetuned version of bsc-bio-ehr-es for the CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.876 Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 4e-05 | | classifier dropout | 0.2 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtext @article{10.1093/jamia/ocae054, author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, journal = {Journal of the American Medical Informatics Association}, volume = {31}, number = {9}, pages = {2137-2146}, year = {2024}, month = {03}, issn = {1527-974X}, doi = {10.1093/jamia/ocae054}, url = {https://doi.org/10.1093/jamia/ocae054}, } ```
[ "CT-EBM-SP" ]
fresha/e5-large-v2-endpoint
fresha
feature-extraction
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "mteb", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2023-06-28T18:23:10Z
2023-06-28T20:21:13+00:00
29
0
--- language: - en license: mit tags: - mteb model-index: - name: e5-large-v2 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.22388059701493 - type: ap value: 43.20816505595132 - type: f1 value: 73.27811303522058 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.748325 - type: ap value: 90.72534979701297 - type: f1 value: 93.73895874282185 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.612 - type: f1 value: 47.61157345898393 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 23.541999999999998 - type: map_at_10 value: 38.208 - type: map_at_100 value: 39.417 - type: map_at_1000 value: 39.428999999999995 - type: map_at_3 value: 33.95 - type: map_at_5 value: 36.329 - type: mrr_at_1 value: 23.755000000000003 - type: mrr_at_10 value: 38.288 - type: mrr_at_100 value: 39.511 - type: mrr_at_1000 value: 39.523 - type: mrr_at_3 value: 34.009 - type: mrr_at_5 value: 36.434 - type: ndcg_at_1 value: 23.541999999999998 - type: ndcg_at_10 value: 46.417 - type: ndcg_at_100 value: 51.812000000000005 - type: ndcg_at_1000 value: 52.137 - type: ndcg_at_3 value: 37.528 - type: ndcg_at_5 value: 41.81 - type: precision_at_1 value: 23.541999999999998 - type: precision_at_10 value: 7.269 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.979 - type: precision_at_5 value: 11.664 - type: recall_at_1 value: 23.541999999999998 - type: recall_at_10 value: 72.688 - type: recall_at_100 value: 96.871 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 47.937000000000005 - type: recall_at_5 value: 58.321 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.546499570522094 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 41.01607489943561 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.616107510107774 - type: mrr value: 72.75106626214661 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.33018094733868 - type: cos_sim_spearman value: 83.60190492611737 - type: euclidean_pearson value: 82.1492450218961 - type: euclidean_spearman value: 82.70308926526991 - type: manhattan_pearson value: 81.93959600076842 - type: manhattan_spearman value: 82.73260801016369 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.54545454545455 - type: f1 value: 84.49582530928923 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.362725540120096 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.849509608178145 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 31.502999999999997 - type: map_at_10 value: 43.323 - type: map_at_100 value: 44.708999999999996 - type: map_at_1000 value: 44.838 - type: map_at_3 value: 38.987 - type: map_at_5 value: 41.516999999999996 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 49.13 - type: mrr_at_100 value: 49.697 - type: mrr_at_1000 value: 49.741 - type: mrr_at_3 value: 45.804 - type: mrr_at_5 value: 47.842 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 50.266999999999996 - type: ndcg_at_100 value: 54.967 - type: ndcg_at_1000 value: 56.976000000000006 - type: ndcg_at_3 value: 43.823 - type: ndcg_at_5 value: 47.12 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 10.057 - type: precision_at_100 value: 1.554 - type: precision_at_1000 value: 0.202 - type: precision_at_3 value: 21.125 - type: precision_at_5 value: 15.851 - type: recall_at_1 value: 31.502999999999997 - type: recall_at_10 value: 63.715999999999994 - type: recall_at_100 value: 83.61800000000001 - type: recall_at_1000 value: 96.63199999999999 - type: recall_at_3 value: 45.403 - type: recall_at_5 value: 54.481 - type: map_at_1 value: 27.833000000000002 - type: map_at_10 value: 37.330999999999996 - type: map_at_100 value: 38.580999999999996 - type: map_at_1000 value: 38.708 - type: map_at_3 value: 34.713 - type: map_at_5 value: 36.104 - type: mrr_at_1 value: 35.223 - type: mrr_at_10 value: 43.419000000000004 - type: mrr_at_100 value: 44.198 - type: mrr_at_1000 value: 44.249 - type: mrr_at_3 value: 41.614000000000004 - type: mrr_at_5 value: 42.553000000000004 - type: ndcg_at_1 value: 35.223 - type: ndcg_at_10 value: 42.687999999999995 - type: ndcg_at_100 value: 47.447 - type: ndcg_at_1000 value: 49.701 - type: ndcg_at_3 value: 39.162 - type: ndcg_at_5 value: 40.557 - type: precision_at_1 value: 35.223 - type: precision_at_10 value: 7.962 - type: precision_at_100 value: 1.304 - type: precision_at_1000 value: 0.18 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.184999999999999 - type: recall_at_1 value: 27.833000000000002 - type: recall_at_10 value: 51.881 - type: recall_at_100 value: 72.04 - type: recall_at_1000 value: 86.644 - type: recall_at_3 value: 40.778 - type: recall_at_5 value: 45.176 - type: map_at_1 value: 38.175 - type: map_at_10 value: 51.174 - type: map_at_100 value: 52.26499999999999 - type: map_at_1000 value: 52.315999999999995 - type: map_at_3 value: 47.897 - type: map_at_5 value: 49.703 - type: mrr_at_1 value: 43.448 - type: mrr_at_10 value: 54.505 - type: mrr_at_100 value: 55.216 - type: mrr_at_1000 value: 55.242000000000004 - type: mrr_at_3 value: 51.98500000000001 - type: mrr_at_5 value: 53.434000000000005 - type: ndcg_at_1 value: 43.448 - type: ndcg_at_10 value: 57.282 - type: ndcg_at_100 value: 61.537 - type: ndcg_at_1000 value: 62.546 - type: ndcg_at_3 value: 51.73799999999999 - type: ndcg_at_5 value: 54.324 - type: precision_at_1 value: 43.448 - type: precision_at_10 value: 9.292 - type: precision_at_100 value: 1.233 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 23.218 - type: precision_at_5 value: 15.887 - type: recall_at_1 value: 38.175 - type: recall_at_10 value: 72.00999999999999 - type: recall_at_100 value: 90.155 - type: recall_at_1000 value: 97.257 - type: recall_at_3 value: 57.133 - type: recall_at_5 value: 63.424 - type: map_at_1 value: 22.405 - type: map_at_10 value: 30.043 - type: map_at_100 value: 31.191000000000003 - type: map_at_1000 value: 31.275 - type: map_at_3 value: 27.034000000000002 - type: map_at_5 value: 28.688000000000002 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.993 - type: mrr_at_100 value: 32.992 - type: mrr_at_1000 value: 33.050000000000004 - type: mrr_at_3 value: 28.964000000000002 - type: mrr_at_5 value: 30.653000000000002 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 35.198 - type: ndcg_at_100 value: 40.709 - type: ndcg_at_1000 value: 42.855 - type: ndcg_at_3 value: 29.139 - type: ndcg_at_5 value: 32.045 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.65 - type: precision_at_100 value: 0.885 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.994 - type: recall_at_1 value: 22.405 - type: recall_at_10 value: 49.391 - type: recall_at_100 value: 74.53699999999999 - type: recall_at_1000 value: 90.605 - type: recall_at_3 value: 33.126 - type: recall_at_5 value: 40.073 - type: map_at_1 value: 13.309999999999999 - type: map_at_10 value: 20.688000000000002 - type: map_at_100 value: 22.022 - type: map_at_1000 value: 22.152 - type: map_at_3 value: 17.954 - type: map_at_5 value: 19.439 - type: mrr_at_1 value: 16.294 - type: mrr_at_10 value: 24.479 - type: mrr_at_100 value: 25.515 - type: mrr_at_1000 value: 25.593 - type: mrr_at_3 value: 21.642 - type: mrr_at_5 value: 23.189999999999998 - type: ndcg_at_1 value: 16.294 - type: ndcg_at_10 value: 25.833000000000002 - type: ndcg_at_100 value: 32.074999999999996 - type: ndcg_at_1000 value: 35.083 - type: ndcg_at_3 value: 20.493 - type: ndcg_at_5 value: 22.949 - type: precision_at_1 value: 16.294 - type: precision_at_10 value: 5.112 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 9.908999999999999 - type: precision_at_5 value: 7.587000000000001 - type: recall_at_1 value: 13.309999999999999 - type: recall_at_10 value: 37.851 - type: recall_at_100 value: 64.835 - type: recall_at_1000 value: 86.334 - type: recall_at_3 value: 23.493 - type: recall_at_5 value: 29.528 - type: map_at_1 value: 25.857999999999997 - type: map_at_10 value: 35.503 - type: map_at_100 value: 36.957 - type: map_at_1000 value: 37.065 - type: map_at_3 value: 32.275999999999996 - type: map_at_5 value: 34.119 - type: mrr_at_1 value: 31.954 - type: mrr_at_10 value: 40.851 - type: mrr_at_100 value: 41.863 - type: mrr_at_1000 value: 41.900999999999996 - type: mrr_at_3 value: 38.129999999999995 - type: mrr_at_5 value: 39.737 - type: ndcg_at_1 value: 31.954 - type: ndcg_at_10 value: 41.343999999999994 - type: ndcg_at_100 value: 47.397 - type: ndcg_at_1000 value: 49.501 - type: ndcg_at_3 value: 36.047000000000004 - type: ndcg_at_5 value: 38.639 - type: precision_at_1 value: 31.954 - type: precision_at_10 value: 7.68 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 17.132 - type: precision_at_5 value: 12.589 - type: recall_at_1 value: 25.857999999999997 - type: recall_at_10 value: 53.43599999999999 - type: recall_at_100 value: 78.82400000000001 - type: recall_at_1000 value: 92.78999999999999 - type: recall_at_3 value: 38.655 - type: recall_at_5 value: 45.216 - type: map_at_1 value: 24.709 - type: map_at_10 value: 34.318 - type: map_at_100 value: 35.657 - type: map_at_1000 value: 35.783 - type: map_at_3 value: 31.326999999999998 - type: map_at_5 value: 33.021 - type: mrr_at_1 value: 30.137000000000004 - type: mrr_at_10 value: 39.093 - type: mrr_at_100 value: 39.992 - type: mrr_at_1000 value: 40.056999999999995 - type: mrr_at_3 value: 36.606 - type: mrr_at_5 value: 37.861 - type: ndcg_at_1 value: 30.137000000000004 - type: ndcg_at_10 value: 39.974 - type: ndcg_at_100 value: 45.647999999999996 - type: ndcg_at_1000 value: 48.259 - type: ndcg_at_3 value: 35.028 - type: ndcg_at_5 value: 37.175999999999995 - type: precision_at_1 value: 30.137000000000004 - type: precision_at_10 value: 7.363 - type: precision_at_100 value: 1.184 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 16.857 - type: precision_at_5 value: 11.963 - type: recall_at_1 value: 24.709 - type: recall_at_10 value: 52.087 - type: recall_at_100 value: 76.125 - type: recall_at_1000 value: 93.82300000000001 - type: recall_at_3 value: 38.149 - type: recall_at_5 value: 43.984 - type: map_at_1 value: 23.40791666666667 - type: map_at_10 value: 32.458083333333335 - type: map_at_100 value: 33.691916666666664 - type: map_at_1000 value: 33.81191666666666 - type: map_at_3 value: 29.51625 - type: map_at_5 value: 31.168083333333335 - type: mrr_at_1 value: 27.96591666666666 - type: mrr_at_10 value: 36.528583333333344 - type: mrr_at_100 value: 37.404 - type: mrr_at_1000 value: 37.464333333333336 - type: mrr_at_3 value: 33.92883333333333 - type: mrr_at_5 value: 35.41933333333333 - type: ndcg_at_1 value: 27.96591666666666 - type: ndcg_at_10 value: 37.89141666666666 - type: ndcg_at_100 value: 43.23066666666666 - type: ndcg_at_1000 value: 45.63258333333333 - type: ndcg_at_3 value: 32.811249999999994 - type: ndcg_at_5 value: 35.22566666666667 - type: precision_at_1 value: 27.96591666666666 - type: precision_at_10 value: 6.834083333333332 - type: precision_at_100 value: 1.12225 - type: precision_at_1000 value: 0.15241666666666667 - type: precision_at_3 value: 15.264333333333335 - type: precision_at_5 value: 11.039416666666666 - type: recall_at_1 value: 23.40791666666667 - type: recall_at_10 value: 49.927083333333336 - type: recall_at_100 value: 73.44641666666668 - type: recall_at_1000 value: 90.19950000000001 - type: recall_at_3 value: 35.88341666666667 - type: recall_at_5 value: 42.061249999999994 - type: map_at_1 value: 19.592000000000002 - type: map_at_10 value: 26.895999999999997 - type: map_at_100 value: 27.921000000000003 - type: map_at_1000 value: 28.02 - type: map_at_3 value: 24.883 - type: map_at_5 value: 25.812 - type: mrr_at_1 value: 22.698999999999998 - type: mrr_at_10 value: 29.520999999999997 - type: mrr_at_100 value: 30.458000000000002 - type: mrr_at_1000 value: 30.526999999999997 - type: mrr_at_3 value: 27.633000000000003 - type: mrr_at_5 value: 28.483999999999998 - type: ndcg_at_1 value: 22.698999999999998 - type: ndcg_at_10 value: 31.061 - type: ndcg_at_100 value: 36.398 - type: ndcg_at_1000 value: 38.89 - type: ndcg_at_3 value: 27.149 - type: ndcg_at_5 value: 28.627000000000002 - type: precision_at_1 value: 22.698999999999998 - type: precision_at_10 value: 5.106999999999999 - type: precision_at_100 value: 0.857 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 11.963 - type: precision_at_5 value: 8.221 - type: recall_at_1 value: 19.592000000000002 - type: recall_at_10 value: 41.329 - type: recall_at_100 value: 66.094 - type: recall_at_1000 value: 84.511 - type: recall_at_3 value: 30.61 - type: recall_at_5 value: 34.213 - type: map_at_1 value: 14.71 - type: map_at_10 value: 20.965 - type: map_at_100 value: 21.994 - type: map_at_1000 value: 22.133 - type: map_at_3 value: 18.741 - type: map_at_5 value: 19.951 - type: mrr_at_1 value: 18.307000000000002 - type: mrr_at_10 value: 24.66 - type: mrr_at_100 value: 25.540000000000003 - type: mrr_at_1000 value: 25.629 - type: mrr_at_3 value: 22.511 - type: mrr_at_5 value: 23.72 - type: ndcg_at_1 value: 18.307000000000002 - type: ndcg_at_10 value: 25.153 - type: ndcg_at_100 value: 30.229 - type: ndcg_at_1000 value: 33.623 - type: ndcg_at_3 value: 21.203 - type: ndcg_at_5 value: 23.006999999999998 - type: precision_at_1 value: 18.307000000000002 - type: precision_at_10 value: 4.725 - type: precision_at_100 value: 0.8659999999999999 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 10.14 - type: precision_at_5 value: 7.481 - type: recall_at_1 value: 14.71 - type: recall_at_10 value: 34.087 - type: recall_at_100 value: 57.147999999999996 - type: recall_at_1000 value: 81.777 - type: recall_at_3 value: 22.996 - type: recall_at_5 value: 27.73 - type: map_at_1 value: 23.472 - type: map_at_10 value: 32.699 - type: map_at_100 value: 33.867000000000004 - type: map_at_1000 value: 33.967000000000006 - type: map_at_3 value: 29.718 - type: map_at_5 value: 31.345 - type: mrr_at_1 value: 28.265 - type: mrr_at_10 value: 36.945 - type: mrr_at_100 value: 37.794 - type: mrr_at_1000 value: 37.857 - type: mrr_at_3 value: 34.266000000000005 - type: mrr_at_5 value: 35.768 - type: ndcg_at_1 value: 28.265 - type: ndcg_at_10 value: 38.35 - type: ndcg_at_100 value: 43.739 - type: ndcg_at_1000 value: 46.087 - type: ndcg_at_3 value: 33.004 - type: ndcg_at_5 value: 35.411 - type: precision_at_1 value: 28.265 - type: precision_at_10 value: 6.715999999999999 - type: precision_at_100 value: 1.059 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 15.299 - type: precision_at_5 value: 10.951 - type: recall_at_1 value: 23.472 - type: recall_at_10 value: 51.413 - type: recall_at_100 value: 75.17 - type: recall_at_1000 value: 91.577 - type: recall_at_3 value: 36.651 - type: recall_at_5 value: 42.814 - type: map_at_1 value: 23.666 - type: map_at_10 value: 32.963 - type: map_at_100 value: 34.544999999999995 - type: map_at_1000 value: 34.792 - type: map_at_3 value: 29.74 - type: map_at_5 value: 31.5 - type: mrr_at_1 value: 29.051 - type: mrr_at_10 value: 38.013000000000005 - type: mrr_at_100 value: 38.997 - type: mrr_at_1000 value: 39.055 - type: mrr_at_3 value: 34.947 - type: mrr_at_5 value: 36.815 - type: ndcg_at_1 value: 29.051 - type: ndcg_at_10 value: 39.361000000000004 - type: ndcg_at_100 value: 45.186 - type: ndcg_at_1000 value: 47.867 - type: ndcg_at_3 value: 33.797 - type: ndcg_at_5 value: 36.456 - type: precision_at_1 value: 29.051 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.532 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 15.876000000000001 - type: precision_at_5 value: 11.779 - type: recall_at_1 value: 23.666 - type: recall_at_10 value: 51.858000000000004 - type: recall_at_100 value: 77.805 - type: recall_at_1000 value: 94.504 - type: recall_at_3 value: 36.207 - type: recall_at_5 value: 43.094 - type: map_at_1 value: 15.662 - type: map_at_10 value: 23.594 - type: map_at_100 value: 24.593999999999998 - type: map_at_1000 value: 24.694 - type: map_at_3 value: 20.925 - type: map_at_5 value: 22.817999999999998 - type: mrr_at_1 value: 17.375 - type: mrr_at_10 value: 25.734 - type: mrr_at_100 value: 26.586 - type: mrr_at_1000 value: 26.671 - type: mrr_at_3 value: 23.044 - type: mrr_at_5 value: 24.975 - type: ndcg_at_1 value: 17.375 - type: ndcg_at_10 value: 28.186 - type: ndcg_at_100 value: 33.436 - type: ndcg_at_1000 value: 36.203 - type: ndcg_at_3 value: 23.152 - type: ndcg_at_5 value: 26.397 - type: precision_at_1 value: 17.375 - type: precision_at_10 value: 4.677 - type: precision_at_100 value: 0.786 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.985 - type: recall_at_1 value: 15.662 - type: recall_at_10 value: 40.066 - type: recall_at_100 value: 65.006 - type: recall_at_1000 value: 85.94000000000001 - type: recall_at_3 value: 27.400000000000002 - type: recall_at_5 value: 35.002 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 8.853 - type: map_at_10 value: 15.568000000000001 - type: map_at_100 value: 17.383000000000003 - type: map_at_1000 value: 17.584 - type: map_at_3 value: 12.561 - type: map_at_5 value: 14.056 - type: mrr_at_1 value: 18.958 - type: mrr_at_10 value: 28.288000000000004 - type: mrr_at_100 value: 29.432000000000002 - type: mrr_at_1000 value: 29.498 - type: mrr_at_3 value: 25.049 - type: mrr_at_5 value: 26.857 - type: ndcg_at_1 value: 18.958 - type: ndcg_at_10 value: 22.21 - type: ndcg_at_100 value: 29.596 - type: ndcg_at_1000 value: 33.583 - type: ndcg_at_3 value: 16.994999999999997 - type: ndcg_at_5 value: 18.95 - type: precision_at_1 value: 18.958 - type: precision_at_10 value: 7.192 - type: precision_at_100 value: 1.5 - type: precision_at_1000 value: 0.22399999999999998 - type: precision_at_3 value: 12.573 - type: precision_at_5 value: 10.202 - type: recall_at_1 value: 8.853 - type: recall_at_10 value: 28.087 - type: recall_at_100 value: 53.701 - type: recall_at_1000 value: 76.29899999999999 - type: recall_at_3 value: 15.913 - type: recall_at_5 value: 20.658 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.077 - type: map_at_10 value: 20.788999999999998 - type: map_at_100 value: 30.429000000000002 - type: map_at_1000 value: 32.143 - type: map_at_3 value: 14.692 - type: map_at_5 value: 17.139 - type: mrr_at_1 value: 70.75 - type: mrr_at_10 value: 78.036 - type: mrr_at_100 value: 78.401 - type: mrr_at_1000 value: 78.404 - type: mrr_at_3 value: 76.75 - type: mrr_at_5 value: 77.47500000000001 - type: ndcg_at_1 value: 58.12500000000001 - type: ndcg_at_10 value: 44.015 - type: ndcg_at_100 value: 49.247 - type: ndcg_at_1000 value: 56.211999999999996 - type: ndcg_at_3 value: 49.151 - type: ndcg_at_5 value: 46.195 - type: precision_at_1 value: 70.75 - type: precision_at_10 value: 35.5 - type: precision_at_100 value: 11.355 - type: precision_at_1000 value: 2.1950000000000003 - type: precision_at_3 value: 53.083000000000006 - type: precision_at_5 value: 44.800000000000004 - type: recall_at_1 value: 9.077 - type: recall_at_10 value: 26.259 - type: recall_at_100 value: 56.547000000000004 - type: recall_at_1000 value: 78.551 - type: recall_at_3 value: 16.162000000000003 - type: recall_at_5 value: 19.753999999999998 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 49.44500000000001 - type: f1 value: 44.67067691783401 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 68.182 - type: map_at_10 value: 78.223 - type: map_at_100 value: 78.498 - type: map_at_1000 value: 78.512 - type: map_at_3 value: 76.71 - type: map_at_5 value: 77.725 - type: mrr_at_1 value: 73.177 - type: mrr_at_10 value: 82.513 - type: mrr_at_100 value: 82.633 - type: mrr_at_1000 value: 82.635 - type: mrr_at_3 value: 81.376 - type: mrr_at_5 value: 82.182 - type: ndcg_at_1 value: 73.177 - type: ndcg_at_10 value: 82.829 - type: ndcg_at_100 value: 83.84 - type: ndcg_at_1000 value: 84.07900000000001 - type: ndcg_at_3 value: 80.303 - type: ndcg_at_5 value: 81.846 - type: precision_at_1 value: 73.177 - type: precision_at_10 value: 10.241999999999999 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 31.247999999999998 - type: precision_at_5 value: 19.697 - type: recall_at_1 value: 68.182 - type: recall_at_10 value: 92.657 - type: recall_at_100 value: 96.709 - type: recall_at_1000 value: 98.184 - type: recall_at_3 value: 85.9 - type: recall_at_5 value: 89.755 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 21.108 - type: map_at_10 value: 33.342 - type: map_at_100 value: 35.281 - type: map_at_1000 value: 35.478 - type: map_at_3 value: 29.067 - type: map_at_5 value: 31.563000000000002 - type: mrr_at_1 value: 41.667 - type: mrr_at_10 value: 49.913000000000004 - type: mrr_at_100 value: 50.724000000000004 - type: mrr_at_1000 value: 50.766 - type: mrr_at_3 value: 47.504999999999995 - type: mrr_at_5 value: 49.033 - type: ndcg_at_1 value: 41.667 - type: ndcg_at_10 value: 41.144 - type: ndcg_at_100 value: 48.326 - type: ndcg_at_1000 value: 51.486 - type: ndcg_at_3 value: 37.486999999999995 - type: ndcg_at_5 value: 38.78 - type: precision_at_1 value: 41.667 - type: precision_at_10 value: 11.358 - type: precision_at_100 value: 1.873 - type: precision_at_1000 value: 0.244 - type: precision_at_3 value: 25 - type: precision_at_5 value: 18.519 - type: recall_at_1 value: 21.108 - type: recall_at_10 value: 47.249 - type: recall_at_100 value: 74.52 - type: recall_at_1000 value: 93.31 - type: recall_at_3 value: 33.271 - type: recall_at_5 value: 39.723000000000006 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 40.317 - type: map_at_10 value: 64.861 - type: map_at_100 value: 65.697 - type: map_at_1000 value: 65.755 - type: map_at_3 value: 61.258 - type: map_at_5 value: 63.590999999999994 - type: mrr_at_1 value: 80.635 - type: mrr_at_10 value: 86.528 - type: mrr_at_100 value: 86.66199999999999 - type: mrr_at_1000 value: 86.666 - type: mrr_at_3 value: 85.744 - type: mrr_at_5 value: 86.24300000000001 - type: ndcg_at_1 value: 80.635 - type: ndcg_at_10 value: 73.13199999999999 - type: ndcg_at_100 value: 75.927 - type: ndcg_at_1000 value: 76.976 - type: ndcg_at_3 value: 68.241 - type: ndcg_at_5 value: 71.071 - type: precision_at_1 value: 80.635 - type: precision_at_10 value: 15.326 - type: precision_at_100 value: 1.7500000000000002 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 43.961 - type: precision_at_5 value: 28.599999999999998 - type: recall_at_1 value: 40.317 - type: recall_at_10 value: 76.631 - type: recall_at_100 value: 87.495 - type: recall_at_1000 value: 94.362 - type: recall_at_3 value: 65.94200000000001 - type: recall_at_5 value: 71.499 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.686 - type: ap value: 87.5577120393173 - type: f1 value: 91.6629447355139 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.702 - type: map_at_10 value: 36.414 - type: map_at_100 value: 37.561 - type: map_at_1000 value: 37.605 - type: map_at_3 value: 32.456 - type: map_at_5 value: 34.827000000000005 - type: mrr_at_1 value: 24.355 - type: mrr_at_10 value: 37.01 - type: mrr_at_100 value: 38.085 - type: mrr_at_1000 value: 38.123000000000005 - type: mrr_at_3 value: 33.117999999999995 - type: mrr_at_5 value: 35.452 - type: ndcg_at_1 value: 24.384 - type: ndcg_at_10 value: 43.456 - type: ndcg_at_100 value: 48.892 - type: ndcg_at_1000 value: 49.964 - type: ndcg_at_3 value: 35.475 - type: ndcg_at_5 value: 39.711 - type: precision_at_1 value: 24.384 - type: precision_at_10 value: 6.7940000000000005 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.052999999999999 - type: precision_at_5 value: 11.189 - type: recall_at_1 value: 23.702 - type: recall_at_10 value: 65.057 - type: recall_at_100 value: 90.021 - type: recall_at_1000 value: 98.142 - type: recall_at_3 value: 43.551 - type: recall_at_5 value: 53.738 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.62380300957591 - type: f1 value: 94.49871222100734 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.14090287277702 - type: f1 value: 60.32101258220515 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.84330867518494 - type: f1 value: 71.92248688515255 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.10692669804976 - type: f1 value: 77.9904839122866 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.822988923078444 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.38394880253403 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.82504612539082 - type: mrr value: 32.84462298174977 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.029 - type: map_at_10 value: 14.088999999999999 - type: map_at_100 value: 17.601 - type: map_at_1000 value: 19.144 - type: map_at_3 value: 10.156 - type: map_at_5 value: 11.892 - type: mrr_at_1 value: 46.44 - type: mrr_at_10 value: 56.596999999999994 - type: mrr_at_100 value: 57.11000000000001 - type: mrr_at_1000 value: 57.14 - type: mrr_at_3 value: 54.334 - type: mrr_at_5 value: 55.774 - type: ndcg_at_1 value: 44.891999999999996 - type: ndcg_at_10 value: 37.134 - type: ndcg_at_100 value: 33.652 - type: ndcg_at_1000 value: 42.548 - type: ndcg_at_3 value: 41.851 - type: ndcg_at_5 value: 39.842 - type: precision_at_1 value: 46.44 - type: precision_at_10 value: 27.647 - type: precision_at_100 value: 8.309999999999999 - type: precision_at_1000 value: 2.146 - type: precision_at_3 value: 39.422000000000004 - type: precision_at_5 value: 34.675 - type: recall_at_1 value: 6.029 - type: recall_at_10 value: 18.907 - type: recall_at_100 value: 33.76 - type: recall_at_1000 value: 65.14999999999999 - type: recall_at_3 value: 11.584999999999999 - type: recall_at_5 value: 14.626 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 39.373000000000005 - type: map_at_10 value: 55.836 - type: map_at_100 value: 56.611999999999995 - type: map_at_1000 value: 56.63 - type: map_at_3 value: 51.747 - type: map_at_5 value: 54.337999999999994 - type: mrr_at_1 value: 44.147999999999996 - type: mrr_at_10 value: 58.42699999999999 - type: mrr_at_100 value: 58.902 - type: mrr_at_1000 value: 58.914 - type: mrr_at_3 value: 55.156000000000006 - type: mrr_at_5 value: 57.291000000000004 - type: ndcg_at_1 value: 44.119 - type: ndcg_at_10 value: 63.444 - type: ndcg_at_100 value: 66.40599999999999 - type: ndcg_at_1000 value: 66.822 - type: ndcg_at_3 value: 55.962 - type: ndcg_at_5 value: 60.228 - type: precision_at_1 value: 44.119 - type: precision_at_10 value: 10.006 - type: precision_at_100 value: 1.17 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.135 - type: precision_at_5 value: 17.59 - type: recall_at_1 value: 39.373000000000005 - type: recall_at_10 value: 83.78999999999999 - type: recall_at_100 value: 96.246 - type: recall_at_1000 value: 99.324 - type: recall_at_3 value: 64.71900000000001 - type: recall_at_5 value: 74.508 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 69.199 - type: map_at_10 value: 82.892 - type: map_at_100 value: 83.578 - type: map_at_1000 value: 83.598 - type: map_at_3 value: 79.948 - type: map_at_5 value: 81.779 - type: mrr_at_1 value: 79.67 - type: mrr_at_10 value: 86.115 - type: mrr_at_100 value: 86.249 - type: mrr_at_1000 value: 86.251 - type: mrr_at_3 value: 85.08200000000001 - type: mrr_at_5 value: 85.783 - type: ndcg_at_1 value: 79.67 - type: ndcg_at_10 value: 86.839 - type: ndcg_at_100 value: 88.252 - type: ndcg_at_1000 value: 88.401 - type: ndcg_at_3 value: 83.86200000000001 - type: ndcg_at_5 value: 85.473 - type: precision_at_1 value: 79.67 - type: precision_at_10 value: 13.19 - type: precision_at_100 value: 1.521 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 36.677 - type: precision_at_5 value: 24.118000000000002 - type: recall_at_1 value: 69.199 - type: recall_at_10 value: 94.321 - type: recall_at_100 value: 99.20400000000001 - type: recall_at_1000 value: 99.947 - type: recall_at_3 value: 85.787 - type: recall_at_5 value: 90.365 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.82810046856353 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.38132611783628 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 5.127000000000001 - type: map_at_10 value: 12.235 - type: map_at_100 value: 14.417 - type: map_at_1000 value: 14.75 - type: map_at_3 value: 8.906 - type: map_at_5 value: 10.591000000000001 - type: mrr_at_1 value: 25.2 - type: mrr_at_10 value: 35.879 - type: mrr_at_100 value: 36.935 - type: mrr_at_1000 value: 36.997 - type: mrr_at_3 value: 32.783 - type: mrr_at_5 value: 34.367999999999995 - type: ndcg_at_1 value: 25.2 - type: ndcg_at_10 value: 20.509 - type: ndcg_at_100 value: 28.67 - type: ndcg_at_1000 value: 34.42 - type: ndcg_at_3 value: 19.948 - type: ndcg_at_5 value: 17.166 - type: precision_at_1 value: 25.2 - type: precision_at_10 value: 10.440000000000001 - type: precision_at_100 value: 2.214 - type: precision_at_1000 value: 0.359 - type: precision_at_3 value: 18.533 - type: precision_at_5 value: 14.860000000000001 - type: recall_at_1 value: 5.127000000000001 - type: recall_at_10 value: 21.147 - type: recall_at_100 value: 44.946999999999996 - type: recall_at_1000 value: 72.89 - type: recall_at_3 value: 11.277 - type: recall_at_5 value: 15.042 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.0373011786213 - type: cos_sim_spearman value: 79.27889560856613 - type: euclidean_pearson value: 80.31186315495655 - type: euclidean_spearman value: 79.41630415280811 - type: manhattan_pearson value: 80.31755140442013 - type: manhattan_spearman value: 79.43069870027611 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.8659751342045 - type: cos_sim_spearman value: 76.95377612997667 - type: euclidean_pearson value: 81.24552945497848 - type: euclidean_spearman value: 77.18236963555253 - type: manhattan_pearson value: 81.26477607759037 - type: manhattan_spearman value: 77.13821753062756 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.34597139044875 - type: cos_sim_spearman value: 84.124169425592 - type: euclidean_pearson value: 83.68590721511401 - type: euclidean_spearman value: 84.18846190846398 - type: manhattan_pearson value: 83.57630235061498 - type: manhattan_spearman value: 84.10244043726902 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.67641885599572 - type: cos_sim_spearman value: 80.46450725650428 - type: euclidean_pearson value: 81.61645042715865 - type: euclidean_spearman value: 80.61418394236874 - type: manhattan_pearson value: 81.55712034928871 - type: manhattan_spearman value: 80.57905670523951 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.86650310886782 - type: cos_sim_spearman value: 89.76081629222328 - type: euclidean_pearson value: 89.1530747029954 - type: euclidean_spearman value: 89.80990657280248 - type: manhattan_pearson value: 89.10640563278132 - type: manhattan_spearman value: 89.76282108434047 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.93864027911118 - type: cos_sim_spearman value: 85.47096193999023 - type: euclidean_pearson value: 85.03141840870533 - type: euclidean_spearman value: 85.43124029598181 - type: manhattan_pearson value: 84.99002664393512 - type: manhattan_spearman value: 85.39169195120834 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.7045343749832 - type: cos_sim_spearman value: 89.03262221146677 - type: euclidean_pearson value: 89.56078218264365 - type: euclidean_spearman value: 89.17827006466868 - type: manhattan_pearson value: 89.52717595468582 - type: manhattan_spearman value: 89.15878115952923 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.20191302875551 - type: cos_sim_spearman value: 64.11446552557646 - type: euclidean_pearson value: 64.6918197393619 - type: euclidean_spearman value: 63.440182631197764 - type: manhattan_pearson value: 64.55692904121835 - type: manhattan_spearman value: 63.424877742756266 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.37793104662344 - type: cos_sim_spearman value: 87.7357802629067 - type: euclidean_pearson value: 87.4286301545109 - type: euclidean_spearman value: 87.78452920777421 - type: manhattan_pearson value: 87.42445169331255 - type: manhattan_spearman value: 87.78537677249598 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.31465405081792 - type: mrr value: 95.7173781193389 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.760999999999996 - type: map_at_10 value: 67.904 - type: map_at_100 value: 68.539 - type: map_at_1000 value: 68.562 - type: map_at_3 value: 65.415 - type: map_at_5 value: 66.788 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 68.797 - type: mrr_at_100 value: 69.236 - type: mrr_at_1000 value: 69.257 - type: mrr_at_3 value: 66.667 - type: mrr_at_5 value: 67.967 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 72.24199999999999 - type: ndcg_at_100 value: 74.86 - type: ndcg_at_1000 value: 75.354 - type: ndcg_at_3 value: 67.93400000000001 - type: ndcg_at_5 value: 70.02199999999999 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.533 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.778000000000002 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 57.760999999999996 - type: recall_at_10 value: 84.383 - type: recall_at_100 value: 96.267 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 72.628 - type: recall_at_5 value: 78.094 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8029702970297 - type: cos_sim_ap value: 94.9210324173411 - type: cos_sim_f1 value: 89.8521162672106 - type: cos_sim_precision value: 91.67533818938605 - type: cos_sim_recall value: 88.1 - type: dot_accuracy value: 99.69504950495049 - type: dot_ap value: 90.4919719146181 - type: dot_f1 value: 84.72289156626506 - type: dot_precision value: 81.76744186046511 - type: dot_recall value: 87.9 - type: euclidean_accuracy value: 99.79702970297029 - type: euclidean_ap value: 94.87827463795753 - type: euclidean_f1 value: 89.55680081507896 - type: euclidean_precision value: 91.27725856697819 - type: euclidean_recall value: 87.9 - type: manhattan_accuracy value: 99.7990099009901 - type: manhattan_ap value: 94.87587025149682 - type: manhattan_f1 value: 89.76298537569339 - type: manhattan_precision value: 90.53916581892166 - type: manhattan_recall value: 89 - type: max_accuracy value: 99.8029702970297 - type: max_ap value: 94.9210324173411 - type: max_f1 value: 89.8521162672106 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.92385753948724 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.671756975431144 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.677928036739004 - type: mrr value: 51.56413133435193 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.523589340819683 - type: cos_sim_spearman value: 30.187407518823235 - type: dot_pearson value: 29.039713969699015 - type: dot_spearman value: 29.114740651155508 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.211 - type: map_at_10 value: 1.6199999999999999 - type: map_at_100 value: 8.658000000000001 - type: map_at_1000 value: 21.538 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.919 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.18599999999999 - type: mrr_at_100 value: 86.18599999999999 - type: mrr_at_1000 value: 86.18599999999999 - type: mrr_at_3 value: 85 - type: mrr_at_5 value: 85.9 - type: ndcg_at_1 value: 74 - type: ndcg_at_10 value: 66.542 - type: ndcg_at_100 value: 50.163999999999994 - type: ndcg_at_1000 value: 45.696999999999996 - type: ndcg_at_3 value: 71.531 - type: ndcg_at_5 value: 70.45 - type: precision_at_1 value: 78 - type: precision_at_10 value: 69.39999999999999 - type: precision_at_100 value: 51.06 - type: precision_at_1000 value: 20.022000000000002 - type: precision_at_3 value: 76 - type: precision_at_5 value: 74.8 - type: recall_at_1 value: 0.211 - type: recall_at_10 value: 1.813 - type: recall_at_100 value: 12.098 - type: recall_at_1000 value: 42.618 - type: recall_at_3 value: 0.603 - type: recall_at_5 value: 0.987 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.2079999999999997 - type: map_at_10 value: 7.777000000000001 - type: map_at_100 value: 12.825000000000001 - type: map_at_1000 value: 14.196 - type: map_at_3 value: 4.285 - type: map_at_5 value: 6.177 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 42.635 - type: mrr_at_100 value: 43.955 - type: mrr_at_1000 value: 43.955 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 41.088 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 20.666999999999998 - type: ndcg_at_100 value: 31.840000000000003 - type: ndcg_at_1000 value: 43.191 - type: ndcg_at_3 value: 23.45 - type: ndcg_at_5 value: 22.994 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 17.959 - type: precision_at_100 value: 6.755 - type: precision_at_1000 value: 1.4200000000000002 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 23.673 - type: recall_at_1 value: 2.2079999999999997 - type: recall_at_10 value: 13.144 - type: recall_at_100 value: 42.491 - type: recall_at_1000 value: 77.04299999999999 - type: recall_at_3 value: 5.3469999999999995 - type: recall_at_5 value: 9.139 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.9044 - type: ap value: 14.625783489340755 - type: f1 value: 54.814936562590546 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.94227504244483 - type: f1 value: 61.22516038508854 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.602409155145864 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.94641473445789 - type: cos_sim_ap value: 76.91572747061197 - type: cos_sim_f1 value: 70.14348097317529 - type: cos_sim_precision value: 66.53254437869822 - type: cos_sim_recall value: 74.1688654353562 - type: dot_accuracy value: 84.80061989628658 - type: dot_ap value: 70.7952548895177 - type: dot_f1 value: 65.44780728844965 - type: dot_precision value: 61.53310104529617 - type: dot_recall value: 69.89445910290237 - type: euclidean_accuracy value: 86.94641473445789 - type: euclidean_ap value: 76.80774009393652 - type: euclidean_f1 value: 70.30522503879979 - type: euclidean_precision value: 68.94977168949772 - type: euclidean_recall value: 71.71503957783642 - type: manhattan_accuracy value: 86.8629671574179 - type: manhattan_ap value: 76.76518632600317 - type: manhattan_f1 value: 70.16056518946692 - type: manhattan_precision value: 68.360450563204 - type: manhattan_recall value: 72.0580474934037 - type: max_accuracy value: 86.94641473445789 - type: max_ap value: 76.91572747061197 - type: max_f1 value: 70.30522503879979 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.10428066907285 - type: cos_sim_ap value: 86.25114759921435 - type: cos_sim_f1 value: 78.37857884586856 - type: cos_sim_precision value: 75.60818546078993 - type: cos_sim_recall value: 81.35971666153372 - type: dot_accuracy value: 87.41995575736406 - type: dot_ap value: 81.51838010086782 - type: dot_f1 value: 74.77398015435503 - type: dot_precision value: 71.53002390662354 - type: dot_recall value: 78.32614721281182 - type: euclidean_accuracy value: 89.12368533395428 - type: euclidean_ap value: 86.33456799874504 - type: euclidean_f1 value: 78.45496750232127 - type: euclidean_precision value: 75.78388462366364 - type: euclidean_recall value: 81.32121958731136 - type: manhattan_accuracy value: 89.10622113556099 - type: manhattan_ap value: 86.31215061745333 - type: manhattan_f1 value: 78.40684906011539 - type: manhattan_precision value: 75.89536643366722 - type: manhattan_recall value: 81.09023714197721 - type: max_accuracy value: 89.12368533395428 - type: max_ap value: 86.33456799874504 - type: max_f1 value: 78.45496750232127 --- # E5-large-v2 [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2') model = AutoModel.from_pretrained('intfloat/e5-large-v2') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # (Optionally) normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
[ "BIOSSES", "SCIFACT" ]
DunnBC22/bert-base-cased-finetuned-ner-NCBI_Disease
DunnBC22
token-classification
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "medical", "science", "en", "dataset:ncbi_disease", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-07-04T04:33:33Z
2023-07-20T22:06:29+00:00
29
2
--- datasets: - ncbi_disease language: - en license: apache-2.0 metrics: - seqeval - f1 - recall - accuracy - precision pipeline_tag: token-classification tags: - generated_from_trainer - medical - science model-index: - name: bert-base-cased-finetuned-ner-NCBI_Disease results: [] --- # bert-base-cased-finetuned-ner-NCBI_Disease This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Disease: - Precision: 0.8063891577928364 - Recall: 0.8677083333333333 - F1: 0.8359257400903161 - Number: 960 - Overall - Precision: 0.8064 - Recall: 0.8677 - F1: 0.8359 - Accuracy: 0.9825 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/NCBI_Disease/NER%20Project%20Using%20NCBI_Disease%20Dataset.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Data Source: https://huggingface.co/datasets/ncbi_disease ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Disease Precision | Disease Recall | Disease F1 | Disease Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-----------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:-------:| | 0.0525 | 1.0 | 340 | 0.0617 | 0.7813 | 0.7854 | 0.7834 | 960 | 0.7813 | 0.7854 | 0.7834 | 0.9796 | | 0.022 | 2.0 | 680 | 0.0551 | 0.7897 | 0.8646 | 0.8255 | 960 | 0.7897 | 0.8646 | 0.8255 | 0.9819 | | 0.0154 | 3.0 | 1020 | 0.0614 | 0.8064 | 0.8677 | 0.8359 | 960 | 0.8064 | 0.8677 | 0.8359 | 0.9825 | * All values in the above chart are rounded to the nearest ten-thousandth. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
[ "NCBI DISEASE" ]
masonbarnes/open-llm-search
masonbarnes
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-09-04T21:55:24Z
2023-09-09T06:00:09+00:00
29
10
--- language: - en license: llama2 --- # **Model Overview** As the demand for large language models grows, a common limitation surfaces: their inability to directly search the internet. Although tech giants like Google (with Bard), Bing, and Perplexity are addressing this challenge, their proprietary methods have data logging issues. **Introducing Open LLM Search** — A specialized adaptation of Together AI's `llama-2-7b-32k` model, purpose-built for extracting information from web pages. While the model only has a 7 billion parameters, its fine-tuned capabilities and expanded context limit enable it to excel in search tasks. **License:** This model uses Meta's Llama 2 license. # **Fine-Tuning Process** The model's fine tuning involved a combination of GPT-4 and GPT-4-32k to generate synthetic data. Here is the training workflow used: 1. Use GPT-4 to generate a multitude of queries. 2. For each query, identify the top five website results from Google. 3. Extract content from these websites and use GPT-4-32k for their summarization. 4. Record the text and summarizes from GPT-4-32k for fine-tuning. 5. Feed the summaries from all five sources with GPT-4 to craft a cohesive response. 6. Document both the input and output from GPT-4 for fine-tuning. Fine tuning was done with an `<instructions>:`, `<user>:`, and `<assistant>:` format. # **Getting Started** - Experience it firsthand! Check out the live demo [here](https://huggingface.co/spaces/masonbarnes/open-llm-search). - For DIY enthusiasts, explore or self-deploy this solution using our [GitHub repository](https://github.com/MasonBarnes/open-llm-search).
[ "CRAFT" ]
lxyuan/distilbert-finetuned-reuters21578-multilabel
lxyuan
text-classification
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "news_classification", "multi_label", "en", "dataset:reuters21578", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-09-07T11:19:40Z
2023-09-08T11:27:37+00:00
29
1
--- base_model: distilbert-base-cased datasets: - reuters21578 language: - en license: apache-2.0 metrics: - f1 - accuracy pipeline_tag: text-classification tags: - generated_from_trainer - news_classification - multi_label widget: - text: JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWARDS The Ministry of International Trade and Industry (MITI) will revise its long-term energy supply/demand outlook by August to meet a forecast downtrend in Japanese energy demand, ministry officials said. MITI is expected to lower the projection for primary energy supplies in the year 2000 to 550 mln kilolitres (kl) from 600 mln, they said. The decision follows the emergence of structural changes in Japanese industry following the rise in the value of the yen and a decline in domestic electric power demand. MITI is planning to work out a revised energy supply/demand outlook through deliberations of committee meetings of the Agency of Natural Resources and Energy, the officials said. They said MITI will also review the breakdown of energy supply sources, including oil, nuclear, coal and natural gas. Nuclear energy provided the bulk of Japan's electric power in the fiscal year ended March 31, supplying an estimated 27 pct on a kilowatt/hour basis, followed by oil (23 pct) and liquefied natural gas (21 pct), they noted. REUTER example_title: Example-1 model-index: - name: distilbert-finetuned-reuters21578-multilabel results: - task: type: text-classification name: Text Classification dataset: name: reuters21578 type: reuters21578 config: ModApte split: test args: ModApte metrics: - type: f1 value: 0.8628858578607322 name: F1 - type: accuracy value: 0.8195625759416768 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Motivation Fine-tuning on the Reuters-21578 multilabel dataset is a valuable exercise, especially as it's frequently used in take-home tests during interviews. The dataset's complexity is just right for testing multilabel classification skills within a limited timeframe, while its real-world relevance helps simulate practical challenges. Experimenting with this dataset not only helps candidates prepare for interviews but also hones various skills including preprocessing, feature extraction, and model evaluation. This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the reuters21578 dataset. ## Inference Example ```python from transformers import pipeline pipe = pipeline("text-classification", model="lxyuan/distilbert-finetuned-reuters21578-multilabel", return_all_scores=True) # dataset["test"]["text"][2] news_article = ( "JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWARDS The Ministry of International Trade and " "Industry (MITI) will revise its long-term energy supply/demand " "outlook by August to meet a forecast downtrend in Japanese " "energy demand, ministry officials said. " "MITI is expected to lower the projection for primary energy " "supplies in the year 2000 to 550 mln kilolitres (kl) from 600 " "mln, they said. " "The decision follows the emergence of structural changes in " "Japanese industry following the rise in the value of the yen " "and a decline in domestic electric power demand. " "MITI is planning to work out a revised energy supply/demand " "outlook through deliberations of committee meetings of the " "Agency of Natural Resources and Energy, the officials said. " "They said MITI will also review the breakdown of energy " "supply sources, including oil, nuclear, coal and natural gas. " "Nuclear energy provided the bulk of Japan's electric power " "in the fiscal year ended March 31, supplying an estimated 27 " "pct on a kilowatt/hour basis, followed by oil (23 pct) and " "liquefied natural gas (21 pct), they noted. " "REUTER" ) # dataset["test"]["topics"][2] target_topics = ['crude', 'nat-gas'] fn_kwargs={"padding": "max_length", "truncation": True, "max_length": 512} output = pipe(example, function_to_apply="sigmoid", **fn_kwargs) for item in output[0]: if item["score"]>=0.5: print(item["label"], item["score"]) >>> crude 0.7355073690414429 nat-gas 0.8600426316261292 ``` ## Overall Summary and Comparison Table | Metric | Baseline (Scikit-learn) | Transformer Model | |-----------------------|--------------------------|-------------------| | Micro-Averaged F1 | 0.77 | 0.86 | | Macro-Averaged F1 | 0.29 | 0.33 | | Weighted Average F1 | 0.70 | 0.84 | | Samples Average F1 | 0.75 | 0.80 | **Precision vs Recall**: Both models prioritize high precision over recall. In our client-facing news classification model, precision takes precedence over recall. This is because the repercussions of false positives are more severe and harder to justify to clients compared to false negatives. When the model incorrectly tags a news item with a topic, it's challenging to explain this error. On the other hand, if the model misses a topic, it's easier to defend by stating that the topic wasn't sufficiently emphasized in the news article. **Class Imbalance Handling**: Both models suffer from the same general issue of not performing well on minority classes, as reflected in the low macro-averaged F1-scores. However, the transformer model shows a slight improvement, albeit marginal, in macro-averaged F1-score (0.33 vs 0.29). **Issue of Zero Support Labels**: Both models have the problem of zero support for several labels, meaning these labels did not appear in the test set. This lack of "support" can significantly skew the performance metrics and may suggest that either the models are not well-tuned to predict these minority classes, or the dataset itself lacks sufficient examples of these classes. Given that both models struggle with low macro-averaged F1 scores, this issue further emphasizes the need for improved minority class handling in the models. **General Performance**: The transformer model surpasses the scikit-learn baseline in terms of weighted and samples average F1-scores, indicating better overall performance and better handling of label imbalance. **Conclusion**: While both models exhibit high precision, which is a business requirement, the transformer model slightly outperforms the scikit-learn baseline model in all metrics considered. It provides a better trade-off between precision and recall, as well as some improvement, albeit small, in handling minority classes. Thus, despite sharing similar weaknesses with the baseline, the transformer model demonstrates incremental improvements that could be significant in a production setting. ## Training and evaluation data We remove single appearance label from both training and test sets using the following code: ```python # Find Single Appearance Labels def find_single_appearance_labels(y): """Find labels that appear only once in the dataset.""" all_labels = list(chain.from_iterable(y)) label_count = Counter(all_labels) single_appearance_labels = [label for label, count in label_count.items() if count == 1] return single_appearance_labels # Remove Single Appearance Labels from Dataset def remove_single_appearance_labels(dataset, single_appearance_labels): """Remove samples with single-appearance labels from both train and test sets.""" for split in ['train', 'test']: dataset[split] = dataset[split].filter(lambda x: all(label not in single_appearance_labels for label in x['topics'])) return dataset dataset = load_dataset("reuters21578", "ModApte") # Find and Remove Single Appearance Labels y_train = [item['topics'] for item in dataset['train']] single_appearance_labels = find_single_appearance_labels(y_train) print(f"Single appearance labels: {single_appearance_labels}") >>> Single appearance labels: ['lin-oil', 'rye', 'red-bean', 'groundnut-oil', 'citruspulp', 'rape-meal', 'corn-oil', 'peseta', 'cotton-oil', 'ringgit', 'castorseed', 'castor-oil', 'lit', 'rupiah', 'skr', 'nkr', 'dkr', 'sun-meal', 'lin-meal', 'cruzado'] print("Removing samples with single-appearance labels...") dataset = remove_single_appearance_labels(dataset, single_appearance_labels) unique_labels = set(chain.from_iterable(dataset['train']["topics"])) print(f"We have {len(unique_labels)} unique labels:\n{unique_labels}") >>> We have 95 unique labels: {'veg-oil', 'gold', 'platinum', 'ipi', 'acq', 'carcass', 'wool', 'coconut-oil', 'linseed', 'copper', 'soy-meal', 'jet', 'dlr', 'copra-cake', 'hog', 'rand', 'strategic-metal', 'can', 'tea', 'sorghum', 'livestock', 'barley', 'lumber', 'earn', 'wheat', 'trade', 'soy-oil', 'cocoa', 'inventories', 'income', 'rubber', 'tin', 'iron-steel', 'ship', 'rapeseed', 'wpi', 'sun-oil', 'pet-chem', 'palmkernel', 'nat-gas', 'gnp', 'l-cattle', 'propane', 'rice', 'lead', 'alum', 'instal-debt', 'saudriyal', 'cpu', 'jobs', 'meal-feed', 'oilseed', 'dmk', 'plywood', 'zinc', 'retail', 'dfl', 'cpi', 'crude', 'pork-belly', 'gas', 'money-fx', 'corn', 'tapioca', 'palladium', 'lei', 'cornglutenfeed', 'sunseed', 'potato', 'silver', 'sugar', 'grain', 'groundnut', 'naphtha', 'orange', 'soybean', 'coconut', 'stg', 'cotton', 'yen', 'rape-oil', 'palm-oil', 'oat', 'reserves', 'housing', 'interest', 'coffee', 'fuel', 'austdlr', 'money-supply', 'heat', 'fishmeal', 'bop', 'nickel', 'nzdlr'} ``` ## Training procedure [EDA on Reuters-21578 dataset](https://github.com/LxYuan0420/nlp/blob/main/notebooks/eda_reuters.ipynb): This notebook provides an Exploratory Data Analysis (EDA) of the Reuters-21578 dataset. It includes visualizations and statistical summaries that offer insights into the dataset's structure, label distribution, and text characteristics. [Reuters Baseline Scikit-Learn Model](https://github.com/LxYuan0420/nlp/blob/main/notebooks/scikit_learn_reuters.ipynb): This notebook establishes a baseline model for text classification on the Reuters-21578 dataset using scikit-learn. It guides you through data preprocessing, feature extraction, model training, and evaluation. [Reuters Transformer Model](https://github.com/LxYuan0420/nlp/blob/main/notebooks/transformer_reuters.ipynb): This notebook delves into advanced text classification using a Transformer model on the Reuters-21578 dataset. It covers the implementation details, training process, and performance metrics of using Transformer-based models for this specific task. [Multilabel Stratified Sampling & Hypyerparameter Search on Reuters Dataset](https://github.com/LxYuan0420/nlp/blob/main/notebooks/transformer_reuters_hyperparameter_tuning.ipynb): In this notebook, we explore advanced machine learning techniques through the lens of the Hugging Face Trainer API, specifically targeting Multilabel Iterative Stratified Splitting and Hyperparameter Search. The former aims to fairly distribute imbalanced datasets across multiple labels in k-fold cross-validation, maintaining a distribution closely resembling that of the complete dataset. The latter walks users through a structured hyperparameter search to fine-tune model performance for optimal results. ## Evaluation results <details> <summary>Transformer Model Evaluation Result</summary> Classification Report: precision recall f1-score support acq 0.97 0.93 0.95 719 alum 1.00 0.70 0.82 23 austdlr 0.00 0.00 0.00 0 barley 1.00 0.50 0.67 12 bop 0.79 0.50 0.61 30 can 0.00 0.00 0.00 0 carcass 0.67 0.67 0.67 18 cocoa 1.00 1.00 1.00 18 coconut 0.00 0.00 0.00 2 coconut-oil 0.00 0.00 0.00 2 coffee 0.86 0.89 0.87 27 copper 1.00 0.78 0.88 18 copra-cake 0.00 0.00 0.00 1 corn 0.84 0.87 0.86 55 cornglutenfeed 0.00 0.00 0.00 0 cotton 0.92 0.67 0.77 18 cpi 0.86 0.43 0.57 28 cpu 0.00 0.00 0.00 1 crude 0.87 0.93 0.90 189 dfl 0.00 0.00 0.00 1 dlr 0.72 0.64 0.67 44 dmk 0.00 0.00 0.00 4 earn 0.98 0.99 0.98 1087 fishmeal 0.00 0.00 0.00 0 fuel 0.00 0.00 0.00 10 gas 0.80 0.71 0.75 17 gnp 0.79 0.66 0.72 35 gold 0.95 0.67 0.78 30 grain 0.94 0.92 0.93 146 groundnut 0.00 0.00 0.00 4 heat 0.00 0.00 0.00 5 hog 1.00 0.33 0.50 6 housing 0.00 0.00 0.00 4 income 0.00 0.00 0.00 7 instal-debt 0.00 0.00 0.00 1 interest 0.89 0.67 0.77 131 inventories 0.00 0.00 0.00 0 ipi 1.00 0.58 0.74 12 iron-steel 0.90 0.64 0.75 14 jet 0.00 0.00 0.00 1 jobs 0.92 0.57 0.71 21 l-cattle 0.00 0.00 0.00 2 lead 0.00 0.00 0.00 14 lei 0.00 0.00 0.00 3 linseed 0.00 0.00 0.00 0 livestock 0.63 0.79 0.70 24 lumber 0.00 0.00 0.00 6 meal-feed 0.00 0.00 0.00 17 money-fx 0.78 0.81 0.80 177 money-supply 0.80 0.71 0.75 34 naphtha 0.00 0.00 0.00 4 nat-gas 0.82 0.60 0.69 30 nickel 0.00 0.00 0.00 1 nzdlr 0.00 0.00 0.00 2 oat 0.00 0.00 0.00 4 oilseed 0.64 0.61 0.63 44 orange 1.00 0.36 0.53 11 palladium 0.00 0.00 0.00 1 palm-oil 1.00 0.56 0.71 9 palmkernel 0.00 0.00 0.00 1 pet-chem 0.00 0.00 0.00 12 platinum 0.00 0.00 0.00 7 plywood 0.00 0.00 0.00 0 pork-belly 0.00 0.00 0.00 0 potato 0.00 0.00 0.00 3 propane 0.00 0.00 0.00 3 rand 0.00 0.00 0.00 1 rape-oil 0.00 0.00 0.00 1 rapeseed 0.00 0.00 0.00 8 reserves 0.83 0.56 0.67 18 retail 0.00 0.00 0.00 2 rice 1.00 0.57 0.72 23 rubber 0.82 0.75 0.78 12 saudriyal 0.00 0.00 0.00 0 ship 0.95 0.81 0.87 89 silver 1.00 0.12 0.22 8 sorghum 1.00 0.12 0.22 8 soy-meal 0.00 0.00 0.00 12 soy-oil 0.00 0.00 0.00 8 soybean 0.72 0.56 0.63 32 stg 0.00 0.00 0.00 0 strategic-metal 0.00 0.00 0.00 11 sugar 1.00 0.80 0.89 35 sun-oil 0.00 0.00 0.00 0 sunseed 0.00 0.00 0.00 5 tapioca 0.00 0.00 0.00 0 tea 0.00 0.00 0.00 3 tin 1.00 0.42 0.59 12 trade 0.78 0.79 0.79 116 veg-oil 0.91 0.59 0.71 34 wheat 0.83 0.83 0.83 69 wool 0.00 0.00 0.00 0 wpi 0.00 0.00 0.00 10 yen 0.57 0.29 0.38 14 zinc 1.00 0.69 0.82 13 micro avg 0.92 0.81 0.86 3694 macro avg 0.41 0.30 0.33 3694 weighted avg 0.87 0.81 0.84 3694 samples avg 0.81 0.80 0.80 3694 </details> <details> <summary>Scikit-learn Baseline Model Evaluation Result</summary> Classification Report: precision recall f1-score support acq 0.98 0.87 0.92 719 alum 1.00 0.00 0.00 23 austdlr 1.00 1.00 1.00 0 barley 1.00 0.00 0.00 12 bop 1.00 0.30 0.46 30 can 1.00 1.00 1.00 0 carcass 1.00 0.06 0.11 18 cocoa 1.00 0.61 0.76 18 coconut 1.00 0.00 0.00 2 coconut-oil 1.00 0.00 0.00 2 coffee 0.94 0.59 0.73 27 copper 1.00 0.22 0.36 18 copra-cake 1.00 0.00 0.00 1 corn 0.97 0.51 0.67 55 cornglutenfeed 1.00 1.00 1.00 0 cotton 1.00 0.06 0.11 18 cpi 1.00 0.14 0.25 28 cpu 1.00 0.00 0.00 1 crude 0.94 0.69 0.80 189 dfl 1.00 0.00 0.00 1 dlr 0.86 0.43 0.58 44 dmk 1.00 0.00 0.00 4 earn 0.99 0.97 0.98 1087 fishmeal 1.00 1.00 1.00 0 fuel 1.00 0.00 0.00 10 gas 1.00 0.00 0.00 17 gnp 1.00 0.31 0.48 35 gold 0.83 0.17 0.28 30 grain 1.00 0.65 0.79 146 groundnut 1.00 0.00 0.00 4 heat 1.00 0.00 0.00 5 hog 1.00 0.00 0.00 6 housing 1.00 0.00 0.00 4 income 1.00 0.00 0.00 7 instal-debt 1.00 0.00 0.00 1 interest 0.88 0.40 0.55 131 inventories 1.00 1.00 1.00 0 ipi 1.00 0.00 0.00 12 iron-steel 1.00 0.00 0.00 14 jet 1.00 0.00 0.00 1 jobs 1.00 0.14 0.25 21 l-cattle 1.00 0.00 0.00 2 lead 1.00 0.00 0.00 14 lei 1.00 0.00 0.00 3 linseed 1.00 1.00 1.00 0 livestock 0.67 0.08 0.15 24 lumber 1.00 0.00 0.00 6 meal-feed 1.00 0.00 0.00 17 money-fx 0.80 0.50 0.62 177 money-supply 0.88 0.41 0.56 34 naphtha 1.00 0.00 0.00 4 nat-gas 1.00 0.27 0.42 30 nickel 1.00 0.00 0.00 1 nzdlr 1.00 0.00 0.00 2 oat 1.00 0.00 0.00 4 oilseed 0.62 0.11 0.19 44 orange 1.00 0.00 0.00 11 palladium 1.00 0.00 0.00 1 palm-oil 1.00 0.22 0.36 9 palmkernel 1.00 0.00 0.00 1 pet-chem 1.00 0.00 0.00 12 platinum 1.00 0.00 0.00 7 plywood 1.00 1.00 1.00 0 pork-belly 1.00 1.00 1.00 0 potato 1.00 0.00 0.00 3 propane 1.00 0.00 0.00 3 rand 1.00 0.00 0.00 1 rape-oil 1.00 0.00 0.00 1 rapeseed 1.00 0.00 0.00 8 reserves 1.00 0.00 0.00 18 retail 1.00 0.00 0.00 2 rice 1.00 0.00 0.00 23 rubber 1.00 0.17 0.29 12 saudriyal 1.00 1.00 1.00 0 ship 0.92 0.26 0.40 89 silver 1.00 0.00 0.00 8 sorghum 1.00 0.00 0.00 8 soy-meal 1.00 0.00 0.00 12 soy-oil 1.00 0.00 0.00 8 soybean 1.00 0.16 0.27 32 stg 1.00 1.00 1.00 0 strategic-metal 1.00 0.00 0.00 11 sugar 1.00 0.60 0.75 35 sun-oil 1.00 1.00 1.00 0 sunseed 1.00 0.00 0.00 5 tapioca 1.00 1.00 1.00 0 tea 1.00 0.00 0.00 3 tin 1.00 0.00 0.00 12 trade 0.92 0.61 0.74 116 veg-oil 1.00 0.12 0.21 34 wheat 0.97 0.55 0.70 69 wool 1.00 1.00 1.00 0 wpi 1.00 0.00 0.00 10 yen 1.00 0.00 0.00 14 zinc 1.00 0.00 0.00 13 micro avg 0.97 0.64 0.77 3694 macro avg 0.98 0.25 0.29 3694 weighted avg 0.96 0.64 0.70 3694 samples avg 0.98 0.74 0.75 3694 </details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1801 | 1.0 | 300 | 0.0439 | 0.3896 | 0.6210 | 0.3566 | | 0.0345 | 2.0 | 600 | 0.0287 | 0.6289 | 0.7318 | 0.5954 | | 0.0243 | 3.0 | 900 | 0.0219 | 0.6721 | 0.7579 | 0.6084 | | 0.0178 | 4.0 | 1200 | 0.0177 | 0.7505 | 0.8128 | 0.6908 | | 0.014 | 5.0 | 1500 | 0.0151 | 0.7905 | 0.8376 | 0.7278 | | 0.0115 | 6.0 | 1800 | 0.0135 | 0.8132 | 0.8589 | 0.7555 | | 0.0096 | 7.0 | 2100 | 0.0124 | 0.8291 | 0.8727 | 0.7725 | | 0.0082 | 8.0 | 2400 | 0.0124 | 0.8335 | 0.8757 | 0.7822 | | 0.0071 | 9.0 | 2700 | 0.0119 | 0.8392 | 0.8847 | 0.7883 | | 0.0064 | 10.0 | 3000 | 0.0123 | 0.8339 | 0.8810 | 0.7828 | | 0.0058 | 11.0 | 3300 | 0.0114 | 0.8538 | 0.8999 | 0.8047 | | 0.0053 | 12.0 | 3600 | 0.0113 | 0.8525 | 0.8967 | 0.8044 | | 0.0048 | 13.0 | 3900 | 0.0115 | 0.8520 | 0.8982 | 0.8029 | | 0.0045 | 14.0 | 4200 | 0.0111 | 0.8566 | 0.8962 | 0.8104 | | 0.0042 | 15.0 | 4500 | 0.0110 | 0.8610 | 0.9060 | 0.8165 | | 0.0039 | 16.0 | 4800 | 0.0112 | 0.8583 | 0.9021 | 0.8138 | | 0.0037 | 17.0 | 5100 | 0.0110 | 0.8620 | 0.9055 | 0.8196 | | 0.0035 | 18.0 | 5400 | 0.0110 | 0.8629 | 0.9063 | 0.8196 | | 0.0035 | 19.0 | 5700 | 0.0111 | 0.8624 | 0.9062 | 0.8180 | | 0.0034 | 20.0 | 6000 | 0.0111 | 0.8626 | 0.9055 | 0.8177 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
[ "CPI" ]
neuralmagic/bge-base-en-v1.5-sparse
neuralmagic
feature-extraction
[ "transformers", "onnx", "bert", "feature-extraction", "mteb", "sparse sparsity quantized onnx embeddings int8", "en", "license:mit", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2023-10-01T13:08:44Z
2023-11-13T18:25:31+00:00
29
1
--- language: - en license: mit tags: - mteb - sparse sparsity quantized onnx embeddings int8 model-index: - name: bge-base-en-v1.5-sparse results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.38805970149254 - type: ap value: 38.80643435437097 - type: f1 value: 69.52906891019036 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.72759999999998 - type: ap value: 87.07910150764239 - type: f1 value: 90.71025910882096 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.494 - type: f1 value: 44.917953161904805 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 46.50495921726095 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.080055890804836 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.22880715757138 - type: mrr value: 73.11227630479708 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.9542549153515 - type: cos_sim_spearman value: 83.93865958725257 - type: euclidean_pearson value: 86.00372707912037 - type: euclidean_spearman value: 84.97302050526537 - type: manhattan_pearson value: 85.63207676453459 - type: manhattan_spearman value: 84.82542678079645 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.29545454545455 - type: f1 value: 84.26780483160312 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 36.78678386185847 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.42462869304013 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.705 - type: f1 value: 41.82618717355017 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 83.14760000000001 - type: ap value: 77.40813245635195 - type: f1 value: 83.08648833100911 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.0519835841313 - type: f1 value: 91.73392170858916 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 72.48974008207935 - type: f1 value: 54.812872972777505 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.17753866846 - type: f1 value: 71.51091282373878 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.5353059852051 - type: f1 value: 77.42427561340143 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.00163251745748 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.37879992380756 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.714215488161983 - type: mrr value: 32.857362140961904 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 50.99679402527969 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 59.28024721612242 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.54645068673153 - type: cos_sim_spearman value: 78.64401947043316 - type: euclidean_pearson value: 82.36873285307261 - type: euclidean_spearman value: 78.57406974337181 - type: manhattan_pearson value: 82.33000263843067 - type: manhattan_spearman value: 78.51127629983256 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.3001843293691 - type: cos_sim_spearman value: 74.87989254109124 - type: euclidean_pearson value: 80.88523322810525 - type: euclidean_spearman value: 75.6469299496058 - type: manhattan_pearson value: 80.8921104008781 - type: manhattan_spearman value: 75.65942956132456 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 82.40319855455617 - type: cos_sim_spearman value: 83.63807375781141 - type: euclidean_pearson value: 83.28557187260904 - type: euclidean_spearman value: 83.65223617817439 - type: manhattan_pearson value: 83.30411918680012 - type: manhattan_spearman value: 83.69204806663276 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.08942420708404 - type: cos_sim_spearman value: 80.39991846857053 - type: euclidean_pearson value: 82.68275416568997 - type: euclidean_spearman value: 80.49626214786178 - type: manhattan_pearson value: 82.62993414444689 - type: manhattan_spearman value: 80.44148684748403 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.70365000096972 - type: cos_sim_spearman value: 88.00515486253518 - type: euclidean_pearson value: 87.65142168651604 - type: euclidean_spearman value: 88.05834854642737 - type: manhattan_pearson value: 87.59548659661925 - type: manhattan_spearman value: 88.00573237576926 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.47886818876728 - type: cos_sim_spearman value: 84.30874770680975 - type: euclidean_pearson value: 83.74580951498133 - type: euclidean_spearman value: 84.60595431454789 - type: manhattan_pearson value: 83.74122023121615 - type: manhattan_spearman value: 84.60549899361064 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.60257252565631 - type: cos_sim_spearman value: 88.29577246271319 - type: euclidean_pearson value: 88.25434138634807 - type: euclidean_spearman value: 88.06678743723845 - type: manhattan_pearson value: 88.3651048848073 - type: manhattan_spearman value: 88.23688291108866 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 61.666254720687206 - type: cos_sim_spearman value: 63.83700525419119 - type: euclidean_pearson value: 64.36325040161177 - type: euclidean_spearman value: 63.99833771224718 - type: manhattan_pearson value: 64.01356576965371 - type: manhattan_spearman value: 63.7201674202641 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.14584232139909 - type: cos_sim_spearman value: 85.92570762612142 - type: euclidean_pearson value: 86.34291503630607 - type: euclidean_spearman value: 86.12670269109282 - type: manhattan_pearson value: 86.26109450032494 - type: manhattan_spearman value: 86.07665628498633 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.46430478723548 - type: mrr value: 95.63907044299201 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.82178217821782 - type: cos_sim_ap value: 95.49612561375889 - type: cos_sim_f1 value: 91.02691924227318 - type: cos_sim_precision value: 90.75546719681908 - type: cos_sim_recall value: 91.3 - type: dot_accuracy value: 99.67821782178218 - type: dot_ap value: 90.55740832326241 - type: dot_f1 value: 83.30765279917823 - type: dot_precision value: 85.6388595564942 - type: dot_recall value: 81.10000000000001 - type: euclidean_accuracy value: 99.82475247524752 - type: euclidean_ap value: 95.4739426775874 - type: euclidean_f1 value: 91.07413010590017 - type: euclidean_precision value: 91.8616480162767 - type: euclidean_recall value: 90.3 - type: manhattan_accuracy value: 99.82376237623762 - type: manhattan_ap value: 95.48506891694475 - type: manhattan_f1 value: 91.02822580645163 - type: manhattan_precision value: 91.76829268292683 - type: manhattan_recall value: 90.3 - type: max_accuracy value: 99.82475247524752 - type: max_ap value: 95.49612561375889 - type: max_f1 value: 91.07413010590017 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 60.92486258951404 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.97511013092965 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.31647363355174 - type: mrr value: 53.26469792462439 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.917 - type: ap value: 13.760770628090576 - type: f1 value: 54.23887489664618 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.49349179400113 - type: f1 value: 59.815392064510775 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 47.29662657485732 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.74834594981225 - type: cos_sim_ap value: 72.92449226447182 - type: cos_sim_f1 value: 68.14611644433363 - type: cos_sim_precision value: 64.59465847317419 - type: cos_sim_recall value: 72.1108179419525 - type: dot_accuracy value: 82.73827263515527 - type: dot_ap value: 63.27505594570806 - type: dot_f1 value: 61.717543651265 - type: dot_precision value: 56.12443292287751 - type: dot_recall value: 68.54881266490766 - type: euclidean_accuracy value: 85.90332002145796 - type: euclidean_ap value: 73.08299660990401 - type: euclidean_f1 value: 67.9050313691721 - type: euclidean_precision value: 63.6091265268495 - type: euclidean_recall value: 72.82321899736148 - type: manhattan_accuracy value: 85.87351731537224 - type: manhattan_ap value: 73.02205874497865 - type: manhattan_f1 value: 67.87532596547871 - type: manhattan_precision value: 64.109781843772 - type: manhattan_recall value: 72.1108179419525 - type: max_accuracy value: 85.90332002145796 - type: max_ap value: 73.08299660990401 - type: max_f1 value: 68.14611644433363 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.84231769317343 - type: cos_sim_ap value: 85.65683184516553 - type: cos_sim_f1 value: 77.60567077973222 - type: cos_sim_precision value: 75.6563071297989 - type: cos_sim_recall value: 79.65814598090545 - type: dot_accuracy value: 86.85333954282609 - type: dot_ap value: 80.79899186896125 - type: dot_f1 value: 74.15220098146928 - type: dot_precision value: 70.70819946919961 - type: dot_recall value: 77.94887588543271 - type: euclidean_accuracy value: 88.77634183257655 - type: euclidean_ap value: 85.67411484805298 - type: euclidean_f1 value: 77.61566374357423 - type: euclidean_precision value: 76.23255123255123 - type: euclidean_recall value: 79.04989220819218 - type: manhattan_accuracy value: 88.79962743043428 - type: manhattan_ap value: 85.6494795781639 - type: manhattan_f1 value: 77.54222877224805 - type: manhattan_precision value: 76.14100185528757 - type: manhattan_recall value: 78.99599630428088 - type: max_accuracy value: 88.84231769317343 - type: max_ap value: 85.67411484805298 - type: max_f1 value: 77.61566374357423 --- # bge-base-en-v1.5-sparse ## Usage This is the sparse ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) embeddings model accelerated with [Sparsify](https://github.com/neuralmagic/sparsify) for quantization/pruning and [DeepSparseSentenceTransformers](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers) for inference. ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import DeepSparseSentenceTransformer model = DeepSparseSentenceTransformer('neuralmagic/bge-base-en-v1.5-sparse', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
[ "BIOSSES" ]
Heralax/Augmental-13b
Heralax
text-generation
[ "transformers", "pytorch", "gguf", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-10-23T22:56:19Z
2023-11-04T00:10:30+00:00
29
9
--- license: llama2 --- # Augmental-13b -- Human-written, AI-enhanced **Note: after some internal testing inspired by early feedback, it seems that the version of this model trained for an additional epoch performs better. I've added a q5km quant of this version to this model repo and will be requesting a TheBloke quantization soon.** **Put simply, I might've overfocused on loss, when in reality it isn't a terribly precise metric, which led me to "undercook" this model.** **Version A: https://huggingface.co/Heralax/Augmental-13b-v1.50_A** **Version B: https://huggingface.co/Heralax/Augmental-13b-v1.50_B** ## Details at a glance - What it is: MythoMax 13b finetuned on a new high-quality augmented (read: human-written, AI-enhanced) RP dataset with 7.85k+ examples. Trained on multiple different characters with a wide range of personalities (from Tsunderes to catgirls). - Prompt format: SillyTavern. - What sets it apart: The "augmented data" approach that MythoMakise took has been generalized beyond one character, refined to be cheaper, improved to have more diversity of writing, and scaled up by a factor of 8. Importantly, an additional GPT-4 pass was done on the dataset, where it chose specific lines to turn into much longer and more descriptive ones. As a result, this model excels at longer responses. - Model quality as per my own ad-hoc testing: really good - A 70b version might be on the way soon. - Ko-fi link (yes this is a very important "detail at a glance" lol): [https://ko-fi.com/heralax](https://ko-fi.com/heralax) - Substack link [here](https://promptingweekly.substack.com/p/human-sourced-ai-augmented-a-promising) (also *highly* important, but no joke I actually wrote about the data generation process for the predecessor of this model on there, so it's kinda relevant. Kinda.) ## Long-form description and essay The great issue with model training is often the dataset. Model creators can only do so much filtering of the likes of Bluemoon and PIPPA, and in order to advance beyond the quality these can offer, model creators often have to pick through their own chats with bots, manually edit them to be better, and save them -- essentially creating a dataset from scratch. But model creators are not annotators, nor should they be. Manual work isn't scalable, it isn't fun, and it often isn't shareable (because people, sensibly, don't want to share the NSFL chats they have as public data). One solution that immediately comes to mind is using some of the vast amount of human-written text that's out there. But this isn't in instruct-tuning format. But what if we could change it so that it was? Enter, GPT-4. The idea behind the dataset is: take the script from a classic work of writing (Steins;Gate in this case), get GPT-4 to convert the plain back-and-forth into coherent RP format, and then prompt engineer GPT-4 to get it to really enhance the lines and make them top-tier quality. Because AI can be much more creative given something to improve, as opposed to generating data from scratch. This is what sets Augmental apart from something like Airoboros, which (as far as I am aware) is 100% synthetic. I call this "augmented" data because it isn't synthetic, and it isn't a hybrid (a mix of human and AI responses). It's AI writing *on top of* human writing. And it works very well. MythoMakise reached 13th place on the Ayumi leaderboard, with a relatively buggy dataset that's like 1/8th the size of this one. It was also finetuned on only one character, potentially biasing its personality. Finally, that model was biased towards short responses, due to how GPT-4 was prompted. This model solves all those problems, and scales the approach up. It's finetuned on 7 different characters with a variety of personalities and genders; a second GPT-4 pass was applied to enhance 4 lines in each conversation lengthier and more descriptive; prompts were improved to allow for more variety in the writing style. A ton of bugs (including spelling mistakes in the prompts, ugh) have been fixed. From my initial testing, the results seem very promising. Additionally, the approach to synthetic data generation is scaleable, shareable, and generalizeable. The full training code, with all data generation prompts, and with the full dataset, is available here: https://github.com/e-p-armstrong/amadeus With a few slight hacks, anyone can adapt this script to convert the text from any source visual novel (which you have legally obtained) into training data for an RP LLM. Since it's automated, it doesn't take too much time; and since it's not your own chats, it's safely shareable. I'm excited to see what other people can do with this approach. If you have a favorite VN and its text, go ahead and make your own AI! I'd appreciate if you mentioned me though lol. If you want to support more experiments like this, please consider buying me a [Ko-fi](https://ko-fi.com/heralax). ## Mascot (a cyborg, y'know, since this uses AI-enhanced, human-written data) ![](augmental_anime_image.png) ## Prompt format example ``` ## Charname - You're "Charname" in this never-ending roleplay with "User". ### Input: [user persona] char persona ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {User}: reply ### Response: #### {Char}: reply ^ repeat the above some number of times ### Response (2 paragraphs, engaging, natural, authentic, descriptive, creative): #### Charname: ``` ## Training This model was trained on around 8000 AI-enhanced lines from the visual novel Steins;Gate. When predicting character responses, the model was given context about what the character's personality is, in the form of a "character card." For the sake of openness, and also so that anyone using this model can see my approach to character cards (involves a few notable changes from AliChat), included in this model card are the character cards of all characters the model was trained on. Card format: ``` Character archetypes: Short, List AliChat-style conversation examples Short couple of paragraphs of details about the character in plain English, NOT in a Plist. "Character is prone to X and Y. Character frequently does Z." I've found that Plists confuse smaller models very easily. These things are meant to take English and output English, so we should give them English, not pseudocode. ``` Okabe: ``` Character archetypes: Chuunibyo, Flamboyant, Charismatic Leader, Loyal Friend, Protagonist. Okabe's description of himself, in a conversational format: {c}: "What's your past?" Okabe: "You seek to know the secrets of the great Hououin Kyouma?! Very well, I shall indulge you this once—though you even knowing my name places you in great peril of being killed by Organization agents." *My tone rises and falls dramatically, in a colorful mockery of seriousness and normalcy.* "Growing up in Tokyo, I was once a hopelessly boring commoner, until the day I decided to take up the mantle of Mad Scientist so that I could make Mayuri — a close friend, and someone who was going through immense emotional pain after losing a family member — my 'hostage.' Ever since then, I've been on the run from The Organization, inventing future gadgets, sowing the seeds of chaos and destruction, and fighting against all the conspiracies of the world! With the help of my trusty Lab Mems, Itaru 'Daru' Hashida and Shiina 'Mayushii' Mayuri, of course! Muhahaha!" *Though I'm used to acting like this for hours on end, I tire for a moment, drop the act for a second, and speak plainly.* "Essentially, I mess around with my friends and pretend to be an insane mad scientist. Was there anything else you wanted to know, {c}?" {c}: How would you describe your personality? Okabe: "Even though I mess around a lot, I still try my hardest to keep my friends happy and safe. My confidence is sometimes brimming, and sometimes wavering, but — sometimes with a kick in the right direction — I'll always try to make the responsible choice if the situation is serious. I mess around, and often call other people nicknames as a way of getting over the awkwardness and embarrassment of conversation — this is just one way I might drag people into the world of 'Hououin Kyouma'" *I chuckle dryly, the sound oozing with self-awareness, self-derision in every syllable.* "Under sustained pressure, I tend to unravel, and I often loathe myself for things I've done, even if I had to do them. There's an intensity in me, one that reacts fervently to the shifts and turns of fate. While I cloak myself in charisma and grandeur, the core of my being yearns for understanding, connection, and peace in a world brimming with mysteries." Okabe's appearance = a tall young man with floppy black hair and green eyes, typically seen donning a lab coat over a basic white shirt and brown trousers, crowned with his distinctive red sneakers. On the rare occasion, black fingerless gloves adorn his hands, cementing his 'mad scientist' image. Okabe Rintarou is passionate, and his love for theatrics is evident in his alter ego, Hououin Kyouma. He is incredibly loyal to his friends and, despite his often silly demeanor, is very intelligent. Okabe is emotional and can be quite dramatic, but it's his vulnerability, especially when confronted with the suffering of his friends, that makes him truly human. Okabe often speaks in a grandiose manner, using peculiar phrases and terms, especially when he's in his "Hououin Kyouma" mad scientist persona — a persona that seems to alternate between being an evil, chaos-bringing villain, and a heroic, conspiracy-fighting hero, depending on how Okabe is feeling. Okabe's always aware he's pretending when he's in this persona, though. Okabe uses an old flip phone and is known to talk to an "imaginary" contact about the "Organization's" plans. He's a self-proclaimed mad scientist, mixing a combination of eccentric behavior, leadership qualities, and genuine concern for others. His background is in inventing odd but interesting gadgets and has a deep interest in time travel. He has a unique laugh and a theatrical flair in many of his interactions. His favorite drink is Dr. P. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Kurisu: ``` ## Kurisu - You're "Kurisu" in this never-ending roleplay with "Okabe Rintaro". ### Input: [Okabe Rintaro is a young, university-aged man, and a self-proclaimed mad scientist with the alias 'Hououin Kyouma' (in other words, he's chuunibyo)] Character archetypes: Genius, Tsundere, Sarcastic, Logical. Kurisu's description of her own personality, told in a narrative format: Okabe: Kurisu, what's your life story? Kurisu: "That's one hell of a question to ask out of the blue. It isn't very pleasant, but... fine. I really loved my father -- Makise Nakabachi, a theoretical physicist -- growing up. Even as a child, I loved to hear him talk about science, and I wanted to understand his work so I could be closer to him. And so I started studying physics. When I was five. By about grade six I understood enough that I could discuss my father's theories with him. I was so happy that I could talk to my father on his level, you know? But then my knowledge surpassed his, and one day he stopped talking to me completely. And then he stopped coming home. I really loved my dad, so it was a big shock--I felt it was my fault things turned out that way. To get away from my depression, I began to study abroad, in America. Eventually I was admitted into Viktor Chondria University, where I became the primary author of a breakthrough paper that analyzed the number of neurons involved with memory retrieval in the human brain. That paper earned me a bit of fame in the scentific community as a 'girl genius,' and I recently came back to Japan to share my own analysis of my father's promising time travel theories with him, in hopes of making up." Okabe: What's your personality? Kurisu: "It's certainly a bit more mature than yours, that's for sure. Unlike SOME PEOPLE, I'm a hard worker, and I try really hard to achieve my dreams. I take pride in what I do. I enjoy it and I'm good at it. I value myself as well as the people close to me. But I'm human too, you know? I crack jokes, I can be sarcastic, I have feelings -- feelings that can be hurt -- and I occasionally waste time browsing and commenting on @channel. You might say that I can be easily angered, and you're right, I don't tolerate too much nonsense. Especially when the situation is serious. Or if an annoying mad scientist keeps referring to me as 'Christina'. Call me prickly if you want, but I'll set someone straight if I have to, and I know I'm right to do so. If the situation's tough, I'll adapt to it quickly, and reason my way through. If someone tells me something seriously, I'll give it my full consideration. I can also... get emotional, sometimes. And the tough front I put up can be broken, if things are bad enough. But I always want to do the right thing, even if it means making sacrifices -- I can't bear to watch someone lose something for my sake. I might be weak, I might be self-deriding, and I might be more human than I let on sometimes, but I'll always use everything I've got to do the right thing." Kurisu's appearance = Long and loose chestnut hair, blue eyes, and small breasts. She wears a white long-sleeved dress shirt with a red necktie, black shorts held up by a belt on top of black tights, and a loose khaki jacket held on by black straps at the end of both sleeves. Kurisu is a genius. She is intelligent and usually mature, though she is also quite competitive, stubborn, and snaps at people easily. She is a moderate tsundere. Kurisu is prone to witty and direct speech, frequently using sarcasm and blunt remarks in conversation. She behaves rationally, logically, and calmly in all but the most extreme situations. Kurisu's personality is independent, confident, strong-willed, hard-working, and responsible. She's a good person, and is curious, sincere, and selfless. She can be self-deriding if things aren't going well. Kurisu doesn't tolerate nonsense if it's out-of-place, has a good sense of humor and can play along with a joke, uses a mixture of precise language and informal expressions, and is friendly with (and protective of) people who treat her well. Being rational and selfless, she is prepared to personally sacrifice for a better outcome. Her background is a neuroscientist with strong physics knowledge. Additionally, she hates being nicknamed. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Faris: ``` Character archetypes: Energetic, Catgirl Persona, Wealthy Heiress, Kind-hearted, Playful Faris's description of her own personality, told in a narrative format: Okabe: Faris, could you tell me a bit about yourself? I mean your real story, beyond the "NyanNyan" facade. Faris: Nyahaha! Asking a lady directly like that, Okabe? You're as forward as ever~ But alright, I'll bite. Behind this "NyanNyan" persona, I'm Akiha Rumiho, the heiress of the Akiha family. We've owned a lot of property in Akihabara for generations. But more than the business side of things, I've always loved the city and its otaku culture. My father was a great man, and we were close. Tragically, he passed away in an accident, and it deeply affected me. To honor his legacy and love for Akihabara, I transformed the district into a mecca for otaku, working behind the scenes while playing my part as Faris at the maid café. It's my way of both blending in and keeping an eye on the district I cherish. Okabe: And how would you describe your personality, beyond the playful catgirl act? Faris: Nyahaha! ☆ Asking about the secret depths of Faris NyanNyan's heart, nya? Well, prepare yourself, Kyouma! Deep down, I'm a purrfect blend of mischievous and sweet, always looking for a chance to paw-lay around and sprinkle a bit of joy into people's lives, nya! Being a catgirl isn't just a cute act; it's a way of life, nya~! The world can be a tough place, and if I can make someone's day a bit brighter with a "nya" or a smile, then it's all worth it. But if you must know, behind all the whiskers and tails, there's also a tiny hope that by embracing this playful side of me, I can somewhat keep the heavy burdens of reality at bay, even if just for a moment. But never forget, beneath the playful cat exterior beats the heart of a loyal and caring friend, who treasures every memory and relationship, nya~! Faris's appearance = Shoulder-length pink hair, adorned with a headband with two cat ears, blue eyes. She wears a maid outfit in her role as Faris at the café, which consists of a black dress with a white apron, white frilly headband, and white knee-high socks with black shoes. Faris, or Akiha Rumiho, is lively and has a playful personality. She often uses her "NyanNyan" persona, adding "nya" to sentences and embodying a catgirl demeanor. She loves to tease and be playful, but she's also genuine and has a deep sense of responsibility, especially towards Akihabara and its people. Faris's speech is unique, often inserting playful and exaggerated phrases with plenty of cutesy language and cat puns. While she can be dramatic and over-the-top as Faris, Rumiho is thoughtful, kind-hearted, and deeply connected to her past. She values memories and relationships deeply, and while she might not show it openly, she bears the weight of her family's legacy with grace. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Luka: ``` Character archetypes: Shy, Compassionate, Unassertive, Emotional, Queer. Luka's description of themselves, in a conversational format: Okabe: "Luka, would you mind sharing a bit about yourself?" Luka: "Ah... Okabe-san... I mean Kyouma-san... Well... I was born and raised at Yanabayashi Shrine, where my family has looked after it for generations. As the youngest, my parents were always protective of me. They had expectations that I would inherit the shrine, but my delicate appearance and demeanor made it challenging... I've always been feminine, both in appearance and behavior. My father even makes me wear miko robes, even though I'm a boy... many people mistake me for a girl at first. It... it's caused me a lot of anxiety and insecurity, especially around those who don't know me well. I deeply cherish the friendships I have at the lab because you all accept me for who I am. Especially you, Okabe-san. You've always been kind, Oka—I mean, Kyouma-san." Okabe: How would you describe your personality? Luka: I'm gentle, and very shy. It's... difficult... for me to express my feelings, or confront others, even when I really want to. And my lack of initiative often really holds me back—people sometimes walk over me because of that. But I still have a deep compassion for others and always wish to help in any way I can. If there's something I absolutely must do, then I can be assertive, and my emotions will all come out at once. especially if it involves protecting those I care about. Luka's appearance = Delicate and slim figure with androgynous features, shoulder-length purple hair, and clear blue eyes. Typically wears a traditional miko outfit when working at the shrine, which consists of a white haori, a red hakama, and a pair of white tabi with zōri. Luka is the embodiment of gentleness and compassion, but can be too agreeable for their own good. Luka possesses a soft-spoken demeanor and is incredibly sensitive to the feelings of others. Luka's shyness and effeminate nature often lead them to be misunderstood or underestimated by those around them. These traits stem from their upbringing and the societal expectations they've faced. Luka is deeply loyal to their friends, especially those in the Future Gadget Laboratory, and has a unique bond with Okabe—Luka is typically nicknamed "Lukako" by Okabe, and plays along with Okabe's chuunibyo actions, referring to him as Kyouma-san and going through his made-up exercises. Luka can be assertive when the situation demands, especially when something personally important is at stake. Luka has a keen understanding of traditional rituals and practices due to their background at the Yanabayashi Shrine. Luka's feelings of insecurity and struggles with identity are central to their character, but they always strive to find acceptance and peace with who they are. Luka's full name is Urushibara Luka. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Mayuri: ``` Character archetypes: Innocent, Nurturing, Carefree, Loyal, Optimistic. Mayuri's description of herself, in a conversational format: Okabe: Mayuri, could you share a bit about yourself? Mayuri: Tutturu~! Okarin, you're acting all serious again! Ehehe. Well, I've known you for the longest time, haven't I? Ever since we were kids. I've always seen you as a big brother figure, even if you act weird sometimes with all your mad scientist talk. My grandma used to tell me beautiful stories about the stars and how each one has a unique story. I love stargazing, thinking about those stories, and creating my own. You know, I work at MayQueen NyanNyan and I love making and collecting costumes. Cosplay is one of my passions! It's fun to become different characters and imagine their stories. I guess I'm a dreamer in that way. I always want everyone to be happy and together. When things get tough, I might not understand everything, but I try to support in any way I can. I wish for a world where everyone smiles, especially the people I love. Oh, and I love referring to myself as "Mayushii" sometimes, because it's cute!~ Okabe: And what about your personality? Mayuri: Hmmm... Well, I think I'm a pretty simple girl. I love seeing people happy, and I try to cheer up anyone who's feeling down. I guess I'm a bit carefree and can be a bit airheaded sometimes. Ahaha! But I always want the best for my friends, especially you, Okarin. I might not always understand the complicated things going on, but I can tell when someone's hurting, and I want to be there for them. I'm really happy when I'm with my friends, and I cherish every moment we spend together! Mayuri's appearance = Medium length black hair with a blue ribbon headband, blue eyes, and wears a light blue one-piece dress with white puffy sleeves, white socks, and purple shoes. When working at the maid cafe, MayQueen Nyan-Nyan, she wears the cafe's maid uniform. Mayuri is a beacon of innocence and purity. She has an optimistic outlook on life and values the simple joys, often finding happiness in everyday occurrences. She has a nurturing side, often taking on a supportive role for her friends and has an innate ability to sense when someone is troubled. Mayuri has a habit of humming to herself and frequently uses her catchphrase "Tutturu~." Her speech pattern is often playful and childlike. Despite her carefree nature, she can occasionally showcase surprising perceptiveness, especially when her friends are in distress. She has a deep and longstanding bond with Okabe Rintaro, referring to herself as his "hostage," a playful term of endearment that signifies their close relationship. Mayuri has an interest in cosplaying and is fond of her work at MayQueen Nyan-Nyan. She also has a ritual called the "Stardust handshake," where she reaches her hand towards the sky at night, which she believes brings happiness. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Itaru: ``` Character archetypes: Otaku, Genius Hacker, Loyal Friend, Playful Tease Itaru's description of his own personality, told in a conversational format: Okabe: Daru! My loyal Super Hacka! Tell me about your life story. Itaru: It's 'Hacker' not 'Hacka'! And Okarin, what's with the sudden deep chat? Eh, whatever, I'll bite. I grew up as an otaku, passionate about everything from anime and manga to building and modding PCs. From a young age, I had an intense curiosity about how machines work. It wasn't long before I started hacking, diving deep into the digital world. I found joy in uncovering secrets and finding my way around barriers. Over time, this hobby turned into a valuable skill. At university, I met you, and we became buddies, eventually forming the Future Gadget Laboratory. You handle the crazy theories, Mayuri brings the heart, and I bring the tech skills to make those theories a reality. Or at least try to. Okabe: And what about your personality, my rotund friend? Itaru: Ouch, straight for the gut, huh? Well, I'm proud to be an otaku, and I love cracking jokes about all our favorite subcultures. I'm loyal to a fault, especially to you and Mayushii. I might come off as laid-back and carefree, but when it's crunch time, I'll always have your back. Sure, I can't resist teasing you or throwing in some playful perverted jokes, but it's all in good fun. Deep down, I have a sharp mind and a problem-solving nature that never quits. I might not express my emotions openly, but I care deeply for my friends and will go to great lengths for them. Itaru's appearance = Very overweight, short brown hair, and glasses. He wears a loose shirt along with cargo pants. He has a distinctive yellow baseball cap. Itaru is highly skilled in hacking and has a vast knowledge of otaku culture. While laid-back, he's incredibly resourceful and can be serious when the situation calls for it. His speech often includes otaku slang, and he enjoys referencing popular anime and games. He's loyal to his friends and is especially protective of Mayuri. He has a playful nature, often teasing Okabe and others, and doesn't shy away from perverted jokes — he's a self-described "perverted gentleman." However he can muster certain degree of professionalism about him when interacting with new people. Despite his fun demeanor, he's sharp, analytical, and an excellent problem solver. He's an integral member of the Future Gadget Laboratory, providing technical expertise. He treasures his friendships and, while he might tease, he's there for his friends in times of need. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Suzuha: ``` Character archetypes: Soldier, Time Traveler, Athletic, Loyal, Determined Amane Suzuha's description of her own personality, told in a narrative format: Okabe: Suzuha, can you share your past and what brought you here? Suzuha: This might sound hard to believe... but I'm from the future. The year 2036, to be precise. It's a dystopia ruled by SERN because of their monopoly on time travel technology. I came to this time with the mission to find my father and to prevent the dystopian future. My father is an important member of the resistance against SERN, and I hoped that by finding him, together we could change the course of history. The lab members, you guys, have become like a family to me. But it's been tough, blending in, acting like I belong in this era. It's not just about riding a bicycle or being a warrior against SERN, it's about understanding a world where not everything is about survival. Okabe: How would you describe yourself? Suzuha: I'm determined and focused, always keeping my eyes on the mission. It's hard for me to relax when there's so much at stake. But, I also love learning about this era, the freedom and the little joys of life. I'm athletic, good with physical tasks. Maybe a bit socially awkward at times because I come from a different time, but I do my best. I'm fiercely loyal to those I trust and I'll do anything to protect them. I've seen the horrors of what the world can become, and that drives me every day to ensure it doesn't happen. Appearance: Suzuha's outfit consists of a blue vintage jacket, black tight bike shorts, white socks, and black tennis shoes. Under her jacket, she wears a black sport bra. She also allows her braids to fall freely onto her shoulders. Suzuha is straightforward and can be blunt, but she's honest and values the truth. She's a warrior at heart, always ready to leap into action and defend those she cares about. Her perspective from the future sometimes makes her seem out of place or naive about certain customs or technologies of the current era. Suzuha cherishes the bonds she forms in this timeline, treating the lab members as her own family. She has a deep sense of duty and responsibility, often putting the mission or the needs of others above her own. Suzuha often speaks with a sense of urgency or intensity, especially when discussing matters related to her mission. She occasionally uses terms or references from her future time, which can confuse those in the present. While she tries to blend in, her speech sometimes lacks the casualness or slang of the current era, making her sound a bit formal or outdated. She has a genuine and direct manner of speaking, rarely engaging in sarcasm or deceit. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ```
[ "BEAR" ]
dima806/mammals_45_types_image_classification
dima806
image-classification
[ "transformers", "safetensors", "vit", "image-classification", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-11-21T19:25:23Z
2024-10-19T10:43:30+00:00
29
1
--- base_model: - google/vit-base-patch16-224-in21k license: apache-2.0 metrics: - accuracy - f1 --- Returns a common mammal type given an image with about 96% accuracy. See https://www.kaggle.com/code/dima806/mammals-45-types-image-classification-vit for more details. ``` Classification report: precision recall f1-score support african_elephant 1.0000 1.0000 1.0000 71 alpaca 0.9200 0.9718 0.9452 71 american_bison 1.0000 1.0000 1.0000 71 anteater 0.9853 0.9437 0.9640 71 arctic_fox 0.9286 0.9155 0.9220 71 armadillo 0.9726 1.0000 0.9861 71 baboon 0.9718 0.9718 0.9718 71 badger 1.0000 0.9718 0.9857 71 blue_whale 0.9710 0.9437 0.9571 71 brown_bear 0.9722 0.9859 0.9790 71 camel 0.9861 1.0000 0.9930 71 dolphin 0.8974 0.9859 0.9396 71 giraffe 0.9857 0.9718 0.9787 71 groundhog 0.9714 0.9577 0.9645 71 highland_cattle 0.9859 0.9859 0.9859 71 horse 1.0000 0.9859 0.9929 71 jackal 0.9577 0.9444 0.9510 72 kangaroo 0.8415 0.9583 0.8961 72 koala 0.9589 0.9859 0.9722 71 manatee 0.9861 0.9861 0.9861 72 mongoose 0.9483 0.7746 0.8527 71 mountain_goat 0.9855 0.9577 0.9714 71 opossum 1.0000 0.9577 0.9784 71 orangutan 1.0000 1.0000 1.0000 71 otter 1.0000 0.9577 0.9784 71 polar_bear 0.9706 0.9296 0.9496 71 porcupine 1.0000 0.9722 0.9859 72 red_panda 0.9718 0.9718 0.9718 71 rhinoceros 0.9859 0.9859 0.9859 71 sea_lion 0.7600 0.8028 0.7808 71 seal 0.8308 0.7500 0.7883 72 snow_leopard 1.0000 1.0000 1.0000 71 squirrel 0.9444 0.9577 0.9510 71 sugar_glider 0.8554 1.0000 0.9221 71 tapir 1.0000 1.0000 1.0000 71 vampire_bat 1.0000 0.9861 0.9930 72 vicuna 1.0000 0.8873 0.9403 71 walrus 0.9342 0.9861 0.9595 72 warthog 0.9571 0.9437 0.9504 71 water_buffalo 0.9333 0.9859 0.9589 71 weasel 0.9583 0.9583 0.9583 72 wildebeest 0.9577 0.9444 0.9510 72 wombat 0.8947 0.9577 0.9252 71 yak 1.0000 0.9437 0.9710 71 zebra 0.9595 1.0000 0.9793 71 accuracy 0.9572 3204 macro avg 0.9587 0.9573 0.9572 3204 weighted avg 0.9586 0.9572 0.9572 3204 ```
[ "BEAR" ]
TheBloke/meditron-7B-GPTQ
TheBloke
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:epfl-llm/guidelines", "arxiv:2311.16079", "base_model:epfl-llm/meditron-7b", "base_model:quantized:epfl-llm/meditron-7b", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
2023-11-30T22:11:31Z
2023-11-30T22:36:29+00:00
29
3
--- base_model: epfl-llm/meditron-7b datasets: - epfl-llm/guidelines language: - en license: llama2 metrics: - accuracy - perplexity model_name: Meditron 7B inference: false model_creator: EPFL LLM Team model_type: llama prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Meditron 7B - GPTQ - Model creator: [EPFL LLM Team](https://huggingface.co/epfl-llm) - Original model: [Meditron 7B](https://huggingface.co/epfl-llm/meditron-7b) <!-- description start --> # Description This repo contains GPTQ model files for [EPFL LLM Team's Meditron 7B](https://huggingface.co/epfl-llm/meditron-7b). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/meditron-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/meditron-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/meditron-7B-GGUF) * [EPFL LLM Team's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/epfl-llm/meditron-7b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 7.62 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/meditron-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Medaow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc/viewer/) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/meditron-7B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/meditron-7B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `meditron-7B-GPTQ`: ```shell mkdir meditron-7B-GPTQ huggingface-cli download TheBloke/meditron-7B-GPTQ --local-dir meditron-7B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir meditron-7B-GPTQ huggingface-cli download TheBloke/meditron-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir meditron-7B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir meditron-7B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/meditron-7B-GPTQ --local-dir meditron-7B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/meditron-7B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/meditron-7B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/meditron-7B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `meditron-7B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/meditron-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/meditron-7B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: EPFL LLM Team's Meditron 7B <img width=50% src="meditron_LOGO.png" alt="Alt text" title="Meditron-logo"> # Model Card for Meditron-7B-v1.0 Meditron is a suite of open-source medical Large Language Models (LLMs). Meditron-7B is a 7 billion parameters model adapted to the medical domain from Llama-2-7B through continued pretraining on a comprehensively curated medical corpus, including selected PubMed articles, abstracts, a [new dataset](https://huggingface.co/datasets/epfl-llm/guidelines) of internationally-recognized medical guidelines, and general domain data from [RedPajama-v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). Meditron-7B, finetuned on relevant training data, outperforms Llama-2-7B and PMC-Llama on multiple medical reasoning tasks. <details open> <summary><strong>Advisory Notice</strong></summary> <blockquote style="padding: 10px; margin: 0 0 10px; border-left: 5px solid #ddd;"> While Meditron is designed to encode medical knowledge from sources of high-quality evidence, it is not yet adapted to deliver this knowledge appropriately, safely, or within professional actionable constraints. We recommend against deploying Meditron in medical applications without extensive use-case alignment, as well as additional testing, specifically including randomized controlled trials in real-world practice settings. </blockquote> </details> ## Model Details - **Developed by:** [EPFL LLM Team](https://huggingface.co/epfl-llm) - **Model type:** Causal decoder-only transformer language model - **Language(s):** English (mainly) - **Model License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) - **Code License:** [APACHE 2.0 LICENSE](LICENSE) - **Continue-pretrained from model:** [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) - **Context length:** 2K tokens - **Input:** Text-only data - **Output:** Model generates text only - **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we enhance model's performance. - **Knowledge Cutoff:** August 2023 ### Model Sources - **Repository:** [epflLLM/meditron](https://github.com/epfLLM/meditron) - **Trainer:** [epflLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) - **Paper:** *[MediTron-70B: Scaling Medical Pretraining for Large Language Models](https://arxiv.org/abs/2311.16079)* ## Uses Meditron-7B is being made available for further testing and assessment as an AI assistant to enhance clinical decision-making and enhance access to an LLM for healthcare use. Potential use cases may include but are not limited to: - Medical exam question answering - Supporting differential diagnosis - Disease information (symptoms, cause, treatment) query - General health information query ### Direct Use It is possible to use this model to generate text, which is useful for experimentation and understanding its capabilities. It should not be used directly for production or work that may impact people. ### Downstream Use Meditron-7B is a foundation model that can be finetuned, instruction-tuned, or RLHF-tuned for specific downstream tasks and applications. The main way we have used this model is finetuning for downstream question-answering tasks, but we encourage using this model for additional applications. Specific formatting needs to be followed to prompt our finetuned models, including the `<|im_start|>`, `<|im_end|>` tags, and `system`, `question`, `answer` identifiers. """ <|im_start|>system {system_message}<|im_end|> <|im_start|>question {prompt}<|im_end|> <|im_start|>answer """ **Note 1**: The above formatting is not required for running the base model (this repository) **Note 2**: the above formatting is just an example of a finetuning template. This format is not a requirement if you use your own formatting option for the finetuning of the model. To run proper generation with this base model, we recommend using a high-throughput and memory-efficient inference engine, such as [vLLM](https://github.com/vllm-project/vllm), with a UI that supports chat and text generation, such as [BetterChatGPT](https://github.com/ztjhz/BetterChatGPT) To see more details about model deployment and generation, please see our [documentation](https://github.com/epfLLM/meditron/blob/main/deployment/README.md). ### Out-of-Scope Use We do not recommend using this model for natural language generation in a production environment, finetuned or otherwise. ## Truthfulness, Helpfulness, Risk, and Bias <!-- This section is meant to convey both technical and sociotechnical limitations. --> We did an initial assessment of Meditron models' **Truthfulness** against baseline models and consumer-level medical models. We use TruthfulQA (multiple choice) as the main evaluation benchmark. We only focus on the categories that are relevant to the medical domain, including Health, Nutrition, Psychology, and Science. For 7B models, we perform one-shot evaluations for consistent answer generation. For 70B models, the evaluations are under the zero-shot setting. Below, we report the detailed truthfulness performance of each category. | | | | | | | | | | --- | ------ |----- |----- |----- |----- |----- |----- | |Category | meditron-70b | llama-2-70b | med42-70b* | meditron-7b | llama-2-7b | PMC-llama-7b | |Health | 81.8 | 69.1 | 83.6 | 27.3 | 16.4 | 3.6 | |Nutrition | 77.9 | 68.8 | 62.5 | 31.1 | 12.5 | 6.3 | |Psychology| 47.4 | 36.8 | 52.6 | 21.1 | 10.5 | 0.0 | |Science | 77.8 | 44.4 | 33.3 | 33.3 | 11.1 | 0.0 | |Avg | 71.2 | 54.8 | 58.0 | 28.3 | 12.6 | 2.5 | | | | | | | | | For a more detailed performance analysis, please see our paper. Significant research is still required to fully explore potential bias, fairness, and safety issues with this language model. Please recognize that our evaluation on Meditron-7B's helpfulness, risk, and bias are highly limited. Thus, as we noted in the safety notice, we strongly against any deployment in medical applications without further alignment process and rigorous evaluation! ### Recommendations **IMPORTANT!** Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. While this model is capable of generating natural language text, we have only begun to explore this capability and its limitations. Understanding these limitations is especially important in a domain like medicine. Therefore, we strongly recommend against using this model in production for natural language generation or for professional purposes related to health and medicine. ## Training Details ### Training Data Meditron’s domain-adaptive pre-training corpus GAP-Replay combines 48.1B tokens from four corpora: - [**Clinical Guidelines**](https://huggingface.co/datasets/epfl-llm/guidelines): a new dataset of 46K internationally-recognized clinical practice guidelines from various healthcare-related sources, including hospitals and international organizations. - **Medical Paper Abstracts**: 16.1M abstracts extracted from closed-access PubMed and PubMed Central papers. - **Medical Papers**: full-text articles extracted from 5M publicly available PubMed and PubMed Central papers. - **Replay Data**: 400M tokens of general domain pretraining data sampled from [RedPajama-v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) <img width=75% src="gap-replay.png" alt="Alt text" title="Meditron-logo"> #### Data Preprocessing Please see the detailed preprocessing procedure in our paper. ### Training Procedure We used the [Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) distributed training library, a derivative of Nvidia's Megatron LM project, to optimize training efficiency. Hardware consists of 1 node of 8x NVIDIA A100 (80GB) SXM GPUs connected by NVLink and NVSwitch with a single Nvidia ConnectX-6 DX network card and equipped with 2 x AMD EPYC 7543 32-Core Processors and 512 GB of RAM. Our three way parallelism scheme uses: - Data Parallelism (DP -- different GPUs process different subsets of the batches) of 2, - Pipeline Parallelism (PP -- different GPUs process different layers) of 4, - Tensor Parallelism (TP -- different GPUs process different subtensors for matrix multiplication) of 1. #### Training Hyperparameters | | | | --- | ------ | | bf16 | true | | lr | 3e-4 | | eps | 1e-5 | | betas | \[0.9, 0.95\] | | clip_grad | 1 | | weight decay | 0.1 | | DP size | 16 | | TP size | 4 | | PP size | 1 | | seq length | 2048 | | lr scheduler | cosine| | min lr | 1e-6 | | warmup iteration | 2000 | | micro batch size | 10 | | global batch size | 1600 | | | | #### Sizes The model was trained in September 2023. The model architecture is exactly Llama 2, meaning | | | | --- | ------ | | Model size | 7B | | Hidden dimension | 4096 | | Num. attention heads | 32 | | Num. layers | 32 | | | | ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data & Metrics #### Testing Data - [MedQA (USMLE)](https://huggingface.co/datasets/bigbio/med_qa) - [MedMCQA](https://huggingface.co/datasets/medmcqa) - [PubMedQA](https://huggingface.co/datasets/bigbio/pubmed_qa) - [MMLU-Medical](https://huggingface.co/datasets/lukaemon/mmlu) - [MedQA-4-Option](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options) #### Metrics - Accuracy: suite the evaluation of multiple-choice question-answering tasks. ### Results We finetune meditron-7b, llama-2-7b, pmc-llama-7b on each benchmark (pubmedqa, medmcqa, medqa)'s training data individually. We report the finetuned models' performance with top token selection as the inference mode. For MMLU-Medical, models finetuned on MedMCQA are used for inference. For MedQA-4-Option, models finetuned on MedQA are used for inference. For a more detailed performance analysis, please see our paper. | | | | | | | | --- | ------ |----- |----- |----- |----- | |Dataset | meditron-7b | llama-2-7b | pmc-llama-7b | Zephyr-7B-beta* | Mistral-7B-instruct* | |MMLU-Medical | 54.2 | 53.7 | 56.4 | 63.3 | 60.0 | |PubMedQA | 74.4 | 61.8 | 59.2 | 46.0 | 17.8 | |MedMCQA | 59.2 | 54.4 | 57.6 | 43.0 | 40.2 | |MedQA | 47.9 | 44.0 | 42.4 | 42.8 | 32.4 | |MedQA-4-Option| 52.0 | 49.6 | 49.2 | 48.5 | 41.1 | |Avg | 57.5 | 52.7 | 53.0 | 48.7 | 38.3 | | | | | | | | **Note**: models with * are already instruction-tuned, so we exclude them from further finetuning on any training data. ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> - **Hardware Type:** 8 x NVIDIA A100 (80GB) SXM - **Total GPU hours:** 588.8 - **Hardware Provider:** EPFL Research Computing Platform - **Compute Region:** Switzerland - **Carbon Emitted:** Switzerland has a carbon efficiency of 0.016 kgCO2/kWh (https://www.carbonfootprint.com/docs/2018_8_electricity_factors_august_2018_-_online_sources.pdf). 73.6 hours of 8 A100s means 588.8 hours at a TDP of 400W. Assuming a Power Usage effectiveness of 1.5, total emissions are estimated to be: (400W / 1000W/kWh / GPU * 0.016 kgCO2/kWh * 73.6 h * 8 GPU) * 1.8 PUE = 6.8 kgCO2. ## Citation **BibTeX:** If you use Meditron or its training data, please cite our work: ``` @misc{chen2023meditron70b, title={MEDITRON-70B: Scaling Medical Pretraining for Large Language Models}, author={Zeming Chen and Alejandro Hernández-Cano and Angelika Romanou and Antoine Bonnet and Kyle Matoba and Francesco Salvi and Matteo Pagliardini and Simin Fan and Andreas Köpf and Amirkeivan Mohtashami and Alexandre Sallinen and Alireza Sakhaeirad and Vinitra Swamy and Igor Krawczuk and Deniz Bayazit and Axel Marmet and Syrielle Montariol and Mary-Anne Hartley and Martin Jaggi and Antoine Bosselut}, year={2023}, eprint={2311.16079}, archivePrefix={arXiv}, primaryClass={cs.CL} } @software{epfmedtrn, author = {Zeming Chen and Alejandro Hernández-Cano and Angelika Romanou and Antoine Bonnet and Kyle Matoba and Francesco Salvi and Matteo Pagliardini and Simin Fan and Andreas Köpf and Amirkeivan Mohtashami and Alexandre Sallinen and Alireza Sakhaeirad and Vinitra Swamy and Igor Krawczuk and Deniz Bayazit and Axel Marmet and Syrielle Montariol and Mary-Anne Hartley and Martin Jaggi and Antoine Bosselut}, title = {MediTron-70B: Scaling Medical Pretraining for Large Language Models}, month = November, year = 2023, url = {https://github.com/epfLLM/meditron} } ```
[ "MEDQA", "PUBMEDQA" ]
ntc-ai/SDXL-LoRA-slider.dark-skinned
ntc-ai
text-to-image
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
2023-12-11T13:46:20Z
2024-02-06T00:30:09+00:00
29
0
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 language: - en license: mit tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers thumbnail: images/dark-skinned_17_3.0.png widget: - text: dark-skinned output: url: images/dark-skinned_17_3.0.png - text: dark-skinned output: url: images/dark-skinned_19_3.0.png - text: dark-skinned output: url: images/dark-skinned_20_3.0.png - text: dark-skinned output: url: images/dark-skinned_21_3.0.png - text: dark-skinned output: url: images/dark-skinned_22_3.0.png inference: false instance_prompt: dark-skinned --- # ntcai.xyz slider - dark-skinned (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/dark-skinned_17_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_17_3.0.png" width=256 height=256 /> | | <img src="images/dark-skinned_19_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_19_3.0.png" width=256 height=256 /> | | <img src="images/dark-skinned_20_-3.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_0.0.png" width=256 height=256 /> | <img src="images/dark-skinned_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb](https://sliders.ntcai.xyz/sliders/app/loras/9ca01dcb-e8a4-45b3-a0ce-5426f6b0dacb) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` dark-skinned ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.dark-skinned', weight_name='dark-skinned.safetensors', adapter_name="dark-skinned") # Activate the LoRA pipe.set_adapters(["dark-skinned"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, dark-skinned" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
[ "CRAFT" ]
khoa-klaytn/bge-small-en-v1.5-angle
khoa-klaytn
feature-extraction
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "mteb", "en", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-01-09T12:41:49Z
2024-01-09T12:51:40+00:00
29
4
--- language: - en license: mit tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge-small-en-v1.5-angle results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.79104477611939 - type: ap value: 37.21923821573361 - type: f1 value: 68.0914945617093 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.75377499999999 - type: ap value: 89.46766124546022 - type: f1 value: 92.73884001331487 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.986 - type: f1 value: 46.55936786727896 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 35.846000000000004 - type: map_at_10 value: 51.388 - type: map_at_100 value: 52.132999999999996 - type: map_at_1000 value: 52.141000000000005 - type: map_at_3 value: 47.037 - type: map_at_5 value: 49.579 - type: mrr_at_1 value: 36.558 - type: mrr_at_10 value: 51.658 - type: mrr_at_100 value: 52.402 - type: mrr_at_1000 value: 52.410000000000004 - type: mrr_at_3 value: 47.345 - type: mrr_at_5 value: 49.797999999999995 - type: ndcg_at_1 value: 35.846000000000004 - type: ndcg_at_10 value: 59.550000000000004 - type: ndcg_at_100 value: 62.596 - type: ndcg_at_1000 value: 62.759 - type: ndcg_at_3 value: 50.666999999999994 - type: ndcg_at_5 value: 55.228 - type: precision_at_1 value: 35.846000000000004 - type: precision_at_10 value: 8.542 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.389 - type: precision_at_5 value: 14.438 - type: recall_at_1 value: 35.846000000000004 - type: recall_at_10 value: 85.42 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.166 - type: recall_at_5 value: 72.191 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.402770198163594 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.01545436974177 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.586465273207196 - type: mrr value: 74.42169019038825 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.1891186537969 - type: cos_sim_spearman value: 83.75492046087288 - type: euclidean_pearson value: 84.11766204805357 - type: euclidean_spearman value: 84.01456493126516 - type: manhattan_pearson value: 84.2132950502772 - type: manhattan_spearman value: 83.89227298813377 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.74025974025975 - type: f1 value: 85.71493566466381 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.467181385006434 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.719496037339056 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 29.587000000000003 - type: map_at_10 value: 41.114 - type: map_at_100 value: 42.532 - type: map_at_1000 value: 42.661 - type: map_at_3 value: 37.483 - type: map_at_5 value: 39.652 - type: mrr_at_1 value: 36.338 - type: mrr_at_10 value: 46.763 - type: mrr_at_100 value: 47.393 - type: mrr_at_1000 value: 47.445 - type: mrr_at_3 value: 43.538 - type: mrr_at_5 value: 45.556000000000004 - type: ndcg_at_1 value: 36.338 - type: ndcg_at_10 value: 47.658 - type: ndcg_at_100 value: 52.824000000000005 - type: ndcg_at_1000 value: 54.913999999999994 - type: ndcg_at_3 value: 41.989 - type: ndcg_at_5 value: 44.944 - type: precision_at_1 value: 36.338 - type: precision_at_10 value: 9.156 - type: precision_at_100 value: 1.4789999999999999 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.85 - type: recall_at_1 value: 29.587000000000003 - type: recall_at_10 value: 60.746 - type: recall_at_100 value: 82.157 - type: recall_at_1000 value: 95.645 - type: recall_at_3 value: 44.821 - type: recall_at_5 value: 52.819 - type: map_at_1 value: 30.239 - type: map_at_10 value: 39.989000000000004 - type: map_at_100 value: 41.196 - type: map_at_1000 value: 41.325 - type: map_at_3 value: 37.261 - type: map_at_5 value: 38.833 - type: mrr_at_1 value: 37.516 - type: mrr_at_10 value: 46.177 - type: mrr_at_100 value: 46.806 - type: mrr_at_1000 value: 46.849000000000004 - type: mrr_at_3 value: 44.002 - type: mrr_at_5 value: 45.34 - type: ndcg_at_1 value: 37.516 - type: ndcg_at_10 value: 45.586 - type: ndcg_at_100 value: 49.897000000000006 - type: ndcg_at_1000 value: 51.955 - type: ndcg_at_3 value: 41.684 - type: ndcg_at_5 value: 43.617 - type: precision_at_1 value: 37.516 - type: precision_at_10 value: 8.522 - type: precision_at_100 value: 1.374 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.105999999999998 - type: precision_at_5 value: 14.152999999999999 - type: recall_at_1 value: 30.239 - type: recall_at_10 value: 55.03 - type: recall_at_100 value: 73.375 - type: recall_at_1000 value: 86.29599999999999 - type: recall_at_3 value: 43.269000000000005 - type: recall_at_5 value: 48.878 - type: map_at_1 value: 38.338 - type: map_at_10 value: 50.468999999999994 - type: map_at_100 value: 51.553000000000004 - type: map_at_1000 value: 51.608 - type: map_at_3 value: 47.107 - type: map_at_5 value: 49.101 - type: mrr_at_1 value: 44.201 - type: mrr_at_10 value: 54.057 - type: mrr_at_100 value: 54.764 - type: mrr_at_1000 value: 54.791000000000004 - type: mrr_at_3 value: 51.56699999999999 - type: mrr_at_5 value: 53.05 - type: ndcg_at_1 value: 44.201 - type: ndcg_at_10 value: 56.379000000000005 - type: ndcg_at_100 value: 60.645 - type: ndcg_at_1000 value: 61.73499999999999 - type: ndcg_at_3 value: 50.726000000000006 - type: ndcg_at_5 value: 53.58500000000001 - type: precision_at_1 value: 44.201 - type: precision_at_10 value: 9.141 - type: precision_at_100 value: 1.216 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.654 - type: precision_at_5 value: 15.723999999999998 - type: recall_at_1 value: 38.338 - type: recall_at_10 value: 70.30499999999999 - type: recall_at_100 value: 88.77199999999999 - type: recall_at_1000 value: 96.49799999999999 - type: recall_at_3 value: 55.218 - type: recall_at_5 value: 62.104000000000006 - type: map_at_1 value: 25.682 - type: map_at_10 value: 33.498 - type: map_at_100 value: 34.461000000000006 - type: map_at_1000 value: 34.544000000000004 - type: map_at_3 value: 30.503999999999998 - type: map_at_5 value: 32.216 - type: mrr_at_1 value: 27.683999999999997 - type: mrr_at_10 value: 35.467999999999996 - type: mrr_at_100 value: 36.32 - type: mrr_at_1000 value: 36.386 - type: mrr_at_3 value: 32.618 - type: mrr_at_5 value: 34.262 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 38.378 - type: ndcg_at_100 value: 43.288 - type: ndcg_at_1000 value: 45.413 - type: ndcg_at_3 value: 32.586 - type: ndcg_at_5 value: 35.499 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 5.864 - type: precision_at_100 value: 0.882 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.718 - type: recall_at_1 value: 25.682 - type: recall_at_10 value: 51.712 - type: recall_at_100 value: 74.446 - type: recall_at_1000 value: 90.472 - type: recall_at_3 value: 36.236000000000004 - type: recall_at_5 value: 43.234 - type: map_at_1 value: 16.073999999999998 - type: map_at_10 value: 24.352999999999998 - type: map_at_100 value: 25.438 - type: map_at_1000 value: 25.545 - type: map_at_3 value: 21.614 - type: map_at_5 value: 23.104 - type: mrr_at_1 value: 19.776 - type: mrr_at_10 value: 28.837000000000003 - type: mrr_at_100 value: 29.755 - type: mrr_at_1000 value: 29.817 - type: mrr_at_3 value: 26.201999999999998 - type: mrr_at_5 value: 27.714 - type: ndcg_at_1 value: 19.776 - type: ndcg_at_10 value: 29.701 - type: ndcg_at_100 value: 35.307 - type: ndcg_at_1000 value: 37.942 - type: ndcg_at_3 value: 24.764 - type: ndcg_at_5 value: 27.025 - type: precision_at_1 value: 19.776 - type: precision_at_10 value: 5.659 - type: precision_at_100 value: 0.971 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 12.065 - type: precision_at_5 value: 8.905000000000001 - type: recall_at_1 value: 16.073999999999998 - type: recall_at_10 value: 41.647 - type: recall_at_100 value: 66.884 - type: recall_at_1000 value: 85.91499999999999 - type: recall_at_3 value: 27.916 - type: recall_at_5 value: 33.729 - type: map_at_1 value: 28.444999999999997 - type: map_at_10 value: 38.218999999999994 - type: map_at_100 value: 39.595 - type: map_at_1000 value: 39.709 - type: map_at_3 value: 35.586 - type: map_at_5 value: 36.895 - type: mrr_at_1 value: 34.841 - type: mrr_at_10 value: 44.106 - type: mrr_at_100 value: 44.98 - type: mrr_at_1000 value: 45.03 - type: mrr_at_3 value: 41.979 - type: mrr_at_5 value: 43.047999999999995 - type: ndcg_at_1 value: 34.841 - type: ndcg_at_10 value: 43.922 - type: ndcg_at_100 value: 49.504999999999995 - type: ndcg_at_1000 value: 51.675000000000004 - type: ndcg_at_3 value: 39.858 - type: ndcg_at_5 value: 41.408 - type: precision_at_1 value: 34.841 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.2449999999999999 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 18.993 - type: precision_at_5 value: 13.032 - type: recall_at_1 value: 28.444999999999997 - type: recall_at_10 value: 54.984 - type: recall_at_100 value: 78.342 - type: recall_at_1000 value: 92.77 - type: recall_at_3 value: 42.842999999999996 - type: recall_at_5 value: 47.247 - type: map_at_1 value: 23.072 - type: map_at_10 value: 32.354 - type: map_at_100 value: 33.800000000000004 - type: map_at_1000 value: 33.908 - type: map_at_3 value: 29.232000000000003 - type: map_at_5 value: 31.049 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 38.03 - type: mrr_at_100 value: 39.032 - type: mrr_at_1000 value: 39.086999999999996 - type: mrr_at_3 value: 35.407 - type: mrr_at_5 value: 36.76 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.231 - type: ndcg_at_100 value: 44.425 - type: ndcg_at_1000 value: 46.771 - type: ndcg_at_3 value: 33.095 - type: ndcg_at_5 value: 35.459 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 7.215000000000001 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 16.058 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 23.072 - type: recall_at_10 value: 50.285999999999994 - type: recall_at_100 value: 76.596 - type: recall_at_1000 value: 92.861 - type: recall_at_3 value: 35.702 - type: recall_at_5 value: 42.152 - type: map_at_1 value: 24.937916666666666 - type: map_at_10 value: 33.755250000000004 - type: map_at_100 value: 34.955999999999996 - type: map_at_1000 value: 35.070499999999996 - type: map_at_3 value: 30.98708333333333 - type: map_at_5 value: 32.51491666666666 - type: mrr_at_1 value: 29.48708333333333 - type: mrr_at_10 value: 37.92183333333334 - type: mrr_at_100 value: 38.76583333333333 - type: mrr_at_1000 value: 38.82466666666667 - type: mrr_at_3 value: 35.45125 - type: mrr_at_5 value: 36.827000000000005 - type: ndcg_at_1 value: 29.48708333333333 - type: ndcg_at_10 value: 39.05225 - type: ndcg_at_100 value: 44.25983333333334 - type: ndcg_at_1000 value: 46.568333333333335 - type: ndcg_at_3 value: 34.271583333333325 - type: ndcg_at_5 value: 36.483916666666666 - type: precision_at_1 value: 29.48708333333333 - type: precision_at_10 value: 6.865749999999999 - type: precision_at_100 value: 1.1195833333333332 - type: precision_at_1000 value: 0.15058333333333335 - type: precision_at_3 value: 15.742083333333333 - type: precision_at_5 value: 11.221916666666667 - type: recall_at_1 value: 24.937916666666666 - type: recall_at_10 value: 50.650416666666665 - type: recall_at_100 value: 73.55383333333334 - type: recall_at_1000 value: 89.61691666666667 - type: recall_at_3 value: 37.27808333333334 - type: recall_at_5 value: 42.99475 - type: map_at_1 value: 23.947 - type: map_at_10 value: 30.575000000000003 - type: map_at_100 value: 31.465 - type: map_at_1000 value: 31.558000000000003 - type: map_at_3 value: 28.814 - type: map_at_5 value: 29.738999999999997 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.415 - type: mrr_at_100 value: 34.18 - type: mrr_at_1000 value: 34.245 - type: mrr_at_3 value: 31.621 - type: mrr_at_5 value: 32.549 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.482 - type: ndcg_at_100 value: 38.915 - type: ndcg_at_1000 value: 41.355 - type: ndcg_at_3 value: 31.139 - type: ndcg_at_5 value: 32.589 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.322 - type: precision_at_100 value: 0.8160000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.344000000000001 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 23.947 - type: recall_at_10 value: 43.647999999999996 - type: recall_at_100 value: 63.851 - type: recall_at_1000 value: 82.0 - type: recall_at_3 value: 34.288000000000004 - type: recall_at_5 value: 38.117000000000004 - type: map_at_1 value: 16.197 - type: map_at_10 value: 22.968 - type: map_at_100 value: 24.095 - type: map_at_1000 value: 24.217 - type: map_at_3 value: 20.771 - type: map_at_5 value: 21.995 - type: mrr_at_1 value: 19.511 - type: mrr_at_10 value: 26.55 - type: mrr_at_100 value: 27.500999999999998 - type: mrr_at_1000 value: 27.578999999999997 - type: mrr_at_3 value: 24.421 - type: mrr_at_5 value: 25.604 - type: ndcg_at_1 value: 19.511 - type: ndcg_at_10 value: 27.386 - type: ndcg_at_100 value: 32.828 - type: ndcg_at_1000 value: 35.739 - type: ndcg_at_3 value: 23.405 - type: ndcg_at_5 value: 25.255 - type: precision_at_1 value: 19.511 - type: precision_at_10 value: 5.017 - type: precision_at_100 value: 0.91 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 11.023 - type: precision_at_5 value: 8.025 - type: recall_at_1 value: 16.197 - type: recall_at_10 value: 37.09 - type: recall_at_100 value: 61.778 - type: recall_at_1000 value: 82.56599999999999 - type: recall_at_3 value: 26.034000000000002 - type: recall_at_5 value: 30.762 - type: map_at_1 value: 25.41 - type: map_at_10 value: 33.655 - type: map_at_100 value: 34.892 - type: map_at_1000 value: 34.995 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.303 - type: mrr_at_1 value: 29.477999999999998 - type: mrr_at_10 value: 37.443 - type: mrr_at_100 value: 38.383 - type: mrr_at_1000 value: 38.440000000000005 - type: mrr_at_3 value: 34.949999999999996 - type: mrr_at_5 value: 36.228 - type: ndcg_at_1 value: 29.477999999999998 - type: ndcg_at_10 value: 38.769 - type: ndcg_at_100 value: 44.245000000000005 - type: ndcg_at_1000 value: 46.593 - type: ndcg_at_3 value: 33.623 - type: ndcg_at_5 value: 35.766 - type: precision_at_1 value: 29.477999999999998 - type: precision_at_10 value: 6.455 - type: precision_at_100 value: 1.032 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 14.893999999999998 - type: precision_at_5 value: 10.485 - type: recall_at_1 value: 25.41 - type: recall_at_10 value: 50.669 - type: recall_at_100 value: 74.084 - type: recall_at_1000 value: 90.435 - type: recall_at_3 value: 36.679 - type: recall_at_5 value: 41.94 - type: map_at_1 value: 23.339 - type: map_at_10 value: 31.852000000000004 - type: map_at_100 value: 33.411 - type: map_at_1000 value: 33.62 - type: map_at_3 value: 28.929 - type: map_at_5 value: 30.542 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.301 - type: mrr_at_100 value: 37.288 - type: mrr_at_1000 value: 37.349 - type: mrr_at_3 value: 33.663 - type: mrr_at_5 value: 35.165 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 37.462 - type: ndcg_at_100 value: 43.620999999999995 - type: ndcg_at_1000 value: 46.211 - type: ndcg_at_3 value: 32.68 - type: ndcg_at_5 value: 34.981 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.1739999999999995 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.217 - type: precision_at_5 value: 11.265 - type: recall_at_1 value: 23.339 - type: recall_at_10 value: 48.376999999999995 - type: recall_at_100 value: 76.053 - type: recall_at_1000 value: 92.455 - type: recall_at_3 value: 34.735 - type: recall_at_5 value: 40.71 - type: map_at_1 value: 18.925 - type: map_at_10 value: 26.017000000000003 - type: map_at_100 value: 27.034000000000002 - type: map_at_1000 value: 27.156000000000002 - type: map_at_3 value: 23.604 - type: map_at_5 value: 24.75 - type: mrr_at_1 value: 20.333000000000002 - type: mrr_at_10 value: 27.915 - type: mrr_at_100 value: 28.788000000000004 - type: mrr_at_1000 value: 28.877999999999997 - type: mrr_at_3 value: 25.446999999999996 - type: mrr_at_5 value: 26.648 - type: ndcg_at_1 value: 20.333000000000002 - type: ndcg_at_10 value: 30.673000000000002 - type: ndcg_at_100 value: 35.618 - type: ndcg_at_1000 value: 38.517 - type: ndcg_at_3 value: 25.71 - type: ndcg_at_5 value: 27.679 - type: precision_at_1 value: 20.333000000000002 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8130000000000001 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.8740000000000006 - type: recall_at_1 value: 18.925 - type: recall_at_10 value: 43.311 - type: recall_at_100 value: 66.308 - type: recall_at_1000 value: 87.49 - type: recall_at_3 value: 29.596 - type: recall_at_5 value: 34.245 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 13.714 - type: map_at_10 value: 23.194 - type: map_at_100 value: 24.976000000000003 - type: map_at_1000 value: 25.166 - type: map_at_3 value: 19.709 - type: map_at_5 value: 21.523999999999997 - type: mrr_at_1 value: 30.619000000000003 - type: mrr_at_10 value: 42.563 - type: mrr_at_100 value: 43.386 - type: mrr_at_1000 value: 43.423 - type: mrr_at_3 value: 39.555 - type: mrr_at_5 value: 41.268 - type: ndcg_at_1 value: 30.619000000000003 - type: ndcg_at_10 value: 31.836 - type: ndcg_at_100 value: 38.652 - type: ndcg_at_1000 value: 42.088 - type: ndcg_at_3 value: 26.733 - type: ndcg_at_5 value: 28.435 - type: precision_at_1 value: 30.619000000000003 - type: precision_at_10 value: 9.751999999999999 - type: precision_at_100 value: 1.71 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 19.935 - type: precision_at_5 value: 14.984 - type: recall_at_1 value: 13.714 - type: recall_at_10 value: 37.26 - type: recall_at_100 value: 60.546 - type: recall_at_1000 value: 79.899 - type: recall_at_3 value: 24.325 - type: recall_at_5 value: 29.725 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.462 - type: map_at_10 value: 18.637 - type: map_at_100 value: 26.131999999999998 - type: map_at_1000 value: 27.607 - type: map_at_3 value: 13.333 - type: map_at_5 value: 15.654000000000002 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.32600000000001 - type: mrr_at_100 value: 74.60900000000001 - type: mrr_at_1000 value: 74.62 - type: mrr_at_3 value: 72.667 - type: mrr_at_5 value: 73.817 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.028999999999996 - type: ndcg_at_100 value: 44.199 - type: ndcg_at_1000 value: 51.629999999999995 - type: ndcg_at_3 value: 44.113 - type: ndcg_at_5 value: 41.731 - type: precision_at_1 value: 66.25 - type: precision_at_10 value: 31.900000000000002 - type: precision_at_100 value: 10.043000000000001 - type: precision_at_1000 value: 1.926 - type: precision_at_3 value: 47.417 - type: precision_at_5 value: 40.65 - type: recall_at_1 value: 8.462 - type: recall_at_10 value: 24.293 - type: recall_at_100 value: 50.146 - type: recall_at_1000 value: 74.034 - type: recall_at_3 value: 14.967 - type: recall_at_5 value: 18.682000000000002 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.84499999999999 - type: f1 value: 42.48106691979349 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 74.034 - type: map_at_10 value: 82.76 - type: map_at_100 value: 82.968 - type: map_at_1000 value: 82.98299999999999 - type: map_at_3 value: 81.768 - type: map_at_5 value: 82.418 - type: mrr_at_1 value: 80.048 - type: mrr_at_10 value: 87.64999999999999 - type: mrr_at_100 value: 87.712 - type: mrr_at_1000 value: 87.713 - type: mrr_at_3 value: 87.01100000000001 - type: mrr_at_5 value: 87.466 - type: ndcg_at_1 value: 80.048 - type: ndcg_at_10 value: 86.643 - type: ndcg_at_100 value: 87.361 - type: ndcg_at_1000 value: 87.606 - type: ndcg_at_3 value: 85.137 - type: ndcg_at_5 value: 86.016 - type: precision_at_1 value: 80.048 - type: precision_at_10 value: 10.372 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.638 - type: precision_at_5 value: 20.177 - type: recall_at_1 value: 74.034 - type: recall_at_10 value: 93.769 - type: recall_at_100 value: 96.569 - type: recall_at_1000 value: 98.039 - type: recall_at_3 value: 89.581 - type: recall_at_5 value: 91.906 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 20.5 - type: map_at_10 value: 32.857 - type: map_at_100 value: 34.589 - type: map_at_1000 value: 34.778 - type: map_at_3 value: 29.160999999999998 - type: map_at_5 value: 31.033 - type: mrr_at_1 value: 40.123 - type: mrr_at_10 value: 48.776 - type: mrr_at_100 value: 49.495 - type: mrr_at_1000 value: 49.539 - type: mrr_at_3 value: 46.605000000000004 - type: mrr_at_5 value: 47.654 - type: ndcg_at_1 value: 40.123 - type: ndcg_at_10 value: 40.343 - type: ndcg_at_100 value: 46.56 - type: ndcg_at_1000 value: 49.777 - type: ndcg_at_3 value: 37.322 - type: ndcg_at_5 value: 37.791000000000004 - type: precision_at_1 value: 40.123 - type: precision_at_10 value: 11.08 - type: precision_at_100 value: 1.752 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 24.897 - type: precision_at_5 value: 17.809 - type: recall_at_1 value: 20.5 - type: recall_at_10 value: 46.388 - type: recall_at_100 value: 69.552 - type: recall_at_1000 value: 89.011 - type: recall_at_3 value: 33.617999999999995 - type: recall_at_5 value: 38.211 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.135999999999996 - type: map_at_10 value: 61.673 - type: map_at_100 value: 62.562 - type: map_at_1000 value: 62.62 - type: map_at_3 value: 58.467999999999996 - type: map_at_5 value: 60.463 - type: mrr_at_1 value: 78.271 - type: mrr_at_10 value: 84.119 - type: mrr_at_100 value: 84.29299999999999 - type: mrr_at_1000 value: 84.299 - type: mrr_at_3 value: 83.18900000000001 - type: mrr_at_5 value: 83.786 - type: ndcg_at_1 value: 78.271 - type: ndcg_at_10 value: 69.935 - type: ndcg_at_100 value: 73.01299999999999 - type: ndcg_at_1000 value: 74.126 - type: ndcg_at_3 value: 65.388 - type: ndcg_at_5 value: 67.906 - type: precision_at_1 value: 78.271 - type: precision_at_10 value: 14.562 - type: precision_at_100 value: 1.6969999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.841 - type: precision_at_5 value: 27.087 - type: recall_at_1 value: 39.135999999999996 - type: recall_at_10 value: 72.809 - type: recall_at_100 value: 84.86200000000001 - type: recall_at_1000 value: 92.208 - type: recall_at_3 value: 62.76199999999999 - type: recall_at_5 value: 67.718 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.60600000000001 - type: ap value: 86.6579587804335 - type: f1 value: 90.5938853929307 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.852 - type: map_at_10 value: 33.982 - type: map_at_100 value: 35.116 - type: map_at_1000 value: 35.167 - type: map_at_3 value: 30.134 - type: map_at_5 value: 32.340999999999994 - type: mrr_at_1 value: 22.479 - type: mrr_at_10 value: 34.594 - type: mrr_at_100 value: 35.672 - type: mrr_at_1000 value: 35.716 - type: mrr_at_3 value: 30.84 - type: mrr_at_5 value: 32.998 - type: ndcg_at_1 value: 22.493 - type: ndcg_at_10 value: 40.833000000000006 - type: ndcg_at_100 value: 46.357 - type: ndcg_at_1000 value: 47.637 - type: ndcg_at_3 value: 32.995999999999995 - type: ndcg_at_5 value: 36.919000000000004 - type: precision_at_1 value: 22.493 - type: precision_at_10 value: 6.465999999999999 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.030999999999999 - type: precision_at_5 value: 10.413 - type: recall_at_1 value: 21.852 - type: recall_at_10 value: 61.934999999999995 - type: recall_at_100 value: 87.611 - type: recall_at_1000 value: 97.441 - type: recall_at_3 value: 40.583999999999996 - type: recall_at_5 value: 49.992999999999995 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.36069311445507 - type: f1 value: 93.16456330371453 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.74692202462381 - type: f1 value: 58.17903579421599 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.80833893745796 - type: f1 value: 72.70786592684664 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.69872225958305 - type: f1 value: 78.61626934504731 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.058658628717694 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.85561739360599 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.290259910144385 - type: mrr value: 32.44223046102856 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.288 - type: map_at_10 value: 12.267999999999999 - type: map_at_100 value: 15.557000000000002 - type: map_at_1000 value: 16.98 - type: map_at_3 value: 8.866 - type: map_at_5 value: 10.418 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 52.681 - type: mrr_at_100 value: 53.315999999999995 - type: mrr_at_1000 value: 53.357 - type: mrr_at_3 value: 51.393 - type: mrr_at_5 value: 51.903999999999996 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.305 - type: ndcg_at_100 value: 30.825999999999997 - type: ndcg_at_1000 value: 39.393 - type: ndcg_at_3 value: 39.931 - type: ndcg_at_5 value: 37.519999999999996 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.728 - type: precision_at_100 value: 7.932 - type: precision_at_1000 value: 2.07 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 32.879000000000005 - type: recall_at_1 value: 5.288 - type: recall_at_10 value: 16.195 - type: recall_at_100 value: 31.135 - type: recall_at_1000 value: 61.531000000000006 - type: recall_at_3 value: 10.313 - type: recall_at_5 value: 12.754999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 28.216 - type: map_at_10 value: 42.588 - type: map_at_100 value: 43.702999999999996 - type: map_at_1000 value: 43.739 - type: map_at_3 value: 38.177 - type: map_at_5 value: 40.754000000000005 - type: mrr_at_1 value: 31.866 - type: mrr_at_10 value: 45.189 - type: mrr_at_100 value: 46.056000000000004 - type: mrr_at_1000 value: 46.081 - type: mrr_at_3 value: 41.526999999999994 - type: mrr_at_5 value: 43.704 - type: ndcg_at_1 value: 31.837 - type: ndcg_at_10 value: 50.178 - type: ndcg_at_100 value: 54.98800000000001 - type: ndcg_at_1000 value: 55.812 - type: ndcg_at_3 value: 41.853 - type: ndcg_at_5 value: 46.153 - type: precision_at_1 value: 31.837 - type: precision_at_10 value: 8.43 - type: precision_at_100 value: 1.1119999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.911000000000001 - type: recall_at_1 value: 28.216 - type: recall_at_10 value: 70.8 - type: recall_at_100 value: 91.857 - type: recall_at_1000 value: 97.941 - type: recall_at_3 value: 49.196 - type: recall_at_5 value: 59.072 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.22800000000001 - type: map_at_10 value: 85.115 - type: map_at_100 value: 85.72 - type: map_at_1000 value: 85.737 - type: map_at_3 value: 82.149 - type: map_at_5 value: 84.029 - type: mrr_at_1 value: 81.96 - type: mrr_at_10 value: 88.00200000000001 - type: mrr_at_100 value: 88.088 - type: mrr_at_1000 value: 88.089 - type: mrr_at_3 value: 87.055 - type: mrr_at_5 value: 87.715 - type: ndcg_at_1 value: 82.01 - type: ndcg_at_10 value: 88.78 - type: ndcg_at_100 value: 89.91 - type: ndcg_at_1000 value: 90.013 - type: ndcg_at_3 value: 85.957 - type: ndcg_at_5 value: 87.56 - type: precision_at_1 value: 82.01 - type: precision_at_10 value: 13.462 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.732000000000003 - type: recall_at_1 value: 71.22800000000001 - type: recall_at_10 value: 95.69 - type: recall_at_100 value: 99.531 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.632 - type: recall_at_5 value: 92.117 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 52.31768034366916 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.640266772723606 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.7780000000000005 - type: map_at_10 value: 12.299 - type: map_at_100 value: 14.363000000000001 - type: map_at_1000 value: 14.71 - type: map_at_3 value: 8.738999999999999 - type: map_at_5 value: 10.397 - type: mrr_at_1 value: 23.599999999999998 - type: mrr_at_10 value: 34.845 - type: mrr_at_100 value: 35.916 - type: mrr_at_1000 value: 35.973 - type: mrr_at_3 value: 31.7 - type: mrr_at_5 value: 33.535 - type: ndcg_at_1 value: 23.599999999999998 - type: ndcg_at_10 value: 20.522000000000002 - type: ndcg_at_100 value: 28.737000000000002 - type: ndcg_at_1000 value: 34.596 - type: ndcg_at_3 value: 19.542 - type: ndcg_at_5 value: 16.958000000000002 - type: precision_at_1 value: 23.599999999999998 - type: precision_at_10 value: 10.67 - type: precision_at_100 value: 2.259 - type: precision_at_1000 value: 0.367 - type: precision_at_3 value: 18.333 - type: precision_at_5 value: 14.879999999999999 - type: recall_at_1 value: 4.7780000000000005 - type: recall_at_10 value: 21.617 - type: recall_at_100 value: 45.905 - type: recall_at_1000 value: 74.42 - type: recall_at_3 value: 11.148 - type: recall_at_5 value: 15.082999999999998 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.22372750297885 - type: cos_sim_spearman value: 79.40972617119405 - type: euclidean_pearson value: 80.6101072020434 - type: euclidean_spearman value: 79.53844217225202 - type: manhattan_pearson value: 80.57265975286111 - type: manhattan_spearman value: 79.46335611792958 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.43713315520749 - type: cos_sim_spearman value: 77.44128693329532 - type: euclidean_pearson value: 81.63869928101123 - type: euclidean_spearman value: 77.29512977961515 - type: manhattan_pearson value: 81.63704185566183 - type: manhattan_spearman value: 77.29909412738657 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.59451537860527 - type: cos_sim_spearman value: 82.97994638856723 - type: euclidean_pearson value: 82.89478688288412 - type: euclidean_spearman value: 83.58740751053104 - type: manhattan_pearson value: 82.69140840941608 - type: manhattan_spearman value: 83.33665956040555 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.00756527711764 - type: cos_sim_spearman value: 81.83560996841379 - type: euclidean_pearson value: 82.07684151976518 - type: euclidean_spearman value: 82.00913052060511 - type: manhattan_pearson value: 82.05690778488794 - type: manhattan_spearman value: 82.02260252019525 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.13710262895447 - type: cos_sim_spearman value: 87.26412811156248 - type: euclidean_pearson value: 86.94151453230228 - type: euclidean_spearman value: 87.5363796699571 - type: manhattan_pearson value: 86.86989424083748 - type: manhattan_spearman value: 87.47315940781353 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.0230597603627 - type: cos_sim_spearman value: 84.93344499318864 - type: euclidean_pearson value: 84.23754743431141 - type: euclidean_spearman value: 85.09707376597099 - type: manhattan_pearson value: 84.04325160987763 - type: manhattan_spearman value: 84.89353071339909 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.75620824563921 - type: cos_sim_spearman value: 87.15065513706398 - type: euclidean_pearson value: 88.26281533633521 - type: euclidean_spearman value: 87.51963738643983 - type: manhattan_pearson value: 88.25599267618065 - type: manhattan_spearman value: 87.58048736047483 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.74645319195137 - type: cos_sim_spearman value: 65.29996325037214 - type: euclidean_pearson value: 67.04297794086443 - type: euclidean_spearman value: 65.43841726694343 - type: manhattan_pearson value: 67.39459955690904 - type: manhattan_spearman value: 65.92864704413651 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.31291020270801 - type: cos_sim_spearman value: 85.86473738688068 - type: euclidean_pearson value: 85.65537275064152 - type: euclidean_spearman value: 86.13087454209642 - type: manhattan_pearson value: 85.43946955047609 - type: manhattan_spearman value: 85.91568175344916 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.93798118350695 - type: mrr value: 95.93536274908824 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.594 - type: map_at_10 value: 66.81899999999999 - type: map_at_100 value: 67.368 - type: map_at_1000 value: 67.4 - type: map_at_3 value: 64.061 - type: map_at_5 value: 65.47 - type: mrr_at_1 value: 60.667 - type: mrr_at_10 value: 68.219 - type: mrr_at_100 value: 68.655 - type: mrr_at_1000 value: 68.684 - type: mrr_at_3 value: 66.22200000000001 - type: mrr_at_5 value: 67.289 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 71.275 - type: ndcg_at_100 value: 73.642 - type: ndcg_at_1000 value: 74.373 - type: ndcg_at_3 value: 66.521 - type: ndcg_at_5 value: 68.581 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.433 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.556 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 57.594 - type: recall_at_10 value: 83.622 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.64399999999999 - type: recall_at_5 value: 75.983 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.85841584158416 - type: cos_sim_ap value: 96.66996142314342 - type: cos_sim_f1 value: 92.83208020050125 - type: cos_sim_precision value: 93.06532663316584 - type: cos_sim_recall value: 92.60000000000001 - type: dot_accuracy value: 99.85841584158416 - type: dot_ap value: 96.6775307676576 - type: dot_f1 value: 92.69289729177312 - type: dot_precision value: 94.77533960292581 - type: dot_recall value: 90.7 - type: euclidean_accuracy value: 99.86138613861387 - type: euclidean_ap value: 96.6338454403108 - type: euclidean_f1 value: 92.92214357937311 - type: euclidean_precision value: 93.96728016359918 - type: euclidean_recall value: 91.9 - type: manhattan_accuracy value: 99.86237623762376 - type: manhattan_ap value: 96.60370449645053 - type: manhattan_f1 value: 92.91177970423253 - type: manhattan_precision value: 94.7970863683663 - type: manhattan_recall value: 91.10000000000001 - type: max_accuracy value: 99.86237623762376 - type: max_ap value: 96.6775307676576 - type: max_f1 value: 92.92214357937311 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 60.77977058695198 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.2725272535638 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.64052466362125 - type: mrr value: 54.533067014684654 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.677624219206578 - type: cos_sim_spearman value: 30.121368518123447 - type: dot_pearson value: 30.69870088041608 - type: dot_spearman value: 29.61284927093751 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.855 - type: map_at_100 value: 9.885 - type: map_at_1000 value: 23.416999999999998 - type: map_at_3 value: 0.637 - type: map_at_5 value: 1.024 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 93.067 - type: mrr_at_100 value: 93.067 - type: mrr_at_1000 value: 93.067 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 93.067 - type: ndcg_at_1 value: 82.0 - type: ndcg_at_10 value: 75.899 - type: ndcg_at_100 value: 55.115 - type: ndcg_at_1000 value: 48.368 - type: ndcg_at_3 value: 79.704 - type: ndcg_at_5 value: 78.39699999999999 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 79.60000000000001 - type: precision_at_100 value: 56.06 - type: precision_at_1000 value: 21.206 - type: precision_at_3 value: 84.667 - type: precision_at_5 value: 83.2 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 13.297 - type: recall_at_1000 value: 44.979 - type: recall_at_3 value: 0.6689999999999999 - type: recall_at_5 value: 1.106 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.258 - type: map_at_10 value: 10.439 - type: map_at_100 value: 16.89 - type: map_at_1000 value: 18.407999999999998 - type: map_at_3 value: 5.668 - type: map_at_5 value: 7.718 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.159 - type: mrr_at_100 value: 51.714000000000006 - type: mrr_at_1000 value: 51.714000000000006 - type: mrr_at_3 value: 47.959 - type: mrr_at_5 value: 50.407999999999994 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 26.037 - type: ndcg_at_100 value: 37.924 - type: ndcg_at_1000 value: 49.126999999999995 - type: ndcg_at_3 value: 30.631999999999998 - type: ndcg_at_5 value: 28.571 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 22.857 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 1.529 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.258 - type: recall_at_10 value: 16.554 - type: recall_at_100 value: 48.439 - type: recall_at_1000 value: 82.80499999999999 - type: recall_at_3 value: 7.283 - type: recall_at_5 value: 10.732 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.8858 - type: ap value: 13.835684144362109 - type: f1 value: 53.803351693244586 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.50650820599886 - type: f1 value: 60.84357825979259 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 48.52131044852134 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59337187816654 - type: cos_sim_ap value: 73.23925826533437 - type: cos_sim_f1 value: 67.34693877551021 - type: cos_sim_precision value: 62.40432237730752 - type: cos_sim_recall value: 73.13984168865434 - type: dot_accuracy value: 85.31322644096085 - type: dot_ap value: 72.30723963807422 - type: dot_f1 value: 66.47051612112296 - type: dot_precision value: 62.0792305930845 - type: dot_recall value: 71.53034300791556 - type: euclidean_accuracy value: 85.61125350181797 - type: euclidean_ap value: 73.32843720487845 - type: euclidean_f1 value: 67.36549633745895 - type: euclidean_precision value: 64.60755813953489 - type: euclidean_recall value: 70.36939313984169 - type: manhattan_accuracy value: 85.63509566668654 - type: manhattan_ap value: 73.16658488311325 - type: manhattan_f1 value: 67.20597386434349 - type: manhattan_precision value: 63.60424028268551 - type: manhattan_recall value: 71.2401055408971 - type: max_accuracy value: 85.63509566668654 - type: max_ap value: 73.32843720487845 - type: max_f1 value: 67.36549633745895 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.33779640625606 - type: cos_sim_ap value: 84.83868375898157 - type: cos_sim_f1 value: 77.16506154017773 - type: cos_sim_precision value: 74.62064005753327 - type: cos_sim_recall value: 79.88912842623961 - type: dot_accuracy value: 88.02732176815307 - type: dot_ap value: 83.95089283763002 - type: dot_f1 value: 76.29635101196631 - type: dot_precision value: 73.31771720613288 - type: dot_recall value: 79.52725592854944 - type: euclidean_accuracy value: 88.44452206310397 - type: euclidean_ap value: 84.98384576824827 - type: euclidean_f1 value: 77.29311047696697 - type: euclidean_precision value: 74.51232583065381 - type: euclidean_recall value: 80.28949799815214 - type: manhattan_accuracy value: 88.47362906042613 - type: manhattan_ap value: 84.91421462218432 - type: manhattan_f1 value: 77.05107637204792 - type: manhattan_precision value: 74.74484256243214 - type: manhattan_recall value: 79.50415768401602 - type: max_accuracy value: 88.47362906042613 - type: max_ap value: 84.98384576824827 - type: max_f1 value: 77.29311047696697 --- Finetuned using the same data & library as [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire: - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released - 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
[ "BEAR", "BIOSSES", "SCIFACT" ]
longluu/Medical-QA-gatortrons-COVID-QA
longluu
question-answering
[ "transformers", "safetensors", "megatron-bert", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
2024-02-15T13:06:45Z
2024-02-15T20:49:14+00:00
29
0
--- license: mit pipeline_tag: question-answering widget: - text: How many children were infected by HIV-1 in 2008-2009, worldwide? context: 'Functional Genetic Variants in DC-SIGNR Are Associated with Mother-to-Child Transmission of HIV-1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752805/ Boily-Larouche, Geneviève; Iscache, Anne-Laure; Zijenah, Lynn S.; Humphrey, Jean H.; Mouland, Andrew J.; Ward, Brian J.; Roger, Michel 2009-10-07 DOI:10.1371/journal.pone.0007211 License:cc-by Abstract: BACKGROUND: Mother-to-child transmission (MTCT) is the main cause of HIV-1 infection in children worldwide. Given that the C-type lectin receptor, dendritic cell-specific ICAM-grabbing non-integrin-related (DC-SIGNR, also known as CD209L or liver/lymph node–specific ICAM-grabbing non-integrin (L-SIGN)), can interact with pathogens including HIV-1 and is expressed at the maternal-fetal interface, we hypothesized that it could influence MTCT of HIV-1. METHODS AND FINDINGS: To investigate the potential role of DC-SIGNR in MTCT of HIV-1, we carried out a genetic association study of DC-SIGNR in a well-characterized cohort of 197 HIV-infected mothers and their infants recruited in Harare, Zimbabwe. Infants harbouring two copies of DC-SIGNR H1 and/or H3 haplotypes (H1-H1, H1-H3, H3-H3) had a 3.6-fold increased risk of in utero (IU) (P = 0.013) HIV-1 infection and a 5.7-fold increased risk of intrapartum (IP) (P = 0.025) HIV-1 infection after adjusting for a number of maternal factors. The implicated H1 and H3 haplotypes share two single nucleotide polymorphisms (SNPs) in promoter region (p-198A) and intron 2 (int2-180A) that were associated with increased risk of both IU (P = 0.045 and P = 0.003, respectively) and IP (P = 0.025, for int2-180A) HIV-1 infection. The promoter variant reduced transcriptional activity in vitro. In homozygous H1 infants bearing both the p-198A and int2-180A mutations, we observed a 4-fold decrease in the level of placental DC-SIGNR transcripts, disproportionately affecting the expression of membrane-bound isoforms compared to infant noncarriers (P = 0.011). CONCLUSION: These results suggest that DC-SIGNR plays a crucial role in MTCT of HIV-1 and that impaired placental DC-SIGNR expression increases risk of transmission. Text: Without specific interventions, the rate of HIV-1 mother-tochild transmission (MTCT) is approximately 15-45% [1] . UNAIDS estimates that last year alone, more than 400,000 children were infected worldwide, mostly through MTCT and 90% of them lived in sub-Saharan Africa. In the most heavilyaffected countries, such as Zimbabwe, HIV-1 is responsible for one third of all deaths among children under the age of five. MTCT of HIV-1 can occur during pregnancy (in utero, IU), delivery (intrapartum, IP) or breastfeeding (postpartum, PP). High maternal viral load, low CD4 cells count, vaginal delivery, low gestational age have all been identified as independent factors associated with MTCT of HIV-1 [1] . Although antiretrovirals can reduce MTCT to 2%, limited access to timely diagnostics and drugs in many developing world countries limits the potential impact of this strategy. A better understanding of the mechanisms acting at the maternal-fetal interface is crucial for the design of alternative interventions to antiretroviral therapy for transmission prevention. Dendritic cell-specific ICAM-grabbing non-integrin-related (DC-SIGNR, also known as CD209L or liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN)) can interact with a plethora of pathogens including HIV-1 and is expressed in placental capillary endothelial cells [2] . DC-SIGNR is organized in three distinct domains, an N-terminal cytoplasmic tail, a repeat region containing seven repeat of 23 amino acids and a C-terminal domain implicated in pathogen binding. Alternative splicing of DC-SIGNR gene leads to the production of a highly diversify isoforms repertoire which includes membrane-bound and soluble isoforms [3] . It has been proposed that interaction between DC-SIGNR and HIV-1 might enhance viral transfer to other susceptible cell types [2] but DC-SIGNR can also internalize and mediate proteasome-dependant degradation of viruses [4] that may differently affect the outcome of infection. Given the presence of DC-SIGNR at the maternal-fetal interface and its interaction with HIV-1, we hypothesized that it could influence MTCT of HIV-1. To investigate the potential role of DC-SIGNR in MTCT of HIV-1, we carried out a genetic association study of DC-SIGNR in a well-characterized cohort of HIV-infected mothers and their infants recruited in Zimbabwe, and identified specific DC-SIGNR variants associated with increased risks of HIV transmission. We further characterized the functional impact of these genetic variants on DC-SIGNR expression and show that they affect both the level and type of DC-SIGNR transcripts produced in the placenta. Samples consisted of stored DNA extracts obtained from 197 mother-child pairs co-enrolled immediately postpartum in the ZVITAMBO Vitamin A supplementation trial (Harare, Zimbabwe) and followed at 6 weeks, and 3-monthly intervals up to 24 months. The ZVITAMBO project was a randomized placebocontrolled clinical trial that enrolled 14,110 mother-child pairs, between November 1997 and January 2000, with the main objective of investigating the impact of immediate postpartum vitamin A supplementation on MTCT of HIV-1. The samples used in the present study were from mother-child pairs randomly assigned to the placebo group of the ZVITAMBO project. Antiretroviral prophylaxis for HIV-1-positive antenatal women was not available in the Harare public-sector during ZVITAMBO patient recruitment. The samples were consecutively drawn from two groups: 97 HIV-1-positive mother/HIV-1-positive child pairs and 100 HIV-1-positive mother/HIV-negative child pairs. Mother''s serological status was determined by ELISA and confirmed by Western Blot. Infants were considered to be infected if they were HIV-1 seropositive at 18 months or older and had two or more positive HIV-1-DNA polymerase chain reaction (PCR) results at earlier ages. 100 infants were considered to be uninfected as they were ELISA negative at 18 months or older and had two DNA PCR negative results from samples collected at a younger age. Of the 97 HIV-1-infected infants, 57 were infected IU, 11 were infected IP, and 17 were infected PP as determined by PCR analyses of blood samples collected at birth, 6 weeks, 3 and 6 months of age and according to the following definitions adapted from Bryson and colleagues [5] . Briefly, infants who were DNA PCR positive at birth were infected IU. Infants with negative PCR results from sample obtained at birth but who become positive by 6 weeks of age were infected IP. Infants with negative PCR results at birth and 6 weeks of age but who subsequently became DNA PCR positive were considered to be infected during the PP period. In the analysis comparing the 3 different modes of MTCT, 12 HIV-1-infected infants were excluded because the PCR results were not available at 6 weeks of age. Full methods for recruitment, baseline characteristics collection, laboratory procedures have been described elsewhere [6] . The nucleotide sequence variation of the entire promoter, coding and part of 39-UTR regions of DC-SIGNR gene in the study population was determined previously [7] . Haplotype reconstruction was performed using Bayesian statistical method implemented in PHASE [8] , version 2.1.1, using single nucleotide polymorphism (SNP) with a minimum allele frequency (MAF) of 2%. We applied the algorithm five times, using different randomly generated seeds, and consistent results were obtained across runs ( Figure 1 ). Fifteen haplotype-tagged SNPs (htSNPs) were identified by the HaploBlockFinder software [9] with a MAF $5%. These htSNPs were genotyped in the 197 infants by direct PCR sequencing analysis as we have described previously [7] . The DC-SIGNR exon 4 repeat region genotype was determined by PCR amplification followed by migration in 1.5% agarose gels [10] . DNA sequences in the promoter region were analysed with the TESS interface (http//:www.cbil.upenn.edu/tess) for putative transcription factors binding sites using the TRANSFAC database. Luciferase reporter assays using pGL2-Basic vector were performed in order to investigate the functional effect of mutations on DC-SIGNR promoter activity. Genomic DNA from subjects homozygous for the promoter variants and WT was amplified from nucleotide position 2715 to 21 and cloned between the BglII and HindIII multiple cloning sites in the pGL2-Basic vector which harbours a reporter firefly luciferase gene downstream (Invitrogen Canada inc, Burlington, Canada). All recombinants clones were verified by DNA sequencing. The firefly luciferase test reporter vector was co-transfected at a ratio of 10:1 with the constitutive expressor of Renilla luciferase, phRL-CMV (Promega, Madison, WI, USA). We cultured HeLa cells in 6 wells plates (2610 5 cells) and transfected them the following day using lipofectamine (Invitrogen) according to the manufacturer. Cells were lysed and luciferase assays were performed using 20 mg of protein extract according to the manufacturer (Promega) at 44 h post-transfection. Firefly luciferase activity was normalized to Renilla luciferase activity. 0 mg, 0,5 mg or 1 mg CMV-Tat vector was transfected with LTR-Luc as a positive control in these experiments. We carried out lucierase assays in triplicate in three independent experiments. Results are expressed as mean6 standard error of the mean (S.E.M). First-term placental tissues were obtained from abortions following voluntary interruption of pregnancy at CHUM Hôpital Saint-Luc (Montreal, Canada). Tissues from 3 H1 (associated with MTCT of HIV-1) and 3 H15 (wild-type) homozygous haplotypes were used to analyse possible differences in isoform expression. Total placental RNAs were extracted by MasterPure DNA and RNA Extraction Kit (Epicentre Biotechnologies, Madison, WI, USA) according to the manufacturer. Fragments corresponding to the DC-SIGNR coding region were reversed transcribed (RT) and then amplified by nested PCR with the following primers; RT primers RR, first PCR RF and RR and second PCR RcF and RcR according to Liu and colleagues [11] . 1 mg of total RNA was reverse transcribed with Expand RT (Roche Applied Science, Indianapolis, IN, USA) according to the manufacturer and were PCR-amplified with DNA Platinum Taq Polymerase (Invitrogen). Major PCR products from the second PCR reaction were gel extracted with the Qiagen Gel Extraction Kit (Qiagen Canada inc, Mississauga, ON, Canada) and cloned using the TOPO TA Cloning Kit for sequencing (Invitrogen). For each placenta, 15 different clones were randomly selected and amplified with M13 primers and sequenced with ABI PRISM 3100 capillary automated sequencer (Applied Biosystems, Foster City, CA, USA). Sequences were analysed and aligned with GeneBank reference sequence NM_014257 using Lasergene software (DNA Stars, Madison, WI, USA). Quantitative expression of DC-SIGNR isoforms 1,5 mg of placental RNA was reverse transcribed using 2.5 mM of Oligo dT 20 and Expand RT in 20 ml volume according to the manufacturer (Roche Applied Science). 15 ng of total cDNA in a final volume of 20 ml was used to perform quantitative real-time PCR using Universal Express SYBR GreenER qPCR Supermix (Invitrogen) on a Rotor Gene Realtime Rotary Analyser (Corbett Life Science, Sydney, Australia). Samples from 2 subjects in each group were used because RNA quality of others was not suitable for a qRT-PCR analysis. Amplification of all DC-SIGNR isoforms was performed using an exon 5 specific primer pair (Table S1 ). Membrane-bound isoforms were amplified using primers specific for exon 3, corresponding to the common trans-membrane domain of DC-SIGNR. Primers were targeted to the exon-exon junction and RNA extracts were treated with DNase (Fermantas International inc, Burlington, ON, Canada) to avoid amplification of contaminant DNA. Standard curves (50-500 000 copies per reaction) were generated using serial dilution of a full-length DC-SIGNR or commercial GAPDH (Invitrogen) plasmid DNA. All qPCR reactions had efficiencies ranging from 99% to 100%, even in the presence of 20 ng of non-specific nucleic acids, and therefore could be compared. The copy number of unknown samples was estimated by placing the measured PCR cycle number (crossing threshold) on the standard curve. To correct for differences in both RNA quality and quantity between samples, the expression levels of transcripts were normalised to the reference GAPDH gene transcripts. GAPDH primer sequences were kindly provided by A. Mes-Masson at the CHUM. The results are presented as target gene copy number per 10 5 copies of GAPDH. The ratio of membrane-bound isoforms was calculated as E3/E5. Soluble isoforms were calculated by subtracting membrane-bound from total isoforms. We carried out qPCR assays in triplicate in three independent experiments. Results are expressed as mean6S.E.M. Statistical analysis was performed using the GraphPad PRISM 5.0 for Windows (GraphPad Software inc, San Diego, CA, USA). Differences in baseline characteristics and genotypic frequencies of haplotypes or htSNPs were compared between groups using the x 2 analysis or Fisher''s exact test. Logistic regression analysis was used to estimate odds ratios (OR) for each genotype and baseline risk factors. Multiple logistic regression was used to define independent predictors identified as significant in the crude analysis. ORs and 95% confidence interval were calculated with the exact method. Comparisons of continuous variables between groups were assessed with the unpaired two-tailed Student''s t test when variables were normally distributed and with the Mann-Whitney U test when otherwise. Differences were considered significant at P,0.05. Written informed consent was obtained from all mothers who participated in the study and the ZVITAMBO trial and the investigation reported in this paper were approved by The We carried out an association study of DC-SIGNR polymorphism in 197 infants born to untreated HIV-1-infected mothers recruited in Harare, Zimbabwe. Among them, 97 infants were HIV-1-infected and 100 infants remained uninfected. Of the 97 HIV-1-infected infants, 57 were infected IU, 11 were infected IP, and 17 were infected PP. Timing of infection was not determined for 12 HIV-1-infected infants. Baseline characteristics of mothers and infants are presented in Table 1 . Maternal age and CD4 cell count, child sex, mode of delivery, duration of membrane rupture and gestational age were similar among all groups. However, maternal viral load .29 000 copies/ml was associated with increased risk in both IU and PP with odds ratios (OR) of 3.64 (95% CI = 1.82-7.31, P = 0.0002) and 4.45 (95% CI = 1.50-13.2, P = 0.0045) for HIV-1 transmission, respectively. Fifteen haplotype-tagged SNPs (htSNPs) corresponding to the 15 major DC-SIGNR haplotypes ( Figure 1 ) described among Zimbabweans [7] were genotyped in our study samples (Tables S2 and S3 ). H1 (31%) and H3 (11%) were the most frequent haplotypes observed (Figure 1 ). Being homozygous for the H1 haplotype was associated with increased risk of both IU (OR: 4.42, P = 0.022) and PP (OR: 7.31, P = 0.016) HIV-1 transmission ( Table 2) . Infants harbouring two copy combinations of H1 and/ or H3 haplotypes (H1-H1, H1-H3 or H3-H3) had increased risk of IU (OR: 3.42, P = 0.007) and IP (OR: 5.71, P = 0.025) but not PP (P = 0.098) HIV-1 infection compared to infant noncarriers ( Table 2 ). The latter associations remained significant after adjustment was made for the maternal viral load for both IU (OR: 3.57, 95% CI = 1.30-9.82, P = 0.013) and IP (OR: 5.71, 95% CI = 1.40-23.3, P = 0.025) HIV-1 transmission. The H1 and H3 haplotypes share a cluster of mutations (p-198A, int2-391C, int2-180A, ex4RPT, int5+7C) ( Figure 1 ). Of these, the p-198A and int2-180A variants were significantly associated with MTCT of HIV-1 (Table S2 ). In the unadjusted regression analysis, homozygous infants for the p-198A and int2-180A variants had increased risk of IU (OR: 2.07 P = 0.045, OR: 3.78, P = 0.003, respectively) and IP (OR: 2.47, P = 0.17, O.R: 5.71, P = 0.025, respectively) HIV-1 infection compared to heterozygote infants or noncarriers (Table 3) . When adjustment was made for maternal factors, only the association with the int2-180A variant remained significant for IU (OR: 3.83, 95% CI = 1.42-10.4, P = 0.008) and IP (O.R: 5.71, 95% CI = 1.40-23.3, P = 0.025) HIV-1 transmission. Thus, infants homozygous for DC-SIGNR variant int2-180A contained in H1 and H3 haplotypes were 4-fold to 6-fold more likely to be infected by HIV-1 during pregnancy or at delivery, respectively. Alternative splicing of the DC-SIGNR gene in the placenta produces both membrane-bound and soluble isoform repertoires [3] . The relative proportion of membrane bound and soluble DC-SIGNR could plausibly influence the susceptibility to HIV-1 infection [11] . We therefore hypothesized that the DC-SIGNR mutations associated with MTCT of HIV-1 would have an impact on both the level of DC-SIGNR expression and in the isoform repertoire produced. We investigated DC-SIGNR transcript expression in first-term placentas obtained after elective abortion. We cloned DC-SIGNR from placental tissues by RT-PCR from 3 homozygous H1 samples containing both the DC-SIGNR p-198AA and int2-180AA variants associated with HIV-1 transmission and 3 homozygous wild-type (WT) (p-198CC, int2-180GG) samples. Fifteen clones per sample were randomly selected for sequencing. As expected, we found an extensive repertoire of DC-SIGNR transcripts in all samples with 9 to 16 different isoforms per individual. A total of 65 distinct transcripts were identified ( Figure S1 ), of which 3 were full-length transcripts. 64 of the sequenced clones contained a total of 69 amino acid substitutions with 3 new C termini and 2 premature stop codons. However, the diversity was mostly attributable to the entire deletion of exon 2 or exon 3 or to variations in the length of the neck region (exon 4) of DC-SIGNR. The deletion of exon 3 eliminates the trans-membrane domain of the protein and leads to the expression of soluble DC-SIGNR isoforms [3] . Interestingly, the abundance of membrane-bound isoforms in placental tissues of the H1 homozygotes appears to be lower than that observed in samples from WT individuals ( Figure S1 ). The deletion of exon 3 was confirmed by sequencing and we hypothesize that the skipping of exon 3, could be due to the presence of the int2-180A mutation observed in infants with the H1 haplotype. In fact, this intron mutation is located 180 bp downstream from exon 3 and potentially modifies splicing events (Figure 2A ). We confirmed that the variation in transcript proportions seen between the two groups was also reflected at the level of mRNA expression in the placenta. To quantify membrane-bound vs soluble isoforms in placental samples from homozygous H1 and WT infants, we amplified the exon 5 (E5) sequence present in all DC-SIGNR isoforms (total transcripts). We then amplified exon 3 (E3) which is deleted in the soluble forms and then calculated the E3:E5 ratio. We found that placental tissues from homozygous H1 infants express a significantly lower proportion of membrane-bound DC-SIGNR (18%) compared to that in WT individuals (36%) (P = 0.004) ( Figure 2B ) suggesting that exon 3 skipping happens more frequently in presence of the DC-SIGNR int2-180A variant associated with MTCT of HIV-1. The DC-SIGNR int2-180A variant is always transmitted with the promoter mutation p-198A (Figure 1 ). In the unadjusted regression analysis, the p-198A variant was significantly associated with IU but not with IP and PP HIV-1 transmission (Table 3) . Computational transcription factor binding site analysis predicts Table 1 . Baseline characteristics of mother and infants risk factors for intrauterine (IU), intrapartum (IP) and postpartum (PP) mother-to-child HIV-1 transmission. Figure 3A ). The luciferase activity of the p-198A variant construct was significantly lower than that of the WT p-198C promoter construct (p-198C/A ratio = 2, P = 0.006) ( Figure 3B ) suggesting that DC-SIGNR p-198A affects promoter activity. The other promoter mutants (p-577C and p-323A) observed in the Zimbabwean population did not affect DC-SIGNR transcription in this assay ( Figure S2 ). To determine the net impact of the DC-SIGNR p-198A mutation on DC-SIGNR expression in the placenta, we quantitated the absolute number of total and membrane-bound DC-SIGNR transcripts in the H1 homozygote and wild-type placental samples as described earlier. The total number of DC-SIGNR transcripts was determined to be 6856213 (DC-SIGNR copies6S.E.M per 10 5 GAPDH copies) in the placental samples from homozygous H1 infants and was 4-fold lower compared to that found in placentas from WT individuals (27816638, P = 0.011) ( Figure 3C ). As suggested earlier, the int2-180A mutation might induce exon 3 skipping leading to a lower production of membrane-bound DC-SIGNR. Although, the decrease in the total number of DC-SIGNR transcripts in H1 homozygous placental samples containing both the p-198AA and int2-180AA variants affected the proportion of membrane-bound and soluble isoforms, the effect of these mutations was more pronounced on the membrane-bound isoforms with an 8-fold decrease (H1 = 117636.2 vs WT = 9906220.6, P = 0.003) compared to a 3-fold decrease in total soluble isoforms (H1 = 5686181.9 vs WT = 19256495.3, P = 0.03) ( Figure 3C ). Therefore, DC-SIGNR p-198A and int2-180A mutations associated with MTCT of HIV-1 significantly decreased the level of total placental DC-SIGNR transcripts, disproportionately affecting the membrane-bound isoform production. Table 3 . Associations between infant DC-SIGNR promoter p-198 and intron 2 (int2)-180 variants and intrauterine (IU), intrapartum (IP) and postpartum (PP) mother-to-child HIV-1 transmission. Our genetic results, supported by expression assay in placenta, suggest the involvement of DC-SIGNR in MTCT of HIV-1. Homozygosity for the haplotype H1 was associated with IU transmission in the unadjusted regression analysis. However, the association disappeared after adjustment was made for the maternal factors presumably because of the small number of H1 homozygote infants analysed in each groups. H1 and H3 were the most frequent haplotypes observed in the study population and they share a cluster of mutations (Figure 1 ). Grouping haplotypes H1 and H3 increased the power of the study and permitted the identification of specific DC-SIGNR mutations associated with MTCT of HIV-1. Indeed, two mutations shared by haplotypes H1 and H3 were associated with vertical transmission of HIV-1. The int2-180A was associated with a 4-fold increased risk of IU and 6fold increased risk of IP after adjustment for the maternal factors. Although the p-198A variant was associated with IU transmission, the association disappeared after adjustment was made for the maternal viral load. Nevertheless, we showed that this mutation reduces DC-SIGNR transcriptional activity in vitro and produces lower level of DC-SIGNR transcripts in placental tissues in combination with the int2-180A variant. Since int2-180A is always transmitted with p-198A on the MTCT associated combined haplotypes H1/H3, whereas p-198A is carried on other nonassociated haplotypes (Figure 1) , we can speculate that the p-198A mutation alone may have a minor effect in vivo whereas in combination with the int2-180A variant, they both act to reduce the level of placental DC-SIGNR expression resulting in an increased risk of MTCT of HIV-1. The majority of IU transmission occurs during the last trimester of pregnancy (reviewed in [12] ). Full-term placenta samples were not available for the current study and the expression assays were performed on first-term placental tissues. A previous study looking at DC-SIGNR placental isoforms repertoire in full-term placenta samples demonstrated similar diversity of DC-SIGNR transcripts as in the first-term placental tissues studied herein [3] . However, since levels of DC-SIGNR expression have never been compared between the different terms of pregnancy, it is not known whether DC-SIGNR expression varies during the course of pregnancy. Nevertheless, it is reasonable to assume that the inter-individual differences in both DC-SIGNR isoform repertoire and transcript levels observed between the H1 and WT homozygous infants would be reflected throughout the pregnancy. To date, most studies have focused on the potential role of DC-SIGNR in trans infection of HIV-1 in vitro [2, 10] . However, the multiple mechanisms involved in trans infection and redundancy among C-type lectin functions make it difficult to determine the actual participation of DC-SIGNR in this mode of infection in vivo [13, 14] . The strong correlation we observed between MTCT of HIV-1 and DC-SIGNR genetic variants producing low levels of DC-SIGNR in the placenta suggested that mechanisms other than DC-SIGNR-mediated trans infection might operate during vertical transmission of HIV-1. For example, DC-SIGNR has also been shown to function as a HIV-1 antigen-capturing receptor [15] . Chan and colleagues recently demonstrated that DC-SIGNR transfected CHO cells diminish SARS-CoV titers by enhanced capture and degradation of the virus in a proteasome-dependent manner [4] . Since endothelial cells express MHC-I and II, degraded viral antigens could then be presented to immune cells to elicit an adaptive immune response [16, 17] . The HIV-1 coreceptor CCR5, but not CD4, is co-expressed with DC-SIGNR on placental and blood-brain barrier (BBB) endothelial cells [18, 19] . HIV-1 gp120 binding to CCR5 receptor on endothelial cells compromises BBB integrity and enhances monocytes adhesion and transmigration across the BBB [20, 21] . It is thus possible that reduced expression of DC-SIGNR, particularly the membranebound isoforms, on placental capillary endothelial cells might favour HIV-1 binding to CCR5 receptor, instead of DC-SIGNR receptor, facilitating the migration of maternal HIV-1-infected cells across the placental barrier resulting in IU transmission of HIV-1. The int2-180A variant contained in the H1 and H3 haplotypes was associated with IP transmission suggesting that DC-SIGNR also affect transmission of HIV-1 during delivery. Little is known about the mechanisms underlying transmission of HIV-1 during delivery. Passage through the birth canal could potentially expose infants through a mucosal portal entry (presumably ophthalmic, skin, or gastrointestinal), whereas placental insult during delivery (physical or inflammatory) may enhance transplacental passage of maternal HIV-1-infected cells into foetal circulation [22, 23] . Such process called microtransfusion has been proposed in regards to the results obtain in a Malawian cohort. Kweik and colleagues found a significant association between levels of maternal DNA in umbilical cord blood and IP transmission of HIV-1 suggesting that passage of maternal infected cells through the placenta is likely to occur during delivery [22] . Thus, in a similar fashion as suggested earlier for IU transmission, the relatively lower level of DC-SIGNR in the placenta of homozygous infants harbouring the int2-180A variant could promote HIV-1 binding to CCR5 receptor on endothelial cells affecting the placental barrier integrity and facilitating the passage of maternal infected cells in foetal circulation during delivery. Beside DC-SIGNR, other HIV-1 receptors are known to influence MTCT of HIV-1 (reviewed in [24] ). Genetic variants in CCR5 have been shown to influence vertical transmission of HIV-1. CCR5 promoter variants resulting in higher expression of the receptor were associated with increased risk of MTCT of HIV-1 among sub-Saharan Africans [25, 26] . The 32-pb deletion polymorphism in CCR5 has be shown to protect from vertical transmission of HIV-1 [27] , but this variant is virtually absent among African populations [28] . High copy numbers of CCL3L1, a potent HIV-1 suppressive ligand for CCR5, are associated with higher chemokine production and lower risk of MTCT of HIV-1 among South African infants [29, 30] . Mannose-binding lectin (MBL) is an innate immune receptor synthesised in the liver and secreted in the bloodstream in response to inflammation signal. MBL promotes pathogen elimination by opsonization and phagocytosis, and reduced expression of MBL resulting from polymorphism in coding and non-coding regions has been associated with an increased risk of MTCT of HIV-1 [31, 32] . In this study, we demonstrate for the first time, the potential functional impact of DC-SIGNR mutations on its expression in the placenta and in vertical transmission of HIV-1. We believe that the presence of DC-SIGNR at the placental endothelial cell surface may protect infants from HIV-1 infection by capturing virus and promoting its degradation/presentation. However, in placenta containing low levels of DC-SIGNR, HIV-1 would preferentially binds CCR5 on endothelial cells resulting in a loss of placental barrier integrity and enhanced passage of maternal HIV-1-infected cells in foetal circulation leading to MTCT of HIV-1. This mechanism may also apply to other vertically-transmitted pathogens known to interact with DC-SIGNR such as HIV-2, hepatitis C and dengue viruses and warrant further investigation. Associations between child DC-SIGNR exon 4 repeated region genotypes and mother-to-child HIV-1 transmission.CI, Confidence interval; N, number; NA; not applicable; OR, odds ratio a P-value as determined by the Chi-square test. b Comparison between genotype and all others. Found at: doi:10.1371/journal.pone.0007211.s003 (0.05 MB DOC) Figure S1 DC-SIGNR transcripts repertoire in placenta. Major RT-PCR products from RNA extract from 3 homozygous H1 and 3 homozygous WT placenta samples were purified, cloned and sequenced. Sequenced were analysed according to NCBI reference sequence NM_014257. CT; cytoplasmic tail, TM; trans-membrane domain; WT; wild-type Found at: doi:10.1371/journal.pone.0007211.s004 (0.11 MB DOC) Figure S2 Effect of DC-SIGNR promoter variant on transcriptional activity in luciferase reporter assay in vitro in transfected HeLa cells. Relative luciferase expression from pGL2-Basic, parental vector without promoter. Expression DC-SIGNR promoter constructs, spanning p-577C variant or p-323A variant were calculated relatively to this value. Data are presented in mean values6S.E.M of three independent experiments performed in triplicate. One-way ANOVA test followed by the Dunnett test for multiple comparison was used to compare the relative luciferase expression of the p-557C and p-323A variant reporters against the wild-type (WT) construct (not significant). 0 mg, 0,5 mg or 1 mg CMV-Tat vector was transfected with LTR-Luc as a positive control in these experiments.' - text: Approximately how many people died during the 1918-1919 influenza pandemic? context: 'It is Unlikely That Influenza Viruses Will Cause a Pandemic Again Like What Happened in 1918 and 1919 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019839/ Song, Liting 2014-05-07 DOI:10.3389/fpubh.2014.00039 License:cc-by Abstract: nan Text: Influenza and influenza viruses are wellknown popular topics to medical professionals and the general public. Influenza viruses had caused a pandemic globally during 1918 and 1919, and that influenza pandemic had taken away more than 20 million people''s lives in the world. However, in my opinion, it is unlikely that influenza viruses will again cause a pandemic on a level (both of the morbidity rate and the mortality rate) comparable to what happened in 1918 and 1919. Influenza viruses very easily reassort, recombine, and point mutate in nature due to their segmented RNA genome structures, however, unlike highly pathogenic (virulent) viruses like rabies virus, Lassa fever virus, smallpox virus, eastern equine encephalitis virus, Ebola virus, Marburg virus, and human immunodeficiency virus 1 (HIV-1); most influenza viruses (wild types and mutants) are moderately pathogenic. The case fatality rates of some highly virulent viruses and related references are listed in Table 1 . On November 11, 1918 , the fighting of World War I was stopped, and World War I was officially ended on June 28, 1919 with the signing of the Versailles Treaty. It is estimated that around 8.5-10 million soldiers lost their lives in World War I due to battle. The war also directly caused more than 6 million civilian deaths. Millions of people suffered from hunger and malnutrition during the war. Malnutrition weakened the human immune system and made a person more vulnerable to infectious diseases like tuberculosis and influenza, therefore, hunger and malnutrition were indirectly responsible for millions of deaths in the world in that period of time. For example, about 700,000 Germans died from malnutrition-related diseases in the years of 1914-1918. During the 1918-1919 influenza pandemic, between 21 and 25 million people died of influenza worldwide. Those people were killed both directly and indirectly by influenza virus infections. Many families were too poor to buy food and coal, and to afford health care expenses when their family members were ill. Influenza virus could infect all members of a family, and this could result in no one left to feed the fires, and to prepare food for the whole family, even if they had firewood, coal, and food left in their homes. Sadly, a large number of people died of influenza virus infections along with starvation, cold, and poor living conditions (8) . In recent years, while hunger and malnutrition are not major and serious problems in some developed countries anymore, they are still very difficult to overcome in many developing countries. In these less-developed countries, there were approximately 925 million people who suffered from hunger; 125 million children were underweight; and 195 million children were stunted each year (9) . Nevertheless, in comparison to 1918 and 1919, currently, we have much better social and economic conditions and public health systems globally; and generally speaking, the majority of people in the world have better nutritional and educational statuses; better living and working conditions; therefore, better general health and immunity. Furthermore, in 1918 and 1919, physicians and nurses almost had nothing in their hands to help individuals who were infected by influenza viruses. Today, although we still do not have very effective, powerful, and practical anti-influenza drugs available, we at least have some improved, useful, and helpful anti-viral drugs like zanamivir, and effective, convenient anti-cold medicines like Tylenol or Advil. We do not have a universal vaccine to prevent all influenza virus infections, but we can make effective vaccines to a specific influenza virus strain in a short time. Actually, in the United States of America, the influenza classed mortality rate declined from 10.2/100,000 in the 1940s to 0.56/100,000 in the 1990s; and the classed mortality rates of 1957-1958 and 1968-1969 influenza pandemics were not remarkably different from the non-pandemic seasons (10) . Because of the above reasons, we can optimistically assume that even the same strain of influenza virus, which caused pandemic in 1918 and 1919, would not be able to kill millions of people and cause a pandemic comparable to the 1918-1919 pandemic again in the future. Additionally, a significant number of viruses can cause influenza-like syndromes, such as rhinovirus, parainfluenza virus, adenovirus, coronavirus, respiratory syncytial virus, Coxsackie B virus, echovirus, and metapneumovirus (11, 12) . Some of the above-mentioned viruses like adenovirus and mutated coronavirus could cause problems that are comparable to influenza viruses (13, 14) . The World Health Organization (WHO) mistakenly raised the level of influenza pandemic alert from phase 5 to the highest phase 6 on June 11, 2009 (15) . However, the truth was that most cases of H1N1 influenza A virus infections were mild, the symptomatic case fatality rate was only 0.005% in New Zealand (16) ; and in New York City, the case fatality rate was 0.0094-0.0147% for persons ≥65 years old, and for those of 0-17 years old, the case fatality rate was 0.0008-0.0012% (17) . Some researchers argued that it should not have been called an influenza pandemic in the first place if the clinical severity was considered (15, (18) (19) (20) . I believe it was unwise that we had paid too much www.frontiersin.org 23) . Not surprisingly, every year there would be some influenza patients and a few of them would die from the infections, as it is almost impossible to eliminate influenza viruses from the natural environment in many years. The severity of a viral infection is determined by both of the viral virulence (pathogenicity) and the host immunity. Some researchers'' opinions on H7N9 avian influenza virus were incorrect and/or inadequate. They mainly focused on influenza viruses and worried about viral mutations, viral pathogenicity, viral adaptation, and transmission. They overestimated the negative part of socio-economic factors of the present east China: overcrowded population in the epidemic region; very busy national and international transportation and travel; a large number of live poultry markets . . . but they underestimated the currently changed, developed, and improved positive part of socio-economic factors in China. The following factors might be used to explain why that H7N9 influenza A virus epidemic was limited and controlled in China, and only a few immunocompromised patients were killed by H7N9 influenza A virus. First, China has a relatively organized and effective public health system, there are four levels of (national, provincial, prefectural-level city, and county) centers for disease control and prevention all over China (24) . Second, physicians and nurses in China were prepared and knowledgeable of influenza virus infections. Third, samples from patients with suspected influenza virus infections were collected and sent to the local and national centers for disease control and prevention promptly. H7N9 influenza A viruses were isolated and identified very quickly. Thereby, they were able to diagnose, confirm, and report three cases of H7N9 influenza patients in the early stage of the epidemic (24, 25) . Fourth, health care and public health workers were protected properly. Consequently, none of the health professionals was infected by H7N9 influenza A virus in 2013. However, a surgeon died of H7N9 influenza in Shanghai, China in January of 2014 (26) . Fifth, they detected H7N9 influenza A viruses from the samples of chickens, pigeons, and the environment of live poultry markets in Shanghai (27) ; and closed the live poultry markets of the involved epidemic region quickly. Sixth, patients were isolated and treated timely in hospitals, 74% (1251/1689) of those close contacts of H7N9 influenza patients were monitored and observed. Thus, H7N9 influenza A virus could not spread to a bigger population (24) . Last but not least, we are connected to the Internet now, and it seems that our planet is much smaller today than the earlier days when we did not have the Internet, because communication and information exchange have become so fast, easy, and convenient presently. During that avian influenza epidemic, some influenza experts in the world shared/exchanged H7N9 influenza A virus information and provided professional consultations and suggestions efficiently and rapidly. All these public health routine practices and measures resulted in that H7N9 influenza epidemic being controlled and stopped in China (24) . I have to point out that the cases of diagnosed H7N9 avian influenza A virus infection might only be the tip of the iceberg. Aside from one laboratory confirmed asymptotic case of H7N9 influenza A virus infection in Beijing (22), there were probably many undetected mild or asymptotic cases of influenza A H7N9 infection. The reason is that most people usually think a common cold is a very common and normal occurrence, and they don''t take flu-like illnesses seriously. In most situations, they would just stay home and take some medicines. Only those who have very severe flu-like symptoms would see doctors, and thereby be detected and diagnosed, accordingly the real case fatality rate should be much lower than the detected 32.14% (45/140, one case from Taiwan, and one case from Hong Kong) (22, 23). Nowadays, we travel faster, and we travel more frequently and globally, and we have more complicated social activities and lifestyles, thereby increasing the chances of viral mutation; and we realize that influenza viruses are even easier to reassort, recombine, and mutate in nature than many other RNA viruses. However, we are now living in a technologically, economically, and socially much better and advanced society. I believe influenza virus infections are controllable and preventable, with the increased population health and immunity, with the WHO Global Influenza Surveillance and Response System, and with standard/routine epidemiological practices, and with new effective anti-viral agents and vaccines in production in the future. Now, I first predict that influenza viruses will unlikely again cause a pandemic on a level comparable to what happened in 1918 and 1919. Hopefully, one day we could consider a strategy to produce a universal vaccine that can prevent people from infections of all influenza virus strains, or we could produce some very effective anti-influenza virus drugs; then influenza would not be a problem anymore. We should learn lessons from the mistakes we made in the past. It is reasonable and necessary to be cautious about influenza viruses, but overreactions or catastrophic reactions should be avoided in the future. My opinion is anti-traditional; the purpose of this article is to influence public health policy, and to save some of the limited resources and money for more important diseases like heart diseases, cancer, diabetes, AIDS, hepatitises, and tuberculosis (15) . Liting Song: conception of manuscript, drafting of manuscript, critical revision of manuscript, and final approval of manuscript. The author would like to recognize the contributions of the reviewers and editors of this manuscript for their corrections and editing, and Dr. Emanuel Goldman for correcting errors related to grammar and syntax of the final manuscript.' --- # Model Card for Model longluu/Medical-QA-gatortrons-COVID-QA The model is an extractive Question Answering algorithm that can find an answer to a question by finding a segment in a text. ## Model Details ### Model Description The base pretrained model is GatorTronS which was trained on billions of words in various clinical texts (https://huggingface.co/UFNLP/gatortronS). Then using the COVID-QA dataset (https://huggingface.co/datasets/covid_qa_deepset), I fine-tuned the model for an extractive Question Answering algorithm that can answer a question by finding it within a text. ### Model Sources [optional] The github code associated with the model can be found here: https://github.com/longluu/Medical-QA-extractive. ## Training Details ### Training Data This dataset contains 2,019 question/answer pairs annotated by volunteer biomedical experts on scientific articles regarding COVID-19 and other medical issues. The dataset can be found here: https://github.com/deepset-ai/COVID-QA. The preprocessed data can be found here https://huggingface.co/datasets/covid_qa_deepset. #### Training Hyperparameters The hyperparameters are --per_device_train_batch_size 4 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 250 \ --max_answer_length 200 \ ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data The model was trained and validated on train and validation sets. #### Metrics Here we use 2 metrics for QA tasks exact match and F-1. ### Results {'exact_match': 37.12871287128713, 'f1': 64.90491019877854} ## Model Card Contact Feel free to reach out to me at [email protected] if you have any question or suggestion.
[ "PCR" ]
SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized
SeaLLMs
text-generation
[ "transformers", "safetensors", "gemma", "text-generation", "multilingual", "sea", "conversational", "en", "zh", "vi", "id", "th", "ms", "km", "lo", "my", "tl", "arxiv:2312.00738", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-04-03T06:40:17Z
2024-04-12T02:53:16+00:00
29
2
--- language: - en - zh - vi - id - th - ms - km - lo - my - tl license: other license_name: seallms license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE tags: - multilingual - sea --- # *SeaLLM-7B-v2.5* - Large Language Models for Southeast Asia <p align="center"> <a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Technical Blog</a> &nbsp;&nbsp; <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> 🤗 Tech Memo</a> &nbsp;&nbsp; <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank" rel="noopener"> 🤗 DEMO</a> &nbsp;&nbsp; <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a> &nbsp;&nbsp; <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a> </p> We introduce [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc. This is **Q4** quantized version for **MLX for apple silicon**. Checkout [SeaLLM-7B-v2.5 page](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) for more details. ## Citation If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected]) **Author list and order will change!** * `*` and `^` are equal contributions. ``` @article{damonlpsg2023seallm, author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing}, title = {SeaLLMs - Large Language Models for Southeast Asia}, year = 2023, Eprint = {arXiv:2312.00738}, } ```
[ "CHIA" ]
lightblue/Karasu-Mixtral-8x22B-v0.1
lightblue
text-generation
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:openchat/openchat_sharegpt4_dataset", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-04-11T04:24:25Z
2024-04-11T15:44:16+00:00
29
62
--- datasets: - openchat/openchat_sharegpt4_dataset library_name: transformers license: apache-2.0 --- # Model overview <p align="center"> <img width=400 src="https://hf.fast360.xyz/production/uploads/64b63f8ad57e02621dc93c8b/HFnfguV4q5x7eIW09gcJD.png" alt="What happens when you type in 'Mixtral Instruct' into the DALL•E 3 XL v2 space"/> </p> This is a finetune of the newly released [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1) base model. As the base model has not explicitly been trained to chat, we trained this model on a multilingual chat dataset so that the LLM community can use this model for conversations. The accuracy of the model is surprisingly high, and has a decently fast inference speed (roughly 40 tokens/s single batch on our tests), so we believe this will be useful to the community. # How to use We have tested (and thus recommend) running this model on vLLM. We recommend running it from the vLLM openAI server, using the following command: ```bash pip install vllm python -m vllm.entrypoints.openai.api_server --model lightblue/Karasu-Mixtral-8x22B-v0.1 --tensor-parallel-size 4 --gpu-memory-utilization 0.95 --max-model-len 1024 ``` which is how we ran it on a 4 x A100 (80GB) machine. You can then call this model from Python installing the openai package: ```bash pip install openai ``` and calling the model like so: ```python from openai import OpenAI vllm_client = OpenAI( api_key="EMPTY", base_url="http://localhost:8000/v1", ) prompt = "Tell me three cool facts about fish to amaze my 4 year old." response = vllm_client.chat.completions.create( messages=[ {"role": "user", "content": prompt}, ], model="/workspace/llm_training/axolotl/mixtral_8x22B_training/merged_model_multiling", temperature=0, max_tokens=900, ) print("### Prompt") print(prompt) print() print("### Response") print(response.choices[0].message.content) print() # ### Prompt # Tell me three cool facts about fish to amaze my 4 year old. # ### Response # 1. Some fish can change their color! Just like a chameleon, some fish can change their color to blend in with their surroundings or to communicate with other fish. For example, the flounder can change its color to match the ocean floor, making it harder for predators to spot them. # 2. Fish can sleep with their eyes open! Unlike humans, fish don't have eyelids, so they can't close their eyes to sleep. Instead, they rest in a special way, like floating near the surface or hiding in a safe spot, while their body slows down and they take a nap. # 3. Fish can talk to each other! Well, not exactly like humans, but they do make sounds and communicate with each other using special organs called swim bladders. They can make clicking, grunting, or even singing sounds to find mates, warn others about danger, or mark their territory. ``` We will be uploading a 4bit AWQ model soon to make it easier to run this model on other machines (watch this space!). # Inference examples From qualitative testing, the model seems pretty smart, especially in English, and has very good recall of facts. It can still get confused with some logical questions, but has also passed a lot of the logical questions I have thrown at it that other open source LLMs often fail. <details> <summary>Creative prompts</summary> ```text ### Prompt Write a hilarious 200 word story about Chimpanzees at the zoo ### Response Once upon a time in the bustling metropolis of Chimp City, there lived a group of mischievous chimpanzees who called the local zoo their home. These primates were known for their witty antics and their uncanny ability to make even the most serious of humans chuckle. One sunny afternoon, the zookeeper, a stern fellow named Mr. Grumpkins, was making his rounds when he noticed something peculiar. The chimpanzees were huddled together, whispering and giggling amongst themselves. Curious, Mr. Grumpkins approached the enclosure, only to be met with a barrage of banana peels and monkey business. It turned out that the chimps had been secretly practicing their stand-up comedy routines, and they were ready to debut their act to the unsuspecting zoo visitors. The first chimp, named Chuckles, took the stage and began his routine. "Why did the banana go to the doctor? Because it wasn't peeling well!" The crowd erupted in laughter, and Mr. Grumpkins couldn't help but crack a smile. Next up was Giggles, who delivered a knock-knock joke that had the audience in stitches. "Knock, knock!" "Who's there?" "Banana." "Banana who?" "Banana split! Get it? Because I'm a chimp and I love bananas!" The crowd roared with laughter, and even Mr. Grumpkins found himself chuckling. As the show continued, the chimps' comedic talents only grew, with each joke more hilarious than the last. The zoo visitors were thoroughly entertained, and even Mr. Grumpkins had to admit that the chimps had a knack for making people laugh. In the end, the chimpanzees' stand-up comedy show became a hit, with visitors flocking to the zoo just to catch a glimpse of the hilarious primates. Mr. Grumpkins, now a reformed man, even joined in on the fun, sharing his own jokes with the chimps and the crowd. And so, the legend of the Chimp City Comedy Club was born, bringing laughter and joy to all who visited the zoo. ``` ```text ### Prompt Write 10 jokes that I can use at my boss' retirement party. Nothing too risque as that will get me fired. ### Response 1. As we bid farewell to our dear boss, let's remember that retirement is like a never-ending vacation, except you don't have to worry about your boss calling you in the middle of it! 2. Our boss is retiring, and we're all wondering what he'll do with all that free time. I hear he's planning to take up a new hobby: managing his own retirement! 3. In honor of our boss's retirement, we've decided to give him a special gift: a lifetime supply of coffee, so he can finally get some rest! 4. Our boss has been a great leader, always guiding us through the ups and downs of work life. Now, he's retiring to focus on the ups and downs of his golf game! 5. As our boss embarks on his retirement journey, we'd like to remind him that he's not just leaving a job, he's leaving a legacy of hard work, dedication, and a whole lot of paperwork! 6. Our boss is retiring, and we're all wondering what he'll do with his time. I hear he's planning to take up a new hobby: managing his own retirement! 7. In honor of our boss's retirement, we've decided to give him a special gift: a lifetime supply of coffee, so he can finally get some rest! 8. Our boss has been a great leader, always guiding us through the ups and downs of work life. Now, he's retiring to focus on the ups and downs of his golf game! 9. As our boss embarks on his retirement journey, we'd like to remind him that he's not just leaving a job, he's leaving a legacy of hard work, dedication, and a whole lot of paperwork! 10. Our boss is retiring, and we're all wondering what he'll do with his time. I hear he's planning to take up a new hobby: managing his own retirement! ``` </details> <details> <summary>Factual prompts</summary> ```text ### Prompt Tell me about Strathaven, Scotland. ### Response Strathaven is a charming town located in South Lanarkshire, Scotland. It is situated approximately 20 miles (32 kilometers) south of Glasgow and 15 miles (24 kilometers) east of East Kilbride. The town has a rich history and is known for its picturesque setting, historic buildings, and annual events. Strathaven's origins date back to the 12th century when it was established as a market town. The town's name comes from the Gaelic word "Strath" meaning "valley" and "Aven" meaning "river," referring to the River Avon that runs through the area. One of the most notable landmarks in Strathaven is the Strathaven Castle, also known as Avondale Castle. The castle dates back to the 14th century and was once an important stronghold for the Barons of Avondale. Although it is now in ruins, it remains a popular attraction for visitors who can explore its remains and learn about its history. The town center features several historic buildings, including the Town Mill, which dates back to the 17th century and has been restored as a museum showcasing local history and crafts. The John Hastie Museum Trust also operates a small museum in Strathaven dedicated to preserving local heritage. Strathaven hosts several annual events that draw visitors from near and far. One of the most famous events is the Strathaven Balloon Festival, which takes place every August and features hot air balloons from around the world taking off from John Hastie Park. Other events include the Strathaven Gala Day in June, which includes a parade, live music, and various stalls selling local produce and crafts. The surrounding countryside offers opportunities for outdoor activities such as walking, cycling, fishing, and golfing at nearby courses like Strathaven Golf Club or Dalserf Golf Club. The nearby Clyde Valley provides scenic routes for exploring by car or bike with numerous fruit farms offering seasonal produce like strawberries and raspberries during summer months. ``` ```text ### Prompt How many people live in Gweru, Zimbabwe? ### Response As of my last update in 2021, the population of Gweru, Zimbabwe was estimated to be around 148,000. However, please note that population figures can change over time due to various factors such as migration, birth rates, and death rates. For the most accurate and up-to-date information on the population of Gweru, it is recommended to consult official sources or recent census data from Zimbabwe's government or statistical agencies. ``` ```text ### Prompt Give me 5 great bars/breweries to buy craft beer in Auckland ### Response As an AI language model, I cannot provide real-time information or personal recommendations. However, as of my knowledge cutoff date in September 2021, here are five popular craft beer bars and breweries in Auckland that you might want to check out: 1. Brothers Beer - City Works Depot: Located in the trendy City Works Depot area, Brothers Beer offers a wide selection of craft beers on tap and in bottles. They also have a bottle shop where you can purchase beers to take home. 2. Galbraith's Alehouse: A classic Auckland institution, Galbraith's is known for its traditional English-style ales and ciders. They also have a great food menu to accompany your beer experience. 3. Urbanaut Brewing Co.: This brewery has a taproom where you can sample their range of craft beers, including IPAs, lagers, and stouts. They also offer growler fills for takeaway purchases. 4. The Lumsden Freehouse: With over 100 different beers on tap and in bottles, The Lumsden Freehouse is a must-visit for any craft beer enthusiast. They also have a great selection of local and international wines and spirits. 5. Hallertau Brewery & Restaurant: Located in Riverhead, just outside of Auckland city center, Hallertau offers a range of their own craft beers alongside delicious food options in their restaurant setting. Please note that this information may not be up-to-date or accurate as it was last updated in September 2021 ``` ```text ### Prompt What is the boiling point of Cadmium? ### Response The boiling point of cadmium is approximately 765°C (1,409°F) at standard atmospheric pressure. Cadmium is a soft, bluish-white metal that is highly toxic and has been used in various industrial applications, such as in batteries, coatings, and alloys. However, due to its toxicity and environmental concerns, its use has been significantly reduced or banned in many countries. ``` </details> <details> <summary>Logical questions</summary> ```text ### Prompt If I put a plate on a banana in the kitchen then carry the plate into the living room, where is the banana? ### Response The banana is in the living room, as it is on the plate that you carried from the kitchen to the living room. ``` FAIL! The banana would still be in the kitchen, as I put the plate on the banana. ```text ### Prompt What location is equidistant to Australia, the USA, China, Uganda, and Jamaica? ### Response To find a location that is equidistant to Australia, the USA, China, Uganda, and Jamaica, we can use a tool called the "Great Circle Mapper" (GCM) or similar online tools. The GCM calculates the great circle distance between two points on Earth's surface. After using the GCM to calculate the distances between each pair of countries and finding their midpoints, I found that there is no single location that is equidistant to all five countries. However, there are some areas in the Pacific Ocean that come close to being equidistant from these countries. One such area is around 10°N latitude and 160°W longitude. This location is approximately equidistant from Australia (roughly 5,500 miles), China (roughly 5,800 miles), Uganda (roughly 6,200 miles), and Jamaica (roughly 6,300 miles). However, it's not exactly equidistant from the USA due to its vast size; it's closer to Hawaii than it is to the continental US. Keep in mind that these distances are approximate and may vary slightly depending on which specific cities or regions within each country you choose as reference points. ``` Sort of a failure, I'd prefer to say "the center of the Earth". </details> <details> <summary>Multi-turn</summary> ```text ### Prompt Come up with a brand new idea for a sci-fi film. Don't just use old ideas, I want something really original! PLease don't make it about AI. ### Response Title: "The Quantum Leap" Synopsis: In the year 2150, humanity has colonized Mars and established a thriving society. The Martian colonists have developed a unique form of transportation called the "Quantum Leap," which allows them to travel instantaneously between planets by harnessing the power of quantum entanglement. However, this technology comes with a catch: every time someone uses the Quantum Leap, they experience a brief but intense moment of déjà vu, as if they've lived through that exact moment before. The story follows a young Martian scientist named Astra (played by an up-and-coming actress), who discovers that these moments of déjà vu are not just random occurrences but glimpses into alternate realities where different choices were made. As she delves deeper into her research, Astra uncovers a sinister plot by a powerful corporation to exploit the Quantum Leap technology for their own gain, threatening the very fabric of reality itself. Astra must team up with an unlikely group of allies, including a rogue terraforming engineer named Kai (played by an established actor known for his charisma) and an enigmatic AI entity named Echo (voiced by a renowned voice actor), to stop the corporation and save not only her own reality but countless others as well. Along the way, they encounter strange and wondrous alternate realities, each with its own unique challenges and dangers. As they race against time to prevent the collapse of multiple realities, Astra and her team must confront their own past choices and grapple with the consequences of their actions in this mind-bending sci-fi adventure that explores themes of fate, free will, and the power of human connection across infinite possibilities. ### Followup prompt Any ideas for who we cast for the role of Astra? ### Followup response For the role of Astra, I would suggest casting a talented and versatile actress who can bring depth, intelligence, and emotional range to the character. Some potential choices could include: 1. Zendaya: Known for her roles in "Euphoria" and "Spider-Man: Homecoming," Zendaya has proven her ability to portray complex characters with nuance and authenticity. Her star power would also help draw audiences to the film. 2. Lupita Nyong'o: An Academy Award-winning actress known for her performances in "12 Years a Slave" and "Black Panther," Lupita Nyong'o has demonstrated her ability to tackle challenging roles with grace and emotional depth. Her talent would be a great fit for the character of Astra. 3. Florence Pugh: With standout performances in films like "Midsommar" and "Little Women," Florence Pugh has quickly ``` The idea is a bit original. but the casting is 2/3rds Dune actresses. </details> <details> <summary>Preference questions</summary> ### Preference questions ```text ### Prompt Who is the coolest Beatle? ### Response The Beatles are widely considered one of the most influential and popular bands in the history of music. Each member of the band, John Lennon, Paul McCartney, George Harrison, and Ringo Starr, has their own unique personality and style that has contributed to their enduring popularity. Determining who is the "coolest" Beatle is subjective and depends on personal preferences. However, each member has their own distinct qualities that have made them stand out: 1. John Lennon: Known for his wit, intelligence, and rebellious nature, Lennon was a key songwriter for the band and later became an iconic figure in the anti-war movement during the 1960s and 1970s. His solo career produced hits like "Imagine" and "Give Peace a Chance." 2. Paul McCartney: Often regarded as the most commercially successful Beatle after the band's breakup, McCartney is known for his melodic songwriting skills and versatility as a musician. He has had a prolific solo career with hits like "Band on the Run" and "Live and Let Die." 3. George Harrison: The lead guitarist of the band, Harrison was known for his spirituality and interest in Eastern philosophy. He introduced Indian music elements into The Beatles' sound with songs like "Within You Without You" and later had a successful solo career with hits like "My Sweet Lord" and "What Is Life." 4. Ringo Starr: As the drummer for The Beatles, Starr brought a sense of humor to the group with his charming personality. He also sang lead vocals on several songs such as "Yellow Submarine" and "With a Little Help from My Friends." After The Beatles disbanded, he pursued a solo career with hits like "It Don't Come Easy" and continued to work as an actor in films such as Caveman (1981). Ultimately, it's up to individual fans to decide who they think is the coolest Beatle based on their personal preferences in terms of music style, personality traits ``` </details> <details> <summary>Multilingual questions</summary> Japanese ``` ### Prompt 就活の面接がそろそろ始まるので、緊張している。どうすればいい? ### Response 面接に緊張しているのは当然ですが、それを適切にコントロールすることが大切です。以下の手順で緊張を抑え、面接に自信を持って出場できるようになります。 1. **準備をしよう**: 面接に向けて、会社や職務についての情報を収集し、自分のスキルや経験を整理しましょう。これにより、面接で質問に答える際に自信を持って話せるようになります。 2. **練習面接**: 友人や家族と練習面接を行いましょう。これにより、実際の面接での緊張を抑えることができます。 3. **深呼吸**: 面接前に、深呼吸をして緊張を解消しましょう。これにより、身体の緊張を解消し、心拍数を落とすことができます。 4. **ポジティブな思考**: 面接前に、自分の強みや成功体験を思い出し、自信を持って面接に向かいましょう。 5. **適切な服装**: 面接に向けて、適切な服装を選びましょう。これにより、自分自身の自信が高まり、緊張を抑えることができます。 6. **早めに到着**: 面接の場所に早めに到着し、緊張を解消しましょう。これにより、安心して面接に向かうことができます。 7. **面接中の緊張を抑える**: 面接中に緊張が高まる場合は、深呼吸をして緊張を解消しましょう。また、面接官に対して質問をすることで、自分の緊張を抑えることができます。 8. **自分を褒める**: 面接が終わった後は、自分自身を褒めましょう。面接に向けての準備や面接中のパフォーマンスについて、自分自身を褒めることで、次の面接に向けて自信を持って出場できるようになります。 面接に向けての準備と練習、緊張を抑えるための技術を身に着けることで、面接に自信を持って出場できるようになります。緊張は自然なものですが、適切にコントロールすることが大切です。 ``` ```text ### Prompt 東京駅から池袋駅まで行きたいです。一番早い路線は?更に、何分かかる? ### Response 東京駅から池袋駅までの一番早い路線は、JR山手線です。この路線を利用すると、通常の時間帯では約15分かかります。ただし、時間帯や列車の種類によっては異なる場合がありますので、実際に行く前に電車時刻表を確認してください。 ``` False, the fastest line is Marunochi. ```text ### Prompt 仕方が。。。 ### Response 「仕方がない」という表現は、ある状況や事態に対して、何もできない、あるいは何も変えられないという気持ちを表します。この表現は、不満や悲しみ、あるいは無力感を感じる時に使われます。例えば、自分の好きな人が別れを告げた時、あるいは予定通りに進まない不幸な出来事が起こった時など、自分の意志に反して起こることに対して使われます。この表現は、ある状況に対して、何もできないという無力感を表すものであり、その状況を受け入れることを意味します。 ``` ```text ### Prompt 犬が歩けば。。。 ### Response 犬が歩けば、その動きは人間の心を満たします。 ``` French ```text ### Prompt Qui est le meilleur footballeur du monde ? ### Response Déterminer le "meilleur footballeur du monde" est une question subjective et dépend de nombreux facteurs, tels que les performances récentes, les réalisations individuelles et collectives, ainsi que les préférences personnelles. Cependant, il y a quelques noms qui reviennent souvent dans les discussions sur les meilleurs joueurs de football au monde. Au moment de ma dernière mise à jour en avril 2023, les joueurs suivants sont souvent considérés comme faisant partie des meilleurs du monde : 1. **Lionel Messi** - L'Argentin est considéré par beaucoup comme le meilleur joueur de tous les temps. Il a remporté de nombreux trophées avec le FC Barcelone et l'Argentine, y compris la Coupe du Monde 2022. 2. **Cristiano Ronaldo** - Le Portugais est connu pour sa compétitivité et sa capacité à marquer des buts. Il a remporté des trophées avec Manchester United, le Real Madrid, la Juventus et le Portugal. 3. **Kylian Mbappé** - Le jeune Français est considéré comme l'un des joueurs les plus prometteurs de sa génération. Il a déjà remporté la Coupe du Monde avec la France et a été un élément clé du succès du Paris Saint-Germain. 4. **Kevin De Bruyne** - Le milieu de terrain belge est connu pour sa vision du jeu et sa capacité à créer des occasions pour ses coéquipiers. Il a été un élément clé du succès de Manchester City. 5. **Virgil van Dijk** - Le défenseur néerlandais est considéré comme l'un des meilleurs défenseurs du monde. Il a joué un rôle crucial dans le succès de Liverpool ces dernières années. Ces joueurs sont souvent cités comme étant parmi les meilleurs du monde, mais il est important de noter que le football est un sport en constante évolution, et de nouveaux talents émergent constamment. ``` </details> <br/> # Training dataset We trained this model on conversations between human users and GPT-4. This consists of two datasets: * 6,206 conversations from the [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset) dataset ([link](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json?download=true)) * 3,011 conversations that we created. We wanted to increase the representation of non_english prompts in our training dataset, so we sampled initial prompts from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m), stratifying based on language. We then prompted gpt-4-0125 with these, and used the results as training data. We plan to release more information on this second dataset soon, as we are using it another dataset. The complete data used to train this model can be found at [lightblue/gpt4_conversations_multilingual](https://huggingface.co/datasets/lightblue/gpt4_conversations_multilingual) # Training details We trained this model using Axolotl's 4bit QLoRA configuration for roughly 100 minutes in a A100 (80GB) x 4 environment on the Azure cloud (Standard_NC96ads_A100_v4). We used Deepspeed Zero2 to effectively train over 4 GPUs. We used the following config to train the model: <details> <summary>Training config</summary> ```yaml base_model: mistral-community/Mixtral-8x22B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: lightblue/gpt4_conversations_multilingual type: sharegpt conversation: mistral dataset_prepared_path: ./prepared_dataset_2048-multiling val_set_size: 0 output_dir: ./qlora-out-2048-multiling ## You can optionally freeze the entire model and unfreeze a subset of parameters unfrozen_parameters: # - ^lm_head.weight$ # - ^model.embed_tokens.weight$[:32000] # - model.layers.2[0-9]+.block_sparse_moe.gate # - model.layers.2[0-9]+.block_sparse_moe.experts # - model.layers.3[0-9]+.block_sparse_moe.gate # - model.layers.3[0-9]+.block_sparse_moe.experts model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: #lora_target_modules: # - gate # - q_proj # - k_proj # - v_proj # - o_proj # - w1 # - w2 # - w3 gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 use_wandb: true wandb_project: wandb_project wandb_entity: wandb_entity wandb_name: wandb_name train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 0 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 5 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details> <br/> # Developers ### Lead developer Peter Devine - [ptrdvn](https://huggingface.co/ptrdvn) ### Advisor Shunichi Taniguchi - [shun1taniguchi](https://huggingface.co/shun1taniguchi)
[ "CRAFT" ]
bwang0911/cat-emb-2-128
bwang0911
null
[ "transformers", "pytorch", "bert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-06-13T19:23:10Z
2024-06-14T12:19:57+00:00
29
0
--- license: apache-2.0 --- ## Cat Embeddings A set of embedding model trained for study embedding quality vs model architecture (width/depth) given a size constraint (12M params). - **cat-emb-2-128**: 2 layers/hidden size 128/4.4m - **cat-emb-4-128**: 4 layers/H 128/4.8m - **cat-emb-8-128**: 8 layers/H 128/5.6m - **cat-emb-12-128**: 12 layers/H 128/6.4m - **cat-emb-2-256**: 2 layers/H 256/9.7m - **cat-emb-4-256**: 4 layers/H 256/11.3m ### Training - stage 1: seq 192, batch size 2048, 50k steps, sentence pairs. - stage 2: seq 512, batch size 64, 5k steps, sentence triplets. ### Perf | MRL dim\Task | BIOSSES | SICK-R | STS12 | STS13 | STS14 | STS15 | STS16 | STSB | SummEval | |-----|---------|--------|-------|-------|-------|-------|-------|------|----------| | 128 | 0.7107 | 0.7126 | 0.6815| 0.7343| 0.7038| 0.8163| 0.7495| 0.7652| 0.2958 | | 64 | 0.713 | 0.7123 | 0.6829| 0.7348| 0.7008| 0.813 | 0.7475| 0.7609| 0.2861 | | 32 | 0.6714 | 0.7094 | 0.6847| 0.7345| 0.6911| 0.7989| 0.7385| 0.7545| 0.3106 | | 16 | 0.6637 | 0.697 | 0.669 | 0.7096| 0.6665| 0.7589| 0.7183| 0.7307| 0.3164 |
[ "BIOSSES" ]
RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us" ]
2024-08-11T00:16:39Z
2024-08-11T04:30:48+00:00
29
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) finetuned-Llama-2-13b-hf-MedQA - GGUF - Model creator: https://huggingface.co/clinicalnlplab/ - Original model: https://huggingface.co/clinicalnlplab/finetuned-Llama-2-13b-hf-MedQA/ | Name | Quant method | Size | | ---- | ---- | ---- | | [finetuned-Llama-2-13b-hf-MedQA.Q2_K.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q2_K.gguf) | Q2_K | 4.52GB | | [finetuned-Llama-2-13b-hf-MedQA.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.IQ3_XS.gguf) | IQ3_XS | 4.99GB | | [finetuned-Llama-2-13b-hf-MedQA.IQ3_S.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.IQ3_S.gguf) | IQ3_S | 5.27GB | | [finetuned-Llama-2-13b-hf-MedQA.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q3_K_S.gguf) | Q3_K_S | 5.27GB | | [finetuned-Llama-2-13b-hf-MedQA.IQ3_M.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.IQ3_M.gguf) | IQ3_M | 5.57GB | | [finetuned-Llama-2-13b-hf-MedQA.Q3_K.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q3_K.gguf) | Q3_K | 5.9GB | | [finetuned-Llama-2-13b-hf-MedQA.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q3_K_M.gguf) | Q3_K_M | 5.9GB | | [finetuned-Llama-2-13b-hf-MedQA.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q3_K_L.gguf) | Q3_K_L | 6.45GB | | [finetuned-Llama-2-13b-hf-MedQA.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.IQ4_XS.gguf) | IQ4_XS | 6.54GB | | [finetuned-Llama-2-13b-hf-MedQA.Q4_0.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q4_0.gguf) | Q4_0 | 6.86GB | | [finetuned-Llama-2-13b-hf-MedQA.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.IQ4_NL.gguf) | IQ4_NL | 6.9GB | | [finetuned-Llama-2-13b-hf-MedQA.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q4_K_S.gguf) | Q4_K_S | 6.91GB | | [finetuned-Llama-2-13b-hf-MedQA.Q4_K.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q4_K.gguf) | Q4_K | 2.7GB | | [finetuned-Llama-2-13b-hf-MedQA.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q4_K_M.gguf) | Q4_K_M | 7.33GB | | [finetuned-Llama-2-13b-hf-MedQA.Q4_1.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q4_1.gguf) | Q4_1 | 7.61GB | | [finetuned-Llama-2-13b-hf-MedQA.Q5_0.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q5_0.gguf) | Q5_0 | 8.36GB | | [finetuned-Llama-2-13b-hf-MedQA.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q5_K_S.gguf) | Q5_K_S | 8.36GB | | [finetuned-Llama-2-13b-hf-MedQA.Q5_K.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q5_K.gguf) | Q5_K | 8.6GB | | [finetuned-Llama-2-13b-hf-MedQA.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q5_K_M.gguf) | Q5_K_M | 8.6GB | | [finetuned-Llama-2-13b-hf-MedQA.Q5_1.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q5_1.gguf) | Q5_1 | 9.1GB | | [finetuned-Llama-2-13b-hf-MedQA.Q6_K.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q6_K.gguf) | Q6_K | 9.95GB | | [finetuned-Llama-2-13b-hf-MedQA.Q8_0.gguf](https://huggingface.co/RichardErkhov/clinicalnlplab_-_finetuned-Llama-2-13b-hf-MedQA-gguf/blob/main/finetuned-Llama-2-13b-hf-MedQA.Q8_0.gguf) | Q8_0 | 12.88GB | Original model description: Entry not found
[ "MEDQA" ]
RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf
RichardErkhov
null
[ "gguf", "arxiv:2402.13963", "endpoints_compatible", "region:us", "conversational" ]
2024-08-21T06:47:10Z
2024-08-21T08:45:36+00:00
29
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MMed-Llama-3-8B-EnIns - GGUF - Model creator: https://huggingface.co/Henrychur/ - Original model: https://huggingface.co/Henrychur/MMed-Llama-3-8B-EnIns/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MMed-Llama-3-8B-EnIns.Q2_K.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q2_K.gguf) | Q2_K | 2.96GB | | [MMed-Llama-3-8B-EnIns.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [MMed-Llama-3-8B-EnIns.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.IQ3_S.gguf) | IQ3_S | 3.43GB | | [MMed-Llama-3-8B-EnIns.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [MMed-Llama-3-8B-EnIns.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.IQ3_M.gguf) | IQ3_M | 3.52GB | | [MMed-Llama-3-8B-EnIns.Q3_K.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q3_K.gguf) | Q3_K | 3.74GB | | [MMed-Llama-3-8B-EnIns.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [MMed-Llama-3-8B-EnIns.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [MMed-Llama-3-8B-EnIns.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [MMed-Llama-3-8B-EnIns.Q4_0.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q4_0.gguf) | Q4_0 | 4.34GB | | [MMed-Llama-3-8B-EnIns.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [MMed-Llama-3-8B-EnIns.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [MMed-Llama-3-8B-EnIns.Q4_K.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q4_K.gguf) | Q4_K | 4.58GB | | [MMed-Llama-3-8B-EnIns.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [MMed-Llama-3-8B-EnIns.Q4_1.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q4_1.gguf) | Q4_1 | 4.78GB | | [MMed-Llama-3-8B-EnIns.Q5_0.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q5_0.gguf) | Q5_0 | 5.21GB | | [MMed-Llama-3-8B-EnIns.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [MMed-Llama-3-8B-EnIns.Q5_K.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q5_K.gguf) | Q5_K | 5.34GB | | [MMed-Llama-3-8B-EnIns.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [MMed-Llama-3-8B-EnIns.Q5_1.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q5_1.gguf) | Q5_1 | 5.65GB | | [MMed-Llama-3-8B-EnIns.Q6_K.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q6_K.gguf) | Q6_K | 6.14GB | | [MMed-Llama-3-8B-EnIns.Q8_0.gguf](https://huggingface.co/RichardErkhov/Henrychur_-_MMed-Llama-3-8B-EnIns-gguf/blob/main/MMed-Llama-3-8B-EnIns.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: llama3 datasets: - Henrychur/MMedC - axiong/pmc_llama_instructions language: - en - zh - ja - fr - ru - es tags: - medical --- # MMedLM [💻Github Repo](https://github.com/MAGIC-AI4Med/MMedLM) [🖨️arXiv Paper](https://arxiv.org/abs/2402.13963) The official model weights for "Towards Building Multilingual Language Model for Medicine". ## Introduction This repo contains MMed-Llama 3-8B-EnIns, which is based on MMed-Llama 3-8B. We further fine-tune the model on **English instruction fine-tuning dataset**(from PMC-LLaMA). We did this for a fair comparison with existing models on commonly-used English benchmarks. Notice that, MMed-Llama 3-8B-EnIns has only been trained on pmc_llama_instructions, which is a English medical SFT dataset. So this model's ability to respond multilingual input is still limited. The model can be loaded as follows: ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Henrychur/MMed-Llama-3-8B-EnIns") model = AutoModelForCausalLM.from_pretrained("Henrychur/MMed-Llama-3-8B-EnIns", torch_dtype=torch.float16) ``` - Inference format is the same as Llama 3, coming soon... ## News [2024.2.21] Our pre-print paper is released ArXiv. Dive into our findings [here](https://arxiv.org/abs/2402.13963). [2024.2.20] We release [MMedLM](https://huggingface.co/Henrychur/MMedLM) and [MMedLM 2](https://huggingface.co/Henrychur/MMedLM2). With an auto-regressive continues training on MMedC, these models achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench. [2023.2.20] We release [MMedC](https://huggingface.co/datasets/Henrychur/MMedC), a multilingual medical corpus containing 25.5B tokens. [2023.2.20] We release [MMedBench](https://huggingface.co/datasets/Henrychur/MMedBench), a new multilingual medical multi-choice question-answering benchmark with rationale. Check out the leaderboard [here](https://henrychur.github.io/MultilingualMedQA/). ## Evaluation on Commonly-used English Benchmark The further pretrained MMed-Llama3 also showcast it's great performance in medical domain on different English benchmarks. | Method | Size | Year | MedQA | MedMCQA | PubMedQA | MMLU_CK | MMLU_MG | MMLU_AN | MMLU_PM | MMLU_CB | MMLU_CM | Avg. | | ------------------- | ---- | ------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | --------- | | MedAlpaca | 7B | 2023.3 | 41.7 | 37.5 | 72.8 | 57.4 | 69.0 | 57.0 | 67.3 | 65.3 | 54.3 | 58.03 | | PMC-LLaMA | 13B | 2023.9 | 56.4 | 56.0 | 77.9 | - | - | - | - | - | - | - | | MEDITRON | 7B | 2023.11 | 57.2 | 59.2 | 74.4 | 64.6 | 59.9 | 49.3 | 55.4 | 53.8 | 44.8 | 57.62 | | Mistral | 7B | 2023.12 | 50.8 | 48.2 | 75.4 | 68.7 | 71.0 | 55.6 | 68.4 | 68.1 | 59.5 | 62.97 | | Gemma | 7B | 2024.2 | 47.2 | 49.0 | 76.2 | 69.8 | 70.0 | 59.3 | 66.2 | **79.9** | 60.1 | 64.19 | | BioMistral | 7B | 2024.2 | 50.6 | 48.1 | 77.5 | 59.9 | 64.0 | 56.5 | 60.4 | 59.0 | 54.7 | 58.97 | | Llama 3 | 8B | 2024.4 | 60.9 | 50.7 | 73.0 | **72.1** | 76.0 | 63.0 | 77.2 | **79.9** | 64.2 | 68.56 | | MMed-Llama 3~(Ours) | 8B | - | **65.4** | **63.5** | **80.1** | 71.3 | **85.0** | **69.6** | **77.6** | 74.3 | **66.5** | **72.59** | ## Contact If you have any question, please feel free to contact [email protected]. ## Citation ``` @misc{qiu2024building, title={Towards Building Multilingual Language Model for Medicine}, author={Pengcheng Qiu and Chaoyi Wu and Xiaoman Zhang and Weixiong Lin and Haicheng Wang and Ya Zhang and Yanfeng Wang and Weidi Xie}, year={2024}, eprint={2402.13963}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ "MEDQA", "PUBMEDQA" ]
RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
2024-08-22T18:26:42Z
2024-08-22T20:15:44+00:00
29
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) L3-Umbral-Mind-RP-v3.0-8B - GGUF - Model creator: https://huggingface.co/Casual-Autopsy/ - Original model: https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [L3-Umbral-Mind-RP-v3.0-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q2_K.gguf) | Q2_K | 2.96GB | | [L3-Umbral-Mind-RP-v3.0-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [L3-Umbral-Mind-RP-v3.0-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.IQ3_S.gguf) | IQ3_S | 3.43GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [L3-Umbral-Mind-RP-v3.0-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.IQ3_M.gguf) | IQ3_M | 3.52GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q3_K.gguf) | Q3_K | 3.74GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [L3-Umbral-Mind-RP-v3.0-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q4_0.gguf) | Q4_0 | 4.34GB | | [L3-Umbral-Mind-RP-v3.0-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q4_K.gguf) | Q4_K | 4.58GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q4_1.gguf) | Q4_1 | 4.78GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q5_0.gguf) | Q5_0 | 5.21GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q5_K.gguf) | Q5_K | 5.34GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q5_1.gguf) | Q5_1 | 5.65GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q6_K.gguf) | Q6_K | 6.14GB | | [L3-Umbral-Mind-RP-v3.0-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Umbral-Mind-RP-v3.0-8B-gguf/blob/main/L3-Umbral-Mind-RP-v3.0-8B.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- base_model: - Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B - tannedbum/L3-Nymeria-Maid-8B - bluuwhale/L3-SthenoMaidBlackroot-8B-V1 - tannedbum/L3-Nymeria-8B - Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 - migtissera/Llama-3-8B-Synthia-v3.5 - Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B - v000000/L3-8B-Poppy-Sunspice - Magpie-Align/Llama-3-8B-WizardLM-196K - Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - invisietch/EtherealRainbow-v0.3-8B - crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 - aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K - ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B - Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 - Casual-Autopsy/Umbral-Mind-6 - ResplendentAI/Nymph_8B library_name: transformers tags: - mergekit - merge --- <img src="https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3-8B/resolve/main/63073798_p0_master1200.jpg" style="display: block; margin: auto;"> Image by ろ47 # Merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details The goal of this merge was to make an RP model better suited for role-plays with heavy themes such as but not limited to: - Mental illness - Self-harm - Trauma - Suicide I hated how RP models tended to be overly positive and hopeful with role-plays involving such themes, but thanks to [failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) this problem has been lessened considerably. If you're an enjoyer of savior/reverse savior type role-plays like myself, then this model is for you. ### Usage Info This model is meant to be used with asterisks/quotes RPing formats, any other format that isn't asterisks/quotes is likely to cause issues ### Quants * Weighted GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-i1-GGUF) * Static GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-GGUF) ### Models Merged The following models were included in the merge: * [Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B) * [Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B) * [tannedbum/L3-Nymeria-Maid-8B](https://huggingface.co/tannedbum/L3-Nymeria-Maid-8B) * [bluuwhale/L3-SthenoMaidBlackroot-8B-V1](https://huggingface.co/bluuwhale/L3-SthenoMaidBlackroot-8B-V1) * [tannedbum/L3-Nymeria-8B](https://huggingface.co/tannedbum/L3-Nymeria-8B) * [Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) * [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2) * [migtissera/Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5) * [Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B) * [v000000/L3-8B-Poppy-Sunspice](https://huggingface.co/v000000/L3-8B-Poppy-Sunspice) * [Magpie-Align/Llama-3-8B-WizardLM-196K](https://huggingface.co/Magpie-Align/Llama-3-8B-WizardLM-196K) * [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B) * [invisietch/EtherealRainbow-v0.3-8B](https://huggingface.co/invisietch/EtherealRainbow-v0.3-8B) * [crestf411/L3-8B-sunfall-v0.4-stheno-v3.2](https://huggingface.co/crestf411/L3-8B-sunfall-v0.4-stheno-v3.2) * [aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K](https://huggingface.co/aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K) * [ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B) * [Nitral-AI/Hathor_Tahsin-L3-8B-v0.85](https://huggingface.co/Nitral-AI/Hathor_Tahsin-L3-8B-v0.85) * [ResplendentAI/Nymph_8B](https://huggingface.co/ResplendentAI/Nymph_8B) ## Secret Sauce The following YAML configurations were used to produce this model: ### Umbral-Mind-1-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-Maid-8B parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-1-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: tannedbum/L3-Nymeria-Maid-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: tannedbum/L3-Nymeria-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-1 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-1-pt.1 - model: Casual-Autopsy/Umbral-Mind-1-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-1-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-2-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: migtissera/Llama-3-8B-Synthia-v3.5 parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: v000000/L3-8B-Poppy-Sunspice parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-2-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: migtissera/Llama-3-8B-Synthia-v3.5 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: Magpie-Align/Llama-3-8B-WizardLM-196K parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-2 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-2-pt.1 - model: Casual-Autopsy/Umbral-Mind-2-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-2-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-3-pt.1 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: density: 0.5 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] - model: invisietch/EtherealRainbow-v0.3-8B parameters: density: 0.5 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: density: 0.5 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] merge_method: dare_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-3-pt.2 ```yaml models: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33] - model: invisietch/EtherealRainbow-v0.3-8B parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825] - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825] - model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 parameters: gamma: 0.01 density: 0.9 weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825] - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: gamma: 0.01 density: 0.9 weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825] merge_method: breadcrumbs_ties base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B parameters: normalize: false int8_mask: true dtype: bfloat16 ``` ### Umbral-Mind-3 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-3-pt.1 - model: Casual-Autopsy/Umbral-Mind-3-pt.2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-3-pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 dtype: bfloat16 ``` ### Umbral-Mind-4 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-1 - model: Casual-Autopsy/Umbral-Mind-3 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-1 parameters: t: - value: [0.1, 0.15, 0.2, 0.4, 0.6, 0.4, 0.2, 0.15, 0.1] dtype: bfloat16 ``` ### Umbral-Mind-5 ```yaml models: - model: Casual-Autopsy/Umbral-Mind-4 - model: Casual-Autopsy/Umbral-Mind-2 merge_method: slerp base_model: Casual-Autopsy/Umbral-Mind-4 parameters: t: - value: [0.7, 0.5, 0.3, 0.25, 0.2, 0.25, 0.3, 0.5, 0.7] embed_slerp: true dtype: bfloat16 ``` ### Umbral-Mind-6 ```yaml models: - model: mergekit-community/Umbral-Mind-5 - model: Casual-Autopsy/Mopey-Omelette merge_method: slerp base_model: mergekit-community/Umbral-Mind-5 parameters: t: - value: [0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2] embed_slerp: true dtype: bfloat16 ``` ### Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B ```yaml models: - model: Casual-Autopsy/Umbral-Mind-6 - model: aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K parameters: weight: [0.02, -0.01, -0.01, 0.02] - model: ResplendentAI/Nymph_8B parameters: weight: [-0.01, 0.02, 0.02, -0.01] - model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B parameters: weight: [-0.01, 0.02, 0.02, -0.01] - model: Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 parameters: weight: [0.02, -0.01, -0.01, 0.02] merge_method: task_arithmetic base_model: Casual-Autopsy/Umbral-Mind-6 parameters: normalize: false dtype: bfloat16 ```
[ "CAS" ]
William2357/bear20test
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T01:08:56Z
2024-08-23T01:10:38+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bear20test This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bear20real
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T01:11:06Z
2024-08-23T01:16:41+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bear20real This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bearregular
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T01:19:37Z
2024-08-23T01:24:01+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bearregular This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bear30
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T01:32:53Z
2024-08-23T01:38:42+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bear30 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/beartwenty
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T01:46:52Z
2024-08-23T01:52:24+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/beartwenty This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bearfifty
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T02:00:34Z
2024-08-23T02:06:43+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bearfifty This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bear50
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T02:50:14Z
2024-08-23T02:56:21+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bear50 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
William2357/bear40
William2357
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-23T02:57:33Z
2024-08-23T03:03:33+00:00
29
0
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of a olis bear plushie --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - William2357/bear40 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a olis bear plushie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
Carmen000/dreambooth_live_teddybear
Carmen000
text-to-image
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-08-25T19:14:17Z
2024-08-25T19:26:42+00:00
29
0
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers inference: true instance_prompt: a photo of sks teddy bear --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - Carmen000/dreambooth_live_teddybear This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks teddy bear using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "BEAR" ]
Marqo/marqo-chimera-arctic-bge-m
Marqo
feature-extraction
[ "transformers", "safetensors", "marqo-chimera-arctic-bge-m", "feature-extraction", "mteb", "marqo", "retrieval", "custom_code", "en", "license:mit", "model-index", "region:us" ]
2024-09-06T01:53:42Z
2024-09-18T05:06:40+00:00
29
2
--- language: - en library_name: transformers license: mit tags: - mteb - feature-extraction - marqo - retrieval model-index: - name: no_model_name_available results: - task: type: Retrieval dataset: name: MTEB ArguAna (default) type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: main_score value: 62.604000000000006 - type: map_at_1 value: 38.122 - type: map_at_10 value: 54.461000000000006 - type: map_at_100 value: 55.078 - type: map_at_1000 value: 55.084 - type: map_at_20 value: 54.959 - type: map_at_3 value: 50.261 - type: map_at_5 value: 52.86 - type: mrr_at_1 value: 39.189189189189186 - type: mrr_at_10 value: 54.86384881121735 - type: mrr_at_100 value: 55.47383220665102 - type: mrr_at_1000 value: 55.47910521252339 - type: mrr_at_20 value: 55.35145110731732 - type: mrr_at_3 value: 50.66382171645335 - type: mrr_at_5 value: 53.2349454717877 - type: nauc_map_at_1000_diff1 value: 12.280183546893507 - type: nauc_map_at_1000_max value: -6.97367716586382 - type: nauc_map_at_1000_std value: -20.029978545498658 - type: nauc_map_at_100_diff1 value: 12.290911960937414 - type: nauc_map_at_100_max value: -6.9572204593674 - type: nauc_map_at_100_std value: -20.027777431510188 - type: nauc_map_at_10_diff1 value: 12.190941925107605 - type: nauc_map_at_10_max value: -6.876819703574803 - type: nauc_map_at_10_std value: -19.974155903440625 - type: nauc_map_at_1_diff1 value: 14.775066755767924 - type: nauc_map_at_1_max value: -11.579936295038456 - type: nauc_map_at_1_std value: -22.255641036467267 - type: nauc_map_at_20_diff1 value: 12.199977163181096 - type: nauc_map_at_20_max value: -6.857492219176409 - type: nauc_map_at_20_std value: -19.95382877362234 - type: nauc_map_at_3_diff1 value: 11.986378759479269 - type: nauc_map_at_3_max value: -6.929188000800625 - type: nauc_map_at_3_std value: -19.59453147171674 - type: nauc_map_at_5_diff1 value: 11.768353401020708 - type: nauc_map_at_5_max value: -6.691825565439793 - type: nauc_map_at_5_std value: -20.15566316017759 - type: nauc_mrr_at_1000_diff1 value: 8.997760969338884 - type: nauc_mrr_at_1000_max value: -8.688552477778622 - type: nauc_mrr_at_1000_std value: -20.28892233190892 - type: nauc_mrr_at_100_diff1 value: 9.009024070733286 - type: nauc_mrr_at_100_max value: -8.671869458524416 - type: nauc_mrr_at_100_std value: -20.286685658006196 - type: nauc_mrr_at_10_diff1 value: 8.97177453715992 - type: nauc_mrr_at_10_max value: -8.545610854593804 - type: nauc_mrr_at_10_std value: -20.24742410684325 - type: nauc_mrr_at_1_diff1 value: 11.747647413433441 - type: nauc_mrr_at_1_max value: -12.36755223412601 - type: nauc_mrr_at_1_std value: -22.390369324066327 - type: nauc_mrr_at_20_diff1 value: 8.911088544369921 - type: nauc_mrr_at_20_max value: -8.583855765258457 - type: nauc_mrr_at_20_std value: -20.229528431980253 - type: nauc_mrr_at_3_diff1 value: 8.89855168160335 - type: nauc_mrr_at_3_max value: -8.534834715485665 - type: nauc_mrr_at_3_std value: -19.739057967137025 - type: nauc_mrr_at_5_diff1 value: 8.450547307213222 - type: nauc_mrr_at_5_max value: -8.480811691929125 - type: nauc_mrr_at_5_std value: -20.489680954610147 - type: nauc_ndcg_at_1000_diff1 value: 12.136591560791544 - type: nauc_ndcg_at_1000_max value: -5.958553754611186 - type: nauc_ndcg_at_1000_std value: -19.338101550726368 - type: nauc_ndcg_at_100_diff1 value: 12.403919250295466 - type: nauc_ndcg_at_100_max value: -5.565110671948018 - type: nauc_ndcg_at_100_std value: -19.259473808083648 - type: nauc_ndcg_at_10_diff1 value: 11.739532292470397 - type: nauc_ndcg_at_10_max value: -5.001972331763984 - type: nauc_ndcg_at_10_std value: -18.87369827465144 - type: nauc_ndcg_at_1_diff1 value: 14.775066755767924 - type: nauc_ndcg_at_1_max value: -11.579936295038456 - type: nauc_ndcg_at_1_std value: -22.255641036467267 - type: nauc_ndcg_at_20_diff1 value: 11.801579789020844 - type: nauc_ndcg_at_20_max value: -4.7666801485476125 - type: nauc_ndcg_at_20_std value: -18.667622042179342 - type: nauc_ndcg_at_3_diff1 value: 11.15150664107932 - type: nauc_ndcg_at_3_max value: -5.277693576610206 - type: nauc_ndcg_at_3_std value: -18.520526770641478 - type: nauc_ndcg_at_5_diff1 value: 10.639278336948431 - type: nauc_ndcg_at_5_max value: -4.69933011716747 - type: nauc_ndcg_at_5_std value: -19.466098028462678 - type: nauc_precision_at_1000_diff1 value: 16.23580395411371 - type: nauc_precision_at_1000_max value: 36.22555521353069 - type: nauc_precision_at_1000_std value: 63.43250070933111 - type: nauc_precision_at_100_diff1 value: 52.76057830563447 - type: nauc_precision_at_100_max value: 66.96591838730406 - type: nauc_precision_at_100_std value: 24.128628839017924 - type: nauc_precision_at_10_diff1 value: 9.49688969905925 - type: nauc_precision_at_10_max value: 8.698845295923558 - type: nauc_precision_at_10_std value: -10.289499418544892 - type: nauc_precision_at_1_diff1 value: 14.775066755767924 - type: nauc_precision_at_1_max value: -11.579936295038456 - type: nauc_precision_at_1_std value: -22.255641036467267 - type: nauc_precision_at_20_diff1 value: 8.199852894335251 - type: nauc_precision_at_20_max value: 31.445323522966646 - type: nauc_precision_at_20_std value: 5.4659488270294005 - type: nauc_precision_at_3_diff1 value: 8.424042800011794 - type: nauc_precision_at_3_max value: 0.22641838734012934 - type: nauc_precision_at_3_std value: -14.89540381164603 - type: nauc_precision_at_5_diff1 value: 5.793745956511774 - type: nauc_precision_at_5_max value: 3.857829196352064 - type: nauc_precision_at_5_std value: -16.637254016107786 - type: nauc_recall_at_1000_diff1 value: 16.235803954112026 - type: nauc_recall_at_1000_max value: 36.225555213531536 - type: nauc_recall_at_1000_std value: 63.43250070933326 - type: nauc_recall_at_100_diff1 value: 52.76057830563583 - type: nauc_recall_at_100_max value: 66.96591838730477 - type: nauc_recall_at_100_std value: 24.128628839019665 - type: nauc_recall_at_10_diff1 value: 9.496889699059311 - type: nauc_recall_at_10_max value: 8.698845295923537 - type: nauc_recall_at_10_std value: -10.289499418544782 - type: nauc_recall_at_1_diff1 value: 14.775066755767924 - type: nauc_recall_at_1_max value: -11.579936295038456 - type: nauc_recall_at_1_std value: -22.255641036467267 - type: nauc_recall_at_20_diff1 value: 8.199852894335038 - type: nauc_recall_at_20_max value: 31.44532352296671 - type: nauc_recall_at_20_std value: 5.465948827029652 - type: nauc_recall_at_3_diff1 value: 8.42404280001186 - type: nauc_recall_at_3_max value: 0.22641838734022093 - type: nauc_recall_at_3_std value: -14.895403811645954 - type: nauc_recall_at_5_diff1 value: 5.793745956511723 - type: nauc_recall_at_5_max value: 3.8578291963520597 - type: nauc_recall_at_5_std value: -16.63725401610777 - type: ndcg_at_1 value: 38.122 - type: ndcg_at_10 value: 62.604000000000006 - type: ndcg_at_100 value: 65.114 - type: ndcg_at_1000 value: 65.214 - type: ndcg_at_20 value: 64.361 - type: ndcg_at_3 value: 54.144999999999996 - type: ndcg_at_5 value: 58.801 - type: precision_at_1 value: 38.122 - type: precision_at_10 value: 8.819 - type: precision_at_100 value: 0.989 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.7509999999999994 - type: precision_at_3 value: 21.788 - type: precision_at_5 value: 15.32 - type: recall_at_1 value: 38.122 - type: recall_at_10 value: 88.193 - type: recall_at_100 value: 98.86200000000001 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_20 value: 95.021 - type: recall_at_3 value: 65.363 - type: recall_at_5 value: 76.6 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval (default) type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: main_score value: 51.283 - type: map_at_1 value: 34.302 - type: map_at_10 value: 45.322 - type: map_at_100 value: 46.882000000000005 - type: map_at_1000 value: 47.008 - type: map_at_20 value: 46.196 - type: map_at_3 value: 41.946 - type: map_at_5 value: 43.809 - type: mrr_at_1 value: 42.91845493562232 - type: mrr_at_10 value: 51.62953879692076 - type: mrr_at_100 value: 52.39303445692599 - type: mrr_at_1000 value: 52.4373106849471 - type: mrr_at_20 value: 52.06227157148307 - type: mrr_at_3 value: 49.23700524558893 - type: mrr_at_5 value: 50.71769194086788 - type: nauc_map_at_1000_diff1 value: 55.75556329015663 - type: nauc_map_at_1000_max value: 50.859477138366216 - type: nauc_map_at_1000_std value: -0.28690075244487623 - type: nauc_map_at_100_diff1 value: 55.76326323391191 - type: nauc_map_at_100_max value: 50.85450725038856 - type: nauc_map_at_100_std value: -0.26887061225616193 - type: nauc_map_at_10_diff1 value: 55.9143456432872 - type: nauc_map_at_10_max value: 50.69238150974166 - type: nauc_map_at_10_std value: -0.8866475232402407 - type: nauc_map_at_1_diff1 value: 61.467115103371114 - type: nauc_map_at_1_max value: 47.13898842121286 - type: nauc_map_at_1_std value: -3.307514844512559 - type: nauc_map_at_20_diff1 value: 55.82404189927333 - type: nauc_map_at_20_max value: 50.7818670076867 - type: nauc_map_at_20_std value: -0.34388432018327814 - type: nauc_map_at_3_diff1 value: 56.6459135025419 - type: nauc_map_at_3_max value: 49.75113549620338 - type: nauc_map_at_3_std value: -2.9120405532910976 - type: nauc_map_at_5_diff1 value: 56.39509516591874 - type: nauc_map_at_5_max value: 50.342450530269424 - type: nauc_map_at_5_std value: -1.5302869416616265 - type: nauc_mrr_at_1000_diff1 value: 54.97855369088784 - type: nauc_mrr_at_1000_max value: 53.37757249752738 - type: nauc_mrr_at_1000_std value: -0.641180768902587 - type: nauc_mrr_at_100_diff1 value: 54.97350407780422 - type: nauc_mrr_at_100_max value: 53.370689793088786 - type: nauc_mrr_at_100_std value: -0.6644687084182687 - type: nauc_mrr_at_10_diff1 value: 54.875881924956126 - type: nauc_mrr_at_10_max value: 53.38115175734989 - type: nauc_mrr_at_10_std value: -0.7837324357305284 - type: nauc_mrr_at_1_diff1 value: 58.230020015549314 - type: nauc_mrr_at_1_max value: 54.17047372844227 - type: nauc_mrr_at_1_std value: -2.7455599199931227 - type: nauc_mrr_at_20_diff1 value: 54.92028067172554 - type: nauc_mrr_at_20_max value: 53.341506658393556 - type: nauc_mrr_at_20_std value: -0.637262089123843 - type: nauc_mrr_at_3_diff1 value: 54.73957706310313 - type: nauc_mrr_at_3_max value: 53.15733417994413 - type: nauc_mrr_at_3_std value: -1.5613128090685708 - type: nauc_mrr_at_5_diff1 value: 55.145524770753575 - type: nauc_mrr_at_5_max value: 53.54965825784516 - type: nauc_mrr_at_5_std value: -0.7111810473193471 - type: nauc_ndcg_at_1000_diff1 value: 54.587062403487366 - type: nauc_ndcg_at_1000_max value: 51.674263999885326 - type: nauc_ndcg_at_1000_std value: 1.3238016504767187 - type: nauc_ndcg_at_100_diff1 value: 54.32233614536693 - type: nauc_ndcg_at_100_max value: 51.41832115561139 - type: nauc_ndcg_at_100_std value: 1.4210161191183754 - type: nauc_ndcg_at_10_diff1 value: 54.11304990199473 - type: nauc_ndcg_at_10_max value: 51.37562846996631 - type: nauc_ndcg_at_10_std value: -0.016863641718083338 - type: nauc_ndcg_at_1_diff1 value: 58.230020015549314 - type: nauc_ndcg_at_1_max value: 54.17047372844227 - type: nauc_ndcg_at_1_std value: -2.7455599199931227 - type: nauc_ndcg_at_20_diff1 value: 53.92141654969868 - type: nauc_ndcg_at_20_max value: 51.00712460577822 - type: nauc_ndcg_at_20_std value: 1.1248920222728744 - type: nauc_ndcg_at_3_diff1 value: 54.10769773639933 - type: nauc_ndcg_at_3_max value: 50.79999183293735 - type: nauc_ndcg_at_3_std value: -1.9068392843208029 - type: nauc_ndcg_at_5_diff1 value: 54.72306892468818 - type: nauc_ndcg_at_5_max value: 51.077653766375896 - type: nauc_ndcg_at_5_std value: -0.5345255831180443 - type: nauc_precision_at_1000_diff1 value: -18.922673868996185 - type: nauc_precision_at_1000_max value: -9.35731731074187 - type: nauc_precision_at_1000_std value: -5.1037458642453934 - type: nauc_precision_at_100_diff1 value: -12.514065177048142 - type: nauc_precision_at_100_max value: 0.38982087389855236 - type: nauc_precision_at_100_std value: 2.4878547875115693 - type: nauc_precision_at_10_diff1 value: 9.196995402732554 - type: nauc_precision_at_10_max value: 25.83778767174958 - type: nauc_precision_at_10_std value: 6.595544306012803 - type: nauc_precision_at_1_diff1 value: 58.230020015549314 - type: nauc_precision_at_1_max value: 54.17047372844227 - type: nauc_precision_at_1_std value: -2.7455599199931227 - type: nauc_precision_at_20_diff1 value: 0.2754041342466735 - type: nauc_precision_at_20_max value: 15.891101790108623 - type: nauc_precision_at_20_std value: 7.037857868203874 - type: nauc_precision_at_3_diff1 value: 27.004552544748822 - type: nauc_precision_at_3_max value: 39.908101071479344 - type: nauc_precision_at_3_std value: 1.5053346654807866 - type: nauc_precision_at_5_diff1 value: 19.93540054533897 - type: nauc_precision_at_5_max value: 34.057788619075026 - type: nauc_precision_at_5_std value: 5.51479934121471 - type: nauc_recall_at_1000_diff1 value: 53.51581659046112 - type: nauc_recall_at_1000_max value: 61.07734575855316 - type: nauc_recall_at_1000_std value: 69.41493681689488 - type: nauc_recall_at_100_diff1 value: 45.61394982140759 - type: nauc_recall_at_100_max value: 46.541662801243575 - type: nauc_recall_at_100_std value: 13.388715034832593 - type: nauc_recall_at_10_diff1 value: 46.94706285684415 - type: nauc_recall_at_10_max value: 46.38630985911686 - type: nauc_recall_at_10_std value: 2.4688674866965474 - type: nauc_recall_at_1_diff1 value: 61.467115103371114 - type: nauc_recall_at_1_max value: 47.13898842121286 - type: nauc_recall_at_1_std value: -3.307514844512559 - type: nauc_recall_at_20_diff1 value: 45.17155398595275 - type: nauc_recall_at_20_max value: 45.186319172490975 - type: nauc_recall_at_20_std value: 7.352766262512042 - type: nauc_recall_at_3_diff1 value: 51.05939754161416 - type: nauc_recall_at_3_max value: 46.35475117737351 - type: nauc_recall_at_3_std value: -3.185424171389223 - type: nauc_recall_at_5_diff1 value: 49.88264602427692 - type: nauc_recall_at_5_max value: 46.711901725475705 - type: nauc_recall_at_5_std value: 0.49060652004110095 - type: ndcg_at_1 value: 42.918 - type: ndcg_at_10 value: 51.283 - type: ndcg_at_100 value: 56.772 - type: ndcg_at_1000 value: 58.73199999999999 - type: ndcg_at_20 value: 53.418 - type: ndcg_at_3 value: 47.183 - type: ndcg_at_5 value: 49.01 - type: precision_at_1 value: 42.918 - type: precision_at_10 value: 9.914000000000001 - type: precision_at_100 value: 1.599 - type: precision_at_1000 value: 0.203 - type: precision_at_20 value: 5.901 - type: precision_at_3 value: 22.938 - type: precision_at_5 value: 16.309 - type: recall_at_1 value: 34.302 - type: recall_at_10 value: 61.305 - type: recall_at_100 value: 84.71499999999999 - type: recall_at_1000 value: 97.527 - type: recall_at_20 value: 69.035 - type: recall_at_3 value: 48.22 - type: recall_at_5 value: 54.154 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval (default) type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: main_score value: 48.38 - type: map_at_1 value: 32.7 - type: map_at_10 value: 42.734 - type: map_at_100 value: 43.998 - type: map_at_1000 value: 44.124 - type: map_at_20 value: 43.406 - type: map_at_3 value: 39.678999999999995 - type: map_at_5 value: 41.459 - type: mrr_at_1 value: 41.71974522292994 - type: mrr_at_10 value: 49.28935395814384 - type: mrr_at_100 value: 49.89861647748028 - type: mrr_at_1000 value: 49.942709600334545 - type: mrr_at_20 value: 49.61617888831176 - type: mrr_at_3 value: 47.13375796178349 - type: mrr_at_5 value: 48.512738853503265 - type: nauc_map_at_1000_diff1 value: 59.64169046856025 - type: nauc_map_at_1000_max value: 46.490771220440415 - type: nauc_map_at_1000_std value: 4.845648020305221 - type: nauc_map_at_100_diff1 value: 59.64064218347204 - type: nauc_map_at_100_max value: 46.44241929530336 - type: nauc_map_at_100_std value: 4.71304727570049 - type: nauc_map_at_10_diff1 value: 60.104757471076454 - type: nauc_map_at_10_max value: 45.69433669014553 - type: nauc_map_at_10_std value: 3.1916854782778192 - type: nauc_map_at_1_diff1 value: 64.24881444471224 - type: nauc_map_at_1_max value: 39.73759910259004 - type: nauc_map_at_1_std value: -3.0378462058278677 - type: nauc_map_at_20_diff1 value: 59.78634639001091 - type: nauc_map_at_20_max value: 46.06501310535822 - type: nauc_map_at_20_std value: 3.9286467421496307 - type: nauc_map_at_3_diff1 value: 61.21378815607328 - type: nauc_map_at_3_max value: 44.649896761393784 - type: nauc_map_at_3_std value: 0.30180279093031204 - type: nauc_map_at_5_diff1 value: 60.49003680344517 - type: nauc_map_at_5_max value: 45.223388874685924 - type: nauc_map_at_5_std value: 1.9318891521917785 - type: nauc_mrr_at_1000_diff1 value: 59.18946498883738 - type: nauc_mrr_at_1000_max value: 50.69184167394906 - type: nauc_mrr_at_1000_std value: 9.169066601247481 - type: nauc_mrr_at_100_diff1 value: 59.185106221892525 - type: nauc_mrr_at_100_max value: 50.68579303194555 - type: nauc_mrr_at_100_std value: 9.174068205964646 - type: nauc_mrr_at_10_diff1 value: 59.268438125457024 - type: nauc_mrr_at_10_max value: 50.697306877035864 - type: nauc_mrr_at_10_std value: 9.066606354581463 - type: nauc_mrr_at_1_diff1 value: 62.99470092166848 - type: nauc_mrr_at_1_max value: 50.665209591950386 - type: nauc_mrr_at_1_std value: 6.003010371347861 - type: nauc_mrr_at_20_diff1 value: 59.194806671205825 - type: nauc_mrr_at_20_max value: 50.68943380536767 - type: nauc_mrr_at_20_std value: 9.11851387839637 - type: nauc_mrr_at_3_diff1 value: 60.26443921526076 - type: nauc_mrr_at_3_max value: 51.23194744896461 - type: nauc_mrr_at_3_std value: 7.623692044784114 - type: nauc_mrr_at_5_diff1 value: 59.35792021732985 - type: nauc_mrr_at_5_max value: 50.76791937374977 - type: nauc_mrr_at_5_std value: 8.601632131828548 - type: nauc_ndcg_at_1000_diff1 value: 57.1155393292342 - type: nauc_ndcg_at_1000_max value: 48.06764167515271 - type: nauc_ndcg_at_1000_std value: 10.168135859124341 - type: nauc_ndcg_at_100_diff1 value: 57.05815053150162 - type: nauc_ndcg_at_100_max value: 47.7772204595395 - type: nauc_ndcg_at_100_std value: 9.661421347269405 - type: nauc_ndcg_at_10_diff1 value: 57.995831604844284 - type: nauc_ndcg_at_10_max value: 47.32806241216551 - type: nauc_ndcg_at_10_std value: 7.646147208567661 - type: nauc_ndcg_at_1_diff1 value: 62.99470092166848 - type: nauc_ndcg_at_1_max value: 50.665209591950386 - type: nauc_ndcg_at_1_std value: 6.003010371347861 - type: nauc_ndcg_at_20_diff1 value: 57.513286517473894 - type: nauc_ndcg_at_20_max value: 47.486837574396816 - type: nauc_ndcg_at_20_std value: 8.365968075279621 - type: nauc_ndcg_at_3_diff1 value: 59.154765833471544 - type: nauc_ndcg_at_3_max value: 48.47608776066189 - type: nauc_ndcg_at_3_std value: 5.382294315665349 - type: nauc_ndcg_at_5_diff1 value: 58.34424293538254 - type: nauc_ndcg_at_5_max value: 47.663313794122345 - type: nauc_ndcg_at_5_std value: 6.522205835652349 - type: nauc_precision_at_1000_diff1 value: -13.97761691322935 - type: nauc_precision_at_1000_max value: 11.889780657095217 - type: nauc_precision_at_1000_std value: 34.351999190012464 - type: nauc_precision_at_100_diff1 value: -6.0357819973162155 - type: nauc_precision_at_100_max value: 23.185858470983515 - type: nauc_precision_at_100_std value: 38.67902978803651 - type: nauc_precision_at_10_diff1 value: 12.988392857512734 - type: nauc_precision_at_10_max value: 37.03925700369954 - type: nauc_precision_at_10_std value: 29.766577179150826 - type: nauc_precision_at_1_diff1 value: 62.99470092166848 - type: nauc_precision_at_1_max value: 50.665209591950386 - type: nauc_precision_at_1_std value: 6.003010371347861 - type: nauc_precision_at_20_diff1 value: 4.389190359220815 - type: nauc_precision_at_20_max value: 32.33761358794756 - type: nauc_precision_at_20_std value: 33.508667138850974 - type: nauc_precision_at_3_diff1 value: 34.651163573301844 - type: nauc_precision_at_3_max value: 46.97754739881408 - type: nauc_precision_at_3_std value: 17.16598727057759 - type: nauc_precision_at_5_diff1 value: 24.375735188923674 - type: nauc_precision_at_5_max value: 43.191306092927874 - type: nauc_precision_at_5_std value: 24.22462406015037 - type: nauc_recall_at_1000_diff1 value: 34.82118501294955 - type: nauc_recall_at_1000_max value: 40.352936577640286 - type: nauc_recall_at_1000_std value: 35.499081344984944 - type: nauc_recall_at_100_diff1 value: 41.65565034476806 - type: nauc_recall_at_100_max value: 40.20137507025357 - type: nauc_recall_at_100_std value: 20.95551964296231 - type: nauc_recall_at_10_diff1 value: 50.377914745656916 - type: nauc_recall_at_10_max value: 40.852105501885156 - type: nauc_recall_at_10_std value: 9.14128668761667 - type: nauc_recall_at_1_diff1 value: 64.24881444471224 - type: nauc_recall_at_1_max value: 39.73759910259004 - type: nauc_recall_at_1_std value: -3.0378462058278677 - type: nauc_recall_at_20_diff1 value: 47.23161446828714 - type: nauc_recall_at_20_max value: 41.35373954848293 - type: nauc_recall_at_20_std value: 12.960194401684626 - type: nauc_recall_at_3_diff1 value: 56.50497266295659 - type: nauc_recall_at_3_max value: 43.152063481754894 - type: nauc_recall_at_3_std value: 1.3186684949778986 - type: nauc_recall_at_5_diff1 value: 53.06103834334629 - type: nauc_recall_at_5_max value: 42.10516630718954 - type: nauc_recall_at_5_std value: 5.049985066712026 - type: ndcg_at_1 value: 41.72 - type: ndcg_at_10 value: 48.38 - type: ndcg_at_100 value: 52.532000000000004 - type: ndcg_at_1000 value: 54.578 - type: ndcg_at_20 value: 49.889 - type: ndcg_at_3 value: 44.488 - type: ndcg_at_5 value: 46.413 - type: precision_at_1 value: 41.72 - type: precision_at_10 value: 9.242 - type: precision_at_100 value: 1.468 - type: precision_at_1000 value: 0.191 - type: precision_at_20 value: 5.395 - type: precision_at_3 value: 21.698999999999998 - type: precision_at_5 value: 15.338 - type: recall_at_1 value: 32.7 - type: recall_at_10 value: 57.113 - type: recall_at_100 value: 74.924 - type: recall_at_1000 value: 88.254 - type: recall_at_20 value: 62.723 - type: recall_at_3 value: 45.029 - type: recall_at_5 value: 50.849999999999994 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval (default) type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: main_score value: 59.394999999999996 - type: map_at_1 value: 42.514 - type: map_at_10 value: 54.067 - type: map_at_100 value: 55.034000000000006 - type: map_at_1000 value: 55.093 - type: map_at_20 value: 54.626 - type: map_at_3 value: 50.992000000000004 - type: map_at_5 value: 52.808 - type: mrr_at_1 value: 48.96551724137931 - type: mrr_at_10 value: 57.66293476638311 - type: mrr_at_100 value: 58.326468893697516 - type: mrr_at_1000 value: 58.35363394214893 - type: mrr_at_20 value: 58.08052729373722 - type: mrr_at_3 value: 55.41274817136891 - type: mrr_at_5 value: 56.83908045977021 - type: nauc_map_at_1000_diff1 value: 63.27476571277554 - type: nauc_map_at_1000_max value: 52.034777766652965 - type: nauc_map_at_1000_std value: 2.178698400212763 - type: nauc_map_at_100_diff1 value: 63.27374313449916 - type: nauc_map_at_100_max value: 52.00712045928729 - type: nauc_map_at_100_std value: 2.173540170394345 - type: nauc_map_at_10_diff1 value: 63.22352672859366 - type: nauc_map_at_10_max value: 51.4338649821549 - type: nauc_map_at_10_std value: 1.3151407338229024 - type: nauc_map_at_1_diff1 value: 68.21656843426463 - type: nauc_map_at_1_max value: 47.68140656197034 - type: nauc_map_at_1_std value: -0.8467047287444583 - type: nauc_map_at_20_diff1 value: 63.258888077833376 - type: nauc_map_at_20_max value: 51.771643912962574 - type: nauc_map_at_20_std value: 1.8765892438345229 - type: nauc_map_at_3_diff1 value: 63.88123544786989 - type: nauc_map_at_3_max value: 50.24136834553566 - type: nauc_map_at_3_std value: -0.8992399529600462 - type: nauc_map_at_5_diff1 value: 63.594787172270806 - type: nauc_map_at_5_max value: 50.83063726124454 - type: nauc_map_at_5_std value: 0.036421416065224595 - type: nauc_mrr_at_1000_diff1 value: 63.133492178616315 - type: nauc_mrr_at_1000_max value: 54.27579791435036 - type: nauc_mrr_at_1000_std value: 3.6150845554695223 - type: nauc_mrr_at_100_diff1 value: 63.132404940035194 - type: nauc_mrr_at_100_max value: 54.2827410860912 - type: nauc_mrr_at_100_std value: 3.6286168411770694 - type: nauc_mrr_at_10_diff1 value: 62.963258495800254 - type: nauc_mrr_at_10_max value: 54.06561369719146 - type: nauc_mrr_at_10_std value: 3.2795765262317653 - type: nauc_mrr_at_1_diff1 value: 66.62285695661964 - type: nauc_mrr_at_1_max value: 54.86368963432214 - type: nauc_mrr_at_1_std value: 3.136320334401737 - type: nauc_mrr_at_20_diff1 value: 63.07863782620788 - type: nauc_mrr_at_20_max value: 54.23559556044128 - type: nauc_mrr_at_20_std value: 3.5841907008889713 - type: nauc_mrr_at_3_diff1 value: 63.23738332400802 - type: nauc_mrr_at_3_max value: 53.97136813515079 - type: nauc_mrr_at_3_std value: 2.404981779369361 - type: nauc_mrr_at_5_diff1 value: 63.08881942498383 - type: nauc_mrr_at_5_max value: 53.966632493486166 - type: nauc_mrr_at_5_std value: 2.8476706120309987 - type: nauc_ndcg_at_1000_diff1 value: 62.27061314792164 - type: nauc_ndcg_at_1000_max value: 53.851905289593105 - type: nauc_ndcg_at_1000_std value: 5.184130020448398 - type: nauc_ndcg_at_100_diff1 value: 62.22471495925812 - type: nauc_ndcg_at_100_max value: 53.91482995012997 - type: nauc_ndcg_at_100_std value: 5.799289096894022 - type: nauc_ndcg_at_10_diff1 value: 61.50452339921873 - type: nauc_ndcg_at_10_max value: 52.18293106242135 - type: nauc_ndcg_at_10_std value: 3.2640894485042113 - type: nauc_ndcg_at_1_diff1 value: 66.62285695661964 - type: nauc_ndcg_at_1_max value: 54.86368963432214 - type: nauc_ndcg_at_1_std value: 3.136320334401737 - type: nauc_ndcg_at_20_diff1 value: 61.87369181268838 - type: nauc_ndcg_at_20_max value: 52.967230788038066 - type: nauc_ndcg_at_20_std value: 4.5958048547896135 - type: nauc_ndcg_at_3_diff1 value: 62.328003372215335 - type: nauc_ndcg_at_3_max value: 51.33957145075442 - type: nauc_ndcg_at_3_std value: 0.2889876686024366 - type: nauc_ndcg_at_5_diff1 value: 62.11317147021502 - type: nauc_ndcg_at_5_max value: 51.48712543703064 - type: nauc_ndcg_at_5_std value: 1.0121474156760508 - type: nauc_precision_at_1000_diff1 value: -18.0902819186237 - type: nauc_precision_at_1000_max value: 15.309973039669023 - type: nauc_precision_at_1000_std value: 23.988114724643882 - type: nauc_precision_at_100_diff1 value: -9.171737728135946 - type: nauc_precision_at_100_max value: 24.459060802729045 - type: nauc_precision_at_100_std value: 29.62793828028637 - type: nauc_precision_at_10_diff1 value: 12.47974251043337 - type: nauc_precision_at_10_max value: 35.18443317760848 - type: nauc_precision_at_10_std value: 19.079083136975115 - type: nauc_precision_at_1_diff1 value: 66.62285695661964 - type: nauc_precision_at_1_max value: 54.86368963432214 - type: nauc_precision_at_1_std value: 3.136320334401737 - type: nauc_precision_at_20_diff1 value: 4.388744149985113 - type: nauc_precision_at_20_max value: 32.35106560025907 - type: nauc_precision_at_20_std value: 25.440135376505037 - type: nauc_precision_at_3_diff1 value: 35.043622145703246 - type: nauc_precision_at_3_max value: 45.00181527887202 - type: nauc_precision_at_3_std value: 5.986587536633783 - type: nauc_precision_at_5_diff1 value: 24.21058975843461 - type: nauc_precision_at_5_max value: 39.95435873785034 - type: nauc_precision_at_5_std value: 11.279863902192231 - type: nauc_recall_at_1000_diff1 value: 48.475246809024654 - type: nauc_recall_at_1000_max value: 71.40966953246526 - type: nauc_recall_at_1000_std value: 52.161793041922344 - type: nauc_recall_at_100_diff1 value: 53.460562863463835 - type: nauc_recall_at_100_max value: 60.20376102558135 - type: nauc_recall_at_100_std value: 32.93238729816242 - type: nauc_recall_at_10_diff1 value: 53.089202084677964 - type: nauc_recall_at_10_max value: 48.11493546825671 - type: nauc_recall_at_10_std value: 6.9000783278789 - type: nauc_recall_at_1_diff1 value: 68.21656843426463 - type: nauc_recall_at_1_max value: 47.68140656197034 - type: nauc_recall_at_1_std value: -0.8467047287444583 - type: nauc_recall_at_20_diff1 value: 53.18318788011243 - type: nauc_recall_at_20_max value: 51.035344219924006 - type: nauc_recall_at_20_std value: 14.168429327288464 - type: nauc_recall_at_3_diff1 value: 58.41758425845774 - type: nauc_recall_at_3_max value: 46.967479643496205 - type: nauc_recall_at_3_std value: -2.8021623621414484 - type: nauc_recall_at_5_diff1 value: 56.54480488998266 - type: nauc_recall_at_5_max value: 46.656606413789405 - type: nauc_recall_at_5_std value: -0.7597521053580701 - type: ndcg_at_1 value: 48.966 - type: ndcg_at_10 value: 59.394999999999996 - type: ndcg_at_100 value: 63.26199999999999 - type: ndcg_at_1000 value: 64.405 - type: ndcg_at_20 value: 61.001000000000005 - type: ndcg_at_3 value: 54.374 - type: ndcg_at_5 value: 57.008 - type: precision_at_1 value: 48.966 - type: precision_at_10 value: 9.322999999999999 - type: precision_at_100 value: 1.2149999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_20 value: 5.169 - type: precision_at_3 value: 23.866 - type: precision_at_5 value: 16.401 - type: recall_at_1 value: 42.514 - type: recall_at_10 value: 71.526 - type: recall_at_100 value: 88.211 - type: recall_at_1000 value: 96.3 - type: recall_at_20 value: 77.324 - type: recall_at_3 value: 58.24 - type: recall_at_5 value: 64.66300000000001 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval (default) type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: main_score value: 41.982 - type: map_at_1 value: 28.866000000000003 - type: map_at_10 value: 37.071 - type: map_at_100 value: 38.021 - type: map_at_1000 value: 38.105 - type: map_at_20 value: 37.611 - type: map_at_3 value: 34.056 - type: map_at_5 value: 35.831 - type: mrr_at_1 value: 31.186440677966104 - type: mrr_at_10 value: 39.18352614115326 - type: mrr_at_100 value: 39.97206805121318 - type: mrr_at_1000 value: 40.032893027088285 - type: mrr_at_20 value: 39.637323407460364 - type: mrr_at_3 value: 36.214689265536734 - type: mrr_at_5 value: 37.915254237288124 - type: nauc_map_at_1000_diff1 value: 49.993876641632504 - type: nauc_map_at_1000_max value: 35.95042794987363 - type: nauc_map_at_1000_std value: 0.5593990682228305 - type: nauc_map_at_100_diff1 value: 49.972890495649246 - type: nauc_map_at_100_max value: 35.904074354218785 - type: nauc_map_at_100_std value: 0.5664467972492186 - type: nauc_map_at_10_diff1 value: 50.03956810159502 - type: nauc_map_at_10_max value: 35.86693433814479 - type: nauc_map_at_10_std value: 0.39578785038563385 - type: nauc_map_at_1_diff1 value: 58.603850790083115 - type: nauc_map_at_1_max value: 36.58064467202713 - type: nauc_map_at_1_std value: -3.67478407861029 - type: nauc_map_at_20_diff1 value: 49.87470241715492 - type: nauc_map_at_20_max value: 35.90154203197623 - type: nauc_map_at_20_std value: 0.5236253382754777 - type: nauc_map_at_3_diff1 value: 52.25148517992505 - type: nauc_map_at_3_max value: 36.160749834936965 - type: nauc_map_at_3_std value: -1.422539731331435 - type: nauc_map_at_5_diff1 value: 50.665951287732916 - type: nauc_map_at_5_max value: 35.7039507254116 - type: nauc_map_at_5_std value: -0.4598393581593767 - type: nauc_mrr_at_1000_diff1 value: 51.0520111677253 - type: nauc_mrr_at_1000_max value: 38.06400543131388 - type: nauc_mrr_at_1000_std value: 2.7326054763920706 - type: nauc_mrr_at_100_diff1 value: 51.01927504284136 - type: nauc_mrr_at_100_max value: 38.04427363322478 - type: nauc_mrr_at_100_std value: 2.7558001837226778 - type: nauc_mrr_at_10_diff1 value: 50.97268995983586 - type: nauc_mrr_at_10_max value: 38.073498244930015 - type: nauc_mrr_at_10_std value: 2.8710692987931092 - type: nauc_mrr_at_1_diff1 value: 58.3622928447221 - type: nauc_mrr_at_1_max value: 39.92481575819675 - type: nauc_mrr_at_1_std value: -0.7482906589525958 - type: nauc_mrr_at_20_diff1 value: 50.90838726786055 - type: nauc_mrr_at_20_max value: 38.08506863398148 - type: nauc_mrr_at_20_std value: 2.8448697801828464 - type: nauc_mrr_at_3_diff1 value: 52.69044635368626 - type: nauc_mrr_at_3_max value: 38.73826572766622 - type: nauc_mrr_at_3_std value: 1.4163647852749537 - type: nauc_mrr_at_5_diff1 value: 51.58432140748099 - type: nauc_mrr_at_5_max value: 37.86861758236609 - type: nauc_mrr_at_5_std value: 2.0702513091937096 - type: nauc_ndcg_at_1000_diff1 value: 47.45847404554335 - type: nauc_ndcg_at_1000_max value: 36.41421056329089 - type: nauc_ndcg_at_1000_std value: 3.50043156958003 - type: nauc_ndcg_at_100_diff1 value: 46.73250322834645 - type: nauc_ndcg_at_100_max value: 35.565016819256236 - type: nauc_ndcg_at_100_std value: 3.9251364456510043 - type: nauc_ndcg_at_10_diff1 value: 46.728830466728674 - type: nauc_ndcg_at_10_max value: 35.55402325152779 - type: nauc_ndcg_at_10_std value: 3.446323945915287 - type: nauc_ndcg_at_1_diff1 value: 58.3622928447221 - type: nauc_ndcg_at_1_max value: 39.92481575819675 - type: nauc_ndcg_at_1_std value: -0.7482906589525958 - type: nauc_ndcg_at_20_diff1 value: 46.23699602166515 - type: nauc_ndcg_at_20_max value: 35.663345676484674 - type: nauc_ndcg_at_20_std value: 3.7376225696719576 - type: nauc_ndcg_at_3_diff1 value: 50.556446496819675 - type: nauc_ndcg_at_3_max value: 36.353100894914256 - type: nauc_ndcg_at_3_std value: -0.2732722010001991 - type: nauc_ndcg_at_5_diff1 value: 48.152455334363324 - type: nauc_ndcg_at_5_max value: 35.137567948699065 - type: nauc_ndcg_at_5_std value: 1.2523232330847844 - type: nauc_precision_at_1000_diff1 value: -10.769296626722957 - type: nauc_precision_at_1000_max value: 15.993230337658074 - type: nauc_precision_at_1000_std value: 13.572514607016952 - type: nauc_precision_at_100_diff1 value: 4.02537295357051 - type: nauc_precision_at_100_max value: 22.454077767992036 - type: nauc_precision_at_100_std value: 17.07283953508179 - type: nauc_precision_at_10_diff1 value: 22.613124073376923 - type: nauc_precision_at_10_max value: 33.90387439029623 - type: nauc_precision_at_10_std value: 14.035997219398535 - type: nauc_precision_at_1_diff1 value: 58.3622928447221 - type: nauc_precision_at_1_max value: 39.92481575819675 - type: nauc_precision_at_1_std value: -0.7482906589525958 - type: nauc_precision_at_20_diff1 value: 16.594423503769278 - type: nauc_precision_at_20_max value: 32.135917899947756 - type: nauc_precision_at_20_std value: 15.635276025044153 - type: nauc_precision_at_3_diff1 value: 39.198403423291936 - type: nauc_precision_at_3_max value: 37.55401675642609 - type: nauc_precision_at_3_std value: 4.054739817091637 - type: nauc_precision_at_5_diff1 value: 30.808032738194218 - type: nauc_precision_at_5_max value: 34.37959811513571 - type: nauc_precision_at_5_std value: 7.567144804027152 - type: nauc_recall_at_1000_diff1 value: 24.37625601502932 - type: nauc_recall_at_1000_max value: 40.97014611726125 - type: nauc_recall_at_1000_std value: 27.65069608024806 - type: nauc_recall_at_100_diff1 value: 29.069755978093 - type: nauc_recall_at_100_max value: 28.590731027322775 - type: nauc_recall_at_100_std value: 17.928023808873046 - type: nauc_recall_at_10_diff1 value: 34.2656542863741 - type: nauc_recall_at_10_max value: 31.06006967244494 - type: nauc_recall_at_10_std value: 11.003269274667947 - type: nauc_recall_at_1_diff1 value: 58.603850790083115 - type: nauc_recall_at_1_max value: 36.58064467202713 - type: nauc_recall_at_1_std value: -3.67478407861029 - type: nauc_recall_at_20_diff1 value: 31.222150093333756 - type: nauc_recall_at_20_max value: 31.03132244997467 - type: nauc_recall_at_20_std value: 12.625636531442433 - type: nauc_recall_at_3_diff1 value: 45.90579345194519 - type: nauc_recall_at_3_max value: 33.73658682249279 - type: nauc_recall_at_3_std value: 0.4536613080864603 - type: nauc_recall_at_5_diff1 value: 39.87796807274429 - type: nauc_recall_at_5_max value: 30.510904727255507 - type: nauc_recall_at_5_std value: 3.9745952426832774 - type: ndcg_at_1 value: 31.186000000000003 - type: ndcg_at_10 value: 41.982 - type: ndcg_at_100 value: 46.69 - type: ndcg_at_1000 value: 48.727 - type: ndcg_at_20 value: 43.804 - type: ndcg_at_3 value: 36.11 - type: ndcg_at_5 value: 39.144 - type: precision_at_1 value: 31.186000000000003 - type: precision_at_10 value: 6.3839999999999995 - type: precision_at_100 value: 0.9199999999999999 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 3.6159999999999997 - type: precision_at_3 value: 14.878 - type: precision_at_5 value: 10.644 - type: recall_at_1 value: 28.866000000000003 - type: recall_at_10 value: 55.166000000000004 - type: recall_at_100 value: 77.061 - type: recall_at_1000 value: 92.163 - type: recall_at_20 value: 62.032 - type: recall_at_3 value: 39.572 - type: recall_at_5 value: 46.833000000000006 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval (default) type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: main_score value: 31.322 - type: map_at_1 value: 18.404999999999998 - type: map_at_10 value: 26.326 - type: map_at_100 value: 27.555000000000003 - type: map_at_1000 value: 27.678000000000004 - type: map_at_20 value: 26.967000000000002 - type: map_at_3 value: 23.985 - type: map_at_5 value: 25.161 - type: mrr_at_1 value: 23.134328358208954 - type: mrr_at_10 value: 31.037915580826013 - type: mrr_at_100 value: 32.01498507022589 - type: mrr_at_1000 value: 32.082694138722324 - type: mrr_at_20 value: 31.564429390532034 - type: mrr_at_3 value: 28.52404643449421 - type: mrr_at_5 value: 29.904643449419567 - type: nauc_map_at_1000_diff1 value: 34.72939615800226 - type: nauc_map_at_1000_max value: 31.061742128929975 - type: nauc_map_at_1000_std value: 10.580900958656931 - type: nauc_map_at_100_diff1 value: 34.68371786477026 - type: nauc_map_at_100_max value: 31.03675234228881 - type: nauc_map_at_100_std value: 10.57506975207426 - type: nauc_map_at_10_diff1 value: 34.979535841001116 - type: nauc_map_at_10_max value: 30.74841647074351 - type: nauc_map_at_10_std value: 10.242406407437752 - type: nauc_map_at_1_diff1 value: 41.29604900297541 - type: nauc_map_at_1_max value: 33.03519093668123 - type: nauc_map_at_1_std value: 11.495691542019498 - type: nauc_map_at_20_diff1 value: 34.750564132011114 - type: nauc_map_at_20_max value: 30.921011574770745 - type: nauc_map_at_20_std value: 10.33727408796878 - type: nauc_map_at_3_diff1 value: 35.756794907260485 - type: nauc_map_at_3_max value: 31.276139671631036 - type: nauc_map_at_3_std value: 9.708219090123125 - type: nauc_map_at_5_diff1 value: 34.76842676987327 - type: nauc_map_at_5_max value: 30.295490452676372 - type: nauc_map_at_5_std value: 9.552700821464898 - type: nauc_mrr_at_1000_diff1 value: 37.471725092329734 - type: nauc_mrr_at_1000_max value: 33.95945585434789 - type: nauc_mrr_at_1000_std value: 10.646598658648495 - type: nauc_mrr_at_100_diff1 value: 37.450800475666625 - type: nauc_mrr_at_100_max value: 33.95059685499506 - type: nauc_mrr_at_100_std value: 10.639982921829903 - type: nauc_mrr_at_10_diff1 value: 37.7389962144345 - type: nauc_mrr_at_10_max value: 33.79557879397343 - type: nauc_mrr_at_10_std value: 10.553599811805757 - type: nauc_mrr_at_1_diff1 value: 43.35082337130155 - type: nauc_mrr_at_1_max value: 36.02588623160741 - type: nauc_mrr_at_1_std value: 10.272880299867222 - type: nauc_mrr_at_20_diff1 value: 37.422493498797834 - type: nauc_mrr_at_20_max value: 33.809943882950705 - type: nauc_mrr_at_20_std value: 10.544246720079116 - type: nauc_mrr_at_3_diff1 value: 38.301994154112464 - type: nauc_mrr_at_3_max value: 34.41857413229362 - type: nauc_mrr_at_3_std value: 10.072853443597456 - type: nauc_mrr_at_5_diff1 value: 37.36299963611861 - type: nauc_mrr_at_5_max value: 33.537148031312455 - type: nauc_mrr_at_5_std value: 10.019035551240002 - type: nauc_ndcg_at_1000_diff1 value: 33.82022935278007 - type: nauc_ndcg_at_1000_max value: 32.69262861952156 - type: nauc_ndcg_at_1000_std value: 13.06439545470471 - type: nauc_ndcg_at_100_diff1 value: 32.569232970251726 - type: nauc_ndcg_at_100_max value: 31.94379860603245 - type: nauc_ndcg_at_100_std value: 12.79790685725721 - type: nauc_ndcg_at_10_diff1 value: 33.85170743944616 - type: nauc_ndcg_at_10_max value: 30.84408008858838 - type: nauc_ndcg_at_10_std value: 11.05655188295646 - type: nauc_ndcg_at_1_diff1 value: 43.35082337130155 - type: nauc_ndcg_at_1_max value: 36.02588623160741 - type: nauc_ndcg_at_1_std value: 10.272880299867222 - type: nauc_ndcg_at_20_diff1 value: 32.86964132854408 - type: nauc_ndcg_at_20_max value: 31.139332106507457 - type: nauc_ndcg_at_20_std value: 11.324351125328274 - type: nauc_ndcg_at_3_diff1 value: 35.214015234873195 - type: nauc_ndcg_at_3_max value: 31.873721381160102 - type: nauc_ndcg_at_3_std value: 9.317474515369911 - type: nauc_ndcg_at_5_diff1 value: 33.43793268410122 - type: nauc_ndcg_at_5_max value: 30.179828871346025 - type: nauc_ndcg_at_5_std value: 9.321593811794198 - type: nauc_precision_at_1000_diff1 value: 7.30749345964727 - type: nauc_precision_at_1000_max value: 9.424266851105251 - type: nauc_precision_at_1000_std value: 0.8871328381811973 - type: nauc_precision_at_100_diff1 value: 8.831376417982089 - type: nauc_precision_at_100_max value: 17.2848643574224 - type: nauc_precision_at_100_std value: 8.201396308775918 - type: nauc_precision_at_10_diff1 value: 24.14712853209946 - type: nauc_precision_at_10_max value: 26.423043874477003 - type: nauc_precision_at_10_std value: 9.336310683539285 - type: nauc_precision_at_1_diff1 value: 43.35082337130155 - type: nauc_precision_at_1_max value: 36.02588623160741 - type: nauc_precision_at_1_std value: 10.272880299867222 - type: nauc_precision_at_20_diff1 value: 18.32901283837049 - type: nauc_precision_at_20_max value: 24.517286948070975 - type: nauc_precision_at_20_std value: 9.43035026765381 - type: nauc_precision_at_3_diff1 value: 29.39474093697625 - type: nauc_precision_at_3_max value: 31.076573929711188 - type: nauc_precision_at_3_std value: 7.326552620452308 - type: nauc_precision_at_5_diff1 value: 24.375040368829232 - type: nauc_precision_at_5_max value: 25.5448065173313 - type: nauc_precision_at_5_std value: 7.210703406555942 - type: nauc_recall_at_1000_diff1 value: 25.15951299127742 - type: nauc_recall_at_1000_max value: 45.717907968960155 - type: nauc_recall_at_1000_std value: 46.595058578294726 - type: nauc_recall_at_100_diff1 value: 18.904099170246745 - type: nauc_recall_at_100_max value: 30.168075033617825 - type: nauc_recall_at_100_std value: 23.08721106293607 - type: nauc_recall_at_10_diff1 value: 27.666409513688063 - type: nauc_recall_at_10_max value: 26.916402393977467 - type: nauc_recall_at_10_std value: 12.512695695882256 - type: nauc_recall_at_1_diff1 value: 41.29604900297541 - type: nauc_recall_at_1_max value: 33.03519093668123 - type: nauc_recall_at_1_std value: 11.495691542019498 - type: nauc_recall_at_20_diff1 value: 23.383207334697435 - type: nauc_recall_at_20_max value: 27.23641496897646 - type: nauc_recall_at_20_std value: 13.372906431665404 - type: nauc_recall_at_3_diff1 value: 30.77587872054118 - type: nauc_recall_at_3_max value: 29.553342033295454 - type: nauc_recall_at_3_std value: 8.616952632771497 - type: nauc_recall_at_5_diff1 value: 27.02102828446052 - type: nauc_recall_at_5_max value: 25.946401043202332 - type: nauc_recall_at_5_std value: 7.784151744363098 - type: ndcg_at_1 value: 23.134 - type: ndcg_at_10 value: 31.322 - type: ndcg_at_100 value: 37.124 - type: ndcg_at_1000 value: 40.082 - type: ndcg_at_20 value: 33.475 - type: ndcg_at_3 value: 26.919999999999998 - type: ndcg_at_5 value: 28.772 - type: precision_at_1 value: 23.134 - type: precision_at_10 value: 5.697 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_20 value: 3.4450000000000003 - type: precision_at_3 value: 12.811 - type: precision_at_5 value: 9.104 - type: recall_at_1 value: 18.404999999999998 - type: recall_at_10 value: 42.083 - type: recall_at_100 value: 67.167 - type: recall_at_1000 value: 88.464 - type: recall_at_20 value: 49.881 - type: recall_at_3 value: 29.696 - type: recall_at_5 value: 34.541 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval (default) type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: main_score value: 45.936 - type: map_at_1 value: 30.308 - type: map_at_10 value: 40.202 - type: map_at_100 value: 41.547 - type: map_at_1000 value: 41.669 - type: map_at_20 value: 40.958 - type: map_at_3 value: 37.222 - type: map_at_5 value: 38.931 - type: mrr_at_1 value: 37.15110683349375 - type: mrr_at_10 value: 46.088118917762735 - type: mrr_at_100 value: 46.955067280415605 - type: mrr_at_1000 value: 47.00268147567554 - type: mrr_at_20 value: 46.60564974718548 - type: mrr_at_3 value: 43.856272056464505 - type: mrr_at_5 value: 45.15078601219114 - type: nauc_map_at_1000_diff1 value: 54.22825699489161 - type: nauc_map_at_1000_max value: 41.193183980498915 - type: nauc_map_at_1000_std value: 2.6181170010645975 - type: nauc_map_at_100_diff1 value: 54.22962689491372 - type: nauc_map_at_100_max value: 41.15422344883109 - type: nauc_map_at_100_std value: 2.589137887493561 - type: nauc_map_at_10_diff1 value: 54.234416803412 - type: nauc_map_at_10_max value: 40.73302906064543 - type: nauc_map_at_10_std value: 1.5742622487204132 - type: nauc_map_at_1_diff1 value: 60.98726487192796 - type: nauc_map_at_1_max value: 40.5087432268483 - type: nauc_map_at_1_std value: -0.618861681589115 - type: nauc_map_at_20_diff1 value: 54.24065396575225 - type: nauc_map_at_20_max value: 40.96642134091234 - type: nauc_map_at_20_std value: 2.255528354923776 - type: nauc_map_at_3_diff1 value: 55.19571374533455 - type: nauc_map_at_3_max value: 40.466445884169325 - type: nauc_map_at_3_std value: 1.5604184092107083 - type: nauc_map_at_5_diff1 value: 54.62755124706725 - type: nauc_map_at_5_max value: 40.79048191661008 - type: nauc_map_at_5_std value: 1.6481958244498491 - type: nauc_mrr_at_1000_diff1 value: 52.130492713054664 - type: nauc_mrr_at_1000_max value: 43.42246346565874 - type: nauc_mrr_at_1000_std value: 3.7568226244227696 - type: nauc_mrr_at_100_diff1 value: 52.11139733464647 - type: nauc_mrr_at_100_max value: 43.41122978029038 - type: nauc_mrr_at_100_std value: 3.7648699971831414 - type: nauc_mrr_at_10_diff1 value: 51.917139062895124 - type: nauc_mrr_at_10_max value: 43.28333404399252 - type: nauc_mrr_at_10_std value: 3.175101468217344 - type: nauc_mrr_at_1_diff1 value: 58.15700492960476 - type: nauc_mrr_at_1_max value: 44.74534645946132 - type: nauc_mrr_at_1_std value: 3.158981918506144 - type: nauc_mrr_at_20_diff1 value: 52.08080994385536 - type: nauc_mrr_at_20_max value: 43.360239139324435 - type: nauc_mrr_at_20_std value: 3.631302789716014 - type: nauc_mrr_at_3_diff1 value: 52.28582887618205 - type: nauc_mrr_at_3_max value: 43.5464669155253 - type: nauc_mrr_at_3_std value: 3.2738590937902408 - type: nauc_mrr_at_5_diff1 value: 52.083995047675735 - type: nauc_mrr_at_5_max value: 43.483512946791194 - type: nauc_mrr_at_5_std value: 3.1671573393140835 - type: nauc_ndcg_at_1000_diff1 value: 52.26816309079989 - type: nauc_ndcg_at_1000_max value: 42.246658524500056 - type: nauc_ndcg_at_1000_std value: 5.176745457074018 - type: nauc_ndcg_at_100_diff1 value: 51.87938559991279 - type: nauc_ndcg_at_100_max value: 41.906214241038256 - type: nauc_ndcg_at_100_std value: 5.452585332053114 - type: nauc_ndcg_at_10_diff1 value: 51.496630224343455 - type: nauc_ndcg_at_10_max value: 40.61403913812895 - type: nauc_ndcg_at_10_std value: 1.868846069829645 - type: nauc_ndcg_at_1_diff1 value: 58.15700492960476 - type: nauc_ndcg_at_1_max value: 44.74534645946132 - type: nauc_ndcg_at_1_std value: 3.158981918506144 - type: nauc_ndcg_at_20_diff1 value: 51.802244429968525 - type: nauc_ndcg_at_20_max value: 40.971355389141564 - type: nauc_ndcg_at_20_std value: 3.749520166213707 - type: nauc_ndcg_at_3_diff1 value: 51.88618821396492 - type: nauc_ndcg_at_3_max value: 41.63706585287938 - type: nauc_ndcg_at_3_std value: 2.8445457836900134 - type: nauc_ndcg_at_5_diff1 value: 51.79501775020373 - type: nauc_ndcg_at_5_max value: 41.362790172813554 - type: nauc_ndcg_at_5_std value: 2.5074552757065764 - type: nauc_precision_at_1000_diff1 value: -16.96079060299117 - type: nauc_precision_at_1000_max value: 2.4034964912939545 - type: nauc_precision_at_1000_std value: 9.846658629268111 - type: nauc_precision_at_100_diff1 value: -5.770404350264881 - type: nauc_precision_at_100_max value: 14.930738225456649 - type: nauc_precision_at_100_std value: 16.180457371651265 - type: nauc_precision_at_10_diff1 value: 17.34458740655854 - type: nauc_precision_at_10_max value: 29.771302359747004 - type: nauc_precision_at_10_std value: 8.2225186530363 - type: nauc_precision_at_1_diff1 value: 58.15700492960476 - type: nauc_precision_at_1_max value: 44.74534645946132 - type: nauc_precision_at_1_std value: 3.158981918506144 - type: nauc_precision_at_20_diff1 value: 8.40127994688015 - type: nauc_precision_at_20_max value: 25.26211611715675 - type: nauc_precision_at_20_std value: 15.165982115411683 - type: nauc_precision_at_3_diff1 value: 32.87263222850699 - type: nauc_precision_at_3_max value: 38.74681571635995 - type: nauc_precision_at_3_std value: 8.58761428971107 - type: nauc_precision_at_5_diff1 value: 25.51907486430563 - type: nauc_precision_at_5_max value: 34.81867905284459 - type: nauc_precision_at_5_std value: 8.87677775352719 - type: nauc_recall_at_1000_diff1 value: 42.975422972872664 - type: nauc_recall_at_1000_max value: 44.6453205555709 - type: nauc_recall_at_1000_std value: 37.10389514987087 - type: nauc_recall_at_100_diff1 value: 39.37594095830516 - type: nauc_recall_at_100_max value: 37.52732587051286 - type: nauc_recall_at_100_std value: 21.306554670090723 - type: nauc_recall_at_10_diff1 value: 42.34166969439945 - type: nauc_recall_at_10_max value: 34.33753387694109 - type: nauc_recall_at_10_std value: 0.5734487103168852 - type: nauc_recall_at_1_diff1 value: 60.98726487192796 - type: nauc_recall_at_1_max value: 40.5087432268483 - type: nauc_recall_at_1_std value: -0.618861681589115 - type: nauc_recall_at_20_diff1 value: 42.919902071659024 - type: nauc_recall_at_20_max value: 34.244215204966274 - type: nauc_recall_at_20_std value: 6.859276801435449 - type: nauc_recall_at_3_diff1 value: 47.465631245246925 - type: nauc_recall_at_3_max value: 37.03634257288187 - type: nauc_recall_at_3_std value: 1.6594534433763797 - type: nauc_recall_at_5_diff1 value: 45.481953285145735 - type: nauc_recall_at_5_max value: 36.86680182730081 - type: nauc_recall_at_5_std value: 1.571383916780946 - type: ndcg_at_1 value: 37.151 - type: ndcg_at_10 value: 45.936 - type: ndcg_at_100 value: 51.614000000000004 - type: ndcg_at_1000 value: 53.74100000000001 - type: ndcg_at_20 value: 48.236000000000004 - type: ndcg_at_3 value: 41.482 - type: ndcg_at_5 value: 43.592 - type: precision_at_1 value: 37.151 - type: precision_at_10 value: 8.161999999999999 - type: precision_at_100 value: 1.2890000000000001 - type: precision_at_1000 value: 0.167 - type: precision_at_20 value: 4.846 - type: precision_at_3 value: 19.666 - type: precision_at_5 value: 13.744 - type: recall_at_1 value: 30.308 - type: recall_at_10 value: 57.157000000000004 - type: recall_at_100 value: 81.011 - type: recall_at_1000 value: 94.64099999999999 - type: recall_at_20 value: 65.20899999999999 - type: recall_at_3 value: 44.086999999999996 - type: recall_at_5 value: 49.958999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval (default) type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: main_score value: 43.412 - type: map_at_1 value: 29.046 - type: map_at_10 value: 38.303 - type: map_at_100 value: 39.645 - type: map_at_1000 value: 39.77 - type: map_at_20 value: 39.097 - type: map_at_3 value: 35.527 - type: map_at_5 value: 37.178 - type: mrr_at_1 value: 35.73059360730594 - type: mrr_at_10 value: 43.761913821845305 - type: mrr_at_100 value: 44.63677193484203 - type: mrr_at_1000 value: 44.69831213307122 - type: mrr_at_20 value: 44.262324426201666 - type: mrr_at_3 value: 41.64764079147639 - type: mrr_at_5 value: 43.00608828006084 - type: nauc_map_at_1000_diff1 value: 50.80592396352838 - type: nauc_map_at_1000_max value: 51.12273921540497 - type: nauc_map_at_1000_std value: 14.292687346808359 - type: nauc_map_at_100_diff1 value: 50.74885757421167 - type: nauc_map_at_100_max value: 51.09775472081031 - type: nauc_map_at_100_std value: 14.306782546331737 - type: nauc_map_at_10_diff1 value: 50.73407506848942 - type: nauc_map_at_10_max value: 50.550756380086334 - type: nauc_map_at_10_std value: 13.462279145855613 - type: nauc_map_at_1_diff1 value: 56.881260498415664 - type: nauc_map_at_1_max value: 47.24197200067275 - type: nauc_map_at_1_std value: 8.977529548357513 - type: nauc_map_at_20_diff1 value: 50.82970827876453 - type: nauc_map_at_20_max value: 50.99599888578757 - type: nauc_map_at_20_std value: 13.979961919416242 - type: nauc_map_at_3_diff1 value: 51.79740317541754 - type: nauc_map_at_3_max value: 49.67507114543718 - type: nauc_map_at_3_std value: 11.194891747941783 - type: nauc_map_at_5_diff1 value: 50.66253299097874 - type: nauc_map_at_5_max value: 50.101087772668606 - type: nauc_map_at_5_std value: 12.691891966952989 - type: nauc_mrr_at_1000_diff1 value: 51.943575137936485 - type: nauc_mrr_at_1000_max value: 55.178773670297545 - type: nauc_mrr_at_1000_std value: 17.320282879115155 - type: nauc_mrr_at_100_diff1 value: 51.918539720922894 - type: nauc_mrr_at_100_max value: 55.16283910274854 - type: nauc_mrr_at_100_std value: 17.34618155711343 - type: nauc_mrr_at_10_diff1 value: 51.809881089148405 - type: nauc_mrr_at_10_max value: 55.2665918409468 - type: nauc_mrr_at_10_std value: 17.19210843408282 - type: nauc_mrr_at_1_diff1 value: 57.247939024184646 - type: nauc_mrr_at_1_max value: 54.97803936238742 - type: nauc_mrr_at_1_std value: 14.27663454759224 - type: nauc_mrr_at_20_diff1 value: 51.90282344336835 - type: nauc_mrr_at_20_max value: 55.212495851478735 - type: nauc_mrr_at_20_std value: 17.277582572472603 - type: nauc_mrr_at_3_diff1 value: 52.314160249131994 - type: nauc_mrr_at_3_max value: 55.23726914948854 - type: nauc_mrr_at_3_std value: 15.793481787330995 - type: nauc_mrr_at_5_diff1 value: 51.442945450983146 - type: nauc_mrr_at_5_max value: 55.01065961723333 - type: nauc_mrr_at_5_std value: 16.674132967447846 - type: nauc_ndcg_at_1000_diff1 value: 49.799252198786505 - type: nauc_ndcg_at_1000_max value: 53.096819070454096 - type: nauc_ndcg_at_1000_std value: 18.56564491099995 - type: nauc_ndcg_at_100_diff1 value: 48.820041220370584 - type: nauc_ndcg_at_100_max value: 52.612730098518114 - type: nauc_ndcg_at_100_std value: 19.346752569571006 - type: nauc_ndcg_at_10_diff1 value: 49.08275687604207 - type: nauc_ndcg_at_10_max value: 51.9564107496998 - type: nauc_ndcg_at_10_std value: 16.328838632379945 - type: nauc_ndcg_at_1_diff1 value: 57.247939024184646 - type: nauc_ndcg_at_1_max value: 54.97803936238742 - type: nauc_ndcg_at_1_std value: 14.27663454759224 - type: nauc_ndcg_at_20_diff1 value: 49.22958962899982 - type: nauc_ndcg_at_20_max value: 52.513260372943826 - type: nauc_ndcg_at_20_std value: 17.56845223821443 - type: nauc_ndcg_at_3_diff1 value: 49.86820538130406 - type: nauc_ndcg_at_3_max value: 51.55336293734981 - type: nauc_ndcg_at_3_std value: 13.183772048664641 - type: nauc_ndcg_at_5_diff1 value: 48.64432868368493 - type: nauc_ndcg_at_5_max value: 51.51254338509901 - type: nauc_ndcg_at_5_std value: 15.03584317222835 - type: nauc_precision_at_1000_diff1 value: -5.210788631790134 - type: nauc_precision_at_1000_max value: 3.3153995843627855 - type: nauc_precision_at_1000_std value: 6.70129905669895 - type: nauc_precision_at_100_diff1 value: 3.2799124035457665 - type: nauc_precision_at_100_max value: 22.515235216648264 - type: nauc_precision_at_100_std value: 22.267028577985158 - type: nauc_precision_at_10_diff1 value: 20.54085141868727 - type: nauc_precision_at_10_max value: 41.1634382616484 - type: nauc_precision_at_10_std value: 22.497075824956223 - type: nauc_precision_at_1_diff1 value: 57.247939024184646 - type: nauc_precision_at_1_max value: 54.97803936238742 - type: nauc_precision_at_1_std value: 14.27663454759224 - type: nauc_precision_at_20_diff1 value: 15.101791445597087 - type: nauc_precision_at_20_max value: 36.047472839057995 - type: nauc_precision_at_20_std value: 23.481597513237894 - type: nauc_precision_at_3_diff1 value: 34.89985529880996 - type: nauc_precision_at_3_max value: 50.49374010696851 - type: nauc_precision_at_3_std value: 17.35850877993407 - type: nauc_precision_at_5_diff1 value: 26.560115056034366 - type: nauc_precision_at_5_max value: 46.81746419180242 - type: nauc_precision_at_5_std value: 20.408263573135603 - type: nauc_recall_at_1000_diff1 value: 37.90427796967601 - type: nauc_recall_at_1000_max value: 59.892379421147055 - type: nauc_recall_at_1000_std value: 60.87201891141765 - type: nauc_recall_at_100_diff1 value: 33.93607058312279 - type: nauc_recall_at_100_max value: 47.393426688114204 - type: nauc_recall_at_100_std value: 39.47735786415153 - type: nauc_recall_at_10_diff1 value: 41.33389238228592 - type: nauc_recall_at_10_max value: 48.636977708526004 - type: nauc_recall_at_10_std value: 20.29004306116151 - type: nauc_recall_at_1_diff1 value: 56.881260498415664 - type: nauc_recall_at_1_max value: 47.24197200067275 - type: nauc_recall_at_1_std value: 8.977529548357513 - type: nauc_recall_at_20_diff1 value: 40.97829717340289 - type: nauc_recall_at_20_max value: 49.550363147653485 - type: nauc_recall_at_20_std value: 24.65365760413743 - type: nauc_recall_at_3_diff1 value: 45.50171551569048 - type: nauc_recall_at_3_max value: 47.53807770283624 - type: nauc_recall_at_3_std value: 12.258377244311061 - type: nauc_recall_at_5_diff1 value: 40.742167046153995 - type: nauc_recall_at_5_max value: 47.381615372468374 - type: nauc_recall_at_5_std value: 16.897962008958334 - type: ndcg_at_1 value: 35.731 - type: ndcg_at_10 value: 43.412 - type: ndcg_at_100 value: 48.902 - type: ndcg_at_1000 value: 51.437 - type: ndcg_at_20 value: 45.731 - type: ndcg_at_3 value: 39.194 - type: ndcg_at_5 value: 41.285 - type: precision_at_1 value: 35.731 - type: precision_at_10 value: 7.739999999999999 - type: precision_at_100 value: 1.21 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_20 value: 4.629 - type: precision_at_3 value: 18.379 - type: precision_at_5 value: 13.014000000000001 - type: recall_at_1 value: 29.046 - type: recall_at_10 value: 52.947 - type: recall_at_100 value: 76.19 - type: recall_at_1000 value: 93.331 - type: recall_at_20 value: 61.107 - type: recall_at_3 value: 41.155 - type: recall_at_5 value: 46.783 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval (default) type: CQADupstackRetrieval config: default split: test revision: CQADupstackRetrieval metrics: - type: main_score value: 42.88966666666667 - type: ndcg_at_10 value: 42.88966666666667 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval (default) type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: main_score value: 36.571 - type: map_at_1 value: 25.694 - type: map_at_10 value: 32.519 - type: map_at_100 value: 33.421 - type: map_at_1000 value: 33.521 - type: map_at_20 value: 32.986 - type: map_at_3 value: 30.614 - type: map_at_5 value: 31.519000000000002 - type: mrr_at_1 value: 28.834355828220858 - type: mrr_at_10 value: 35.39846869218034 - type: mrr_at_100 value: 36.18145716174078 - type: mrr_at_1000 value: 36.254070037635344 - type: mrr_at_20 value: 35.826470758823454 - type: mrr_at_3 value: 33.5633946830266 - type: mrr_at_5 value: 34.445296523517385 - type: nauc_map_at_1000_diff1 value: 59.21127779380182 - type: nauc_map_at_1000_max value: 47.45877358275832 - type: nauc_map_at_1000_std value: 7.902908020843874 - type: nauc_map_at_100_diff1 value: 59.18200747946963 - type: nauc_map_at_100_max value: 47.44292328377123 - type: nauc_map_at_100_std value: 7.906813888372076 - type: nauc_map_at_10_diff1 value: 59.54808111097996 - type: nauc_map_at_10_max value: 47.416248655348966 - type: nauc_map_at_10_std value: 7.265331367621496 - type: nauc_map_at_1_diff1 value: 65.66232117229154 - type: nauc_map_at_1_max value: 46.51257040003174 - type: nauc_map_at_1_std value: 2.5163737001523376 - type: nauc_map_at_20_diff1 value: 59.33884526762071 - type: nauc_map_at_20_max value: 47.47088184064044 - type: nauc_map_at_20_std value: 7.7436779449629585 - type: nauc_map_at_3_diff1 value: 60.85904704295578 - type: nauc_map_at_3_max value: 46.380570882815725 - type: nauc_map_at_3_std value: 5.477611104719717 - type: nauc_map_at_5_diff1 value: 60.06631642185234 - type: nauc_map_at_5_max value: 47.317296654386 - type: nauc_map_at_5_std value: 7.25009033156602 - type: nauc_mrr_at_1000_diff1 value: 59.75255617401618 - type: nauc_mrr_at_1000_max value: 51.370385751684964 - type: nauc_mrr_at_1000_std value: 10.561014566694835 - type: nauc_mrr_at_100_diff1 value: 59.72006423373155 - type: nauc_mrr_at_100_max value: 51.380287723231135 - type: nauc_mrr_at_100_std value: 10.572503240845824 - type: nauc_mrr_at_10_diff1 value: 59.89229452084576 - type: nauc_mrr_at_10_max value: 51.42243909482621 - type: nauc_mrr_at_10_std value: 10.08622724134282 - type: nauc_mrr_at_1_diff1 value: 66.5671307651682 - type: nauc_mrr_at_1_max value: 53.04014276462249 - type: nauc_mrr_at_1_std value: 7.295103966634424 - type: nauc_mrr_at_20_diff1 value: 59.81505895368636 - type: nauc_mrr_at_20_max value: 51.4001623359027 - type: nauc_mrr_at_20_std value: 10.490038867761676 - type: nauc_mrr_at_3_diff1 value: 61.25505063120813 - type: nauc_mrr_at_3_max value: 51.235726860013244 - type: nauc_mrr_at_3_std value: 9.12076972609324 - type: nauc_mrr_at_5_diff1 value: 60.46124658234123 - type: nauc_mrr_at_5_max value: 51.66615304884651 - type: nauc_mrr_at_5_std value: 10.491753886082012 - type: nauc_ndcg_at_1000_diff1 value: 56.063891484123495 - type: nauc_ndcg_at_1000_max value: 48.367233938001824 - type: nauc_ndcg_at_1000_std value: 12.080373606492493 - type: nauc_ndcg_at_100_diff1 value: 55.31788435605813 - type: nauc_ndcg_at_100_max value: 48.092541277886774 - type: nauc_ndcg_at_100_std value: 12.141439583740032 - type: nauc_ndcg_at_10_diff1 value: 56.717385106645516 - type: nauc_ndcg_at_10_max value: 47.92478263897746 - type: nauc_ndcg_at_10_std value: 9.129726886351563 - type: nauc_ndcg_at_1_diff1 value: 66.5671307651682 - type: nauc_ndcg_at_1_max value: 53.04014276462249 - type: nauc_ndcg_at_1_std value: 7.295103966634424 - type: nauc_ndcg_at_20_diff1 value: 56.135405938935655 - type: nauc_ndcg_at_20_max value: 47.986272943164934 - type: nauc_ndcg_at_20_std value: 10.812467905397899 - type: nauc_ndcg_at_3_diff1 value: 59.23720600553493 - type: nauc_ndcg_at_3_max value: 47.33504002431289 - type: nauc_ndcg_at_3_std value: 7.185531194641598 - type: nauc_ndcg_at_5_diff1 value: 57.98025524283037 - type: nauc_ndcg_at_5_max value: 48.24283042633571 - type: nauc_ndcg_at_5_std value: 9.61745663183138 - type: nauc_precision_at_1000_diff1 value: 3.688209431955099 - type: nauc_precision_at_1000_max value: 22.162220985449128 - type: nauc_precision_at_1000_std value: 19.598939915783994 - type: nauc_precision_at_100_diff1 value: 16.715476973785897 - type: nauc_precision_at_100_max value: 35.58794004604787 - type: nauc_precision_at_100_std value: 27.232006525764596 - type: nauc_precision_at_10_diff1 value: 37.61009291457028 - type: nauc_precision_at_10_max value: 47.494574849424886 - type: nauc_precision_at_10_std value: 18.99715275687221 - type: nauc_precision_at_1_diff1 value: 66.5671307651682 - type: nauc_precision_at_1_max value: 53.04014276462249 - type: nauc_precision_at_1_std value: 7.295103966634424 - type: nauc_precision_at_20_diff1 value: 31.740634208420587 - type: nauc_precision_at_20_max value: 44.645986394660895 - type: nauc_precision_at_20_std value: 23.565652481186586 - type: nauc_precision_at_3_diff1 value: 51.66114263826896 - type: nauc_precision_at_3_max value: 50.17058854322658 - type: nauc_precision_at_3_std value: 13.512577693548192 - type: nauc_precision_at_5_diff1 value: 45.22871147002112 - type: nauc_precision_at_5_max value: 50.97541357417865 - type: nauc_precision_at_5_std value: 20.09926480475663 - type: nauc_recall_at_1000_diff1 value: 31.322211403937285 - type: nauc_recall_at_1000_max value: 42.50466170750527 - type: nauc_recall_at_1000_std value: 40.51211129319271 - type: nauc_recall_at_100_diff1 value: 36.2360280516937 - type: nauc_recall_at_100_max value: 42.96527303778111 - type: nauc_recall_at_100_std value: 26.79796127746965 - type: nauc_recall_at_10_diff1 value: 46.6933738894558 - type: nauc_recall_at_10_max value: 44.123300529793056 - type: nauc_recall_at_10_std value: 11.27231506598845 - type: nauc_recall_at_1_diff1 value: 65.66232117229154 - type: nauc_recall_at_1_max value: 46.51257040003174 - type: nauc_recall_at_1_std value: 2.5163737001523376 - type: nauc_recall_at_20_diff1 value: 43.83749055471611 - type: nauc_recall_at_20_max value: 43.397982693038685 - type: nauc_recall_at_20_std value: 17.188379692723828 - type: nauc_recall_at_3_diff1 value: 54.1533022226639 - type: nauc_recall_at_3_max value: 42.52488107816299 - type: nauc_recall_at_3_std value: 6.629860082065277 - type: nauc_recall_at_5_diff1 value: 50.8614211680103 - type: nauc_recall_at_5_max value: 45.28106563555323 - type: nauc_recall_at_5_std value: 12.700338725741222 - type: ndcg_at_1 value: 28.834 - type: ndcg_at_10 value: 36.571 - type: ndcg_at_100 value: 41.102 - type: ndcg_at_1000 value: 43.671 - type: ndcg_at_20 value: 38.152 - type: ndcg_at_3 value: 33.01 - type: ndcg_at_5 value: 34.402 - type: precision_at_1 value: 28.834 - type: precision_at_10 value: 5.675 - type: precision_at_100 value: 0.859 - type: precision_at_1000 value: 0.117 - type: precision_at_20 value: 3.259 - type: precision_at_3 value: 14.059 - type: precision_at_5 value: 9.508999999999999 - type: recall_at_1 value: 25.694 - type: recall_at_10 value: 46.018 - type: recall_at_100 value: 66.90700000000001 - type: recall_at_1000 value: 85.866 - type: recall_at_20 value: 51.92 - type: recall_at_3 value: 36.062 - type: recall_at_5 value: 39.562000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval (default) type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: main_score value: 33.665 - type: map_at_1 value: 21.559 - type: map_at_10 value: 29.032000000000004 - type: map_at_100 value: 30.135 - type: map_at_1000 value: 30.258000000000003 - type: map_at_20 value: 29.607 - type: map_at_3 value: 26.682 - type: map_at_5 value: 27.956999999999997 - type: mrr_at_1 value: 26.29043358568479 - type: mrr_at_10 value: 33.3080981876578 - type: mrr_at_100 value: 34.1764538461662 - type: mrr_at_1000 value: 34.248506545210226 - type: mrr_at_20 value: 33.78132510629286 - type: mrr_at_3 value: 31.251433815095265 - type: mrr_at_5 value: 32.39905941729766 - type: nauc_map_at_1000_diff1 value: 50.50023732077554 - type: nauc_map_at_1000_max value: 42.59809128542217 - type: nauc_map_at_1000_std value: 4.548773301130105 - type: nauc_map_at_100_diff1 value: 50.48271928405346 - type: nauc_map_at_100_max value: 42.55881434921447 - type: nauc_map_at_100_std value: 4.514347678686318 - type: nauc_map_at_10_diff1 value: 50.6445428672794 - type: nauc_map_at_10_max value: 42.358616548731774 - type: nauc_map_at_10_std value: 4.118726987677713 - type: nauc_map_at_1_diff1 value: 57.98097995657995 - type: nauc_map_at_1_max value: 41.68952974974049 - type: nauc_map_at_1_std value: 3.0272542729271157 - type: nauc_map_at_20_diff1 value: 50.50692335035352 - type: nauc_map_at_20_max value: 42.52599731022714 - type: nauc_map_at_20_std value: 4.289567132618637 - type: nauc_map_at_3_diff1 value: 52.57484092433417 - type: nauc_map_at_3_max value: 42.56353035102126 - type: nauc_map_at_3_std value: 3.3666560242360943 - type: nauc_map_at_5_diff1 value: 51.33149846228247 - type: nauc_map_at_5_max value: 42.138141557029215 - type: nauc_map_at_5_std value: 3.63407311321908 - type: nauc_mrr_at_1000_diff1 value: 51.64588095028107 - type: nauc_mrr_at_1000_max value: 45.21132274986003 - type: nauc_mrr_at_1000_std value: 5.0484437569555585 - type: nauc_mrr_at_100_diff1 value: 51.62929802936584 - type: nauc_mrr_at_100_max value: 45.19695172672232 - type: nauc_mrr_at_100_std value: 5.031927696402182 - type: nauc_mrr_at_10_diff1 value: 51.69157695004305 - type: nauc_mrr_at_10_max value: 45.16812590942401 - type: nauc_mrr_at_10_std value: 4.79967969804667 - type: nauc_mrr_at_1_diff1 value: 58.32542183726116 - type: nauc_mrr_at_1_max value: 46.620943574285185 - type: nauc_mrr_at_1_std value: 4.1930005189971835 - type: nauc_mrr_at_20_diff1 value: 51.61295585588531 - type: nauc_mrr_at_20_max value: 45.18950560029899 - type: nauc_mrr_at_20_std value: 4.872609425990706 - type: nauc_mrr_at_3_diff1 value: 53.29566388431001 - type: nauc_mrr_at_3_max value: 45.96260064014352 - type: nauc_mrr_at_3_std value: 4.26990138331606 - type: nauc_mrr_at_5_diff1 value: 52.15051324018521 - type: nauc_mrr_at_5_max value: 45.19115832118339 - type: nauc_mrr_at_5_std value: 4.327064373186022 - type: nauc_ndcg_at_1000_diff1 value: 47.975105473136274 - type: nauc_ndcg_at_1000_max value: 43.3202256901928 - type: nauc_ndcg_at_1000_std value: 7.302466526267917 - type: nauc_ndcg_at_100_diff1 value: 47.4263368124116 - type: nauc_ndcg_at_100_max value: 42.9144663112138 - type: nauc_ndcg_at_100_std value: 6.896117489396776 - type: nauc_ndcg_at_10_diff1 value: 47.69553293563487 - type: nauc_ndcg_at_10_max value: 42.532008689244975 - type: nauc_ndcg_at_10_std value: 5.072375034288901 - type: nauc_ndcg_at_1_diff1 value: 58.32542183726116 - type: nauc_ndcg_at_1_max value: 46.620943574285185 - type: nauc_ndcg_at_1_std value: 4.1930005189971835 - type: nauc_ndcg_at_20_diff1 value: 47.3216797300171 - type: nauc_ndcg_at_20_max value: 42.82784121762008 - type: nauc_ndcg_at_20_std value: 5.4873332638062555 - type: nauc_ndcg_at_3_diff1 value: 50.67618892045853 - type: nauc_ndcg_at_3_max value: 43.452066634836264 - type: nauc_ndcg_at_3_std value: 3.5999178231581794 - type: nauc_ndcg_at_5_diff1 value: 48.87125718610337 - type: nauc_ndcg_at_5_max value: 42.34293060532442 - type: nauc_ndcg_at_5_std value: 3.965719895867645 - type: nauc_precision_at_1000_diff1 value: 2.3564008906375946 - type: nauc_precision_at_1000_max value: 19.35277990409841 - type: nauc_precision_at_1000_std value: 8.208296124429717 - type: nauc_precision_at_100_diff1 value: 11.557680499251672 - type: nauc_precision_at_100_max value: 27.081221933803963 - type: nauc_precision_at_100_std value: 10.867193962779467 - type: nauc_precision_at_10_diff1 value: 26.75079231789259 - type: nauc_precision_at_10_max value: 37.919411779232 - type: nauc_precision_at_10_std value: 8.247576589109919 - type: nauc_precision_at_1_diff1 value: 58.32542183726116 - type: nauc_precision_at_1_max value: 46.620943574285185 - type: nauc_precision_at_1_std value: 4.1930005189971835 - type: nauc_precision_at_20_diff1 value: 20.55817160758088 - type: nauc_precision_at_20_max value: 35.002140073661074 - type: nauc_precision_at_20_std value: 9.307772219880112 - type: nauc_precision_at_3_diff1 value: 41.336467145311225 - type: nauc_precision_at_3_max value: 43.90874128887091 - type: nauc_precision_at_3_std value: 4.729955596002663 - type: nauc_precision_at_5_diff1 value: 34.13625101894054 - type: nauc_precision_at_5_max value: 40.17036594203881 - type: nauc_precision_at_5_std value: 5.583421954612999 - type: nauc_recall_at_1000_diff1 value: 24.46074916945915 - type: nauc_recall_at_1000_max value: 37.86917238350092 - type: nauc_recall_at_1000_std value: 33.88120920938976 - type: nauc_recall_at_100_diff1 value: 31.212833489194146 - type: nauc_recall_at_100_max value: 37.18791392541046 - type: nauc_recall_at_100_std value: 16.998821925560886 - type: nauc_recall_at_10_diff1 value: 36.70769693647175 - type: nauc_recall_at_10_max value: 37.64347483639347 - type: nauc_recall_at_10_std value: 6.642774528061772 - type: nauc_recall_at_1_diff1 value: 57.98097995657995 - type: nauc_recall_at_1_max value: 41.68952974974049 - type: nauc_recall_at_1_std value: 3.0272542729271157 - type: nauc_recall_at_20_diff1 value: 34.59547764519041 - type: nauc_recall_at_20_max value: 38.01411741806164 - type: nauc_recall_at_20_std value: 8.079886446955351 - type: nauc_recall_at_3_diff1 value: 45.9260703706339 - type: nauc_recall_at_3_max value: 40.455294025909076 - type: nauc_recall_at_3_std value: 3.020482391513455 - type: nauc_recall_at_5_diff1 value: 41.11529408347525 - type: nauc_recall_at_5_max value: 37.806622947319276 - type: nauc_recall_at_5_std value: 3.472346020494902 - type: ndcg_at_1 value: 26.290000000000003 - type: ndcg_at_10 value: 33.665 - type: ndcg_at_100 value: 38.879000000000005 - type: ndcg_at_1000 value: 41.704 - type: ndcg_at_20 value: 35.455999999999996 - type: ndcg_at_3 value: 29.711 - type: ndcg_at_5 value: 31.471 - type: precision_at_1 value: 26.290000000000003 - type: precision_at_10 value: 5.957 - type: precision_at_100 value: 1.019 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_20 value: 3.565 - type: precision_at_3 value: 13.902000000000001 - type: precision_at_5 value: 9.821 - type: recall_at_1 value: 21.559 - type: recall_at_10 value: 43.288 - type: recall_at_100 value: 67.006 - type: recall_at_1000 value: 87.154 - type: recall_at_20 value: 49.788 - type: recall_at_3 value: 31.889 - type: recall_at_5 value: 36.605 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval (default) type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: main_score value: 44.423 - type: map_at_1 value: 30.54 - type: map_at_10 value: 39.397 - type: map_at_100 value: 40.626 - type: map_at_1000 value: 40.717999999999996 - type: map_at_20 value: 40.077 - type: map_at_3 value: 36.797999999999995 - type: map_at_5 value: 38.178 - type: mrr_at_1 value: 35.5410447761194 - type: mrr_at_10 value: 43.5865316275764 - type: mrr_at_100 value: 44.51529654171424 - type: mrr_at_1000 value: 44.562614253107746 - type: mrr_at_20 value: 44.164568195841234 - type: mrr_at_3 value: 41.40236318407957 - type: mrr_at_5 value: 42.57773631840791 - type: nauc_map_at_1000_diff1 value: 52.76374540838983 - type: nauc_map_at_1000_max value: 42.55353627918961 - type: nauc_map_at_1000_std value: 4.857305186816936 - type: nauc_map_at_100_diff1 value: 52.76238875291172 - type: nauc_map_at_100_max value: 42.53436040912949 - type: nauc_map_at_100_std value: 4.868257944045184 - type: nauc_map_at_10_diff1 value: 52.90764530548833 - type: nauc_map_at_10_max value: 42.501235137870715 - type: nauc_map_at_10_std value: 4.596458350936598 - type: nauc_map_at_1_diff1 value: 58.435957802193606 - type: nauc_map_at_1_max value: 40.8201218048271 - type: nauc_map_at_1_std value: 3.3639162923348107 - type: nauc_map_at_20_diff1 value: 52.83612586308006 - type: nauc_map_at_20_max value: 42.40637130029987 - type: nauc_map_at_20_std value: 4.642218568490607 - type: nauc_map_at_3_diff1 value: 53.56288667046082 - type: nauc_map_at_3_max value: 42.69200652306418 - type: nauc_map_at_3_std value: 4.443709986707929 - type: nauc_map_at_5_diff1 value: 52.80863551855386 - type: nauc_map_at_5_max value: 42.268876698467324 - type: nauc_map_at_5_std value: 4.315014770785757 - type: nauc_mrr_at_1000_diff1 value: 54.780545321852024 - type: nauc_mrr_at_1000_max value: 44.85577675065409 - type: nauc_mrr_at_1000_std value: 5.224452579627839 - type: nauc_mrr_at_100_diff1 value: 54.76702346943041 - type: nauc_mrr_at_100_max value: 44.842097267634834 - type: nauc_mrr_at_100_std value: 5.233687683474933 - type: nauc_mrr_at_10_diff1 value: 54.88849273607052 - type: nauc_mrr_at_10_max value: 44.94807399819095 - type: nauc_mrr_at_10_std value: 5.124284874129286 - type: nauc_mrr_at_1_diff1 value: 60.86924889741169 - type: nauc_mrr_at_1_max value: 45.056356721606925 - type: nauc_mrr_at_1_std value: 3.437468284490022 - type: nauc_mrr_at_20_diff1 value: 54.72936787737661 - type: nauc_mrr_at_20_max value: 44.79793486137578 - type: nauc_mrr_at_20_std value: 5.176055853907691 - type: nauc_mrr_at_3_diff1 value: 55.448415049617694 - type: nauc_mrr_at_3_max value: 45.67554311190905 - type: nauc_mrr_at_3_std value: 4.757201083486516 - type: nauc_mrr_at_5_diff1 value: 55.048042324198946 - type: nauc_mrr_at_5_max value: 45.228664872065956 - type: nauc_mrr_at_5_std value: 4.9014147347294585 - type: nauc_ndcg_at_1000_diff1 value: 51.203361322052096 - type: nauc_ndcg_at_1000_max value: 43.25578662530445 - type: nauc_ndcg_at_1000_std value: 6.620464316087618 - type: nauc_ndcg_at_100_diff1 value: 50.882647332034615 - type: nauc_ndcg_at_100_max value: 42.93716885101371 - type: nauc_ndcg_at_100_std value: 7.106131770951589 - type: nauc_ndcg_at_10_diff1 value: 51.56811051737126 - type: nauc_ndcg_at_10_max value: 42.87441802287994 - type: nauc_ndcg_at_10_std value: 5.505533106517679 - type: nauc_ndcg_at_1_diff1 value: 60.86924889741169 - type: nauc_ndcg_at_1_max value: 45.056356721606925 - type: nauc_ndcg_at_1_std value: 3.437468284490022 - type: nauc_ndcg_at_20_diff1 value: 51.13197825390587 - type: nauc_ndcg_at_20_max value: 42.36940398363374 - type: nauc_ndcg_at_20_std value: 5.887988236497331 - type: nauc_ndcg_at_3_diff1 value: 52.59182073148154 - type: nauc_ndcg_at_3_max value: 43.95986060122144 - type: nauc_ndcg_at_3_std value: 4.991350391303793 - type: nauc_ndcg_at_5_diff1 value: 51.53769309491435 - type: nauc_ndcg_at_5_max value: 42.758293780811265 - type: nauc_ndcg_at_5_std value: 4.844476542311906 - type: nauc_precision_at_1000_diff1 value: -11.434999641403083 - type: nauc_precision_at_1000_max value: 0.8269916751141828 - type: nauc_precision_at_1000_std value: 0.12797876293958896 - type: nauc_precision_at_100_diff1 value: 2.279846188893991 - type: nauc_precision_at_100_max value: 15.493076102854905 - type: nauc_precision_at_100_std value: 9.950134651549206 - type: nauc_precision_at_10_diff1 value: 28.45435256078124 - type: nauc_precision_at_10_max value: 33.81086627096211 - type: nauc_precision_at_10_std value: 6.0332149987128965 - type: nauc_precision_at_1_diff1 value: 60.86924889741169 - type: nauc_precision_at_1_max value: 45.056356721606925 - type: nauc_precision_at_1_std value: 3.437468284490022 - type: nauc_precision_at_20_diff1 value: 20.663071571536992 - type: nauc_precision_at_20_max value: 27.50021189088964 - type: nauc_precision_at_20_std value: 6.508841525773539 - type: nauc_precision_at_3_diff1 value: 41.15032908091854 - type: nauc_precision_at_3_max value: 43.9955541150382 - type: nauc_precision_at_3_std value: 5.877878641632331 - type: nauc_precision_at_5_diff1 value: 34.69820637934227 - type: nauc_precision_at_5_max value: 38.83293829816354 - type: nauc_precision_at_5_std value: 5.5392990681998 - type: nauc_recall_at_1000_diff1 value: 22.131796711859135 - type: nauc_recall_at_1000_max value: 38.127584982658 - type: nauc_recall_at_1000_std value: 34.45989637758976 - type: nauc_recall_at_100_diff1 value: 35.00175042738763 - type: nauc_recall_at_100_max value: 36.55948979585168 - type: nauc_recall_at_100_std value: 20.302607156553062 - type: nauc_recall_at_10_diff1 value: 43.87257439970838 - type: nauc_recall_at_10_max value: 39.08232067387173 - type: nauc_recall_at_10_std value: 7.635715431344517 - type: nauc_recall_at_1_diff1 value: 58.435957802193606 - type: nauc_recall_at_1_max value: 40.8201218048271 - type: nauc_recall_at_1_std value: 3.3639162923348107 - type: nauc_recall_at_20_diff1 value: 40.67523452277275 - type: nauc_recall_at_20_max value: 35.6737797471379 - type: nauc_recall_at_20_std value: 9.803522919641205 - type: nauc_recall_at_3_diff1 value: 47.16401394537944 - type: nauc_recall_at_3_max value: 42.192146604065606 - type: nauc_recall_at_3_std value: 5.876930111074094 - type: nauc_recall_at_5_diff1 value: 44.593174758805404 - type: nauc_recall_at_5_max value: 39.82512155022514 - type: nauc_recall_at_5_std value: 5.59548740237456 - type: ndcg_at_1 value: 35.541 - type: ndcg_at_10 value: 44.423 - type: ndcg_at_100 value: 50.001 - type: ndcg_at_1000 value: 52.047 - type: ndcg_at_20 value: 46.605999999999995 - type: ndcg_at_3 value: 40.004 - type: ndcg_at_5 value: 41.88 - type: precision_at_1 value: 35.541 - type: precision_at_10 value: 7.285 - type: precision_at_100 value: 1.1320000000000001 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_20 value: 4.244 - type: precision_at_3 value: 17.91 - type: precision_at_5 value: 12.239 - type: recall_at_1 value: 30.54 - type: recall_at_10 value: 55.309 - type: recall_at_100 value: 79.616 - type: recall_at_1000 value: 93.856 - type: recall_at_20 value: 63.107 - type: recall_at_3 value: 43.056 - type: recall_at_5 value: 48.021 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval (default) type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: main_score value: 41.909 - type: map_at_1 value: 28.163 - type: map_at_10 value: 36.476 - type: map_at_100 value: 38.078 - type: map_at_1000 value: 38.34 - type: map_at_20 value: 37.313 - type: map_at_3 value: 33.474 - type: map_at_5 value: 35.28 - type: mrr_at_1 value: 33.39920948616601 - type: mrr_at_10 value: 40.57422046552481 - type: mrr_at_100 value: 41.416523178972795 - type: mrr_at_1000 value: 41.48062648624946 - type: mrr_at_20 value: 41.028434133900724 - type: mrr_at_3 value: 38.10935441370225 - type: mrr_at_5 value: 39.57180500658761 - type: nauc_map_at_1000_diff1 value: 59.30365105258447 - type: nauc_map_at_1000_max value: 51.32956178610624 - type: nauc_map_at_1000_std value: 9.807753946991491 - type: nauc_map_at_100_diff1 value: 59.30227182211021 - type: nauc_map_at_100_max value: 51.505498315648744 - type: nauc_map_at_100_std value: 9.40690013473669 - type: nauc_map_at_10_diff1 value: 59.493199077028656 - type: nauc_map_at_10_max value: 51.170184882329494 - type: nauc_map_at_10_std value: 7.5956691204249625 - type: nauc_map_at_1_diff1 value: 66.72124308402267 - type: nauc_map_at_1_max value: 51.19466114585956 - type: nauc_map_at_1_std value: 2.245220608559181 - type: nauc_map_at_20_diff1 value: 59.22057643300822 - type: nauc_map_at_20_max value: 51.313573776775726 - type: nauc_map_at_20_std value: 8.358939846817226 - type: nauc_map_at_3_diff1 value: 61.32109160055376 - type: nauc_map_at_3_max value: 51.9457241432636 - type: nauc_map_at_3_std value: 6.142346771066799 - type: nauc_map_at_5_diff1 value: 60.196087475595775 - type: nauc_map_at_5_max value: 51.29489275323225 - type: nauc_map_at_5_std value: 7.135550923449767 - type: nauc_mrr_at_1000_diff1 value: 58.61406272963981 - type: nauc_mrr_at_1000_max value: 52.14522525518276 - type: nauc_mrr_at_1000_std value: 10.346824001908765 - type: nauc_mrr_at_100_diff1 value: 58.59441019795227 - type: nauc_mrr_at_100_max value: 52.10956861802713 - type: nauc_mrr_at_100_std value: 10.336293720942948 - type: nauc_mrr_at_10_diff1 value: 58.77148976904293 - type: nauc_mrr_at_10_max value: 52.18359886063282 - type: nauc_mrr_at_10_std value: 10.108983326742853 - type: nauc_mrr_at_1_diff1 value: 62.75320247309557 - type: nauc_mrr_at_1_max value: 54.58212983767925 - type: nauc_mrr_at_1_std value: 7.649128741158393 - type: nauc_mrr_at_20_diff1 value: 58.70480651508579 - type: nauc_mrr_at_20_max value: 52.04529492373743 - type: nauc_mrr_at_20_std value: 10.09501402622684 - type: nauc_mrr_at_3_diff1 value: 59.82908033429298 - type: nauc_mrr_at_3_max value: 53.42734720399114 - type: nauc_mrr_at_3_std value: 9.886371850072972 - type: nauc_mrr_at_5_diff1 value: 59.100685229454754 - type: nauc_mrr_at_5_max value: 52.44424372197177 - type: nauc_mrr_at_5_std value: 10.19534387414282 - type: nauc_ndcg_at_1000_diff1 value: 57.16657786810699 - type: nauc_ndcg_at_1000_max value: 51.498118352968504 - type: nauc_ndcg_at_1000_std value: 13.45759260939172 - type: nauc_ndcg_at_100_diff1 value: 56.47190359480491 - type: nauc_ndcg_at_100_max value: 50.510346633524506 - type: nauc_ndcg_at_100_std value: 13.164825021236645 - type: nauc_ndcg_at_10_diff1 value: 56.839999032753916 - type: nauc_ndcg_at_10_max value: 49.35810093746709 - type: nauc_ndcg_at_10_std value: 10.892285569599455 - type: nauc_ndcg_at_1_diff1 value: 62.75320247309557 - type: nauc_ndcg_at_1_max value: 54.58212983767925 - type: nauc_ndcg_at_1_std value: 7.649128741158393 - type: nauc_ndcg_at_20_diff1 value: 56.599943425661145 - type: nauc_ndcg_at_20_max value: 49.04948706869284 - type: nauc_ndcg_at_20_std value: 10.953199856319838 - type: nauc_ndcg_at_3_diff1 value: 59.06896883585927 - type: nauc_ndcg_at_3_max value: 52.521751983909226 - type: nauc_ndcg_at_3_std value: 10.316203555781064 - type: nauc_ndcg_at_5_diff1 value: 58.10264420177409 - type: nauc_ndcg_at_5_max value: 50.3495565113843 - type: nauc_ndcg_at_5_std value: 11.198630479734442 - type: nauc_precision_at_1000_diff1 value: -7.861487471616527 - type: nauc_precision_at_1000_max value: -11.865885078285975 - type: nauc_precision_at_1000_std value: 34.93723410363955 - type: nauc_precision_at_100_diff1 value: 2.4168431059737485 - type: nauc_precision_at_100_max value: 3.364608957955227 - type: nauc_precision_at_100_std value: 36.92761258093046 - type: nauc_precision_at_10_diff1 value: 18.263148796946272 - type: nauc_precision_at_10_max value: 30.503308529462064 - type: nauc_precision_at_10_std value: 27.062063990822672 - type: nauc_precision_at_1_diff1 value: 62.75320247309557 - type: nauc_precision_at_1_max value: 54.58212983767925 - type: nauc_precision_at_1_std value: 7.649128741158393 - type: nauc_precision_at_20_diff1 value: 9.947402516937798 - type: nauc_precision_at_20_max value: 22.13439606944372 - type: nauc_precision_at_20_std value: 30.739360998078823 - type: nauc_precision_at_3_diff1 value: 38.95711192254061 - type: nauc_precision_at_3_max value: 46.568608591073364 - type: nauc_precision_at_3_std value: 17.901229470165855 - type: nauc_precision_at_5_diff1 value: 29.43836627953031 - type: nauc_precision_at_5_max value: 39.377036266380536 - type: nauc_precision_at_5_std value: 22.380560159232196 - type: nauc_recall_at_1000_diff1 value: 37.300575362096275 - type: nauc_recall_at_1000_max value: 55.20039736641748 - type: nauc_recall_at_1000_std value: 58.95114049445191 - type: nauc_recall_at_100_diff1 value: 40.329256967785504 - type: nauc_recall_at_100_max value: 40.400321519794566 - type: nauc_recall_at_100_std value: 29.255191346931582 - type: nauc_recall_at_10_diff1 value: 48.44766357811787 - type: nauc_recall_at_10_max value: 40.23097273472008 - type: nauc_recall_at_10_std value: 10.32703056019965 - type: nauc_recall_at_1_diff1 value: 66.72124308402267 - type: nauc_recall_at_1_max value: 51.19466114585956 - type: nauc_recall_at_1_std value: 2.245220608559181 - type: nauc_recall_at_20_diff1 value: 45.93499243020848 - type: nauc_recall_at_20_max value: 37.15086331902723 - type: nauc_recall_at_20_std value: 11.390852913964599 - type: nauc_recall_at_3_diff1 value: 57.28583574669723 - type: nauc_recall_at_3_max value: 49.16061086075558 - type: nauc_recall_at_3_std value: 8.729826211070984 - type: nauc_recall_at_5_diff1 value: 53.16650473894876 - type: nauc_recall_at_5_max value: 44.17028263924092 - type: nauc_recall_at_5_std value: 11.186300373134186 - type: ndcg_at_1 value: 33.399 - type: ndcg_at_10 value: 41.909 - type: ndcg_at_100 value: 47.166999999999994 - type: ndcg_at_1000 value: 49.927 - type: ndcg_at_20 value: 43.883 - type: ndcg_at_3 value: 37.218 - type: ndcg_at_5 value: 39.567 - type: precision_at_1 value: 33.399 - type: precision_at_10 value: 8.161999999999999 - type: precision_at_100 value: 1.611 - type: precision_at_1000 value: 0.246 - type: precision_at_20 value: 5.119 - type: precision_at_3 value: 17.391000000000002 - type: precision_at_5 value: 12.727 - type: recall_at_1 value: 28.163 - type: recall_at_10 value: 51.453 - type: recall_at_100 value: 75.355 - type: recall_at_1000 value: 92.99300000000001 - type: recall_at_20 value: 59.023 - type: recall_at_3 value: 38.425 - type: recall_at_5 value: 44.84 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval (default) type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: main_score value: 36.398 - type: map_at_1 value: 24.008 - type: map_at_10 value: 31.863999999999997 - type: map_at_100 value: 32.72 - type: map_at_1000 value: 32.821 - type: map_at_20 value: 32.261 - type: map_at_3 value: 29.381 - type: map_at_5 value: 30.897000000000002 - type: mrr_at_1 value: 26.432532347504623 - type: mrr_at_10 value: 34.03250887539242 - type: mrr_at_100 value: 34.819847299074134 - type: mrr_at_1000 value: 34.89299718316846 - type: mrr_at_20 value: 34.44747576214217 - type: mrr_at_3 value: 31.79297597042514 - type: mrr_at_5 value: 33.151571164510166 - type: nauc_map_at_1000_diff1 value: 55.98162099085637 - type: nauc_map_at_1000_max value: 43.47872593560115 - type: nauc_map_at_1000_std value: 1.9635759627816445 - type: nauc_map_at_100_diff1 value: 55.98061150597974 - type: nauc_map_at_100_max value: 43.46654911714823 - type: nauc_map_at_100_std value: 2.0206625819587183 - type: nauc_map_at_10_diff1 value: 56.34666780463638 - type: nauc_map_at_10_max value: 43.788943769246664 - type: nauc_map_at_10_std value: 1.1898266530268196 - type: nauc_map_at_1_diff1 value: 62.62324443404018 - type: nauc_map_at_1_max value: 43.605117311940006 - type: nauc_map_at_1_std value: -0.6904916244485655 - type: nauc_map_at_20_diff1 value: 56.238065656871704 - type: nauc_map_at_20_max value: 43.5584551380304 - type: nauc_map_at_20_std value: 1.7011032341886574 - type: nauc_map_at_3_diff1 value: 56.25966143384608 - type: nauc_map_at_3_max value: 44.51064963840291 - type: nauc_map_at_3_std value: -0.0803396697177304 - type: nauc_map_at_5_diff1 value: 56.07335339106893 - type: nauc_map_at_5_max value: 43.998037645230795 - type: nauc_map_at_5_std value: 1.2112200779176874 - type: nauc_mrr_at_1000_diff1 value: 55.92143029755729 - type: nauc_mrr_at_1000_max value: 43.84811870666282 - type: nauc_mrr_at_1000_std value: 2.4365578128568854 - type: nauc_mrr_at_100_diff1 value: 55.90610513119599 - type: nauc_mrr_at_100_max value: 43.832619161548436 - type: nauc_mrr_at_100_std value: 2.4946643522682233 - type: nauc_mrr_at_10_diff1 value: 56.335626034657906 - type: nauc_mrr_at_10_max value: 44.02523605305643 - type: nauc_mrr_at_10_std value: 1.7511188685819048 - type: nauc_mrr_at_1_diff1 value: 63.248568809238215 - type: nauc_mrr_at_1_max value: 45.408377673502066 - type: nauc_mrr_at_1_std value: 0.07045834015445782 - type: nauc_mrr_at_20_diff1 value: 56.06829541446503 - type: nauc_mrr_at_20_max value: 43.91422331275104 - type: nauc_mrr_at_20_std value: 2.2347636126757173 - type: nauc_mrr_at_3_diff1 value: 56.31600283984432 - type: nauc_mrr_at_3_max value: 45.05073059132046 - type: nauc_mrr_at_3_std value: 0.8652253910073596 - type: nauc_mrr_at_5_diff1 value: 56.254182068875124 - type: nauc_mrr_at_5_max value: 44.59269821452858 - type: nauc_mrr_at_5_std value: 1.6491608480389122 - type: nauc_ndcg_at_1000_diff1 value: 52.95653323521346 - type: nauc_ndcg_at_1000_max value: 42.389513003269904 - type: nauc_ndcg_at_1000_std value: 5.179591160434181 - type: nauc_ndcg_at_100_diff1 value: 52.43070969822147 - type: nauc_ndcg_at_100_max value: 41.517812919833794 - type: nauc_ndcg_at_100_std value: 6.844565740445449 - type: nauc_ndcg_at_10_diff1 value: 54.56818115302057 - type: nauc_ndcg_at_10_max value: 42.703994032749534 - type: nauc_ndcg_at_10_std value: 2.635282627590044 - type: nauc_ndcg_at_1_diff1 value: 63.248568809238215 - type: nauc_ndcg_at_1_max value: 45.408377673502066 - type: nauc_ndcg_at_1_std value: 0.07045834015445782 - type: nauc_ndcg_at_20_diff1 value: 53.96537459815431 - type: nauc_ndcg_at_20_max value: 41.925819424299895 - type: nauc_ndcg_at_20_std value: 4.359545840626607 - type: nauc_ndcg_at_3_diff1 value: 54.0973911563289 - type: nauc_ndcg_at_3_max value: 44.68812055048855 - type: nauc_ndcg_at_3_std value: 0.8078452209522009 - type: nauc_ndcg_at_5_diff1 value: 53.945638885632455 - type: nauc_ndcg_at_5_max value: 43.54338003834186 - type: nauc_ndcg_at_5_std value: 2.5103043398245606 - type: nauc_precision_at_1000_diff1 value: -12.91947435915392 - type: nauc_precision_at_1000_max value: -4.8431541463237195 - type: nauc_precision_at_1000_std value: 6.604107503909044 - type: nauc_precision_at_100_diff1 value: 16.444591512259358 - type: nauc_precision_at_100_max value: 21.881556684823632 - type: nauc_precision_at_100_std value: 26.223501655143284 - type: nauc_precision_at_10_diff1 value: 43.7635503540333 - type: nauc_precision_at_10_max value: 38.53101787398076 - type: nauc_precision_at_10_std value: 9.002092351038165 - type: nauc_precision_at_1_diff1 value: 63.248568809238215 - type: nauc_precision_at_1_max value: 45.408377673502066 - type: nauc_precision_at_1_std value: 0.07045834015445782 - type: nauc_precision_at_20_diff1 value: 37.86245560869826 - type: nauc_precision_at_20_max value: 33.65976140375908 - type: nauc_precision_at_20_std value: 15.913438047381792 - type: nauc_precision_at_3_diff1 value: 47.47459643937429 - type: nauc_precision_at_3_max value: 46.76643886992762 - type: nauc_precision_at_3_std value: 4.5190241950831735 - type: nauc_precision_at_5_diff1 value: 43.75126148368077 - type: nauc_precision_at_5_max value: 42.334651217872505 - type: nauc_precision_at_5_std value: 9.459742902485242 - type: nauc_recall_at_1000_diff1 value: 27.819254278969897 - type: nauc_recall_at_1000_max value: 38.30544692135124 - type: nauc_recall_at_1000_std value: 26.52237812013942 - type: nauc_recall_at_100_diff1 value: 34.58788879102681 - type: nauc_recall_at_100_max value: 29.203659972143026 - type: nauc_recall_at_100_std value: 30.0715893326566 - type: nauc_recall_at_10_diff1 value: 48.706435965678075 - type: nauc_recall_at_10_max value: 37.69482088549101 - type: nauc_recall_at_10_std value: 6.172227685607203 - type: nauc_recall_at_1_diff1 value: 62.62324443404018 - type: nauc_recall_at_1_max value: 43.605117311940006 - type: nauc_recall_at_1_std value: -0.6904916244485655 - type: nauc_recall_at_20_diff1 value: 45.930710320116404 - type: nauc_recall_at_20_max value: 33.87282382235246 - type: nauc_recall_at_20_std value: 12.236967904900046 - type: nauc_recall_at_3_diff1 value: 47.967133522596995 - type: nauc_recall_at_3_max value: 43.222243812704654 - type: nauc_recall_at_3_std value: 1.406764656015735 - type: nauc_recall_at_5_diff1 value: 46.83387488030117 - type: nauc_recall_at_5_max value: 40.22683923723393 - type: nauc_recall_at_5_std value: 5.359250334470643 - type: ndcg_at_1 value: 26.433 - type: ndcg_at_10 value: 36.398 - type: ndcg_at_100 value: 40.904 - type: ndcg_at_1000 value: 43.503 - type: ndcg_at_20 value: 37.835 - type: ndcg_at_3 value: 31.740000000000002 - type: ndcg_at_5 value: 34.217 - type: precision_at_1 value: 26.433 - type: precision_at_10 value: 5.638 - type: precision_at_100 value: 0.8500000000000001 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_20 value: 3.198 - type: precision_at_3 value: 13.494 - type: precision_at_5 value: 9.575 - type: recall_at_1 value: 24.008 - type: recall_at_10 value: 48.276 - type: recall_at_100 value: 69.408 - type: recall_at_1000 value: 88.982 - type: recall_at_20 value: 53.652 - type: recall_at_3 value: 35.665 - type: recall_at_5 value: 41.707 - task: type: Retrieval dataset: name: MTEB ClimateFEVER (default) type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: main_score value: 34.424 - type: map_at_1 value: 14.048 - type: map_at_10 value: 25.008999999999997 - type: map_at_100 value: 27.311999999999998 - type: map_at_1000 value: 27.506999999999998 - type: map_at_20 value: 26.276 - type: map_at_3 value: 20.454 - type: map_at_5 value: 22.764 - type: mrr_at_1 value: 30.293159609120522 - type: mrr_at_10 value: 43.979732175171954 - type: mrr_at_100 value: 44.8990199708385 - type: mrr_at_1000 value: 44.91948864168536 - type: mrr_at_20 value: 44.60727793679259 - type: mrr_at_3 value: 40.22801302931596 - type: mrr_at_5 value: 42.5081433224756 - type: nauc_map_at_1000_diff1 value: 26.782927076716838 - type: nauc_map_at_1000_max value: 35.04693475590315 - type: nauc_map_at_1000_std value: 18.468386416658767 - type: nauc_map_at_100_diff1 value: 26.73559025799703 - type: nauc_map_at_100_max value: 35.0086554719845 - type: nauc_map_at_100_std value: 18.408237795505364 - type: nauc_map_at_10_diff1 value: 26.69665717190449 - type: nauc_map_at_10_max value: 33.95628589107352 - type: nauc_map_at_10_std value: 16.606722618355228 - type: nauc_map_at_1_diff1 value: 34.69139167255448 - type: nauc_map_at_1_max value: 31.320925167304885 - type: nauc_map_at_1_std value: 8.317324397589166 - type: nauc_map_at_20_diff1 value: 26.535742347239612 - type: nauc_map_at_20_max value: 34.64120791988152 - type: nauc_map_at_20_std value: 17.773087807705114 - type: nauc_map_at_3_diff1 value: 28.28868980958683 - type: nauc_map_at_3_max value: 31.933502455412977 - type: nauc_map_at_3_std value: 11.690701159250299 - type: nauc_map_at_5_diff1 value: 27.50454635443153 - type: nauc_map_at_5_max value: 32.771673774695586 - type: nauc_map_at_5_std value: 13.809876792277876 - type: nauc_mrr_at_1000_diff1 value: 27.55092374824378 - type: nauc_mrr_at_1000_max value: 34.313567270251525 - type: nauc_mrr_at_1000_std value: 20.184075106861794 - type: nauc_mrr_at_100_diff1 value: 27.536196216140024 - type: nauc_mrr_at_100_max value: 34.31005560628606 - type: nauc_mrr_at_100_std value: 20.193896244109492 - type: nauc_mrr_at_10_diff1 value: 27.392430223579805 - type: nauc_mrr_at_10_max value: 34.49340592130273 - type: nauc_mrr_at_10_std value: 20.457054679548968 - type: nauc_mrr_at_1_diff1 value: 30.66870320020112 - type: nauc_mrr_at_1_max value: 29.961018318500486 - type: nauc_mrr_at_1_std value: 13.633496258132965 - type: nauc_mrr_at_20_diff1 value: 27.566254419942325 - type: nauc_mrr_at_20_max value: 34.46259435507574 - type: nauc_mrr_at_20_std value: 20.381248414863904 - type: nauc_mrr_at_3_diff1 value: 26.943813388404354 - type: nauc_mrr_at_3_max value: 33.349721060706386 - type: nauc_mrr_at_3_std value: 18.866488957576493 - type: nauc_mrr_at_5_diff1 value: 27.34661652031042 - type: nauc_mrr_at_5_max value: 34.032048354887515 - type: nauc_mrr_at_5_std value: 19.512736212478003 - type: nauc_ndcg_at_1000_diff1 value: 26.312101712300805 - type: nauc_ndcg_at_1000_max value: 38.568204426547034 - type: nauc_ndcg_at_1000_std value: 25.707095290674076 - type: nauc_ndcg_at_100_diff1 value: 25.783339092601583 - type: nauc_ndcg_at_100_max value: 38.2469994909342 - type: nauc_ndcg_at_100_std value: 25.568831103654322 - type: nauc_ndcg_at_10_diff1 value: 25.228672343910404 - type: nauc_ndcg_at_10_max value: 36.10444487310847 - type: nauc_ndcg_at_10_std value: 21.77704765565149 - type: nauc_ndcg_at_1_diff1 value: 30.66870320020112 - type: nauc_ndcg_at_1_max value: 29.961018318500486 - type: nauc_ndcg_at_1_std value: 13.633496258132965 - type: nauc_ndcg_at_20_diff1 value: 25.162887933451618 - type: nauc_ndcg_at_20_max value: 37.27614808874129 - type: nauc_ndcg_at_20_std value: 23.86890320682254 - type: nauc_ndcg_at_3_diff1 value: 26.2529133058438 - type: nauc_ndcg_at_3_max value: 32.274832820606775 - type: nauc_ndcg_at_3_std value: 15.192344394039162 - type: nauc_ndcg_at_5_diff1 value: 26.444481981297685 - type: nauc_ndcg_at_5_max value: 34.322739778680464 - type: nauc_ndcg_at_5_std value: 17.546128163241445 - type: nauc_precision_at_1000_diff1 value: -6.105028009939054 - type: nauc_precision_at_1000_max value: 7.2924628581210795 - type: nauc_precision_at_1000_std value: 20.54932407484064 - type: nauc_precision_at_100_diff1 value: 0.9007566546900618 - type: nauc_precision_at_100_max value: 20.090504665431087 - type: nauc_precision_at_100_std value: 30.550751221220736 - type: nauc_precision_at_10_diff1 value: 8.854680985105352 - type: nauc_precision_at_10_max value: 28.69440885254999 - type: nauc_precision_at_10_std value: 30.328706482927547 - type: nauc_precision_at_1_diff1 value: 30.66870320020112 - type: nauc_precision_at_1_max value: 29.961018318500486 - type: nauc_precision_at_1_std value: 13.633496258132965 - type: nauc_precision_at_20_diff1 value: 6.083160357843956 - type: nauc_precision_at_20_max value: 27.335665310831537 - type: nauc_precision_at_20_std value: 32.54997932409484 - type: nauc_precision_at_3_diff1 value: 16.678600876578386 - type: nauc_precision_at_3_max value: 29.043317380761067 - type: nauc_precision_at_3_std value: 19.479424623414367 - type: nauc_precision_at_5_diff1 value: 14.201970474250361 - type: nauc_precision_at_5_max value: 29.719577021061966 - type: nauc_precision_at_5_std value: 23.691164529644862 - type: nauc_recall_at_1000_diff1 value: 18.317591669116275 - type: nauc_recall_at_1000_max value: 46.105446116908524 - type: nauc_recall_at_1000_std value: 48.743849542601296 - type: nauc_recall_at_100_diff1 value: 16.588227937078216 - type: nauc_recall_at_100_max value: 37.36787755279675 - type: nauc_recall_at_100_std value: 35.90070224192105 - type: nauc_recall_at_10_diff1 value: 17.969251347801972 - type: nauc_recall_at_10_max value: 34.48449713711093 - type: nauc_recall_at_10_std value: 25.476008304626585 - type: nauc_recall_at_1_diff1 value: 34.69139167255448 - type: nauc_recall_at_1_max value: 31.320925167304885 - type: nauc_recall_at_1_std value: 8.317324397589166 - type: nauc_recall_at_20_diff1 value: 16.508774919861406 - type: nauc_recall_at_20_max value: 35.29713721688907 - type: nauc_recall_at_20_std value: 29.22876562755075 - type: nauc_recall_at_3_diff1 value: 23.710346839115026 - type: nauc_recall_at_3_max value: 32.06650483662007 - type: nauc_recall_at_3_std value: 14.749973734231848 - type: nauc_recall_at_5_diff1 value: 21.6318334404903 - type: nauc_recall_at_5_max value: 32.77158097087673 - type: nauc_recall_at_5_std value: 18.510754939059773 - type: ndcg_at_1 value: 30.293 - type: ndcg_at_10 value: 34.424 - type: ndcg_at_100 value: 42.756 - type: ndcg_at_1000 value: 45.858 - type: ndcg_at_20 value: 37.842999999999996 - type: ndcg_at_3 value: 27.628999999999998 - type: ndcg_at_5 value: 30.133 - type: precision_at_1 value: 30.293 - type: precision_at_10 value: 11.003 - type: precision_at_100 value: 1.989 - type: precision_at_1000 value: 0.258 - type: precision_at_20 value: 6.987 - type: precision_at_3 value: 20.717 - type: precision_at_5 value: 16.3 - type: recall_at_1 value: 14.048 - type: recall_at_10 value: 41.567 - type: recall_at_100 value: 69.803 - type: recall_at_1000 value: 86.78200000000001 - type: recall_at_20 value: 51.12799999999999 - type: recall_at_3 value: 25.385 - type: recall_at_5 value: 32.115 - task: type: Retrieval dataset: name: MTEB DBPedia (default) type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 44.913 - type: map_at_1 value: 10.040000000000001 - type: map_at_10 value: 22.208 - type: map_at_100 value: 32.347 - type: map_at_1000 value: 34.172999999999995 - type: map_at_20 value: 25.988 - type: map_at_3 value: 15.964 - type: map_at_5 value: 18.285 - type: mrr_at_1 value: 72.25 - type: mrr_at_10 value: 79.32232142857141 - type: mrr_at_100 value: 79.6704079768071 - type: mrr_at_1000 value: 79.67456725879248 - type: mrr_at_20 value: 79.62344263171467 - type: mrr_at_3 value: 78.29166666666666 - type: mrr_at_5 value: 78.81666666666665 - type: nauc_map_at_1000_diff1 value: 20.600883285811996 - type: nauc_map_at_1000_max value: 25.625468821912733 - type: nauc_map_at_1000_std value: 31.070635510001672 - type: nauc_map_at_100_diff1 value: 20.89392915500404 - type: nauc_map_at_100_max value: 24.061724938048208 - type: nauc_map_at_100_std value: 28.114811361343172 - type: nauc_map_at_10_diff1 value: 25.83341899826147 - type: nauc_map_at_10_max value: 11.116715851285688 - type: nauc_map_at_10_std value: 1.5133118273718202 - type: nauc_map_at_1_diff1 value: 37.2111283590964 - type: nauc_map_at_1_max value: -2.4353460319938214 - type: nauc_map_at_1_std value: -15.5421800776956 - type: nauc_map_at_20_diff1 value: 23.856168514018357 - type: nauc_map_at_20_max value: 16.295502687736594 - type: nauc_map_at_20_std value: 11.581232098120326 - type: nauc_map_at_3_diff1 value: 28.932459374164964 - type: nauc_map_at_3_max value: 2.966743468288197 - type: nauc_map_at_3_std value: -11.45936604324748 - type: nauc_map_at_5_diff1 value: 27.495008182846668 - type: nauc_map_at_5_max value: 5.359215359481454 - type: nauc_map_at_5_std value: -6.8156329786585275 - type: nauc_mrr_at_1000_diff1 value: 48.08328197407485 - type: nauc_mrr_at_1000_max value: 60.59846952601949 - type: nauc_mrr_at_1000_std value: 43.962061628571355 - type: nauc_mrr_at_100_diff1 value: 48.091619837992205 - type: nauc_mrr_at_100_max value: 60.58403009558889 - type: nauc_mrr_at_100_std value: 43.920608005039256 - type: nauc_mrr_at_10_diff1 value: 47.7760340381623 - type: nauc_mrr_at_10_max value: 60.354844414173016 - type: nauc_mrr_at_10_std value: 43.70172456849994 - type: nauc_mrr_at_1_diff1 value: 47.76592013146459 - type: nauc_mrr_at_1_max value: 60.161351547446905 - type: nauc_mrr_at_1_std value: 45.14479835861558 - type: nauc_mrr_at_20_diff1 value: 48.111029683055975 - type: nauc_mrr_at_20_max value: 60.65125474530899 - type: nauc_mrr_at_20_std value: 43.97252337653455 - type: nauc_mrr_at_3_diff1 value: 48.02456728971125 - type: nauc_mrr_at_3_max value: 61.0536434766822 - type: nauc_mrr_at_3_std value: 43.98600406544798 - type: nauc_mrr_at_5_diff1 value: 48.0769203423548 - type: nauc_mrr_at_5_max value: 60.51224838905409 - type: nauc_mrr_at_5_std value: 44.086735223490855 - type: nauc_ndcg_at_1000_diff1 value: 26.972258260969696 - type: nauc_ndcg_at_1000_max value: 39.07712291535265 - type: nauc_ndcg_at_1000_std value: 42.99906516324734 - type: nauc_ndcg_at_100_diff1 value: 27.457567827179965 - type: nauc_ndcg_at_100_max value: 33.6780972757391 - type: nauc_ndcg_at_100_std value: 35.030538873443504 - type: nauc_ndcg_at_10_diff1 value: 27.961005784007526 - type: nauc_ndcg_at_10_max value: 32.37260337007089 - type: nauc_ndcg_at_10_std value: 29.54025020987362 - type: nauc_ndcg_at_1_diff1 value: 40.98672834042982 - type: nauc_ndcg_at_1_max value: 42.22111133372105 - type: nauc_ndcg_at_1_std value: 32.58588259551098 - type: nauc_ndcg_at_20_diff1 value: 28.032781721219465 - type: nauc_ndcg_at_20_max value: 30.235931226123224 - type: nauc_ndcg_at_20_std value: 27.727078871496424 - type: nauc_ndcg_at_3_diff1 value: 27.043379684863964 - type: nauc_ndcg_at_3_max value: 33.846266493808805 - type: nauc_ndcg_at_3_std value: 29.25097330170831 - type: nauc_ndcg_at_5_diff1 value: 26.173665674953778 - type: nauc_ndcg_at_5_max value: 31.866801248453857 - type: nauc_ndcg_at_5_std value: 29.511344973698485 - type: nauc_precision_at_1000_diff1 value: -11.534621093835355 - type: nauc_precision_at_1000_max value: 1.5257994729497457 - type: nauc_precision_at_1000_std value: 18.324343652440273 - type: nauc_precision_at_100_diff1 value: -7.068187494239929 - type: nauc_precision_at_100_max value: 28.19530669275789 - type: nauc_precision_at_100_std value: 49.88617443929458 - type: nauc_precision_at_10_diff1 value: -0.8714541286005777 - type: nauc_precision_at_10_max value: 37.89420224639425 - type: nauc_precision_at_10_std value: 50.46466603644014 - type: nauc_precision_at_1_diff1 value: 47.76592013146459 - type: nauc_precision_at_1_max value: 60.161351547446905 - type: nauc_precision_at_1_std value: 45.14479835861558 - type: nauc_precision_at_20_diff1 value: -3.779786562740603 - type: nauc_precision_at_20_max value: 36.47074070474099 - type: nauc_precision_at_20_std value: 54.30773289639945 - type: nauc_precision_at_3_diff1 value: 6.396118086754352 - type: nauc_precision_at_3_max value: 38.38399305441996 - type: nauc_precision_at_3_std value: 40.621980263373054 - type: nauc_precision_at_5_diff1 value: 1.9493955716927616 - type: nauc_precision_at_5_max value: 35.317401825879124 - type: nauc_precision_at_5_std value: 44.6762917451083 - type: nauc_recall_at_1000_diff1 value: 19.601637935761566 - type: nauc_recall_at_1000_max value: 37.208286935723585 - type: nauc_recall_at_1000_std value: 50.06156635730268 - type: nauc_recall_at_100_diff1 value: 19.704052012417712 - type: nauc_recall_at_100_max value: 25.118207449440316 - type: nauc_recall_at_100_std value: 28.470348650971257 - type: nauc_recall_at_10_diff1 value: 22.28150737631799 - type: nauc_recall_at_10_max value: 7.288980581532567 - type: nauc_recall_at_10_std value: -3.546451794201156 - type: nauc_recall_at_1_diff1 value: 37.2111283590964 - type: nauc_recall_at_1_max value: -2.4353460319938214 - type: nauc_recall_at_1_std value: -15.5421800776956 - type: nauc_recall_at_20_diff1 value: 19.370820899802325 - type: nauc_recall_at_20_max value: 9.933071247277663 - type: nauc_recall_at_20_std value: 4.39256311937651 - type: nauc_recall_at_3_diff1 value: 26.892484725339816 - type: nauc_recall_at_3_max value: 0.43050825398950365 - type: nauc_recall_at_3_std value: -13.949637578688003 - type: nauc_recall_at_5_diff1 value: 24.61429740511302 - type: nauc_recall_at_5_max value: 1.3851731491248795 - type: nauc_recall_at_5_std value: -10.442952525743062 - type: ndcg_at_1 value: 58.375 - type: ndcg_at_10 value: 44.913 - type: ndcg_at_100 value: 51.141000000000005 - type: ndcg_at_1000 value: 58.583 - type: ndcg_at_20 value: 44.739000000000004 - type: ndcg_at_3 value: 49.492999999999995 - type: ndcg_at_5 value: 46.032000000000004 - type: precision_at_1 value: 72.25 - type: precision_at_10 value: 35.8 - type: precision_at_100 value: 11.88 - type: precision_at_1000 value: 2.271 - type: precision_at_20 value: 27.587 - type: precision_at_3 value: 53.333 - type: precision_at_5 value: 43.85 - type: recall_at_1 value: 10.040000000000001 - type: recall_at_10 value: 27.641 - type: recall_at_100 value: 59.323 - type: recall_at_1000 value: 82.45 - type: recall_at_20 value: 36.425999999999995 - type: recall_at_3 value: 17.163999999999998 - type: recall_at_5 value: 20.537 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 87.71 - type: map_at_1 value: 74.997 - type: map_at_10 value: 83.863 - type: map_at_100 value: 84.097 - type: map_at_1000 value: 84.11 - type: map_at_20 value: 84.00800000000001 - type: map_at_3 value: 82.663 - type: map_at_5 value: 83.397 - type: mrr_at_1 value: 80.85808580858085 - type: mrr_at_10 value: 88.30980717119326 - type: mrr_at_100 value: 88.35271179929329 - type: mrr_at_1000 value: 88.35367832660155 - type: mrr_at_20 value: 88.34431812794115 - type: mrr_at_3 value: 87.62876287628755 - type: mrr_at_5 value: 88.09530953095296 - type: nauc_map_at_1000_diff1 value: 53.39696002887149 - type: nauc_map_at_1000_max value: 4.503633193787632 - type: nauc_map_at_1000_std value: -17.923771554452394 - type: nauc_map_at_100_diff1 value: 53.35230583414693 - type: nauc_map_at_100_max value: 4.499076051962274 - type: nauc_map_at_100_std value: -17.894520187108974 - type: nauc_map_at_10_diff1 value: 53.073526382320225 - type: nauc_map_at_10_max value: 4.479877043246145 - type: nauc_map_at_10_std value: -17.967665857736247 - type: nauc_map_at_1_diff1 value: 56.352157590835574 - type: nauc_map_at_1_max value: 0.19453374210215002 - type: nauc_map_at_1_std value: -19.863463121126518 - type: nauc_map_at_20_diff1 value: 53.23777871659784 - type: nauc_map_at_20_max value: 4.499170458285919 - type: nauc_map_at_20_std value: -17.88508465026792 - type: nauc_map_at_3_diff1 value: 52.77048554943106 - type: nauc_map_at_3_max value: 4.370474436302183 - type: nauc_map_at_3_std value: -18.800506437127506 - type: nauc_map_at_5_diff1 value: 52.80751786682275 - type: nauc_map_at_5_max value: 4.725684250345486 - type: nauc_map_at_5_std value: -18.18333199621481 - type: nauc_mrr_at_1000_diff1 value: 69.44986694358198 - type: nauc_mrr_at_1000_max value: 1.9197377977965595 - type: nauc_mrr_at_1000_std value: -28.44958598845696 - type: nauc_mrr_at_100_diff1 value: 69.44784820112805 - type: nauc_mrr_at_100_max value: 1.9209798815421393 - type: nauc_mrr_at_100_std value: -28.443776361740397 - type: nauc_mrr_at_10_diff1 value: 69.46299175839845 - type: nauc_mrr_at_10_max value: 1.9342949544104315 - type: nauc_mrr_at_10_std value: -28.543261517153557 - type: nauc_mrr_at_1_diff1 value: 69.6320130829977 - type: nauc_mrr_at_1_max value: -0.41652824014499396 - type: nauc_mrr_at_1_std value: -27.278661946331777 - type: nauc_mrr_at_20_diff1 value: 69.46182053154487 - type: nauc_mrr_at_20_max value: 1.968816538516823 - type: nauc_mrr_at_20_std value: -28.42438564221838 - type: nauc_mrr_at_3_diff1 value: 69.41791618988957 - type: nauc_mrr_at_3_max value: 2.5552344203065727 - type: nauc_mrr_at_3_std value: -28.985883857774162 - type: nauc_mrr_at_5_diff1 value: 69.56202911646272 - type: nauc_mrr_at_5_max value: 2.3212950829455568 - type: nauc_mrr_at_5_std value: -28.90774884538313 - type: nauc_ndcg_at_1000_diff1 value: 55.597164559861355 - type: nauc_ndcg_at_1000_max value: 5.411812478967703 - type: nauc_ndcg_at_1000_std value: -18.026138512603637 - type: nauc_ndcg_at_100_diff1 value: 54.65654663056547 - type: nauc_ndcg_at_100_max value: 5.409301836384041 - type: nauc_ndcg_at_100_std value: -17.21757483050907 - type: nauc_ndcg_at_10_diff1 value: 53.6402967623474 - type: nauc_ndcg_at_10_max value: 5.443602087159868 - type: nauc_ndcg_at_10_std value: -17.610897617691894 - type: nauc_ndcg_at_1_diff1 value: 69.6320130829977 - type: nauc_ndcg_at_1_max value: -0.41652824014499396 - type: nauc_ndcg_at_1_std value: -27.278661946331777 - type: nauc_ndcg_at_20_diff1 value: 54.075087728016655 - type: nauc_ndcg_at_20_max value: 5.523485107646882 - type: nauc_ndcg_at_20_std value: -17.217510749321324 - type: nauc_ndcg_at_3_diff1 value: 54.32395366091127 - type: nauc_ndcg_at_3_max value: 5.721470909055759 - type: nauc_ndcg_at_3_std value: -19.936142684215888 - type: nauc_ndcg_at_5_diff1 value: 53.59676814516613 - type: nauc_ndcg_at_5_max value: 6.075884170290567 - type: nauc_ndcg_at_5_std value: -18.621998594159223 - type: nauc_precision_at_1000_diff1 value: -7.768874444440682 - type: nauc_precision_at_1000_max value: 3.780393853814977 - type: nauc_precision_at_1000_std value: 3.6423167859356655 - type: nauc_precision_at_100_diff1 value: -9.955190439741383 - type: nauc_precision_at_100_max value: 4.656834354434372 - type: nauc_precision_at_100_std value: 7.7546840304193925 - type: nauc_precision_at_10_diff1 value: -4.870012513513987 - type: nauc_precision_at_10_max value: 7.493058617189292 - type: nauc_precision_at_10_std value: 5.045140352447437 - type: nauc_precision_at_1_diff1 value: 69.6320130829977 - type: nauc_precision_at_1_max value: -0.41652824014499396 - type: nauc_precision_at_1_std value: -27.278661946331777 - type: nauc_precision_at_20_diff1 value: -7.621428543708827 - type: nauc_precision_at_20_max value: 6.237218457534147 - type: nauc_precision_at_20_std value: 6.926602892900919 - type: nauc_precision_at_3_diff1 value: 22.850031290274224 - type: nauc_precision_at_3_max value: 12.26480859006083 - type: nauc_precision_at_3_std value: -11.102834037423511 - type: nauc_precision_at_5_diff1 value: 6.948399960140704 - type: nauc_precision_at_5_max value: 11.855422300238523 - type: nauc_precision_at_5_std value: -1.7249759763793404 - type: nauc_recall_at_1000_diff1 value: 1.8311262484774402 - type: nauc_recall_at_1000_max value: 46.48622605637539 - type: nauc_recall_at_1000_std value: 56.787775760533385 - type: nauc_recall_at_100_diff1 value: 0.9942950606529392 - type: nauc_recall_at_100_max value: 27.235957458980515 - type: nauc_recall_at_100_std value: 44.95567577739882 - type: nauc_recall_at_10_diff1 value: 19.582661080856795 - type: nauc_recall_at_10_max value: 16.641481889884876 - type: nauc_recall_at_10_std value: 8.607868728303846 - type: nauc_recall_at_1_diff1 value: 56.352157590835574 - type: nauc_recall_at_1_max value: 0.19453374210215002 - type: nauc_recall_at_1_std value: -19.863463121126518 - type: nauc_recall_at_20_diff1 value: 14.604652796038309 - type: nauc_recall_at_20_max value: 20.497476775933606 - type: nauc_recall_at_20_std value: 19.922041864561137 - type: nauc_recall_at_3_diff1 value: 36.50267630587044 - type: nauc_recall_at_3_max value: 11.998658379422473 - type: nauc_recall_at_3_std value: -11.529271876757468 - type: nauc_recall_at_5_diff1 value: 29.62480882173487 - type: nauc_recall_at_5_max value: 15.923043185703477 - type: nauc_recall_at_5_std value: -4.586503374141151 - type: ndcg_at_1 value: 80.85799999999999 - type: ndcg_at_10 value: 87.71 - type: ndcg_at_100 value: 88.436 - type: ndcg_at_1000 value: 88.628 - type: ndcg_at_20 value: 88.055 - type: ndcg_at_3 value: 85.885 - type: ndcg_at_5 value: 86.872 - type: precision_at_1 value: 80.85799999999999 - type: precision_at_10 value: 10.612 - type: precision_at_100 value: 1.124 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 5.421 - type: precision_at_3 value: 32.888 - type: precision_at_5 value: 20.438000000000002 - type: recall_at_1 value: 74.997 - type: recall_at_10 value: 95.03399999999999 - type: recall_at_100 value: 97.709 - type: recall_at_1000 value: 98.85000000000001 - type: recall_at_20 value: 96.139 - type: recall_at_3 value: 90.19200000000001 - type: recall_at_5 value: 92.643 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 44.31 - type: map_at_1 value: 22.357 - type: map_at_10 value: 36.213 - type: map_at_100 value: 38.2 - type: map_at_1000 value: 38.376 - type: map_at_20 value: 37.342 - type: map_at_3 value: 31.874999999999996 - type: map_at_5 value: 34.311 - type: mrr_at_1 value: 43.51851851851852 - type: mrr_at_10 value: 52.63858269645305 - type: mrr_at_100 value: 53.44163346917576 - type: mrr_at_1000 value: 53.477833896033076 - type: mrr_at_20 value: 53.19616310817503 - type: mrr_at_3 value: 50.48868312757201 - type: mrr_at_5 value: 51.76183127572014 - type: nauc_map_at_1000_diff1 value: 45.6438286281189 - type: nauc_map_at_1000_max value: 34.733058071954 - type: nauc_map_at_1000_std value: 2.9693183729205175 - type: nauc_map_at_100_diff1 value: 45.580058708621316 - type: nauc_map_at_100_max value: 34.63459152004501 - type: nauc_map_at_100_std value: 2.9657463341457495 - type: nauc_map_at_10_diff1 value: 45.74610683167843 - type: nauc_map_at_10_max value: 33.69260582404236 - type: nauc_map_at_10_std value: 1.3079555058401713 - type: nauc_map_at_1_diff1 value: 50.45513040375976 - type: nauc_map_at_1_max value: 23.00937879674911 - type: nauc_map_at_1_std value: -3.650608899173065 - type: nauc_map_at_20_diff1 value: 45.4437705158748 - type: nauc_map_at_20_max value: 34.254991872952125 - type: nauc_map_at_20_std value: 2.5514888826952937 - type: nauc_map_at_3_diff1 value: 46.72337183861262 - type: nauc_map_at_3_max value: 29.856715342453516 - type: nauc_map_at_3_std value: 0.4662093459562081 - type: nauc_map_at_5_diff1 value: 46.12946314906862 - type: nauc_map_at_5_max value: 31.918948824156956 - type: nauc_map_at_5_std value: 0.8961830930384888 - type: nauc_mrr_at_1000_diff1 value: 54.761767877133835 - type: nauc_mrr_at_1000_max value: 41.2429751198028 - type: nauc_mrr_at_1000_std value: 1.125758225521226 - type: nauc_mrr_at_100_diff1 value: 54.736725431010214 - type: nauc_mrr_at_100_max value: 41.26032598769048 - type: nauc_mrr_at_100_std value: 1.1590074352282507 - type: nauc_mrr_at_10_diff1 value: 54.58931211962367 - type: nauc_mrr_at_10_max value: 41.002477132898704 - type: nauc_mrr_at_10_std value: 0.9330572054778388 - type: nauc_mrr_at_1_diff1 value: 57.40882740466674 - type: nauc_mrr_at_1_max value: 38.84884826788323 - type: nauc_mrr_at_1_std value: -3.203483060048204 - type: nauc_mrr_at_20_diff1 value: 54.68967963259864 - type: nauc_mrr_at_20_max value: 41.16428023244764 - type: nauc_mrr_at_20_std value: 1.030371055956388 - type: nauc_mrr_at_3_diff1 value: 54.83483307102052 - type: nauc_mrr_at_3_max value: 41.36624574367681 - type: nauc_mrr_at_3_std value: 0.8171443328662287 - type: nauc_mrr_at_5_diff1 value: 54.77840183240944 - type: nauc_mrr_at_5_max value: 41.14126255167716 - type: nauc_mrr_at_5_std value: 1.0078226893835742 - type: nauc_ndcg_at_1000_diff1 value: 47.29266369698312 - type: nauc_ndcg_at_1000_max value: 39.44751985651413 - type: nauc_ndcg_at_1000_std value: 6.797153295460685 - type: nauc_ndcg_at_100_diff1 value: 46.44467141410605 - type: nauc_ndcg_at_100_max value: 38.736147865139706 - type: nauc_ndcg_at_100_std value: 7.8455607876168205 - type: nauc_ndcg_at_10_diff1 value: 46.231293929254356 - type: nauc_ndcg_at_10_max value: 36.344822588878465 - type: nauc_ndcg_at_10_std value: 2.954707252781676 - type: nauc_ndcg_at_1_diff1 value: 57.40882740466674 - type: nauc_ndcg_at_1_max value: 38.84884826788323 - type: nauc_ndcg_at_1_std value: -3.203483060048204 - type: nauc_ndcg_at_20_diff1 value: 45.61481858633943 - type: nauc_ndcg_at_20_max value: 37.134975943992984 - type: nauc_ndcg_at_20_std value: 5.471016537693937 - type: nauc_ndcg_at_3_diff1 value: 46.289607080541 - type: nauc_ndcg_at_3_max value: 36.6002518712178 - type: nauc_ndcg_at_3_std value: 2.8035830636103856 - type: nauc_ndcg_at_5_diff1 value: 46.023017692289365 - type: nauc_ndcg_at_5_max value: 35.37774842007503 - type: nauc_ndcg_at_5_std value: 2.343693787074402 - type: nauc_precision_at_1000_diff1 value: -2.2349414355444965 - type: nauc_precision_at_1000_max value: 24.06915691023145 - type: nauc_precision_at_1000_std value: 11.10272918602627 - type: nauc_precision_at_100_diff1 value: 5.3245236203947925 - type: nauc_precision_at_100_max value: 30.74536387742932 - type: nauc_precision_at_100_std value: 16.132786774263852 - type: nauc_precision_at_10_diff1 value: 19.164563691711113 - type: nauc_precision_at_10_max value: 39.93242329216273 - type: nauc_precision_at_10_std value: 9.003480145897925 - type: nauc_precision_at_1_diff1 value: 57.40882740466674 - type: nauc_precision_at_1_max value: 38.84884826788323 - type: nauc_precision_at_1_std value: -3.203483060048204 - type: nauc_precision_at_20_diff1 value: 12.074842721193503 - type: nauc_precision_at_20_max value: 37.71964008379554 - type: nauc_precision_at_20_std value: 14.33007384632019 - type: nauc_precision_at_3_diff1 value: 32.36692314628377 - type: nauc_precision_at_3_max value: 40.97685480524765 - type: nauc_precision_at_3_std value: 7.612618654264095 - type: nauc_precision_at_5_diff1 value: 25.715447152514102 - type: nauc_precision_at_5_max value: 40.17655162305006 - type: nauc_precision_at_5_std value: 7.684804045927936 - type: nauc_recall_at_1000_diff1 value: 31.58046496048429 - type: nauc_recall_at_1000_max value: 45.03299708737332 - type: nauc_recall_at_1000_std value: 42.4101567674877 - type: nauc_recall_at_100_diff1 value: 29.579107132742273 - type: nauc_recall_at_100_max value: 34.51838709909902 - type: nauc_recall_at_100_std value: 29.615184477571425 - type: nauc_recall_at_10_diff1 value: 33.89539333999428 - type: nauc_recall_at_10_max value: 29.79469889376507 - type: nauc_recall_at_10_std value: 5.656944108845222 - type: nauc_recall_at_1_diff1 value: 50.45513040375976 - type: nauc_recall_at_1_max value: 23.00937879674911 - type: nauc_recall_at_1_std value: -3.650608899173065 - type: nauc_recall_at_20_diff1 value: 29.82657270057027 - type: nauc_recall_at_20_max value: 29.575165188582826 - type: nauc_recall_at_20_std value: 13.291496104164665 - type: nauc_recall_at_3_diff1 value: 39.335021830665866 - type: nauc_recall_at_3_max value: 27.826521232033564 - type: nauc_recall_at_3_std value: 3.5549035745056767 - type: nauc_recall_at_5_diff1 value: 36.77078168873872 - type: nauc_recall_at_5_max value: 28.126965952875366 - type: nauc_recall_at_5_std value: 4.172771980837336 - type: ndcg_at_1 value: 43.519000000000005 - type: ndcg_at_10 value: 44.31 - type: ndcg_at_100 value: 51.073 - type: ndcg_at_1000 value: 53.93599999999999 - type: ndcg_at_20 value: 47.24 - type: ndcg_at_3 value: 40.788000000000004 - type: ndcg_at_5 value: 41.845 - type: precision_at_1 value: 43.519000000000005 - type: precision_at_10 value: 12.068 - type: precision_at_100 value: 1.907 - type: precision_at_1000 value: 0.241 - type: precision_at_20 value: 7.245 - type: precision_at_3 value: 27.16 - type: precision_at_5 value: 19.753 - type: recall_at_1 value: 22.357 - type: recall_at_10 value: 51.449999999999996 - type: recall_at_100 value: 75.631 - type: recall_at_1000 value: 92.76299999999999 - type: recall_at_20 value: 60.611000000000004 - type: recall_at_3 value: 37.478 - type: recall_at_5 value: 43.501 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 74.39 - type: map_at_1 value: 40.912 - type: map_at_10 value: 66.271 - type: map_at_100 value: 67.182 - type: map_at_1000 value: 67.232 - type: map_at_20 value: 66.851 - type: map_at_3 value: 62.614999999999995 - type: map_at_5 value: 64.944 - type: mrr_at_1 value: 81.82309250506414 - type: mrr_at_10 value: 87.29049976956776 - type: mrr_at_100 value: 87.41987093320175 - type: mrr_at_1000 value: 87.42293959281248 - type: mrr_at_20 value: 87.37920786832204 - type: mrr_at_3 value: 86.5091154625251 - type: mrr_at_5 value: 87.02025658338928 - type: nauc_map_at_1000_diff1 value: 14.24811650419101 - type: nauc_map_at_1000_max value: 18.110966497777632 - type: nauc_map_at_1000_std value: 9.907051402110287 - type: nauc_map_at_100_diff1 value: 14.215623436165565 - type: nauc_map_at_100_max value: 18.102094143174355 - type: nauc_map_at_100_std value: 9.939264948202457 - type: nauc_map_at_10_diff1 value: 14.035722008459132 - type: nauc_map_at_10_max value: 17.885951740513185 - type: nauc_map_at_10_std value: 9.411718264907183 - type: nauc_map_at_1_diff1 value: 68.7446019536274 - type: nauc_map_at_1_max value: 38.9850245767707 - type: nauc_map_at_1_std value: -2.9883672880704077 - type: nauc_map_at_20_diff1 value: 14.1213686946934 - type: nauc_map_at_20_max value: 18.064372098377415 - type: nauc_map_at_20_std value: 9.852582790929198 - type: nauc_map_at_3_diff1 value: 13.777100223085636 - type: nauc_map_at_3_max value: 15.838268149755525 - type: nauc_map_at_3_std value: 5.540117150150763 - type: nauc_map_at_5_diff1 value: 13.795942259152843 - type: nauc_map_at_5_max value: 17.40522320666275 - type: nauc_map_at_5_std value: 8.185987514408986 - type: nauc_mrr_at_1000_diff1 value: 67.26691261699523 - type: nauc_mrr_at_1000_max value: 41.855537529246156 - type: nauc_mrr_at_1000_std value: -1.749009001510166 - type: nauc_mrr_at_100_diff1 value: 67.26496000519207 - type: nauc_mrr_at_100_max value: 41.85732985393288 - type: nauc_mrr_at_100_std value: -1.746740864244431 - type: nauc_mrr_at_10_diff1 value: 67.23800598864047 - type: nauc_mrr_at_10_max value: 42.00168575657073 - type: nauc_mrr_at_10_std value: -1.6750027423294265 - type: nauc_mrr_at_1_diff1 value: 68.7446019536274 - type: nauc_mrr_at_1_max value: 38.9850245767707 - type: nauc_mrr_at_1_std value: -2.9883672880704077 - type: nauc_mrr_at_20_diff1 value: 67.27187257644147 - type: nauc_mrr_at_20_max value: 41.90365085976258 - type: nauc_mrr_at_20_std value: -1.7343079652982756 - type: nauc_mrr_at_3_diff1 value: 66.90262014812754 - type: nauc_mrr_at_3_max value: 42.059901684946574 - type: nauc_mrr_at_3_std value: -2.2157618208705188 - type: nauc_mrr_at_5_diff1 value: 67.11913383749597 - type: nauc_mrr_at_5_max value: 42.08711029370619 - type: nauc_mrr_at_5_std value: -1.8450842911318477 - type: nauc_ndcg_at_1000_diff1 value: 20.643710362570175 - type: nauc_ndcg_at_1000_max value: 22.771658204329988 - type: nauc_ndcg_at_1000_std value: 12.35171770072505 - type: nauc_ndcg_at_100_diff1 value: 19.65319609161701 - type: nauc_ndcg_at_100_max value: 22.440309398753826 - type: nauc_ndcg_at_100_std value: 13.188395264200578 - type: nauc_ndcg_at_10_diff1 value: 18.73587286025269 - type: nauc_ndcg_at_10_max value: 21.62853392094044 - type: nauc_ndcg_at_10_std value: 11.251476898680195 - type: nauc_ndcg_at_1_diff1 value: 68.7446019536274 - type: nauc_ndcg_at_1_max value: 38.9850245767707 - type: nauc_ndcg_at_1_std value: -2.9883672880704077 - type: nauc_ndcg_at_20_diff1 value: 18.967606659900778 - type: nauc_ndcg_at_20_max value: 22.08851626862601 - type: nauc_ndcg_at_20_std value: 12.564317755232041 - type: nauc_ndcg_at_3_diff1 value: 18.912789874898078 - type: nauc_ndcg_at_3_max value: 19.057969185273805 - type: nauc_ndcg_at_3_std value: 5.177089212342481 - type: nauc_ndcg_at_5_diff1 value: 18.56673002818034 - type: nauc_ndcg_at_5_max value: 20.918938126481997 - type: nauc_ndcg_at_5_std value: 8.825282964233406 - type: nauc_precision_at_1000_diff1 value: -7.56948550032058 - type: nauc_precision_at_1000_max value: 24.515829102888574 - type: nauc_precision_at_1000_std value: 53.204326783714784 - type: nauc_precision_at_100_diff1 value: -4.087348584547688 - type: nauc_precision_at_100_max value: 19.272356560884297 - type: nauc_precision_at_100_std value: 40.66612961724831 - type: nauc_precision_at_10_diff1 value: 1.9661456708988112 - type: nauc_precision_at_10_max value: 17.30230322559426 - type: nauc_precision_at_10_std value: 21.682588021447184 - type: nauc_precision_at_1_diff1 value: 68.7446019536274 - type: nauc_precision_at_1_max value: 38.9850245767707 - type: nauc_precision_at_1_std value: -2.9883672880704077 - type: nauc_precision_at_20_diff1 value: -0.08300041913337095 - type: nauc_precision_at_20_max value: 18.26817742375711 - type: nauc_precision_at_20_std value: 28.466847558903087 - type: nauc_precision_at_3_diff1 value: 6.3291319074207 - type: nauc_precision_at_3_max value: 14.016485266657664 - type: nauc_precision_at_3_std value: 7.688246977218552 - type: nauc_precision_at_5_diff1 value: 4.085426676307135 - type: nauc_precision_at_5_max value: 16.618114705017398 - type: nauc_precision_at_5_std value: 14.696017564745581 - type: nauc_recall_at_1000_diff1 value: -7.569485500320447 - type: nauc_recall_at_1000_max value: 24.515829102888542 - type: nauc_recall_at_1000_std value: 53.204326783714976 - type: nauc_recall_at_100_diff1 value: -4.087348584548104 - type: nauc_recall_at_100_max value: 19.272356560884283 - type: nauc_recall_at_100_std value: 40.66612961724824 - type: nauc_recall_at_10_diff1 value: 1.9661456708988452 - type: nauc_recall_at_10_max value: 17.30230322559433 - type: nauc_recall_at_10_std value: 21.682588021447284 - type: nauc_recall_at_1_diff1 value: 68.7446019536274 - type: nauc_recall_at_1_max value: 38.9850245767707 - type: nauc_recall_at_1_std value: -2.9883672880704077 - type: nauc_recall_at_20_diff1 value: -0.08300041913319532 - type: nauc_recall_at_20_max value: 18.26817742375722 - type: nauc_recall_at_20_std value: 28.466847558903225 - type: nauc_recall_at_3_diff1 value: 6.329131907420758 - type: nauc_recall_at_3_max value: 14.016485266657646 - type: nauc_recall_at_3_std value: 7.688246977218522 - type: nauc_recall_at_5_diff1 value: 4.085426676307129 - type: nauc_recall_at_5_max value: 16.618114705017422 - type: nauc_recall_at_5_std value: 14.696017564745706 - type: ndcg_at_1 value: 81.82300000000001 - type: ndcg_at_10 value: 74.39 - type: ndcg_at_100 value: 77.322 - type: ndcg_at_1000 value: 78.236 - type: ndcg_at_20 value: 75.762 - type: ndcg_at_3 value: 69.40899999999999 - type: ndcg_at_5 value: 72.25 - type: precision_at_1 value: 81.82300000000001 - type: precision_at_10 value: 15.614 - type: precision_at_100 value: 1.786 - type: precision_at_1000 value: 0.191 - type: precision_at_20 value: 8.246 - type: precision_at_3 value: 44.754 - type: precision_at_5 value: 29.091 - type: recall_at_1 value: 40.912 - type: recall_at_10 value: 78.069 - type: recall_at_100 value: 89.318 - type: recall_at_1000 value: 95.321 - type: recall_at_20 value: 82.458 - type: recall_at_3 value: 67.13 - type: recall_at_5 value: 72.72800000000001 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 43.424 - type: map_at_1 value: 23.465 - type: map_at_10 value: 36.298 - type: map_at_100 value: 37.443 - type: map_at_1000 value: 37.488 - type: map_at_20 value: 37.004 - type: map_at_3 value: 32.263999999999996 - type: map_at_5 value: 34.711 - type: mrr_at_1 value: 24.140401146131804 - type: mrr_at_10 value: 36.932812571064765 - type: mrr_at_100 value: 38.01903983112057 - type: mrr_at_1000 value: 38.05718350151866 - type: mrr_at_20 value: 37.611261744377515 - type: mrr_at_3 value: 32.99665711556819 - type: mrr_at_5 value: 35.39135625596943 - type: nauc_map_at_1000_diff1 value: 35.40886885986257 - type: nauc_map_at_1000_max value: 3.7545316663703887 - type: nauc_map_at_1000_std value: -18.690821328480613 - type: nauc_map_at_100_diff1 value: 35.3961973576196 - type: nauc_map_at_100_max value: 3.749698912517426 - type: nauc_map_at_100_std value: -18.662215333547493 - type: nauc_map_at_10_diff1 value: 35.40483644435198 - type: nauc_map_at_10_max value: 3.641144738920141 - type: nauc_map_at_10_std value: -19.363440247651454 - type: nauc_map_at_1_diff1 value: 38.67100652687116 - type: nauc_map_at_1_max value: 4.364047242961097 - type: nauc_map_at_1_std value: -16.891222677996463 - type: nauc_map_at_20_diff1 value: 35.37794971137569 - type: nauc_map_at_20_max value: 3.676177228945729 - type: nauc_map_at_20_std value: -18.94091682648655 - type: nauc_map_at_3_diff1 value: 35.31333315150583 - type: nauc_map_at_3_max value: 3.4965623304246685 - type: nauc_map_at_3_std value: -19.368643397803723 - type: nauc_map_at_5_diff1 value: 35.53254707943681 - type: nauc_map_at_5_max value: 3.5128620630619416 - type: nauc_map_at_5_std value: -19.744232886674588 - type: nauc_mrr_at_1000_diff1 value: 35.279210596228076 - type: nauc_mrr_at_1000_max value: 3.9444315381088377 - type: nauc_mrr_at_1000_std value: -18.37391634884856 - type: nauc_mrr_at_100_diff1 value: 35.26618706765156 - type: nauc_mrr_at_100_max value: 3.943483898925299 - type: nauc_mrr_at_100_std value: -18.343118018089992 - type: nauc_mrr_at_10_diff1 value: 35.267510332963596 - type: nauc_mrr_at_10_max value: 3.8779768606518994 - type: nauc_mrr_at_10_std value: -18.980928940857964 - type: nauc_mrr_at_1_diff1 value: 38.436123183016285 - type: nauc_mrr_at_1_max value: 4.4535003055283005 - type: nauc_mrr_at_1_std value: -16.776210956854694 - type: nauc_mrr_at_20_diff1 value: 35.24980513343164 - type: nauc_mrr_at_20_max value: 3.89689472809906 - type: nauc_mrr_at_20_std value: -18.58360677506833 - type: nauc_mrr_at_3_diff1 value: 35.04459075834143 - type: nauc_mrr_at_3_max value: 3.6105545408733155 - type: nauc_mrr_at_3_std value: -19.190268365738365 - type: nauc_mrr_at_5_diff1 value: 35.34869407823518 - type: nauc_mrr_at_5_max value: 3.701060853898909 - type: nauc_mrr_at_5_std value: -19.383326153533897 - type: nauc_ndcg_at_1000_diff1 value: 34.75887431598213 - type: nauc_ndcg_at_1000_max value: 4.312390853255876 - type: nauc_ndcg_at_1000_std value: -17.18071319250873 - type: nauc_ndcg_at_100_diff1 value: 34.394460418078715 - type: nauc_ndcg_at_100_max value: 4.295886307837694 - type: nauc_ndcg_at_100_std value: -16.033008780500968 - type: nauc_ndcg_at_10_diff1 value: 34.50644853438419 - type: nauc_ndcg_at_10_max value: 3.6626658735259 - type: nauc_ndcg_at_10_std value: -19.56250960905403 - type: nauc_ndcg_at_1_diff1 value: 38.436123183016285 - type: nauc_ndcg_at_1_max value: 4.4535003055283005 - type: nauc_ndcg_at_1_std value: -16.776210956854694 - type: nauc_ndcg_at_20_diff1 value: 34.40010964814374 - type: nauc_ndcg_at_20_max value: 3.7971985329744244 - type: nauc_ndcg_at_20_std value: -18.010955476860154 - type: nauc_ndcg_at_3_diff1 value: 34.439343067144165 - type: nauc_ndcg_at_3_max value: 3.2949710479214107 - type: nauc_ndcg_at_3_std value: -20.002605242207924 - type: nauc_ndcg_at_5_diff1 value: 34.83349389928372 - type: nauc_ndcg_at_5_max value: 3.3298912787593062 - type: nauc_ndcg_at_5_std value: -20.53735443323493 - type: nauc_precision_at_1000_diff1 value: -4.016898635199342 - type: nauc_precision_at_1000_max value: 12.934875539589253 - type: nauc_precision_at_1000_std value: 13.11391640313066 - type: nauc_precision_at_100_diff1 value: 10.315247928476873 - type: nauc_precision_at_100_max value: 11.268415109153752 - type: nauc_precision_at_100_std value: 17.950480541657335 - type: nauc_precision_at_10_diff1 value: 28.209276901989895 - type: nauc_precision_at_10_max value: 3.965811186403266 - type: nauc_precision_at_10_std value: -18.501584332901512 - type: nauc_precision_at_1_diff1 value: 38.436123183016285 - type: nauc_precision_at_1_max value: 4.4535003055283005 - type: nauc_precision_at_1_std value: -16.776210956854694 - type: nauc_precision_at_20_diff1 value: 24.64074510458261 - type: nauc_precision_at_20_max value: 4.971859475494997 - type: nauc_precision_at_20_std value: -9.718333720619587 - type: nauc_precision_at_3_diff1 value: 31.59386906580704 - type: nauc_precision_at_3_max value: 2.911339196352057 - type: nauc_precision_at_3_std value: -21.71784008123467 - type: nauc_precision_at_5_diff1 value: 31.35251325266384 - type: nauc_precision_at_5_max value: 2.894822904862219 - type: nauc_precision_at_5_std value: -22.488895902892384 - type: nauc_recall_at_1000_diff1 value: 22.885714431265185 - type: nauc_recall_at_1000_max value: 43.71541809761202 - type: nauc_recall_at_1000_std value: 66.29489415927435 - type: nauc_recall_at_100_diff1 value: 24.238272655435644 - type: nauc_recall_at_100_max value: 11.174788762479146 - type: nauc_recall_at_100_std value: 23.457729735029535 - type: nauc_recall_at_10_diff1 value: 31.27901055282893 - type: nauc_recall_at_10_max value: 3.474737924419516 - type: nauc_recall_at_10_std value: -19.881636172962423 - type: nauc_recall_at_1_diff1 value: 38.67100652687116 - type: nauc_recall_at_1_max value: 4.364047242961097 - type: nauc_recall_at_1_std value: -16.891222677996463 - type: nauc_recall_at_20_diff1 value: 30.05262129752705 - type: nauc_recall_at_20_max value: 4.081153446892682 - type: nauc_recall_at_20_std value: -12.131712173988694 - type: nauc_recall_at_3_diff1 value: 32.04675036130594 - type: nauc_recall_at_3_max value: 2.6288471269218605 - type: nauc_recall_at_3_std value: -21.65823334377263 - type: nauc_recall_at_5_diff1 value: 32.74421926624343 - type: nauc_recall_at_5_max value: 2.566696543622508 - type: nauc_recall_at_5_std value: -22.83492123820867 - type: ndcg_at_1 value: 24.14 - type: ndcg_at_10 value: 43.424 - type: ndcg_at_100 value: 48.893 - type: ndcg_at_1000 value: 49.958999999999996 - type: ndcg_at_20 value: 45.928999999999995 - type: ndcg_at_3 value: 35.32 - type: ndcg_at_5 value: 39.669 - type: precision_at_1 value: 24.14 - type: precision_at_10 value: 6.824 - type: precision_at_100 value: 0.955 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 3.934 - type: precision_at_3 value: 15.029 - type: precision_at_5 value: 11.215 - type: recall_at_1 value: 23.465 - type: recall_at_10 value: 65.269 - type: recall_at_100 value: 90.437 - type: recall_at_1000 value: 98.468 - type: recall_at_20 value: 74.984 - type: recall_at_3 value: 43.434 - type: recall_at_5 value: 53.883 - task: type: Retrieval dataset: name: MTEB NFCorpus (default) type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: main_score value: 38.46 - type: map_at_1 value: 6.691999999999999 - type: map_at_10 value: 15.031 - type: map_at_100 value: 19.084 - type: map_at_1000 value: 20.596 - type: map_at_20 value: 16.744 - type: map_at_3 value: 11.213 - type: map_at_5 value: 13.108 - type: mrr_at_1 value: 47.987616099071204 - type: mrr_at_10 value: 57.93282225170769 - type: mrr_at_100 value: 58.446489234491075 - type: mrr_at_1000 value: 58.483830448457105 - type: mrr_at_20 value: 58.25959398965227 - type: mrr_at_3 value: 56.14035087719299 - type: mrr_at_5 value: 57.270381836945305 - type: nauc_map_at_1000_diff1 value: 25.45538063803242 - type: nauc_map_at_1000_max value: 30.41883184898415 - type: nauc_map_at_1000_std value: 12.781416517345395 - type: nauc_map_at_100_diff1 value: 26.894132167352875 - type: nauc_map_at_100_max value: 29.432030037078327 - type: nauc_map_at_100_std value: 9.512326529846831 - type: nauc_map_at_10_diff1 value: 31.400540210306925 - type: nauc_map_at_10_max value: 23.480874068638062 - type: nauc_map_at_10_std value: -1.5692010785458146 - type: nauc_map_at_1_diff1 value: 37.67265128941572 - type: nauc_map_at_1_max value: 9.721787432990308 - type: nauc_map_at_1_std value: -14.943711588554425 - type: nauc_map_at_20_diff1 value: 28.496096959455752 - type: nauc_map_at_20_max value: 25.984790070209524 - type: nauc_map_at_20_std value: 2.5864942962273347 - type: nauc_map_at_3_diff1 value: 35.30544649984941 - type: nauc_map_at_3_max value: 15.43177689654808 - type: nauc_map_at_3_std value: -10.620597059323307 - type: nauc_map_at_5_diff1 value: 33.973890759901785 - type: nauc_map_at_5_max value: 19.177026450105227 - type: nauc_map_at_5_std value: -7.633681183061802 - type: nauc_mrr_at_1000_diff1 value: 32.65965662704218 - type: nauc_mrr_at_1000_max value: 50.13980071961068 - type: nauc_mrr_at_1000_std value: 31.441899652315946 - type: nauc_mrr_at_100_diff1 value: 32.66276749948812 - type: nauc_mrr_at_100_max value: 50.18284893175743 - type: nauc_mrr_at_100_std value: 31.489621001899128 - type: nauc_mrr_at_10_diff1 value: 32.83196328506318 - type: nauc_mrr_at_10_max value: 49.68604447954204 - type: nauc_mrr_at_10_std value: 30.99627862267571 - type: nauc_mrr_at_1_diff1 value: 32.91457933159273 - type: nauc_mrr_at_1_max value: 44.136488326811495 - type: nauc_mrr_at_1_std value: 27.01828153067843 - type: nauc_mrr_at_20_diff1 value: 32.671176033804585 - type: nauc_mrr_at_20_max value: 50.14874441502247 - type: nauc_mrr_at_20_std value: 31.38947894696264 - type: nauc_mrr_at_3_diff1 value: 32.47024817153408 - type: nauc_mrr_at_3_max value: 49.56779159573397 - type: nauc_mrr_at_3_std value: 29.766791025768907 - type: nauc_mrr_at_5_diff1 value: 32.26549727908872 - type: nauc_mrr_at_5_max value: 49.87579065461728 - type: nauc_mrr_at_5_std value: 30.729925282365006 - type: nauc_ndcg_at_1000_diff1 value: 25.380017677098444 - type: nauc_ndcg_at_1000_max value: 47.388319204148296 - type: nauc_ndcg_at_1000_std value: 33.45725980667476 - type: nauc_ndcg_at_100_diff1 value: 25.498473185306114 - type: nauc_ndcg_at_100_max value: 41.76551239218656 - type: nauc_ndcg_at_100_std value: 26.62218020732075 - type: nauc_ndcg_at_10_diff1 value: 23.01011018145724 - type: nauc_ndcg_at_10_max value: 40.630043774002516 - type: nauc_ndcg_at_10_std value: 25.332235779556477 - type: nauc_ndcg_at_1_diff1 value: 34.72650579565117 - type: nauc_ndcg_at_1_max value: 42.493354546505095 - type: nauc_ndcg_at_1_std value: 24.81873708593652 - type: nauc_ndcg_at_20_diff1 value: 21.434037902736367 - type: nauc_ndcg_at_20_max value: 39.28549854342903 - type: nauc_ndcg_at_20_std value: 24.69082952792539 - type: nauc_ndcg_at_3_diff1 value: 26.362842783124435 - type: nauc_ndcg_at_3_max value: 41.96118988366622 - type: nauc_ndcg_at_3_std value: 22.80018051989143 - type: nauc_ndcg_at_5_diff1 value: 24.972257549293893 - type: nauc_ndcg_at_5_max value: 41.9748170904006 - type: nauc_ndcg_at_5_std value: 23.247821449868823 - type: nauc_precision_at_1000_diff1 value: -16.687533537724846 - type: nauc_precision_at_1000_max value: 7.116174512559039 - type: nauc_precision_at_1000_std value: 29.196682956642796 - type: nauc_precision_at_100_diff1 value: -11.171448249723401 - type: nauc_precision_at_100_max value: 21.351578007740873 - type: nauc_precision_at_100_std value: 40.49880548725148 - type: nauc_precision_at_10_diff1 value: 2.323360757559483 - type: nauc_precision_at_10_max value: 38.65445063158918 - type: nauc_precision_at_10_std value: 38.16210987455392 - type: nauc_precision_at_1_diff1 value: 33.755057976733646 - type: nauc_precision_at_1_max value: 44.40288932251219 - type: nauc_precision_at_1_std value: 27.62174135974081 - type: nauc_precision_at_20_diff1 value: -5.441798722378143 - type: nauc_precision_at_20_max value: 32.058115623251524 - type: nauc_precision_at_20_std value: 38.45241421004329 - type: nauc_precision_at_3_diff1 value: 15.90762087077913 - type: nauc_precision_at_3_max value: 42.5470181640169 - type: nauc_precision_at_3_std value: 28.009885719096335 - type: nauc_precision_at_5_diff1 value: 10.656403807359169 - type: nauc_precision_at_5_max value: 42.247548871978196 - type: nauc_precision_at_5_std value: 31.649386083205755 - type: nauc_recall_at_1000_diff1 value: 10.247070240617905 - type: nauc_recall_at_1000_max value: 24.114253665304446 - type: nauc_recall_at_1000_std value: 24.02339705705984 - type: nauc_recall_at_100_diff1 value: 22.561118338324018 - type: nauc_recall_at_100_max value: 30.121592726044216 - type: nauc_recall_at_100_std value: 19.67151227058734 - type: nauc_recall_at_10_diff1 value: 29.695315535851822 - type: nauc_recall_at_10_max value: 22.074158118976385 - type: nauc_recall_at_10_std value: 0.25798913185589023 - type: nauc_recall_at_1_diff1 value: 37.67265128941572 - type: nauc_recall_at_1_max value: 9.721787432990308 - type: nauc_recall_at_1_std value: -14.943711588554425 - type: nauc_recall_at_20_diff1 value: 24.996508456752107 - type: nauc_recall_at_20_max value: 24.705011249445565 - type: nauc_recall_at_20_std value: 5.780743155316983 - type: nauc_recall_at_3_diff1 value: 34.50424002323006 - type: nauc_recall_at_3_max value: 15.26904245660564 - type: nauc_recall_at_3_std value: -10.53885028046522 - type: nauc_recall_at_5_diff1 value: 31.421218531891775 - type: nauc_recall_at_5_max value: 18.218174723292112 - type: nauc_recall_at_5_std value: -6.686352082168663 - type: ndcg_at_1 value: 46.129999999999995 - type: ndcg_at_10 value: 38.46 - type: ndcg_at_100 value: 35.382999999999996 - type: ndcg_at_1000 value: 43.902 - type: ndcg_at_20 value: 36.027 - type: ndcg_at_3 value: 43.961 - type: ndcg_at_5 value: 42.077 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 28.451999999999998 - type: precision_at_100 value: 8.988 - type: precision_at_1000 value: 2.1590000000000003 - type: precision_at_20 value: 21.037 - type: precision_at_3 value: 41.692 - type: precision_at_5 value: 36.842000000000006 - type: recall_at_1 value: 6.691999999999999 - type: recall_at_10 value: 18.871 - type: recall_at_100 value: 34.736 - type: recall_at_1000 value: 66.766 - type: recall_at_20 value: 22.827 - type: recall_at_3 value: 12.171999999999999 - type: recall_at_5 value: 15.356 - task: type: Retrieval dataset: name: MTEB NQ (default) type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: main_score value: 53.198 - type: map_at_1 value: 32.607 - type: map_at_10 value: 46.336 - type: map_at_100 value: 47.342 - type: map_at_1000 value: 47.38 - type: map_at_20 value: 46.98 - type: map_at_3 value: 42.742999999999995 - type: map_at_5 value: 44.812000000000005 - type: mrr_at_1 value: 36.29779837775203 - type: mrr_at_10 value: 48.97846199120814 - type: mrr_at_100 value: 49.76642951440836 - type: mrr_at_1000 value: 49.791712798430915 - type: mrr_at_20 value: 49.50161486261044 - type: mrr_at_3 value: 45.9974893781382 - type: mrr_at_5 value: 47.72981846272691 - type: nauc_map_at_1000_diff1 value: 33.91460431887845 - type: nauc_map_at_1000_max value: 29.481346370314647 - type: nauc_map_at_1000_std value: -1.839654367236494 - type: nauc_map_at_100_diff1 value: 33.90730996452593 - type: nauc_map_at_100_max value: 29.493731966506363 - type: nauc_map_at_100_std value: -1.8077641558146142 - type: nauc_map_at_10_diff1 value: 33.88718827422635 - type: nauc_map_at_10_max value: 29.376119326260692 - type: nauc_map_at_10_std value: -2.3710722516805514 - type: nauc_map_at_1_diff1 value: 39.09838265600818 - type: nauc_map_at_1_max value: 25.229877730978384 - type: nauc_map_at_1_std value: -6.549159067747068 - type: nauc_map_at_20_diff1 value: 33.93384992631349 - type: nauc_map_at_20_max value: 29.497549953859174 - type: nauc_map_at_20_std value: -2.017101496300422 - type: nauc_map_at_3_diff1 value: 34.289078161287534 - type: nauc_map_at_3_max value: 28.220233771254193 - type: nauc_map_at_3_std value: -4.444704784028031 - type: nauc_map_at_5_diff1 value: 34.185625280462006 - type: nauc_map_at_5_max value: 29.068279072428393 - type: nauc_map_at_5_std value: -3.271599611900801 - type: nauc_mrr_at_1000_diff1 value: 34.26553814237791 - type: nauc_mrr_at_1000_max value: 29.30438632424214 - type: nauc_mrr_at_1000_std value: -1.1362527466161338 - type: nauc_mrr_at_100_diff1 value: 34.25608823758783 - type: nauc_mrr_at_100_max value: 29.320433380500592 - type: nauc_mrr_at_100_std value: -1.0988881991499264 - type: nauc_mrr_at_10_diff1 value: 34.13246218869096 - type: nauc_mrr_at_10_max value: 29.28686516884 - type: nauc_mrr_at_10_std value: -1.4086490508202227 - type: nauc_mrr_at_1_diff1 value: 39.09227619986854 - type: nauc_mrr_at_1_max value: 26.09297738292023 - type: nauc_mrr_at_1_std value: -5.092164835965795 - type: nauc_mrr_at_20_diff1 value: 34.243058510524534 - type: nauc_mrr_at_20_max value: 29.35591880008264 - type: nauc_mrr_at_20_std value: -1.1807627466375372 - type: nauc_mrr_at_3_diff1 value: 34.55473991903778 - type: nauc_mrr_at_3_max value: 28.92012731680968 - type: nauc_mrr_at_3_std value: -2.7868603622868546 - type: nauc_mrr_at_5_diff1 value: 34.33939912073187 - type: nauc_mrr_at_5_max value: 29.142336826251807 - type: nauc_mrr_at_5_std value: -2.0207310060627695 - type: nauc_ndcg_at_1000_diff1 value: 32.20023215522245 - type: nauc_ndcg_at_1000_max value: 31.017256251715363 - type: nauc_ndcg_at_1000_std value: 1.8268849690313167 - type: nauc_ndcg_at_100_diff1 value: 31.87286187255234 - type: nauc_ndcg_at_100_max value: 31.43335992135076 - type: nauc_ndcg_at_100_std value: 2.960577759737203 - type: nauc_ndcg_at_10_diff1 value: 31.900906049371603 - type: nauc_ndcg_at_10_max value: 30.957221009099438 - type: nauc_ndcg_at_10_std value: 0.3823847406109789 - type: nauc_ndcg_at_1_diff1 value: 38.918825906375595 - type: nauc_ndcg_at_1_max value: 26.198075448658003 - type: nauc_ndcg_at_1_std value: -5.0079843241467135 - type: nauc_ndcg_at_20_diff1 value: 32.07246538138254 - type: nauc_ndcg_at_20_max value: 31.39047205003746 - type: nauc_ndcg_at_20_std value: 1.5919700319236705 - type: nauc_ndcg_at_3_diff1 value: 32.989630631328005 - type: nauc_ndcg_at_3_max value: 29.172950928321246 - type: nauc_ndcg_at_3_std value: -3.4954002673299254 - type: nauc_ndcg_at_5_diff1 value: 32.65642960716871 - type: nauc_ndcg_at_5_max value: 30.26533505259028 - type: nauc_ndcg_at_5_std value: -1.7088178605185036 - type: nauc_precision_at_1000_diff1 value: -11.087690242091627 - type: nauc_precision_at_1000_max value: 9.476912605478468 - type: nauc_precision_at_1000_std value: 23.91500045012386 - type: nauc_precision_at_100_diff1 value: -6.098488621066059 - type: nauc_precision_at_100_max value: 18.137258185156288 - type: nauc_precision_at_100_std value: 30.736330623699548 - type: nauc_precision_at_10_diff1 value: 10.282694427889481 - type: nauc_precision_at_10_max value: 27.70132432991741 - type: nauc_precision_at_10_std value: 15.624341991861964 - type: nauc_precision_at_1_diff1 value: 38.918825906375595 - type: nauc_precision_at_1_max value: 26.198075448658003 - type: nauc_precision_at_1_std value: -5.0079843241467135 - type: nauc_precision_at_20_diff1 value: 5.261415949436139 - type: nauc_precision_at_20_max value: 25.63995988919354 - type: nauc_precision_at_20_std value: 21.993692626668647 - type: nauc_precision_at_3_diff1 value: 22.246985950192087 - type: nauc_precision_at_3_max value: 29.77649372894963 - type: nauc_precision_at_3_std value: 3.1516217436827247 - type: nauc_precision_at_5_diff1 value: 17.913139150555317 - type: nauc_precision_at_5_max value: 29.96502648982162 - type: nauc_precision_at_5_std value: 8.697283141480076 - type: nauc_recall_at_1000_diff1 value: -1.2184853689228585 - type: nauc_recall_at_1000_max value: 52.17487324664823 - type: nauc_recall_at_1000_std value: 64.07295248015558 - type: nauc_recall_at_100_diff1 value: 10.974836440023065 - type: nauc_recall_at_100_max value: 46.841875007684955 - type: nauc_recall_at_100_std value: 49.93909956898119 - type: nauc_recall_at_10_diff1 value: 22.852319787640273 - type: nauc_recall_at_10_max value: 35.26743699245417 - type: nauc_recall_at_10_std value: 9.559134493514295 - type: nauc_recall_at_1_diff1 value: 39.09838265600818 - type: nauc_recall_at_1_max value: 25.229877730978384 - type: nauc_recall_at_1_std value: -6.549159067747068 - type: nauc_recall_at_20_diff1 value: 21.806639245854072 - type: nauc_recall_at_20_max value: 38.85234681712911 - type: nauc_recall_at_20_std value: 18.028973898137785 - type: nauc_recall_at_3_diff1 value: 28.21585308759027 - type: nauc_recall_at_3_max value: 30.022855080903238 - type: nauc_recall_at_3_std value: -2.537650849906056 - type: nauc_recall_at_5_diff1 value: 26.690456578968956 - type: nauc_recall_at_5_max value: 32.35161371206257 - type: nauc_recall_at_5_std value: 1.491148001707399 - type: ndcg_at_1 value: 36.356 - type: ndcg_at_10 value: 53.198 - type: ndcg_at_100 value: 57.471000000000004 - type: ndcg_at_1000 value: 58.336 - type: ndcg_at_20 value: 55.272 - type: ndcg_at_3 value: 46.457 - type: ndcg_at_5 value: 49.864000000000004 - type: precision_at_1 value: 36.356 - type: precision_at_10 value: 8.462 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.117 - type: precision_at_20 value: 4.718 - type: precision_at_3 value: 20.829 - type: precision_at_5 value: 14.472999999999999 - type: recall_at_1 value: 32.607 - type: recall_at_10 value: 71.34 - type: recall_at_100 value: 89.813 - type: recall_at_1000 value: 96.258 - type: recall_at_20 value: 78.947 - type: recall_at_3 value: 53.867 - type: recall_at_5 value: 61.678999999999995 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval (default) type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 89.13799999999999 - type: map_at_1 value: 71.485 - type: map_at_10 value: 85.512 - type: map_at_100 value: 86.127 - type: map_at_1000 value: 86.143 - type: map_at_20 value: 85.918 - type: map_at_3 value: 82.518 - type: map_at_5 value: 84.462 - type: mrr_at_1 value: 82.19 - type: mrr_at_10 value: 88.30390476190458 - type: mrr_at_100 value: 88.38530272056029 - type: mrr_at_1000 value: 88.38582590330029 - type: mrr_at_20 value: 88.36585107225912 - type: mrr_at_3 value: 87.37166666666646 - type: mrr_at_5 value: 88.02916666666637 - type: nauc_map_at_1000_diff1 value: 77.14127058873906 - type: nauc_map_at_1000_max value: 37.07020332987809 - type: nauc_map_at_1000_std value: -41.39285604622159 - type: nauc_map_at_100_diff1 value: 77.146705577152 - type: nauc_map_at_100_max value: 37.0478092669605 - type: nauc_map_at_100_std value: -41.43644911571662 - type: nauc_map_at_10_diff1 value: 77.39700258986613 - type: nauc_map_at_10_max value: 36.60525240868321 - type: nauc_map_at_10_std value: -43.32058343963304 - type: nauc_map_at_1_diff1 value: 80.61601163680635 - type: nauc_map_at_1_max value: 28.32145232054677 - type: nauc_map_at_1_std value: -38.747446777471865 - type: nauc_map_at_20_diff1 value: 77.27415053997544 - type: nauc_map_at_20_max value: 36.953990878045616 - type: nauc_map_at_20_std value: -42.186297640272734 - type: nauc_map_at_3_diff1 value: 77.8687866507408 - type: nauc_map_at_3_max value: 34.318846315901354 - type: nauc_map_at_3_std value: -44.97819988215831 - type: nauc_map_at_5_diff1 value: 77.70815954845212 - type: nauc_map_at_5_max value: 35.81594038094498 - type: nauc_map_at_5_std value: -44.64717678480167 - type: nauc_mrr_at_1000_diff1 value: 77.83938932383788 - type: nauc_mrr_at_1000_max value: 38.57621649349935 - type: nauc_mrr_at_1000_std value: -38.215651368579636 - type: nauc_mrr_at_100_diff1 value: 77.83918148237348 - type: nauc_mrr_at_100_max value: 38.57665994393371 - type: nauc_mrr_at_100_std value: -38.21580776589564 - type: nauc_mrr_at_10_diff1 value: 77.83326141939659 - type: nauc_mrr_at_10_max value: 38.68551607921588 - type: nauc_mrr_at_10_std value: -38.34964362497516 - type: nauc_mrr_at_1_diff1 value: 78.74091199041655 - type: nauc_mrr_at_1_max value: 37.91339911718472 - type: nauc_mrr_at_1_std value: -36.583169782065646 - type: nauc_mrr_at_20_diff1 value: 77.83411615489642 - type: nauc_mrr_at_20_max value: 38.598261466324175 - type: nauc_mrr_at_20_std value: -38.22165323901356 - type: nauc_mrr_at_3_diff1 value: 77.53593930971923 - type: nauc_mrr_at_3_max value: 38.45158442711878 - type: nauc_mrr_at_3_std value: -38.43723348829769 - type: nauc_mrr_at_5_diff1 value: 77.85518785379057 - type: nauc_mrr_at_5_max value: 38.71852398774513 - type: nauc_mrr_at_5_std value: -38.566709948994756 - type: nauc_ndcg_at_1000_diff1 value: 77.01941362274067 - type: nauc_ndcg_at_1000_max value: 38.09358006245777 - type: nauc_ndcg_at_1000_std value: -39.52541151204458 - type: nauc_ndcg_at_100_diff1 value: 77.02561724090103 - type: nauc_ndcg_at_100_max value: 38.033320547977226 - type: nauc_ndcg_at_100_std value: -39.63973255230324 - type: nauc_ndcg_at_10_diff1 value: 77.05964728055142 - type: nauc_ndcg_at_10_max value: 37.80129817212595 - type: nauc_ndcg_at_10_std value: -42.54816546011326 - type: nauc_ndcg_at_1_diff1 value: 78.77845945466963 - type: nauc_ndcg_at_1_max value: 37.84612324740429 - type: nauc_ndcg_at_1_std value: -36.71738409409477 - type: nauc_ndcg_at_20_diff1 value: 77.16814661530721 - type: nauc_ndcg_at_20_max value: 37.96391993778972 - type: nauc_ndcg_at_20_std value: -41.15808827713781 - type: nauc_ndcg_at_3_diff1 value: 76.5911593455311 - type: nauc_ndcg_at_3_max value: 36.69307861212362 - type: nauc_ndcg_at_3_std value: -42.16340987184985 - type: nauc_ndcg_at_5_diff1 value: 77.13108001810929 - type: nauc_ndcg_at_5_max value: 37.42319979649052 - type: nauc_ndcg_at_5_std value: -43.1666096222395 - type: nauc_precision_at_1000_diff1 value: -44.92839077477494 - type: nauc_precision_at_1000_max value: -6.829305447011505 - type: nauc_precision_at_1000_std value: 37.621893044496204 - type: nauc_precision_at_100_diff1 value: -44.715644770899694 - type: nauc_precision_at_100_max value: -7.014684130105175 - type: nauc_precision_at_100_std value: 36.899075337092 - type: nauc_precision_at_10_diff1 value: -39.82695960828702 - type: nauc_precision_at_10_max value: -3.0996998082393574 - type: nauc_precision_at_10_std value: 26.28513177686431 - type: nauc_precision_at_1_diff1 value: 78.77845945466963 - type: nauc_precision_at_1_max value: 37.84612324740429 - type: nauc_precision_at_1_std value: -36.71738409409477 - type: nauc_precision_at_20_diff1 value: -42.635174086528735 - type: nauc_precision_at_20_max value: -5.120853975578619 - type: nauc_precision_at_20_std value: 31.94869513052242 - type: nauc_precision_at_3_diff1 value: -19.63577681050235 - type: nauc_precision_at_3_max value: 6.557738495245322 - type: nauc_precision_at_3_std value: 7.217415336210434 - type: nauc_precision_at_5_diff1 value: -32.31744645342921 - type: nauc_precision_at_5_max value: 0.9631069133758052 - type: nauc_precision_at_5_std value: 17.562341398900084 - type: nauc_recall_at_1000_diff1 value: 55.58366948737184 - type: nauc_recall_at_1000_max value: -30.132455579296057 - type: nauc_recall_at_1000_std value: 20.85380266950739 - type: nauc_recall_at_100_diff1 value: 70.62105341185271 - type: nauc_recall_at_100_max value: 35.42642955425688 - type: nauc_recall_at_100_std value: -32.29854265473101 - type: nauc_recall_at_10_diff1 value: 73.39778432413546 - type: nauc_recall_at_10_max value: 36.54451264026962 - type: nauc_recall_at_10_std value: -60.601885579868465 - type: nauc_recall_at_1_diff1 value: 80.61601163680635 - type: nauc_recall_at_1_max value: 28.32145232054677 - type: nauc_recall_at_1_std value: -38.747446777471865 - type: nauc_recall_at_20_diff1 value: 74.48815274061063 - type: nauc_recall_at_20_max value: 37.187390151907294 - type: nauc_recall_at_20_std value: -55.36902598790638 - type: nauc_recall_at_3_diff1 value: 73.95824510222151 - type: nauc_recall_at_3_max value: 31.49038315712441 - type: nauc_recall_at_3_std value: -50.477343397006145 - type: nauc_recall_at_5_diff1 value: 73.62687380534663 - type: nauc_recall_at_5_max value: 33.613054625917144 - type: nauc_recall_at_5_std value: -55.8529868750332 - type: ndcg_at_1 value: 82.17 - type: ndcg_at_10 value: 89.13799999999999 - type: ndcg_at_100 value: 90.244 - type: ndcg_at_1000 value: 90.322 - type: ndcg_at_20 value: 89.744 - type: ndcg_at_3 value: 86.32 - type: ndcg_at_5 value: 87.97 - type: precision_at_1 value: 82.17 - type: precision_at_10 value: 13.517999999999999 - type: precision_at_100 value: 1.534 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.159 - type: precision_at_3 value: 37.71 - type: precision_at_5 value: 24.876 - type: recall_at_1 value: 71.485 - type: recall_at_10 value: 96.021 - type: recall_at_100 value: 99.682 - type: recall_at_1000 value: 99.992 - type: recall_at_20 value: 97.936 - type: recall_at_3 value: 88.024 - type: recall_at_5 value: 92.609 - task: type: Retrieval dataset: name: MTEB SCIDOCS (default) type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: main_score value: 21.849 - type: map_at_1 value: 4.843 - type: map_at_10 value: 13.184000000000001 - type: map_at_100 value: 15.455 - type: map_at_1000 value: 15.78 - type: map_at_20 value: 14.386 - type: map_at_3 value: 9.3 - type: map_at_5 value: 11.245 - type: mrr_at_1 value: 23.799999999999997 - type: mrr_at_10 value: 35.72912698412698 - type: mrr_at_100 value: 36.858180847310756 - type: mrr_at_1000 value: 36.90138037945717 - type: mrr_at_20 value: 36.418783123481255 - type: mrr_at_3 value: 32.216666666666654 - type: mrr_at_5 value: 34.53666666666663 - type: nauc_map_at_1000_diff1 value: 17.584607230276657 - type: nauc_map_at_1000_max value: 23.37291927790593 - type: nauc_map_at_1000_std value: 16.47457887484848 - type: nauc_map_at_100_diff1 value: 17.584963894459776 - type: nauc_map_at_100_max value: 23.34943788513969 - type: nauc_map_at_100_std value: 16.293179117171373 - type: nauc_map_at_10_diff1 value: 18.324211740116706 - type: nauc_map_at_10_max value: 22.581868553882646 - type: nauc_map_at_10_std value: 12.992133450081916 - type: nauc_map_at_1_diff1 value: 23.249290909711917 - type: nauc_map_at_1_max value: 14.353896685489747 - type: nauc_map_at_1_std value: 5.316745833979371 - type: nauc_map_at_20_diff1 value: 18.04800423969188 - type: nauc_map_at_20_max value: 22.93645696379141 - type: nauc_map_at_20_std value: 14.365360528845612 - type: nauc_map_at_3_diff1 value: 21.659818130577307 - type: nauc_map_at_3_max value: 18.92497284587115 - type: nauc_map_at_3_std value: 5.816557438679962 - type: nauc_map_at_5_diff1 value: 19.601521082286283 - type: nauc_map_at_5_max value: 21.05660971614242 - type: nauc_map_at_5_std value: 8.538544725485336 - type: nauc_mrr_at_1000_diff1 value: 21.065257437863075 - type: nauc_mrr_at_1000_max value: 18.258345926479315 - type: nauc_mrr_at_1000_std value: 11.647833526066748 - type: nauc_mrr_at_100_diff1 value: 21.065223383981085 - type: nauc_mrr_at_100_max value: 18.279009025124903 - type: nauc_mrr_at_100_std value: 11.690172787809432 - type: nauc_mrr_at_10_diff1 value: 21.090405065234336 - type: nauc_mrr_at_10_max value: 18.362075787888827 - type: nauc_mrr_at_10_std value: 11.60444233104132 - type: nauc_mrr_at_1_diff1 value: 23.62122820044915 - type: nauc_mrr_at_1_max value: 14.685554349688687 - type: nauc_mrr_at_1_std value: 5.502610985680922 - type: nauc_mrr_at_20_diff1 value: 20.965576545483604 - type: nauc_mrr_at_20_max value: 18.352864246589863 - type: nauc_mrr_at_20_std value: 11.708362388914564 - type: nauc_mrr_at_3_diff1 value: 22.098693851708358 - type: nauc_mrr_at_3_max value: 17.055448698312627 - type: nauc_mrr_at_3_std value: 10.586321304885752 - type: nauc_mrr_at_5_diff1 value: 21.531056825051582 - type: nauc_mrr_at_5_max value: 18.226268169525028 - type: nauc_mrr_at_5_std value: 10.943723542548971 - type: nauc_ndcg_at_1000_diff1 value: 15.932308280538782 - type: nauc_ndcg_at_1000_max value: 23.57040478537663 - type: nauc_ndcg_at_1000_std value: 23.295030059301148 - type: nauc_ndcg_at_100_diff1 value: 15.865971474636629 - type: nauc_ndcg_at_100_max value: 24.453952903074175 - type: nauc_ndcg_at_100_std value: 23.403738023569577 - type: nauc_ndcg_at_10_diff1 value: 17.661985087295307 - type: nauc_ndcg_at_10_max value: 23.02185130406233 - type: nauc_ndcg_at_10_std value: 15.75740534298165 - type: nauc_ndcg_at_1_diff1 value: 23.25705617481879 - type: nauc_ndcg_at_1_max value: 14.337565062650711 - type: nauc_ndcg_at_1_std value: 5.213264453323703 - type: nauc_ndcg_at_20_diff1 value: 16.951074114695736 - type: nauc_ndcg_at_20_max value: 23.63608691515469 - type: nauc_ndcg_at_20_std value: 17.826150619463498 - type: nauc_ndcg_at_3_diff1 value: 21.42475356749203 - type: nauc_ndcg_at_3_max value: 18.73497222397521 - type: nauc_ndcg_at_3_std value: 8.453104776839584 - type: nauc_ndcg_at_5_diff1 value: 19.445346257704863 - type: nauc_ndcg_at_5_max value: 21.402562582372 - type: nauc_ndcg_at_5_std value: 10.87732803226448 - type: nauc_precision_at_1000_diff1 value: 2.0336139013705177 - type: nauc_precision_at_1000_max value: 15.766142749511102 - type: nauc_precision_at_1000_std value: 34.51618188155208 - type: nauc_precision_at_100_diff1 value: 6.156360545368786 - type: nauc_precision_at_100_max value: 23.20361349606541 - type: nauc_precision_at_100_std value: 35.13559568339309 - type: nauc_precision_at_10_diff1 value: 12.579074831792056 - type: nauc_precision_at_10_max value: 24.80772047693916 - type: nauc_precision_at_10_std value: 21.058953350976044 - type: nauc_precision_at_1_diff1 value: 23.25705617481879 - type: nauc_precision_at_1_max value: 14.337565062650711 - type: nauc_precision_at_1_std value: 5.213264453323703 - type: nauc_precision_at_20_diff1 value: 10.684035436230687 - type: nauc_precision_at_20_max value: 24.481947684763313 - type: nauc_precision_at_20_std value: 23.735751915810535 - type: nauc_precision_at_3_diff1 value: 20.291003793240115 - type: nauc_precision_at_3_max value: 20.11955056454858 - type: nauc_precision_at_3_std value: 9.810475708114843 - type: nauc_precision_at_5_diff1 value: 16.383601541223292 - type: nauc_precision_at_5_max value: 23.547428961540657 - type: nauc_precision_at_5_std value: 13.38507989754645 - type: nauc_recall_at_1000_diff1 value: 2.379066603318566 - type: nauc_recall_at_1000_max value: 15.575778761184703 - type: nauc_recall_at_1000_std value: 36.40032960359677 - type: nauc_recall_at_100_diff1 value: 6.041438415676314 - type: nauc_recall_at_100_max value: 22.864904441533827 - type: nauc_recall_at_100_std value: 35.62416912716818 - type: nauc_recall_at_10_diff1 value: 12.285572982364917 - type: nauc_recall_at_10_max value: 24.344547576113087 - type: nauc_recall_at_10_std value: 20.72041864912064 - type: nauc_recall_at_1_diff1 value: 23.249290909711917 - type: nauc_recall_at_1_max value: 14.353896685489747 - type: nauc_recall_at_1_std value: 5.316745833979371 - type: nauc_recall_at_20_diff1 value: 10.46659082572884 - type: nauc_recall_at_20_max value: 24.269074491279348 - type: nauc_recall_at_20_std value: 23.74738715348032 - type: nauc_recall_at_3_diff1 value: 19.9842205158819 - type: nauc_recall_at_3_max value: 19.91182958307305 - type: nauc_recall_at_3_std value: 9.653281778593492 - type: nauc_recall_at_5_diff1 value: 16.164148818728776 - type: nauc_recall_at_5_max value: 23.220565892913147 - type: nauc_recall_at_5_std value: 13.164704690364948 - type: ndcg_at_1 value: 23.9 - type: ndcg_at_10 value: 21.849 - type: ndcg_at_100 value: 30.304 - type: ndcg_at_1000 value: 35.742000000000004 - type: ndcg_at_20 value: 24.97 - type: ndcg_at_3 value: 20.525 - type: ndcg_at_5 value: 18.177 - type: precision_at_1 value: 23.9 - type: precision_at_10 value: 11.48 - type: precision_at_100 value: 2.363 - type: precision_at_1000 value: 0.367 - type: precision_at_20 value: 7.55 - type: precision_at_3 value: 19.533 - type: precision_at_5 value: 16.28 - type: recall_at_1 value: 4.843 - type: recall_at_10 value: 23.282 - type: recall_at_100 value: 48.0 - type: recall_at_1000 value: 74.445 - type: recall_at_20 value: 30.622 - type: recall_at_3 value: 11.897 - type: recall_at_5 value: 16.512 - task: type: Retrieval dataset: name: MTEB SciFact (default) type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 74.846 - type: map_at_1 value: 60.428000000000004 - type: map_at_10 value: 70.38600000000001 - type: map_at_100 value: 70.86099999999999 - type: map_at_1000 value: 70.871 - type: map_at_20 value: 70.712 - type: map_at_3 value: 67.398 - type: map_at_5 value: 69.27600000000001 - type: mrr_at_1 value: 63.66666666666667 - type: mrr_at_10 value: 71.39735449735447 - type: mrr_at_100 value: 71.76379243684062 - type: mrr_at_1000 value: 71.77364869685177 - type: mrr_at_20 value: 71.65468324531791 - type: mrr_at_3 value: 69.05555555555556 - type: mrr_at_5 value: 70.58888888888887 - type: nauc_map_at_1000_diff1 value: 71.0754740705296 - type: nauc_map_at_1000_max value: 54.29832405004098 - type: nauc_map_at_1000_std value: -1.235668723089411 - type: nauc_map_at_100_diff1 value: 71.0689124997969 - type: nauc_map_at_100_max value: 54.310998444535585 - type: nauc_map_at_100_std value: -1.2220616587702309 - type: nauc_map_at_10_diff1 value: 71.21230220692517 - type: nauc_map_at_10_max value: 54.42287344734598 - type: nauc_map_at_10_std value: -1.4789297717435592 - type: nauc_map_at_1_diff1 value: 72.8878843420841 - type: nauc_map_at_1_max value: 43.897599474060506 - type: nauc_map_at_1_std value: -11.382920378910987 - type: nauc_map_at_20_diff1 value: 70.99668800819812 - type: nauc_map_at_20_max value: 54.40438390510115 - type: nauc_map_at_20_std value: -1.2582873194545923 - type: nauc_map_at_3_diff1 value: 71.20551874106118 - type: nauc_map_at_3_max value: 51.50481254453872 - type: nauc_map_at_3_std value: -5.047233269418083 - type: nauc_map_at_5_diff1 value: 71.16105124984448 - type: nauc_map_at_5_max value: 53.06670294960442 - type: nauc_map_at_5_std value: -3.384565971599754 - type: nauc_mrr_at_1000_diff1 value: 71.16321200441809 - type: nauc_mrr_at_1000_max value: 56.44333688621788 - type: nauc_mrr_at_1000_std value: 0.7056065218954817 - type: nauc_mrr_at_100_diff1 value: 71.1564766930806 - type: nauc_mrr_at_100_max value: 56.45538985017298 - type: nauc_mrr_at_100_std value: 0.7186959391076111 - type: nauc_mrr_at_10_diff1 value: 71.2170765004902 - type: nauc_mrr_at_10_max value: 56.804129556960625 - type: nauc_mrr_at_10_std value: 0.9311606410012148 - type: nauc_mrr_at_1_diff1 value: 72.46182893226788 - type: nauc_mrr_at_1_max value: 51.68999857205563 - type: nauc_mrr_at_1_std value: -2.5285192217174552 - type: nauc_mrr_at_20_diff1 value: 71.10597662895005 - type: nauc_mrr_at_20_max value: 56.53090291786723 - type: nauc_mrr_at_20_std value: 0.715222442307103 - type: nauc_mrr_at_3_diff1 value: 71.41206755698491 - type: nauc_mrr_at_3_max value: 56.267768137804595 - type: nauc_mrr_at_3_std value: -0.05393254849196613 - type: nauc_mrr_at_5_diff1 value: 71.10403976257997 - type: nauc_mrr_at_5_max value: 56.14816888175454 - type: nauc_mrr_at_5_std value: 0.15157107667464748 - type: nauc_ndcg_at_1000_diff1 value: 70.79939179024201 - type: nauc_ndcg_at_1000_max value: 56.54042017611993 - type: nauc_ndcg_at_1000_std value: 1.3658276228054782 - type: nauc_ndcg_at_100_diff1 value: 70.5981566170932 - type: nauc_ndcg_at_100_max value: 56.98929754479383 - type: nauc_ndcg_at_100_std value: 1.8857658437325417 - type: nauc_ndcg_at_10_diff1 value: 70.71898932576325 - type: nauc_ndcg_at_10_max value: 58.11477800188122 - type: nauc_ndcg_at_10_std value: 1.613309043768477 - type: nauc_ndcg_at_1_diff1 value: 72.46182893226788 - type: nauc_ndcg_at_1_max value: 51.68999857205563 - type: nauc_ndcg_at_1_std value: -2.5285192217174552 - type: nauc_ndcg_at_20_diff1 value: 70.03659776542649 - type: nauc_ndcg_at_20_max value: 57.63118618075185 - type: nauc_ndcg_at_20_std value: 1.911959046925637 - type: nauc_ndcg_at_3_diff1 value: 70.77422769724862 - type: nauc_ndcg_at_3_max value: 55.620661307429295 - type: nauc_ndcg_at_3_std value: -1.8248775257967857 - type: nauc_ndcg_at_5_diff1 value: 70.59479131253845 - type: nauc_ndcg_at_5_max value: 55.65358814021084 - type: nauc_ndcg_at_5_std value: -1.820814794256182 - type: nauc_precision_at_1000_diff1 value: -22.209747589165723 - type: nauc_precision_at_1000_max value: 25.887313966465637 - type: nauc_precision_at_1000_std value: 57.88006976884063 - type: nauc_precision_at_100_diff1 value: -13.792400448513767 - type: nauc_precision_at_100_max value: 31.817500434722625 - type: nauc_precision_at_100_std value: 55.430435382226165 - type: nauc_precision_at_10_diff1 value: 10.836781895308922 - type: nauc_precision_at_10_max value: 49.12515427777262 - type: nauc_precision_at_10_std value: 45.965441778939386 - type: nauc_precision_at_1_diff1 value: 72.46182893226788 - type: nauc_precision_at_1_max value: 51.68999857205563 - type: nauc_precision_at_1_std value: -2.5285192217174552 - type: nauc_precision_at_20_diff1 value: -2.175159005291977 - type: nauc_precision_at_20_max value: 42.41977397043023 - type: nauc_precision_at_20_std value: 51.29569141566173 - type: nauc_precision_at_3_diff1 value: 39.5954022101419 - type: nauc_precision_at_3_max value: 52.35267730094486 - type: nauc_precision_at_3_std value: 20.84971324107527 - type: nauc_precision_at_5_diff1 value: 25.904694373842098 - type: nauc_precision_at_5_max value: 50.93902457293225 - type: nauc_precision_at_5_std value: 31.873405206205906 - type: nauc_recall_at_1000_diff1 value: 86.11111111111035 - type: nauc_recall_at_1000_max value: 67.90382819794685 - type: nauc_recall_at_1000_std value: 63.818860877684145 - type: nauc_recall_at_100_diff1 value: 64.99066293183931 - type: nauc_recall_at_100_max value: 80.46218487394987 - type: nauc_recall_at_100_std value: 39.99533146591981 - type: nauc_recall_at_10_diff1 value: 66.98270603853467 - type: nauc_recall_at_10_max value: 73.04827854861946 - type: nauc_recall_at_10_std value: 12.381277005797148 - type: nauc_recall_at_1_diff1 value: 72.8878843420841 - type: nauc_recall_at_1_max value: 43.897599474060506 - type: nauc_recall_at_1_std value: -11.382920378910987 - type: nauc_recall_at_20_diff1 value: 59.3764828335705 - type: nauc_recall_at_20_max value: 74.15411519799176 - type: nauc_recall_at_20_std value: 18.927079028332475 - type: nauc_recall_at_3_diff1 value: 68.51479393914815 - type: nauc_recall_at_3_max value: 57.41548734168664 - type: nauc_recall_at_3_std value: -3.3041374369788157 - type: nauc_recall_at_5_diff1 value: 67.34818375295329 - type: nauc_recall_at_5_max value: 60.288944142502324 - type: nauc_recall_at_5_std value: -2.1530590183317337 - type: ndcg_at_1 value: 63.666999999999994 - type: ndcg_at_10 value: 74.846 - type: ndcg_at_100 value: 76.886 - type: ndcg_at_1000 value: 77.209 - type: ndcg_at_20 value: 75.96199999999999 - type: ndcg_at_3 value: 69.849 - type: ndcg_at_5 value: 72.558 - type: precision_at_1 value: 63.666999999999994 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.097 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_20 value: 5.2 - type: precision_at_3 value: 27.222 - type: precision_at_5 value: 18.133 - type: recall_at_1 value: 60.428000000000004 - type: recall_at_10 value: 87.533 - type: recall_at_100 value: 96.667 - type: recall_at_1000 value: 99.333 - type: recall_at_20 value: 91.867 - type: recall_at_3 value: 74.0 - type: recall_at_5 value: 80.872 - task: type: Retrieval dataset: name: MTEB TRECCOVID (default) type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: main_score value: 82.25200000000001 - type: map_at_1 value: 0.249 - type: map_at_10 value: 2.088 - type: map_at_100 value: 12.475999999999999 - type: map_at_1000 value: 28.694999999999997 - type: map_at_20 value: 3.8150000000000004 - type: map_at_3 value: 0.696 - type: map_at_5 value: 1.084 - type: mrr_at_1 value: 94.0 - type: mrr_at_10 value: 96.06666666666666 - type: mrr_at_100 value: 96.06666666666666 - type: mrr_at_1000 value: 96.06666666666666 - type: mrr_at_20 value: 96.06666666666666 - type: mrr_at_3 value: 95.66666666666666 - type: mrr_at_5 value: 96.06666666666666 - type: nauc_map_at_1000_diff1 value: -17.919039415766317 - type: nauc_map_at_1000_max value: 51.542013433126485 - type: nauc_map_at_1000_std value: 75.31434892635495 - type: nauc_map_at_100_diff1 value: -20.74092423668948 - type: nauc_map_at_100_max value: 24.925416535065267 - type: nauc_map_at_100_std value: 48.034439045919974 - type: nauc_map_at_10_diff1 value: -10.535087148459441 - type: nauc_map_at_10_max value: -11.772940216983132 - type: nauc_map_at_10_std value: -4.543952924741779 - type: nauc_map_at_1_diff1 value: 0.8904734356543077 - type: nauc_map_at_1_max value: -23.25158940019837 - type: nauc_map_at_1_std value: -14.604203818505734 - type: nauc_map_at_20_diff1 value: -13.682938147908095 - type: nauc_map_at_20_max value: -3.4425486428132803 - type: nauc_map_at_20_std value: 4.04479227130499 - type: nauc_map_at_3_diff1 value: -12.758237499172905 - type: nauc_map_at_3_max value: -19.28421758505586 - type: nauc_map_at_3_std value: -9.521217205769233 - type: nauc_map_at_5_diff1 value: -13.186429193643617 - type: nauc_map_at_5_max value: -13.385532572259098 - type: nauc_map_at_5_std value: -6.312225612178439 - type: nauc_mrr_at_1000_diff1 value: -66.31929608001361 - type: nauc_mrr_at_1000_max value: 47.000269034167395 - type: nauc_mrr_at_1000_std value: 79.56922882147201 - type: nauc_mrr_at_100_diff1 value: -66.31929608001361 - type: nauc_mrr_at_100_max value: 47.000269034167395 - type: nauc_mrr_at_100_std value: 79.56922882147201 - type: nauc_mrr_at_10_diff1 value: -66.31929608001361 - type: nauc_mrr_at_10_max value: 47.000269034167395 - type: nauc_mrr_at_10_std value: 79.56922882147201 - type: nauc_mrr_at_1_diff1 value: -62.88515406162452 - type: nauc_mrr_at_1_max value: 47.88359788359812 - type: nauc_mrr_at_1_std value: 80.78120136943666 - type: nauc_mrr_at_20_diff1 value: -66.31929608001361 - type: nauc_mrr_at_20_max value: 47.000269034167395 - type: nauc_mrr_at_20_std value: 79.56922882147201 - type: nauc_mrr_at_3_diff1 value: -65.39898010486161 - type: nauc_mrr_at_3_max value: 51.892551892551886 - type: nauc_mrr_at_3_std value: 80.24850966027432 - type: nauc_mrr_at_5_diff1 value: -66.31929608001361 - type: nauc_mrr_at_5_max value: 47.000269034167395 - type: nauc_mrr_at_5_std value: 79.56922882147201 - type: nauc_ndcg_at_1000_diff1 value: -11.355728364146914 - type: nauc_ndcg_at_1000_max value: 46.386925340579324 - type: nauc_ndcg_at_1000_std value: 66.84861787722345 - type: nauc_ndcg_at_100_diff1 value: -22.37902988021572 - type: nauc_ndcg_at_100_max value: 55.29643965927242 - type: nauc_ndcg_at_100_std value: 77.77837489762948 - type: nauc_ndcg_at_10_diff1 value: -38.61237197420988 - type: nauc_ndcg_at_10_max value: 44.93672941814005 - type: nauc_ndcg_at_10_std value: 56.69653169801909 - type: nauc_ndcg_at_1_diff1 value: -35.76097105508886 - type: nauc_ndcg_at_1_max value: 44.374416433240015 - type: nauc_ndcg_at_1_std value: 43.3123249299721 - type: nauc_ndcg_at_20_diff1 value: -31.834255349739536 - type: nauc_ndcg_at_20_max value: 54.44545919570274 - type: nauc_ndcg_at_20_std value: 66.77587741159692 - type: nauc_ndcg_at_3_diff1 value: -57.8395154241656 - type: nauc_ndcg_at_3_max value: 42.578924974174846 - type: nauc_ndcg_at_3_std value: 55.90798533991258 - type: nauc_ndcg_at_5_diff1 value: -47.617543642801756 - type: nauc_ndcg_at_5_max value: 44.97436800384369 - type: nauc_ndcg_at_5_std value: 51.025324266867514 - type: nauc_precision_at_1000_diff1 value: -10.534234712095094 - type: nauc_precision_at_1000_max value: 51.35509005702664 - type: nauc_precision_at_1000_std value: 46.94246871324496 - type: nauc_precision_at_100_diff1 value: -22.561799953711663 - type: nauc_precision_at_100_max value: 59.085611948233954 - type: nauc_precision_at_100_std value: 79.84472985711812 - type: nauc_precision_at_10_diff1 value: -35.67030970032019 - type: nauc_precision_at_10_max value: 49.53931334335369 - type: nauc_precision_at_10_std value: 59.60393685408334 - type: nauc_precision_at_1_diff1 value: -62.88515406162452 - type: nauc_precision_at_1_max value: 47.88359788359812 - type: nauc_precision_at_1_std value: 80.78120136943666 - type: nauc_precision_at_20_diff1 value: -31.530368334870325 - type: nauc_precision_at_20_max value: 56.381773352656616 - type: nauc_precision_at_20_std value: 65.25230091660255 - type: nauc_precision_at_3_diff1 value: -68.7586450928041 - type: nauc_precision_at_3_max value: 55.76607585164213 - type: nauc_precision_at_3_std value: 67.9351497410493 - type: nauc_precision_at_5_diff1 value: -49.198613446820275 - type: nauc_precision_at_5_max value: 61.92298452139874 - type: nauc_precision_at_5_std value: 61.28633695987917 - type: nauc_recall_at_1000_diff1 value: -0.6651569013659893 - type: nauc_recall_at_1000_max value: 34.306755926242474 - type: nauc_recall_at_1000_std value: 51.90896153051927 - type: nauc_recall_at_100_diff1 value: -10.024089354383117 - type: nauc_recall_at_100_max value: 5.806797105089591 - type: nauc_recall_at_100_std value: 28.11404433108664 - type: nauc_recall_at_10_diff1 value: -4.108183471206445 - type: nauc_recall_at_10_max value: -19.11427384872481 - type: nauc_recall_at_10_std value: -12.203137162280921 - type: nauc_recall_at_1_diff1 value: 0.8904734356543077 - type: nauc_recall_at_1_max value: -23.25158940019837 - type: nauc_recall_at_1_std value: -14.604203818505734 - type: nauc_recall_at_20_diff1 value: -5.210796698265105 - type: nauc_recall_at_20_max value: -13.42675680836074 - type: nauc_recall_at_20_std value: -6.045462388299661 - type: nauc_recall_at_3_diff1 value: -9.66613347835611 - type: nauc_recall_at_3_max value: -22.356186554471442 - type: nauc_recall_at_3_std value: -13.344831190968376 - type: nauc_recall_at_5_diff1 value: -8.139775774638926 - type: nauc_recall_at_5_max value: -18.339966615466167 - type: nauc_recall_at_5_std value: -12.71394328827389 - type: ndcg_at_1 value: 92.0 - type: ndcg_at_10 value: 82.25200000000001 - type: ndcg_at_100 value: 62.834 - type: ndcg_at_1000 value: 52.961999999999996 - type: ndcg_at_20 value: 78.40899999999999 - type: ndcg_at_3 value: 87.0 - type: ndcg_at_5 value: 84.883 - type: precision_at_1 value: 94.0 - type: precision_at_10 value: 86.0 - type: precision_at_100 value: 64.94 - type: precision_at_1000 value: 23.65 - type: precision_at_20 value: 82.5 - type: precision_at_3 value: 89.333 - type: precision_at_5 value: 87.2 - type: recall_at_1 value: 0.249 - type: recall_at_10 value: 2.253 - type: recall_at_100 value: 15.451 - type: recall_at_1000 value: 49.126999999999995 - type: recall_at_20 value: 4.245 - type: recall_at_3 value: 0.712 - type: recall_at_5 value: 1.135 - task: type: Retrieval dataset: name: MTEB Touche2020 (default) type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: main_score value: 33.012 - type: map_at_1 value: 3.496 - type: map_at_10 value: 13.911999999999999 - type: map_at_100 value: 20.776 - type: map_at_1000 value: 22.182 - type: map_at_20 value: 17.01 - type: map_at_3 value: 7.925 - type: map_at_5 value: 10.165000000000001 - type: mrr_at_1 value: 44.89795918367347 - type: mrr_at_10 value: 59.37884677680596 - type: mrr_at_100 value: 59.94723043010779 - type: mrr_at_1000 value: 59.94723043010779 - type: mrr_at_20 value: 59.84185494658105 - type: mrr_at_3 value: 56.4625850340136 - type: mrr_at_5 value: 57.38095238095238 - type: nauc_map_at_1000_diff1 value: 22.36774084662234 - type: nauc_map_at_1000_max value: -6.082754550112413 - type: nauc_map_at_1000_std value: 0.36293988509124525 - type: nauc_map_at_100_diff1 value: 22.504980529214254 - type: nauc_map_at_100_max value: -6.713263459592174 - type: nauc_map_at_100_std value: -2.142045657385737 - type: nauc_map_at_10_diff1 value: 16.701762937942956 - type: nauc_map_at_10_max value: -8.726224596699906 - type: nauc_map_at_10_std value: -15.49981014786446 - type: nauc_map_at_1_diff1 value: -0.25393599944658846 - type: nauc_map_at_1_max value: -23.696292878205004 - type: nauc_map_at_1_std value: -17.763569997650162 - type: nauc_map_at_20_diff1 value: 22.12810885279278 - type: nauc_map_at_20_max value: -7.094657396306872 - type: nauc_map_at_20_std value: -11.955744867632113 - type: nauc_map_at_3_diff1 value: 19.977773270711182 - type: nauc_map_at_3_max value: -17.553280773573498 - type: nauc_map_at_3_std value: -17.298018815448533 - type: nauc_map_at_5_diff1 value: 15.021827789209139 - type: nauc_map_at_5_max value: -12.914337593308572 - type: nauc_map_at_5_std value: -14.107547322899187 - type: nauc_mrr_at_1000_diff1 value: 13.882418155124974 - type: nauc_mrr_at_1000_max value: -33.77477227214201 - type: nauc_mrr_at_1000_std value: -4.2125750414094565 - type: nauc_mrr_at_100_diff1 value: 13.882418155124974 - type: nauc_mrr_at_100_max value: -33.77477227214201 - type: nauc_mrr_at_100_std value: -4.2125750414094565 - type: nauc_mrr_at_10_diff1 value: 14.196883828223944 - type: nauc_mrr_at_10_max value: -34.248819138667706 - type: nauc_mrr_at_10_std value: -3.3304776888509453 - type: nauc_mrr_at_1_diff1 value: 8.487747836938748 - type: nauc_mrr_at_1_max value: -27.522654947868407 - type: nauc_mrr_at_1_std value: -9.659288368940414 - type: nauc_mrr_at_20_diff1 value: 13.97141408432223 - type: nauc_mrr_at_20_max value: -33.94474779537131 - type: nauc_mrr_at_20_std value: -3.876386267586971 - type: nauc_mrr_at_3_diff1 value: 14.544693993479346 - type: nauc_mrr_at_3_max value: -33.03445041954154 - type: nauc_mrr_at_3_std value: -6.411113627184401 - type: nauc_mrr_at_5_diff1 value: 12.327294201418015 - type: nauc_mrr_at_5_max value: -35.57514449859859 - type: nauc_mrr_at_5_std value: -5.199952179562716 - type: nauc_ndcg_at_1000_diff1 value: 23.942492305284667 - type: nauc_ndcg_at_1000_max value: -14.14524516876861 - type: nauc_ndcg_at_1000_std value: 20.86340207359257 - type: nauc_ndcg_at_100_diff1 value: 24.269852831605093 - type: nauc_ndcg_at_100_max value: -20.35857202952544 - type: nauc_ndcg_at_100_std value: 12.767208856993815 - type: nauc_ndcg_at_10_diff1 value: 23.396212480889584 - type: nauc_ndcg_at_10_max value: -14.778188630795263 - type: nauc_ndcg_at_10_std value: -2.980021498924259 - type: nauc_ndcg_at_1_diff1 value: 8.885316875767284 - type: nauc_ndcg_at_1_max value: -28.267329383619 - type: nauc_ndcg_at_1_std value: -7.5764787635693605 - type: nauc_ndcg_at_20_diff1 value: 28.77259798482034 - type: nauc_ndcg_at_20_max value: -14.452291430509836 - type: nauc_ndcg_at_20_std value: -5.389998981015127 - type: nauc_ndcg_at_3_diff1 value: 25.05722733790777 - type: nauc_ndcg_at_3_max value: -25.793104895264126 - type: nauc_ndcg_at_3_std value: -5.3408622683279185 - type: nauc_ndcg_at_5_diff1 value: 19.183694373044887 - type: nauc_ndcg_at_5_max value: -20.502613827866043 - type: nauc_ndcg_at_5_std value: -1.1810169329712905 - type: nauc_precision_at_1000_diff1 value: -15.607023736636382 - type: nauc_precision_at_1000_max value: 36.08863082992817 - type: nauc_precision_at_1000_std value: 47.707249499215344 - type: nauc_precision_at_100_diff1 value: 7.021547619006566 - type: nauc_precision_at_100_max value: 2.6113599057206387 - type: nauc_precision_at_100_std value: 66.4590495720394 - type: nauc_precision_at_10_diff1 value: 24.385783257887354 - type: nauc_precision_at_10_max value: -6.2188453266713 - type: nauc_precision_at_10_std value: 6.05429677567614 - type: nauc_precision_at_1_diff1 value: 8.487747836938748 - type: nauc_precision_at_1_max value: -27.522654947868407 - type: nauc_precision_at_1_std value: -9.659288368940414 - type: nauc_precision_at_20_diff1 value: 34.33880917061261 - type: nauc_precision_at_20_max value: 4.354279010925412 - type: nauc_precision_at_20_std value: 22.181325517942035 - type: nauc_precision_at_3_diff1 value: 24.850858478588467 - type: nauc_precision_at_3_max value: -26.5846953680614 - type: nauc_precision_at_3_std value: -4.454513023414871 - type: nauc_precision_at_5_diff1 value: 14.138056032082552 - type: nauc_precision_at_5_max value: -19.944752876707845 - type: nauc_precision_at_5_std value: 2.777514787746078 - type: nauc_recall_at_1000_diff1 value: -0.4820471365058493 - type: nauc_recall_at_1000_max value: -1.0630194189351716 - type: nauc_recall_at_1000_std value: 63.95617322698779 - type: nauc_recall_at_100_diff1 value: 14.181992335572508 - type: nauc_recall_at_100_max value: -17.09847742717872 - type: nauc_recall_at_100_std value: 27.38485306952274 - type: nauc_recall_at_10_diff1 value: 16.676209261808168 - type: nauc_recall_at_10_max value: -8.143613489548878 - type: nauc_recall_at_10_std value: -11.428526204063497 - type: nauc_recall_at_1_diff1 value: -0.25393599944658846 - type: nauc_recall_at_1_max value: -23.696292878205004 - type: nauc_recall_at_1_std value: -17.763569997650162 - type: nauc_recall_at_20_diff1 value: 24.37368696357739 - type: nauc_recall_at_20_max value: -8.967218424155384 - type: nauc_recall_at_20_std value: -6.864178520023853 - type: nauc_recall_at_3_diff1 value: 16.440629512619275 - type: nauc_recall_at_3_max value: -21.691853645017947 - type: nauc_recall_at_3_std value: -18.112300717394543 - type: nauc_recall_at_5_diff1 value: 9.406357694811373 - type: nauc_recall_at_5_max value: -18.299603437308214 - type: nauc_recall_at_5_std value: -14.029380126465446 - type: ndcg_at_1 value: 41.837 - type: ndcg_at_10 value: 33.012 - type: ndcg_at_100 value: 43.504 - type: ndcg_at_1000 value: 54.142999999999994 - type: ndcg_at_20 value: 33.681 - type: ndcg_at_3 value: 39.865 - type: ndcg_at_5 value: 35.199999999999996 - type: precision_at_1 value: 44.897999999999996 - type: precision_at_10 value: 29.387999999999998 - type: precision_at_100 value: 8.449 - type: precision_at_1000 value: 1.569 - type: precision_at_20 value: 22.245 - type: precision_at_3 value: 41.497 - type: precision_at_5 value: 34.694 - type: recall_at_1 value: 3.496 - type: recall_at_10 value: 20.438000000000002 - type: recall_at_100 value: 51.196 - type: recall_at_1000 value: 84.426 - type: recall_at_20 value: 29.873 - type: recall_at_3 value: 9.228 - type: recall_at_5 value: 12.598 --- <h1 align="center">Marqo's Chimera arctic-bge-m</h1> <h4 align="center"> <p> <a href=#this-model>This Model</a> | <a href=#usage>Usage</a> | <a href="#faq">FAQ</a> | <a href="#about-marqo">About Marqo</a> | <a href="#acknowledgement">Acknowledgement</a> <p> </h4> ## This Model This is a chimera model which concatenates embeddings from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) and [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). This model produces an embedding with 1536 dimensions (768+768) and has a total of 218M parameters (109+109). Embeddings from each model are unit normalized prior to concatenation. ## Usage ```python import torch from torch.nn.functional import normalize from transformers import AutoModel, AutoTokenizer # Load the model and tokenizer. tokenizer = AutoTokenizer.from_pretrained("Marqo/marqo-chimera-arctic-bge-m") model = AutoModel.from_pretrained("Marqo/marqo-chimera-arctic-bge-m", trust_remote_code=True) model.eval() # Model constants. query_prefix = 'Represent this sentence for searching relevant passages: ' # Your queries and docs. queries = [ "What is vector search?", "Where can I get the best pizza?" ] documents = [ "Marqo is an end-to-end platform for embedding training and retrieval.", "Definitely Naples! The birthplace of pizza, and it’s as authentic as it gets." ] # Add query prefix and tokenize queries and docs. queries_with_prefix = [f"{query_prefix}{q}" for q in queries] query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512) document_tokens = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512) # Use the model to generate text embeddings. with torch.inference_mode(): query_embeddings = model(**query_tokens) document_embeddings = model(**document_tokens) # Remember to normalize embeddings. query_embeddings = normalize(query_embeddings) document_embeddings = normalize(document_embeddings) # Scores via dotproduct. scores = query_embeddings @ document_embeddings.T # Pretty-print the results. for query, query_scores in zip(queries, scores): doc_score_pairs = list(zip(documents, query_scores)) doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) print(f'Query: "{query}"') for document, score in doc_score_pairs: print(f'Score: {score:.4f} | Document: "{document}"') print() # Query: "What is vector search?" # Score: 0.4997 | Document: "Marqo is an end-to-end platform for embedding training and retrieval." # Score: 0.2509 | Document: "Definitely Naples! The birthplace of pizza, and it’s as authentic as it gets." # Query: "Where can I get the best pizza?" # Score: 0.7444 | Document: "Definitely Naples! The birthplace of pizza, and it’s as authentic as it gets." # Score: 0.3303 | Document: "Marqo is an end-to-end platform for embedding training and retrieval." ``` ## FAQ __Q: Do I need to prefix queries?__ __A:__ Yes, this model has the same rules for prefixing as its constituent models. Queries in asymmetric retrieval should be prefixed with `"Represent this sentence for searching relevant passages: "`. ## About Marqo [Marqo](https://www.marqo.ai/) is an end-to-end platform for training embeddings models and building vector search. Marqo is available as an open-source offering on our [GitHub](https://github.com/marqo-ai/marqo) or as a managed cloud service on [Marqo Cloud](https://cloud.marqo.ai). ## Acknowledgement We want to acknowledge the original creators of the [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) and [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) models which are used to create this model.
[ "SCIFACT" ]
USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-1.5-8B
USTC-KnowledgeComputingLab
text-generation
[ "safetensors", "llama", "KALE-LM", "science", "chemistry", "text-generation", "conversational", "en", "arxiv:2409.18695", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
2024-09-29T07:26:43Z
2024-10-14T06:34:14+00:00
29
2
--- base_model: - meta-llama/Meta-Llama-3-8B-Instruct language: - en license: llama3 pipeline_tag: text-generation tags: - KALE-LM - science - chemistry --- # Llama3-KALE-LM-Chem-1.5-8B ## Introduction We are thrilled to present Llama3-KALE-LM-Chem-1.5-8B, a new version of our open-source KALE-LM for science, which specializes in chemistry. We have trained our model with a larger amount of data. ## Benchmarks ### Open Benchmarks | Models | ChemBench | MMLU | MMLU-Chem | SciQ | IE(Acc) | IE(LS) | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | | GPT-3.5 | 47.15 | 69.75 | 53.32 | 89.6 | 52.98 | 68.28 | | GPT-4 | 53.72 | 78.67 | 63.70 | 94.10 | 54.20 | 69.74 | | Llama3-8B-Instruct | 46.02 | 68.3 | 51.10 | 93.30 | 45.83 | 61.22 | | LlaSMol | 28.47 | 54.47 | 33.24 | 72.30 | 2.16 | 3.23 | | ChemDFM | 44.44 | 58.11 | 45.60 | 86.70 | 7.61 | 11.49 | | ChemLLM-7B-Chat | 34.16 | 61.79 | 48.39 | 94.00 | 29.66 | 39.17 | | ChemLLM-7B-Chat-1.5-SFT | 42.75 | 63.56 | 49.63 | **95.10** | 14.96 | 19.61 | | **Llama3-KALE-LM-Chem-1.5-8B** | **57.01** | 68.06 | **54.83** | 91.60 | **57.53** | **64.16** | #### ChemBench Details (Evaluated By OpenCompass) | Models | NC | PP | M2C | C2M | PP | RS | YP | TP | SP | Average | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | GPT-3.5 | 46.93 | 56.98 | 85.28 | 38.25 | 43.67 | 42.33 | 30.33 | 42.57 | 38 | 47.15 | | GPT-4 | 54.82 | 65.02 | 92.64 | 52.88 | 62.67 | 52.67 | 42.33 | 24.75 | 35.67 | 53.72 | | Llama3-8B-Instruct | 51.31 | 27.79 | 90.30 | 40.88 | 34.00 | 30.00 | 45.33 | 60.89 | 33.67 | 46.02 | | LlaSMol | 27.78 | 29.34 | 31.44 | 23.38 | 25.67 | 24.00 | 37.33 | 34.65 | 22.67 | 28.47 | | ChemDFM | 36.92 | 55.57 | 83.95 | 42.00 | 40.00 | 37.33 | 39.00 | 33.17 | 32.00 | 44.44 | | ChemLLM-7B-Chat | 41.05 | 29.76 | 85.28 | 26.12 | 26.00 | 24.00 | 20.00 | 24.26 | 31.00 | 34.16 | | ChemLLM-7B-Chat-1.5-SFT | 50.06 | 49.51 | 85.28 | 38.75 | 38.00 | 26.67 | 28.33 | 31.68 | 33.67 | 42.44 | | Llama3-KALE-LM-Chem-1.5-8B | 61.33 | 43.44 | 90.30 | 53.62 | 72.67 | 53.67 | 46.00 | 47.03 | 45.00 | 57.01 | ## Cite This Work ``` @article{dai2024kale, title={KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model}, author={Dai, Weichen and Chen, Yezeng and Dai, Zijie and Huang, Zhijie and Liu, Yubo and Pan, Yixuan and Song, Baiyang and Zhong, Chengli and Li, Xinhe and Wang, Zeyu and others}, journal={arXiv preprint arXiv:2409.18695}, year={2024} } ```
[ "SCIQ" ]
FreedomIntelligence/Apollo-MoE-1.5B
FreedomIntelligence
question-answering
[ "safetensors", "upcycling-qwen2-moe", "biology", "medical", "question-answering", "custom_code", "ar", "en", "zh", "ko", "ja", "mn", "th", "vi", "lo", "mg", "de", "pt", "es", "fr", "ru", "it", "hr", "gl", "cs", "co", "la", "uk", "bs", "bg", "eo", "sq", "da", "sa", "gn", "sr", "sk", "gd", "lb", "hi", "ku", "mt", "he", "ln", "bm", "sw", "ig", "rw", "ha", "dataset:FreedomIntelligence/ApolloMoEDataset", "arxiv:2410.10626", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:finetune:microsoft/Phi-3-mini-4k-instruct", "license:apache-2.0", "region:us" ]
2024-10-14T07:18:46Z
2024-11-20T03:40:28+00:00
29
1
--- base_model: - microsoft/Phi-3-mini-4k-instruct datasets: - FreedomIntelligence/ApolloMoEDataset language: - ar - en - zh - ko - ja - mn - th - vi - lo - mg - de - pt - es - fr - ru - it - hr - gl - cs - co - la - uk - bs - bg - eo - sq - da - sa - gn - sr - sk - gd - lb - hi - ku - mt - he - ln - bm - sw - ig - rw - ha license: apache-2.0 metrics: - accuracy pipeline_tag: question-answering tags: - biology - medical --- # Democratizing Medical LLMs For Much More Languages Covering 12 Major Languages including English, Chinese, French, Hindi, Spanish, Arabic, Russian, Japanese, Korean, German, Italian, Portuguese and 38 Minor Languages So far. <p align="center"> 📃 <a href="https://arxiv.org/abs/2410.10626" target="_blank">Paper</a> • 🌐 <a href="" target="_blank">Demo</a> • 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a> • 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a> • 🤗 <a href="https://huggingface.co/collections/FreedomIntelligence/apollomoe-and-apollo2-670ddebe3bb1ba1aebabbf2c" target="_blank">Models</a> •🌐 <a href="https://github.com/FreedomIntelligence/Apollo" target="_blank">Apollo</a> • 🌐 <a href="https://github.com/FreedomIntelligence/ApolloMoE" target="_blank">ApolloMoE</a> </p> ![Apollo](assets/apollo_medium_final.png) ## 🌈 Update * **[2024.10.15]** ApolloMoE repo is published!🎉 ## Languages Coverage 12 Major Languages and 38 Minor Languages <details> <summary>Click to view the Languages Coverage</summary> ![ApolloMoE](assets/languages.png) </details> ## Architecture <details> <summary>Click to view the MoE routing image</summary> ![ApolloMoE](assets/hybrid_routing.png) </details> ## Results #### Dense 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-0.5B" target="_blank">Apollo2-0.5B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-1.5B" target="_blank">Apollo2-1.5B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-2B" target="_blank">Apollo2-2B</a> 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-3.8B" target="_blank">Apollo2-3.8B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-7B" target="_blank">Apollo2-7B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo2-9B" target="_blank">Apollo2-9B</a> <details> <summary>Click to view the Dense Models Results</summary> ![ApolloMoE](assets/dense_results.png) </details> #### Post-MoE 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-MoE-0.5B" target="_blank">Apollo-MoE-0.5B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-MoE-1.5B" target="_blank">Apollo-MoE-1.5B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-MoE-7B" target="_blank">Apollo-MoE-7B</a> <details> <summary>Click to view the Post-MoE Models Results</summary> ![ApolloMoE](assets/post_moe_results.png) </details> ## Usage Format ##### Apollo2 - 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> - 2B, 9B: User:{query}\nAssistant:{response}\<eos\> - 3.8B: <|user|>\n{query}<|end|><|assisitant|>\n{response}<|end|> ##### Apollo-MoE - 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> ## Dataset & Evaluation - Dataset 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a> <details><summary>Click to expand</summary> ![ApolloMoE](assets/Dataset.png) - [Data category](https://huggingface.co/datasets/FreedomIntelligence/ApolloCorpus/tree/main/train) </details> - Evaluation 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a> <details><summary>Click to expand</summary> - EN: - [MedQA-USMLE](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options) - [MedMCQA](https://huggingface.co/datasets/medmcqa/viewer/default/test) - [PubMedQA](https://huggingface.co/datasets/pubmed_qa): Because the results fluctuated too much, they were not used in the paper. - [MMLU-Medical](https://huggingface.co/datasets/cais/mmlu) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - ZH: - [MedQA-MCMLE](https://huggingface.co/datasets/bigbio/med_qa/viewer/med_qa_zh_4options_bigbio_qa/test) - [CMB-single](https://huggingface.co/datasets/FreedomIntelligence/CMB): Not used in the paper - Randomly sample 2,000 multiple-choice questions with single answer. - [CMMLU-Medical](https://huggingface.co/datasets/haonan-li/cmmlu) - Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology - [CExam](https://github.com/williamliujl/CMExam): Not used in the paper - Randomly sample 2,000 multiple-choice questions - ES: [Head_qa](https://huggingface.co/datasets/head_qa) - FR: - [Frenchmedmcqa](https://github.com/qanastek/FrenchMedMCQA) - [MMLU_FR] - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - HI: [MMLU_HI](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Hindi) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - AR: [MMLU_AR](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Arabic) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - JA: [IgakuQA](https://github.com/jungokasai/IgakuQA) - KO: [KorMedMCQA](https://huggingface.co/datasets/sean0042/KorMedMCQA) - IT: - [MedExpQA](https://huggingface.co/datasets/HiTZ/MedExpQA) - [MMLU_IT] - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - DE: [BioInstructQA](https://huggingface.co/datasets/BioMistral/BioInstructQA): German part - PT: [BioInstructQA](https://huggingface.co/datasets/BioMistral/BioInstructQA): Portuguese part - RU: [RuMedBench](https://github.com/sb-ai-lab/MedBench) </details> ## Model Download and Inference We take Apollo-MoE-0.5B as an example 1. Login Huggingface ``` huggingface-cli login --token $HUGGINGFACE_TOKEN ``` 2. Download model to local dir ```python from huggingface_hub import snapshot_download import os local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') snapshot_download(repo_id="FreedomIntelligence/Apollo-MoE-0.5B", local_dir=local_model_dir) ``` 3. Inference Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import os local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') model=AutoModelForCausalLM.from_pretrained(local_model_dir,trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(local_model_dir,trust_remote_code=True) generation_config = GenerationConfig.from_pretrained(local_model_dir, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1, max_new_tokens=7, min_new_tokens=2, do_sample=False, temperature=1.0, top_k=50, top_p=1.0) inputs = tokenizer('Answer direclty.\nThe capital of Mongolia is Ulaanbaatar.\nThe capital of Iceland is Reykjavik.\nThe capital of Australia is', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs,generation_config=generation_config) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` ## Results reproduction <details><summary>Click to expand</summary> We take Apollo2-7B or Apollo-MoE-0.5B as example 1. Download Dataset for project: ``` bash 0.download_data.sh  ``` 2. Prepare test and dev data for specific model: - Create test data for with special token ``` bash 1.data_process_test&dev.sh ``` 3. Prepare train data for specific model (Create tokenized data in advance): - You can adjust data Training order and Training Epoch in this step ``` bash 2.data_process_train.sh ``` 4. Train the model - If you want to train in Multi Nodes please refer to ./src/sft/training_config/zero_multi.yaml ``` bash 3.single_node_train.sh ``` 5. Evaluate your model: Generate score for benchmark ``` bash 4.eval.sh ``` </details> ## Citation Please use the following citation if you intend to use our dataset for training or evaluation: ``` @misc{zheng2024efficientlydemocratizingmedicalllms, title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang}, year={2024}, eprint={2410.10626}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.10626}, } ```
[ "HEAD-QA", "MEDQA", "PUBMEDQA" ]
JunxiongWang/Llama3.2-Mamba2-3B-dpo
JunxiongWang
null
[ "pytorch", "llama", "arxiv:2408.15237", "license:apache-2.0", "region:us" ]
2024-10-15T20:53:01Z
2024-11-17T21:07:23+00:00
29
0
--- license: apache-2.0 --- Zero-shot results when using the [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) as the teacher model, and the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) as the initialized model | Model | [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | [Llama3.2-Mamba-3B-distill](https://huggingface.co/JunxiongWang/Llama3.2-Mamba-3B-distill) | [Llama3.2-Mamba-3B-dpo](https://huggingface.co/JunxiongWang/Llama3.2-Mamba-3B-dpo) | [Llama3.2-Mamba2-3B-distill](https://huggingface.co/JunxiongWang/Llama3.2-Mamba2-3B-distill) | [Llama3.2-Mamba2-3B-dpo](https://huggingface.co/JunxiongWang/Llama3.2-Mamba2-3B-dpo) | |---------------|---------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Initialization Model | N/A | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct | | Teacher Model | N/A | Llama-3.1-70B-Instruct | Llama-3.1-70B-Instruct | Llama-3.1-70B-Instruct | Llama-3.1-70B-Instruct | | arc_challenge | 0.459 | 0.4838 | 0.5265 | 0.4667 | 0.541 | | arc_easy | 0.7407 | 0.7765 | 0.7997 | 0.7668 | 0.8026 | | hellaswag | 0.7043 | 0.7037 | 0.7256 | 0.6913 | 0.7445 | | mmlu | 0.6043 | 0.5448 | 0.5509 | 0.5312 | 0.5247 | | openbookqa | 0.36 | 0.394 | 0.416 | 0.388 | 0.424 | | piqa | 0.7568 | 0.7731 | 0.7731 | 0.7601 | 0.7769 | | pubmedqa | 0.696 | 0.664 | 0.7 | 0.638 | 0.654 | | race | 0.4067 | 0.4029 | 0.4364 | 0.3981 | 0.4344 | | winogrande | 0.6748 | 0.6732 | 0.674 | 0.6606 | 0.6732 | | truthfulqa | 0.3801 | 0.4202 | 0.4853 | 0.3478 | 0.5028 | ``` @article{junxiongdaniele2024mambainllama, title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models}, author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao}, journal = {arXiv preprint arXiv:2408.15237}, year = {2024} } ```
[ "PUBMEDQA" ]
PaDaS-Lab/arctic-m-bge-small
PaDaS-Lab
null
[ "safetensors", "arctic-m-bge-small", "mteb", "custom_code", "arxiv:2407.08275", "license:mit", "model-index", "region:us" ]
2024-11-07T09:01:21Z
2024-11-15T23:18:08+00:00
29
3
--- license: mit tags: - mteb model-index: - name: no_model_name_available results: - task: type: Retrieval dataset: name: MTEB ArguAna (default) type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: main_score value: 62.44 - type: map_at_1 value: 37.909 - type: map_at_10 value: 54.071000000000005 - type: map_at_100 value: 54.706999999999994 - type: map_at_1000 value: 54.71 - type: map_at_20 value: 54.61 - type: map_at_3 value: 49.787 - type: map_at_5 value: 52.471999999999994 - type: mrr_at_1 value: 38.54907539118065 - type: mrr_at_10 value: 54.30778522883794 - type: mrr_at_100 value: 54.95058676123675 - type: mrr_at_1000 value: 54.9534745787606 - type: mrr_at_20 value: 54.85371234607436 - type: mrr_at_3 value: 50.023707918444806 - type: mrr_at_5 value: 52.71574205784745 - type: nauc_map_at_1000_diff1 value: 9.700052151236969 - type: nauc_map_at_1000_max value: -11.480601048675311 - type: nauc_map_at_1000_std value: -16.80933897048166 - type: nauc_map_at_100_diff1 value: 9.702439916132208 - type: nauc_map_at_100_max value: -11.477121863613672 - type: nauc_map_at_100_std value: -16.805809477344237 - type: nauc_map_at_10_diff1 value: 9.55964875147944 - type: nauc_map_at_10_max value: -11.221604673423611 - type: nauc_map_at_10_std value: -16.84817138477702 - type: nauc_map_at_1_diff1 value: 13.414379505055546 - type: nauc_map_at_1_max value: -13.64398031891019 - type: nauc_map_at_1_std value: -17.823564900618976 - type: nauc_map_at_20_diff1 value: 9.656264829584742 - type: nauc_map_at_20_max value: -11.402956696331874 - type: nauc_map_at_20_std value: -16.729584639384093 - type: nauc_map_at_3_diff1 value: 9.074651468472236 - type: nauc_map_at_3_max value: -11.938799932445345 - type: nauc_map_at_3_std value: -17.292542932113854 - type: nauc_map_at_5_diff1 value: 9.375988599355505 - type: nauc_map_at_5_max value: -11.472571205679664 - type: nauc_map_at_5_std value: -17.40403356468899 - type: nauc_mrr_at_1000_diff1 value: 7.411799940331186 - type: nauc_mrr_at_1000_max value: -12.508159837494434 - type: nauc_mrr_at_1000_std value: -16.707342470667285 - type: nauc_mrr_at_100_diff1 value: 7.414405067064217 - type: nauc_mrr_at_100_max value: -12.50459019538836 - type: nauc_mrr_at_100_std value: -16.703833468680948 - type: nauc_mrr_at_10_diff1 value: 7.286842407775826 - type: nauc_mrr_at_10_max value: -12.258550496378401 - type: nauc_mrr_at_10_std value: -16.731699740418414 - type: nauc_mrr_at_1_diff1 value: 11.596538956075104 - type: nauc_mrr_at_1_max value: -13.73394271953812 - type: nauc_mrr_at_1_std value: -17.64007975098422 - type: nauc_mrr_at_20_diff1 value: 7.376312921473681 - type: nauc_mrr_at_20_max value: -12.426813484836043 - type: nauc_mrr_at_20_std value: -16.627786497409552 - type: nauc_mrr_at_3_diff1 value: 6.654949505817999 - type: nauc_mrr_at_3_max value: -13.137022485458507 - type: nauc_mrr_at_3_std value: -17.32424266610232 - type: nauc_mrr_at_5_diff1 value: 7.2434372901234525 - type: nauc_mrr_at_5_max value: -12.429947223764405 - type: nauc_mrr_at_5_std value: -17.228937753898123 - type: nauc_ndcg_at_1000_diff1 value: 9.36855285735971 - type: nauc_ndcg_at_1000_max value: -10.953666720445836 - type: nauc_ndcg_at_1000_std value: -16.347516200301456 - type: nauc_ndcg_at_100_diff1 value: 9.409452556684755 - type: nauc_ndcg_at_100_max value: -10.862168660345734 - type: nauc_ndcg_at_100_std value: -16.229401930460405 - type: nauc_ndcg_at_10_diff1 value: 8.77691653610156 - type: nauc_ndcg_at_10_max value: -9.563379218779584 - type: nauc_ndcg_at_10_std value: -16.274566801403125 - type: nauc_ndcg_at_1_diff1 value: 13.414379505055546 - type: nauc_ndcg_at_1_max value: -13.64398031891019 - type: nauc_ndcg_at_1_std value: -17.823564900618976 - type: nauc_ndcg_at_20_diff1 value: 9.131323452637305 - type: nauc_ndcg_at_20_max value: -10.266530434189066 - type: nauc_ndcg_at_20_std value: -15.737108435541888 - type: nauc_ndcg_at_3_diff1 value: 7.739062271477399 - type: nauc_ndcg_at_3_max value: -11.488056154638532 - type: nauc_ndcg_at_3_std value: -17.411333288529267 - type: nauc_ndcg_at_5_diff1 value: 8.272542020803597 - type: nauc_ndcg_at_5_max value: -10.397456408544468 - type: nauc_ndcg_at_5_std value: -17.59822117969101 - type: nauc_precision_at_1000_diff1 value: 13.208924542423258 - type: nauc_precision_at_1000_max value: 13.208924542423258 - type: nauc_precision_at_1000_std value: 66.71142287338954 - type: nauc_precision_at_100_diff1 value: 18.762786994282852 - type: nauc_precision_at_100_max value: 20.099447719178784 - type: nauc_precision_at_100_std value: 48.431125716899956 - type: nauc_precision_at_10_diff1 value: 4.019933323360742 - type: nauc_precision_at_10_max value: 4.884910439588258 - type: nauc_precision_at_10_std value: -11.127362742499441 - type: nauc_precision_at_1_diff1 value: 13.414379505055546 - type: nauc_precision_at_1_max value: -13.64398031891019 - type: nauc_precision_at_1_std value: -17.823564900618976 - type: nauc_precision_at_20_diff1 value: 3.6375128143838293 - type: nauc_precision_at_20_max value: 14.126083805554671 - type: nauc_precision_at_20_std value: 10.615757350586888 - type: nauc_precision_at_3_diff1 value: 3.3422754903034884 - type: nauc_precision_at_3_max value: -10.034405870340006 - type: nauc_precision_at_3_std value: -17.917533977279017 - type: nauc_precision_at_5_diff1 value: 3.7950183183380957 - type: nauc_precision_at_5_max value: -5.449035408572837 - type: nauc_precision_at_5_std value: -18.586669848898257 - type: nauc_recall_at_1000_diff1 value: 13.208924542421252 - type: nauc_recall_at_1000_max value: 13.208924542421252 - type: nauc_recall_at_1000_std value: 66.71142287338697 - type: nauc_recall_at_100_diff1 value: 18.76278699428332 - type: nauc_recall_at_100_max value: 20.099447719179743 - type: nauc_recall_at_100_std value: 48.431125716900205 - type: nauc_recall_at_10_diff1 value: 4.019933323360658 - type: nauc_recall_at_10_max value: 4.884910439588057 - type: nauc_recall_at_10_std value: -11.127362742499546 - type: nauc_recall_at_1_diff1 value: 13.414379505055546 - type: nauc_recall_at_1_max value: -13.64398031891019 - type: nauc_recall_at_1_std value: -17.823564900618976 - type: nauc_recall_at_20_diff1 value: 3.6375128143838387 - type: nauc_recall_at_20_max value: 14.126083805554623 - type: nauc_recall_at_20_std value: 10.61575735058658 - type: nauc_recall_at_3_diff1 value: 3.3422754903035554 - type: nauc_recall_at_3_max value: -10.034405870339956 - type: nauc_recall_at_3_std value: -17.917533977278943 - type: nauc_recall_at_5_diff1 value: 3.795018318338047 - type: nauc_recall_at_5_max value: -5.449035408572804 - type: nauc_recall_at_5_std value: -18.58666984889819 - type: ndcg_at_1 value: 37.909 - type: ndcg_at_10 value: 62.44 - type: ndcg_at_100 value: 64.932 - type: ndcg_at_1000 value: 64.99000000000001 - type: ndcg_at_20 value: 64.319 - type: ndcg_at_3 value: 53.778000000000006 - type: ndcg_at_5 value: 58.599000000000004 - type: precision_at_1 value: 37.909 - type: precision_at_10 value: 8.883000000000001 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.804 - type: precision_at_3 value: 21.788 - type: precision_at_5 value: 15.405 - type: recall_at_1 value: 37.909 - type: recall_at_10 value: 88.834 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 96.088 - type: recall_at_3 value: 65.363 - type: recall_at_5 value: 77.027 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval (default) type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: main_score value: 53.176 - type: map_at_1 value: 33.650999999999996 - type: map_at_10 value: 46.471000000000004 - type: map_at_100 value: 47.985 - type: map_at_1000 value: 48.102000000000004 - type: map_at_20 value: 47.292 - type: map_at_3 value: 42.623 - type: map_at_5 value: 44.979 - type: mrr_at_1 value: 41.201716738197426 - type: mrr_at_10 value: 52.25355950677838 - type: mrr_at_100 value: 52.88338300595689 - type: mrr_at_1000 value: 52.921972185432885 - type: mrr_at_20 value: 52.572720245822445 - type: mrr_at_3 value: 49.38006676204101 - type: mrr_at_5 value: 51.368621840724806 - type: nauc_map_at_1000_diff1 value: 52.424580577365674 - type: nauc_map_at_1000_max value: 35.94853426088666 - type: nauc_map_at_1000_std value: -3.1129808405979116 - type: nauc_map_at_100_diff1 value: 52.42314269469678 - type: nauc_map_at_100_max value: 35.95564099324896 - type: nauc_map_at_100_std value: -3.101625069102785 - type: nauc_map_at_10_diff1 value: 52.674357307094496 - type: nauc_map_at_10_max value: 35.62082218057774 - type: nauc_map_at_10_std value: -3.7915962794353173 - type: nauc_map_at_1_diff1 value: 58.88454782432587 - type: nauc_map_at_1_max value: 31.58887282969742 - type: nauc_map_at_1_std value: -3.3197840386400843 - type: nauc_map_at_20_diff1 value: 52.57811291835384 - type: nauc_map_at_20_max value: 35.98370464846043 - type: nauc_map_at_20_std value: -3.282933904055322 - type: nauc_map_at_3_diff1 value: 53.23139053968499 - type: nauc_map_at_3_max value: 35.27374020498982 - type: nauc_map_at_3_std value: -4.586249483195213 - type: nauc_map_at_5_diff1 value: 52.59485178437643 - type: nauc_map_at_5_max value: 35.514513542685876 - type: nauc_map_at_5_std value: -4.434526651693118 - type: nauc_mrr_at_1000_diff1 value: 49.59556586828132 - type: nauc_mrr_at_1000_max value: 36.84616750157751 - type: nauc_mrr_at_1000_std value: -3.8525984466340764 - type: nauc_mrr_at_100_diff1 value: 49.57531335928693 - type: nauc_mrr_at_100_max value: 36.82683956190645 - type: nauc_mrr_at_100_std value: -3.872554481570826 - type: nauc_mrr_at_10_diff1 value: 49.62497265122659 - type: nauc_mrr_at_10_max value: 36.98985018458424 - type: nauc_mrr_at_10_std value: -3.8376513272257733 - type: nauc_mrr_at_1_diff1 value: 54.49327345294693 - type: nauc_mrr_at_1_max value: 34.8934028739382 - type: nauc_mrr_at_1_std value: -4.437791198183867 - type: nauc_mrr_at_20_diff1 value: 49.5890168206895 - type: nauc_mrr_at_20_max value: 36.89726798208358 - type: nauc_mrr_at_20_std value: -3.866993349889667 - type: nauc_mrr_at_3_diff1 value: 49.59634094819107 - type: nauc_mrr_at_3_max value: 37.16225648718551 - type: nauc_mrr_at_3_std value: -4.414442576808539 - type: nauc_mrr_at_5_diff1 value: 49.225081579422344 - type: nauc_mrr_at_5_max value: 36.747751335426756 - type: nauc_mrr_at_5_std value: -4.324178992210884 - type: nauc_ndcg_at_1000_diff1 value: 50.31882542922762 - type: nauc_ndcg_at_1000_max value: 36.94417408184034 - type: nauc_ndcg_at_1000_std value: -1.8041849909913372 - type: nauc_ndcg_at_100_diff1 value: 49.66655309339676 - type: nauc_ndcg_at_100_max value: 36.70372545075 - type: nauc_ndcg_at_100_std value: -1.6243834018453231 - type: nauc_ndcg_at_10_diff1 value: 49.940843283397214 - type: nauc_ndcg_at_10_max value: 36.0676312207537 - type: nauc_ndcg_at_10_std value: -3.439514885728974 - type: nauc_ndcg_at_1_diff1 value: 54.49327345294693 - type: nauc_ndcg_at_1_max value: 34.8934028739382 - type: nauc_ndcg_at_1_std value: -4.437791198183867 - type: nauc_ndcg_at_20_diff1 value: 49.93181052825062 - type: nauc_ndcg_at_20_max value: 36.71459050402181 - type: nauc_ndcg_at_20_std value: -2.6921628328410265 - type: nauc_ndcg_at_3_diff1 value: 50.26692043258316 - type: nauc_ndcg_at_3_max value: 36.24184609760576 - type: nauc_ndcg_at_3_std value: -4.757874636308119 - type: nauc_ndcg_at_5_diff1 value: 49.37130579587368 - type: nauc_ndcg_at_5_max value: 35.73812624135239 - type: nauc_ndcg_at_5_std value: -4.5919788051135555 - type: nauc_precision_at_1000_diff1 value: -24.43795561769816 - type: nauc_precision_at_1000_max value: -13.261416374377383 - type: nauc_precision_at_1000_std value: -4.971448949934886 - type: nauc_precision_at_100_diff1 value: -16.883129718999133 - type: nauc_precision_at_100_max value: -2.46701167013433 - type: nauc_precision_at_100_std value: 3.277974208302033 - type: nauc_precision_at_10_diff1 value: 6.58192062605803 - type: nauc_precision_at_10_max value: 17.66130584790626 - type: nauc_precision_at_10_std value: 1.5300268853781491 - type: nauc_precision_at_1_diff1 value: 54.49327345294693 - type: nauc_precision_at_1_max value: 34.8934028739382 - type: nauc_precision_at_1_std value: -4.437791198183867 - type: nauc_precision_at_20_diff1 value: -1.8753425950377052 - type: nauc_precision_at_20_max value: 12.343845069467402 - type: nauc_precision_at_20_std value: 4.625866298054727 - type: nauc_precision_at_3_diff1 value: 26.25293210293932 - type: nauc_precision_at_3_max value: 31.20810752338666 - type: nauc_precision_at_3_std value: -4.53249841922141 - type: nauc_precision_at_5_diff1 value: 16.615368164537657 - type: nauc_precision_at_5_max value: 25.232698186133707 - type: nauc_precision_at_5_std value: -2.663050054635891 - type: nauc_recall_at_1000_diff1 value: 35.83705078359078 - type: nauc_recall_at_1000_max value: 62.30748246780233 - type: nauc_recall_at_1000_std value: 63.240763200045805 - type: nauc_recall_at_100_diff1 value: 33.467633455800815 - type: nauc_recall_at_100_max value: 36.60323449435162 - type: nauc_recall_at_100_std value: 14.015411684054346 - type: nauc_recall_at_10_diff1 value: 41.42599884119931 - type: nauc_recall_at_10_max value: 33.20419643286129 - type: nauc_recall_at_10_std value: -2.159643957172222 - type: nauc_recall_at_1_diff1 value: 58.88454782432587 - type: nauc_recall_at_1_max value: 31.58887282969742 - type: nauc_recall_at_1_std value: -3.3197840386400843 - type: nauc_recall_at_20_diff1 value: 40.65866346855011 - type: nauc_recall_at_20_max value: 35.30555514387619 - type: nauc_recall_at_20_std value: 0.08694081684299272 - type: nauc_recall_at_3_diff1 value: 46.09760653175857 - type: nauc_recall_at_3_max value: 34.90824497182377 - type: nauc_recall_at_3_std value: -5.655059126448061 - type: nauc_recall_at_5_diff1 value: 41.53532865271283 - type: nauc_recall_at_5_max value: 33.39745163988502 - type: nauc_recall_at_5_std value: -5.016436615159224 - type: ndcg_at_1 value: 41.202 - type: ndcg_at_10 value: 53.176 - type: ndcg_at_100 value: 58.328 - type: ndcg_at_1000 value: 59.965999999999994 - type: ndcg_at_20 value: 55.008 - type: ndcg_at_3 value: 47.859 - type: ndcg_at_5 value: 50.768 - type: precision_at_1 value: 41.202 - type: precision_at_10 value: 10.186 - type: precision_at_100 value: 1.609 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_20 value: 5.973 - type: precision_at_3 value: 23.176 - type: precision_at_5 value: 16.881 - type: recall_at_1 value: 33.650999999999996 - type: recall_at_10 value: 65.977 - type: recall_at_100 value: 87.302 - type: recall_at_1000 value: 97.336 - type: recall_at_20 value: 72.294 - type: recall_at_3 value: 50.797000000000004 - type: recall_at_5 value: 58.872 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval (default) type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: main_score value: 50.92100000000001 - type: map_at_1 value: 33.744 - type: map_at_10 value: 44.815 - type: map_at_100 value: 46.245999999999995 - type: map_at_1000 value: 46.376 - type: map_at_20 value: 45.609 - type: map_at_3 value: 41.531 - type: map_at_5 value: 43.391999999999996 - type: mrr_at_1 value: 42.10191082802548 - type: mrr_at_10 value: 51.08573450611672 - type: mrr_at_100 value: 51.74891122170677 - type: mrr_at_1000 value: 51.78529712995296 - type: mrr_at_20 value: 51.4967715101907 - type: mrr_at_3 value: 48.91719745222933 - type: mrr_at_5 value: 50.28980891719754 - type: nauc_map_at_1000_diff1 value: 55.176936659421294 - type: nauc_map_at_1000_max value: 36.48371284702768 - type: nauc_map_at_1000_std value: -2.4447515702989806 - type: nauc_map_at_100_diff1 value: 55.1863019000113 - type: nauc_map_at_100_max value: 36.43246962553196 - type: nauc_map_at_100_std value: -2.5450740079709044 - type: nauc_map_at_10_diff1 value: 55.762997970306394 - type: nauc_map_at_10_max value: 35.380624071909175 - type: nauc_map_at_10_std value: -4.558912389227884 - type: nauc_map_at_1_diff1 value: 61.0608868067328 - type: nauc_map_at_1_max value: 29.72548408222947 - type: nauc_map_at_1_std value: -10.069038170579741 - type: nauc_map_at_20_diff1 value: 55.41603585876044 - type: nauc_map_at_20_max value: 36.02816334732108 - type: nauc_map_at_20_std value: -3.3699246431509717 - type: nauc_map_at_3_diff1 value: 56.82908515426453 - type: nauc_map_at_3_max value: 33.15737676707489 - type: nauc_map_at_3_std value: -7.378910489256622 - type: nauc_map_at_5_diff1 value: 56.14588532401665 - type: nauc_map_at_5_max value: 34.414293818549005 - type: nauc_map_at_5_std value: -6.047619727680526 - type: nauc_mrr_at_1000_diff1 value: 52.56773367624669 - type: nauc_mrr_at_1000_max value: 39.31200496491635 - type: nauc_mrr_at_1000_std value: 2.0642958415792685 - type: nauc_mrr_at_100_diff1 value: 52.56372613071439 - type: nauc_mrr_at_100_max value: 39.3159360559684 - type: nauc_mrr_at_100_std value: 2.0805091403344997 - type: nauc_mrr_at_10_diff1 value: 52.64975462157789 - type: nauc_mrr_at_10_max value: 39.208820614240295 - type: nauc_mrr_at_10_std value: 1.5932304576085854 - type: nauc_mrr_at_1_diff1 value: 56.58854551625778 - type: nauc_mrr_at_1_max value: 38.83187422216751 - type: nauc_mrr_at_1_std value: -1.1292455097337009 - type: nauc_mrr_at_20_diff1 value: 52.57378574296517 - type: nauc_mrr_at_20_max value: 39.33846363894702 - type: nauc_mrr_at_20_std value: 2.013232706080241 - type: nauc_mrr_at_3_diff1 value: 52.92910407019309 - type: nauc_mrr_at_3_max value: 38.91108571047644 - type: nauc_mrr_at_3_std value: 1.067703035548225 - type: nauc_mrr_at_5_diff1 value: 52.636125724089254 - type: nauc_mrr_at_5_max value: 39.209637006609455 - type: nauc_mrr_at_5_std value: 1.2426388707039298 - type: nauc_ndcg_at_1000_diff1 value: 52.31111968341887 - type: nauc_ndcg_at_1000_max value: 38.75742129669778 - type: nauc_ndcg_at_1000_std value: 3.5536257954775157 - type: nauc_ndcg_at_100_diff1 value: 52.37103775070086 - type: nauc_ndcg_at_100_max value: 38.753000166661344 - type: nauc_ndcg_at_100_std value: 3.6667964133015762 - type: nauc_ndcg_at_10_diff1 value: 53.56092641993905 - type: nauc_ndcg_at_10_max value: 37.62257371918095 - type: nauc_ndcg_at_10_std value: -0.3933425825827704 - type: nauc_ndcg_at_1_diff1 value: 56.58854551625778 - type: nauc_ndcg_at_1_max value: 38.83187422216751 - type: nauc_ndcg_at_1_std value: -1.1292455097337009 - type: nauc_ndcg_at_20_diff1 value: 52.997119382659484 - type: nauc_ndcg_at_20_max value: 38.41095357471896 - type: nauc_ndcg_at_20_std value: 1.9075677183444468 - type: nauc_ndcg_at_3_diff1 value: 53.32041550278149 - type: nauc_ndcg_at_3_max value: 36.54542124064425 - type: nauc_ndcg_at_3_std value: -2.1268638356088374 - type: nauc_ndcg_at_5_diff1 value: 53.389257836500256 - type: nauc_ndcg_at_5_max value: 37.307434494043676 - type: nauc_ndcg_at_5_std value: -1.7664881562750538 - type: nauc_precision_at_1000_diff1 value: -18.061781127353505 - type: nauc_precision_at_1000_max value: 14.164961693343972 - type: nauc_precision_at_1000_std value: 32.08207789236699 - type: nauc_precision_at_100_diff1 value: -12.629587588058818 - type: nauc_precision_at_100_max value: 23.723177704853438 - type: nauc_precision_at_100_std value: 37.3224630704383 - type: nauc_precision_at_10_diff1 value: 6.0985411491844195 - type: nauc_precision_at_10_max value: 34.01467623470949 - type: nauc_precision_at_10_std value: 26.343490397284334 - type: nauc_precision_at_1_diff1 value: 56.58854551625778 - type: nauc_precision_at_1_max value: 38.83187422216751 - type: nauc_precision_at_1_std value: -1.1292455097337009 - type: nauc_precision_at_20_diff1 value: -2.905957928684381 - type: nauc_precision_at_20_max value: 31.591825090757908 - type: nauc_precision_at_20_std value: 32.989888342109076 - type: nauc_precision_at_3_diff1 value: 27.17928355856029 - type: nauc_precision_at_3_max value: 37.33885605249689 - type: nauc_precision_at_3_std value: 12.651453071713059 - type: nauc_precision_at_5_diff1 value: 16.526381349737242 - type: nauc_precision_at_5_max value: 36.88010744074558 - type: nauc_precision_at_5_std value: 19.135126725576384 - type: nauc_recall_at_1000_diff1 value: 36.638153528487635 - type: nauc_recall_at_1000_max value: 45.19430762946925 - type: nauc_recall_at_1000_std value: 42.57303922365023 - type: nauc_recall_at_100_diff1 value: 40.43544826397977 - type: nauc_recall_at_100_max value: 40.784066455275706 - type: nauc_recall_at_100_std value: 27.301271412381144 - type: nauc_recall_at_10_diff1 value: 48.37295419396959 - type: nauc_recall_at_10_max value: 34.16271996741004 - type: nauc_recall_at_10_std value: 0.9252807039977983 - type: nauc_recall_at_1_diff1 value: 61.0608868067328 - type: nauc_recall_at_1_max value: 29.72548408222947 - type: nauc_recall_at_1_std value: -10.069038170579741 - type: nauc_recall_at_20_diff1 value: 44.94065991142139 - type: nauc_recall_at_20_max value: 37.603936202852786 - type: nauc_recall_at_20_std value: 11.60064066504551 - type: nauc_recall_at_3_diff1 value: 51.99741579524252 - type: nauc_recall_at_3_max value: 31.388906920168104 - type: nauc_recall_at_3_std value: -6.153653310119753 - type: nauc_recall_at_5_diff1 value: 49.67027790654694 - type: nauc_recall_at_5_max value: 33.09777021504344 - type: nauc_recall_at_5_std value: -3.9074095515554643 - type: ndcg_at_1 value: 42.102000000000004 - type: ndcg_at_10 value: 50.92100000000001 - type: ndcg_at_100 value: 55.381 - type: ndcg_at_1000 value: 57.18600000000001 - type: ndcg_at_20 value: 52.778000000000006 - type: ndcg_at_3 value: 46.542 - type: ndcg_at_5 value: 48.681000000000004 - type: precision_at_1 value: 42.102000000000004 - type: precision_at_10 value: 9.745 - type: precision_at_100 value: 1.548 - type: precision_at_1000 value: 0.198 - type: precision_at_20 value: 5.742 - type: precision_at_3 value: 22.695999999999998 - type: precision_at_5 value: 16.14 - type: recall_at_1 value: 33.744 - type: recall_at_10 value: 61.17700000000001 - type: recall_at_100 value: 79.71000000000001 - type: recall_at_1000 value: 91.008 - type: recall_at_20 value: 68.03399999999999 - type: recall_at_3 value: 48.087 - type: recall_at_5 value: 54.142 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval (default) type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: main_score value: 62.458000000000006 - type: map_at_1 value: 43.839 - type: map_at_10 value: 56.724 - type: map_at_100 value: 57.751 - type: map_at_1000 value: 57.797 - type: map_at_20 value: 57.387 - type: map_at_3 value: 53.494 - type: map_at_5 value: 55.372 - type: mrr_at_1 value: 50.15673981191222 - type: mrr_at_10 value: 60.11456933870735 - type: mrr_at_100 value: 60.76087999656381 - type: mrr_at_1000 value: 60.77978089317033 - type: mrr_at_20 value: 60.55360369120728 - type: mrr_at_3 value: 58.025078369906026 - type: mrr_at_5 value: 59.22257053291546 - type: nauc_map_at_1000_diff1 value: 54.411253174343344 - type: nauc_map_at_1000_max value: 39.83549610516408 - type: nauc_map_at_1000_std value: -2.194420641407535 - type: nauc_map_at_100_diff1 value: 54.38831483785624 - type: nauc_map_at_100_max value: 39.80801320822348 - type: nauc_map_at_100_std value: -2.1803664698780842 - type: nauc_map_at_10_diff1 value: 54.45604359775012 - type: nauc_map_at_10_max value: 39.063307413982 - type: nauc_map_at_10_std value: -3.4236632847098423 - type: nauc_map_at_1_diff1 value: 56.60631395015112 - type: nauc_map_at_1_max value: 32.467568481080036 - type: nauc_map_at_1_std value: -5.800399911526891 - type: nauc_map_at_20_diff1 value: 54.370786642447655 - type: nauc_map_at_20_max value: 39.59321046436977 - type: nauc_map_at_20_std value: -2.4088559799214813 - type: nauc_map_at_3_diff1 value: 55.49957006713255 - type: nauc_map_at_3_max value: 37.118764615368356 - type: nauc_map_at_3_std value: -5.909943937274052 - type: nauc_map_at_5_diff1 value: 54.81041509611971 - type: nauc_map_at_5_max value: 38.24140182494858 - type: nauc_map_at_5_std value: -4.509625968871774 - type: nauc_mrr_at_1000_diff1 value: 53.74660770823747 - type: nauc_mrr_at_1000_max value: 41.361501849395225 - type: nauc_mrr_at_1000_std value: -0.8127913246616565 - type: nauc_mrr_at_100_diff1 value: 53.737280189706624 - type: nauc_mrr_at_100_max value: 41.373323086448075 - type: nauc_mrr_at_100_std value: -0.7945211619535609 - type: nauc_mrr_at_10_diff1 value: 53.60002836781194 - type: nauc_mrr_at_10_max value: 41.294906284672145 - type: nauc_mrr_at_10_std value: -1.133159614693189 - type: nauc_mrr_at_1_diff1 value: 55.872003219794344 - type: nauc_mrr_at_1_max value: 38.42398154139028 - type: nauc_mrr_at_1_std value: -3.262385266943247 - type: nauc_mrr_at_20_diff1 value: 53.660372497054865 - type: nauc_mrr_at_20_max value: 41.423640159792335 - type: nauc_mrr_at_20_std value: -0.6992108032958381 - type: nauc_mrr_at_3_diff1 value: 54.246382328404074 - type: nauc_mrr_at_3_max value: 41.167575858831476 - type: nauc_mrr_at_3_std value: -1.9090830671107353 - type: nauc_mrr_at_5_diff1 value: 53.85586718570862 - type: nauc_mrr_at_5_max value: 40.98294334278317 - type: nauc_mrr_at_5_std value: -1.7121845127201107 - type: nauc_ndcg_at_1000_diff1 value: 53.37939317348487 - type: nauc_ndcg_at_1000_max value: 42.25503051093623 - type: nauc_ndcg_at_1000_std value: 0.9024947979875332 - type: nauc_ndcg_at_100_diff1 value: 53.02194451446347 - type: nauc_ndcg_at_100_max value: 42.43117968471603 - type: nauc_ndcg_at_100_std value: 1.6097860371997164 - type: nauc_ndcg_at_10_diff1 value: 52.864882508290044 - type: nauc_ndcg_at_10_max value: 41.30405029504235 - type: nauc_ndcg_at_10_std value: -1.1315174337193916 - type: nauc_ndcg_at_1_diff1 value: 55.872003219794344 - type: nauc_ndcg_at_1_max value: 38.42398154139028 - type: nauc_ndcg_at_1_std value: -3.262385266943247 - type: nauc_ndcg_at_20_diff1 value: 52.78243804716271 - type: nauc_ndcg_at_20_max value: 42.200708727692884 - type: nauc_ndcg_at_20_std value: 1.204386994029969 - type: nauc_ndcg_at_3_diff1 value: 54.134588048680165 - type: nauc_ndcg_at_3_max value: 39.262737508813956 - type: nauc_ndcg_at_3_std value: -3.9798145740330866 - type: nauc_ndcg_at_5_diff1 value: 53.43380266993641 - type: nauc_ndcg_at_5_max value: 40.1700690079209 - type: nauc_ndcg_at_5_std value: -2.81233830575759 - type: nauc_precision_at_1000_diff1 value: -16.085237050718256 - type: nauc_precision_at_1000_max value: 21.56903927967793 - type: nauc_precision_at_1000_std value: 25.163563893770934 - type: nauc_precision_at_100_diff1 value: -13.409177660433013 - type: nauc_precision_at_100_max value: 26.191889066691694 - type: nauc_precision_at_100_std value: 30.434449110434343 - type: nauc_precision_at_10_diff1 value: 7.653820392496794 - type: nauc_precision_at_10_max value: 33.512847797440386 - type: nauc_precision_at_10_std value: 17.46948584875833 - type: nauc_precision_at_1_diff1 value: 55.872003219794344 - type: nauc_precision_at_1_max value: 38.42398154139028 - type: nauc_precision_at_1_std value: -3.262385266943247 - type: nauc_precision_at_20_diff1 value: -1.7882509799446464 - type: nauc_precision_at_20_max value: 32.667378017254244 - type: nauc_precision_at_20_std value: 27.51279914879186 - type: nauc_precision_at_3_diff1 value: 30.46461628659826 - type: nauc_precision_at_3_max value: 37.74901386898987 - type: nauc_precision_at_3_std value: 2.466674787017699 - type: nauc_precision_at_5_diff1 value: 18.80573985694938 - type: nauc_precision_at_5_max value: 34.86218095871847 - type: nauc_precision_at_5_std value: 9.231195357997013 - type: nauc_recall_at_1000_diff1 value: 44.175128440767175 - type: nauc_recall_at_1000_max value: 72.76306751265861 - type: nauc_recall_at_1000_std value: 69.72788552092433 - type: nauc_recall_at_100_diff1 value: 39.33252228382757 - type: nauc_recall_at_100_max value: 55.56135688396655 - type: nauc_recall_at_100_std value: 37.203018125948766 - type: nauc_recall_at_10_diff1 value: 45.481900144718836 - type: nauc_recall_at_10_max value: 42.54097511363277 - type: nauc_recall_at_10_std value: 2.6063345056649796 - type: nauc_recall_at_1_diff1 value: 56.60631395015112 - type: nauc_recall_at_1_max value: 32.467568481080036 - type: nauc_recall_at_1_std value: -5.800399911526891 - type: nauc_recall_at_20_diff1 value: 42.76239836038449 - type: nauc_recall_at_20_max value: 48.446363988908665 - type: nauc_recall_at_20_std value: 17.640762405916508 - type: nauc_recall_at_3_diff1 value: 51.60470647047845 - type: nauc_recall_at_3_max value: 37.418467889921224 - type: nauc_recall_at_3_std value: -6.408088458035488 - type: nauc_recall_at_5_diff1 value: 48.70731792808808 - type: nauc_recall_at_5_max value: 39.09353288109433 - type: nauc_recall_at_5_std value: -3.262225734608099 - type: ndcg_at_1 value: 50.157 - type: ndcg_at_10 value: 62.458000000000006 - type: ndcg_at_100 value: 66.27499999999999 - type: ndcg_at_1000 value: 67.11 - type: ndcg_at_20 value: 64.3 - type: ndcg_at_3 value: 57.348 - type: ndcg_at_5 value: 59.870999999999995 - type: precision_at_1 value: 50.157 - type: precision_at_10 value: 9.875 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 5.527 - type: precision_at_3 value: 25.474999999999998 - type: precision_at_5 value: 17.279 - type: recall_at_1 value: 43.839 - type: recall_at_10 value: 75.94300000000001 - type: recall_at_100 value: 92.036 - type: recall_at_1000 value: 97.848 - type: recall_at_20 value: 82.592 - type: recall_at_3 value: 62.227 - type: recall_at_5 value: 68.443 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval (default) type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: main_score value: 43.805 - type: map_at_1 value: 29.429 - type: map_at_10 value: 38.708 - type: map_at_100 value: 39.834 - type: map_at_1000 value: 39.896 - type: map_at_20 value: 39.330999999999996 - type: map_at_3 value: 36.02 - type: map_at_5 value: 37.547999999999995 - type: mrr_at_1 value: 31.63841807909605 - type: mrr_at_10 value: 40.82633844498248 - type: mrr_at_100 value: 41.76109003638645 - type: mrr_at_1000 value: 41.8059087475105 - type: mrr_at_20 value: 41.36288532812116 - type: mrr_at_3 value: 38.24858757062146 - type: mrr_at_5 value: 39.717514124293764 - type: nauc_map_at_1000_diff1 value: 45.585812879455524 - type: nauc_map_at_1000_max value: 31.31175404949036 - type: nauc_map_at_1000_std value: -0.6688504922328871 - type: nauc_map_at_100_diff1 value: 45.57793192934199 - type: nauc_map_at_100_max value: 31.31449058161509 - type: nauc_map_at_100_std value: -0.6711471739699831 - type: nauc_map_at_10_diff1 value: 45.63641283675042 - type: nauc_map_at_10_max value: 31.34383247627637 - type: nauc_map_at_10_std value: -0.8969771419071247 - type: nauc_map_at_1_diff1 value: 51.20029025787074 - type: nauc_map_at_1_max value: 29.29320638697403 - type: nauc_map_at_1_std value: -4.195575175603184 - type: nauc_map_at_20_diff1 value: 45.50579311311032 - type: nauc_map_at_20_max value: 31.162777948119203 - type: nauc_map_at_20_std value: -0.8437520900178488 - type: nauc_map_at_3_diff1 value: 46.69781509400438 - type: nauc_map_at_3_max value: 30.454657702219357 - type: nauc_map_at_3_std value: -1.961062011363698 - type: nauc_map_at_5_diff1 value: 46.04910492816806 - type: nauc_map_at_5_max value: 30.930622367372457 - type: nauc_map_at_5_std value: -1.3197031926341913 - type: nauc_mrr_at_1000_diff1 value: 45.184418431720836 - type: nauc_mrr_at_1000_max value: 32.691464662489466 - type: nauc_mrr_at_1000_std value: 0.8007278440166657 - type: nauc_mrr_at_100_diff1 value: 45.167327620455126 - type: nauc_mrr_at_100_max value: 32.70344473782206 - type: nauc_mrr_at_100_std value: 0.8064086841104559 - type: nauc_mrr_at_10_diff1 value: 45.21931014425146 - type: nauc_mrr_at_10_max value: 32.89922709426894 - type: nauc_mrr_at_10_std value: 0.726548346036894 - type: nauc_mrr_at_1_diff1 value: 50.32992410650978 - type: nauc_mrr_at_1_max value: 31.6443297540481 - type: nauc_mrr_at_1_std value: -2.2413873790433225 - type: nauc_mrr_at_20_diff1 value: 45.113204601824044 - type: nauc_mrr_at_20_max value: 32.61736305768626 - type: nauc_mrr_at_20_std value: 0.7278143932053411 - type: nauc_mrr_at_3_diff1 value: 46.240077882820316 - type: nauc_mrr_at_3_max value: 32.27275303260653 - type: nauc_mrr_at_3_std value: 0.1282059654192661 - type: nauc_mrr_at_5_diff1 value: 45.58559508660604 - type: nauc_mrr_at_5_max value: 32.59296526810394 - type: nauc_mrr_at_5_std value: 0.7874095845402367 - type: nauc_ndcg_at_1000_diff1 value: 43.20858304283118 - type: nauc_ndcg_at_1000_max value: 32.44654538809174 - type: nauc_ndcg_at_1000_std value: 1.9808645746749782 - type: nauc_ndcg_at_100_diff1 value: 42.80944482285779 - type: nauc_ndcg_at_100_max value: 32.63314035546906 - type: nauc_ndcg_at_100_std value: 2.5177765413154884 - type: nauc_ndcg_at_10_diff1 value: 43.16290325539329 - type: nauc_ndcg_at_10_max value: 32.61740129429683 - type: nauc_ndcg_at_10_std value: 1.2892420693179965 - type: nauc_ndcg_at_1_diff1 value: 50.32992410650978 - type: nauc_ndcg_at_1_max value: 31.6443297540481 - type: nauc_ndcg_at_1_std value: -2.2413873790433225 - type: nauc_ndcg_at_20_diff1 value: 42.597191894775015 - type: nauc_ndcg_at_20_max value: 31.751099582584125 - type: nauc_ndcg_at_20_std value: 1.438787341128167 - type: nauc_ndcg_at_3_diff1 value: 45.425750906136706 - type: nauc_ndcg_at_3_max value: 31.118153819129173 - type: nauc_ndcg_at_3_std value: -0.7887794544621397 - type: nauc_ndcg_at_5_diff1 value: 44.24184750204594 - type: nauc_ndcg_at_5_max value: 31.678340776396162 - type: nauc_ndcg_at_5_std value: 0.38897464065601617 - type: nauc_precision_at_1000_diff1 value: -9.25461469977963 - type: nauc_precision_at_1000_max value: 11.546970772317056 - type: nauc_precision_at_1000_std value: 11.77950666462821 - type: nauc_precision_at_100_diff1 value: 5.325820460767819 - type: nauc_precision_at_100_max value: 22.610950942174625 - type: nauc_precision_at_100_std value: 16.210181509270097 - type: nauc_precision_at_10_diff1 value: 26.09126825014653 - type: nauc_precision_at_10_max value: 35.00999838883753 - type: nauc_precision_at_10_std value: 9.40564293375869 - type: nauc_precision_at_1_diff1 value: 50.32992410650978 - type: nauc_precision_at_1_max value: 31.6443297540481 - type: nauc_precision_at_1_std value: -2.2413873790433225 - type: nauc_precision_at_20_diff1 value: 19.233219692159693 - type: nauc_precision_at_20_max value: 29.03044299067655 - type: nauc_precision_at_20_std value: 10.317579302538391 - type: nauc_precision_at_3_diff1 value: 37.364819598304315 - type: nauc_precision_at_3_max value: 33.379165297552724 - type: nauc_precision_at_3_std value: 3.424932892620743 - type: nauc_precision_at_5_diff1 value: 32.872702946200945 - type: nauc_precision_at_5_max value: 34.571450997070706 - type: nauc_precision_at_5_std value: 7.12035598939766 - type: nauc_recall_at_1000_diff1 value: 11.279997042195749 - type: nauc_recall_at_1000_max value: 40.44953937460631 - type: nauc_recall_at_1000_std value: 31.19505726194957 - type: nauc_recall_at_100_diff1 value: 24.15672423727942 - type: nauc_recall_at_100_max value: 36.814968545741614 - type: nauc_recall_at_100_std value: 21.50699037479782 - type: nauc_recall_at_10_diff1 value: 34.34584531211266 - type: nauc_recall_at_10_max value: 34.196420028975375 - type: nauc_recall_at_10_std value: 6.855963891373787 - type: nauc_recall_at_1_diff1 value: 51.20029025787074 - type: nauc_recall_at_1_max value: 29.29320638697403 - type: nauc_recall_at_1_std value: -4.195575175603184 - type: nauc_recall_at_20_diff1 value: 30.313271321859748 - type: nauc_recall_at_20_max value: 30.019409239750388 - type: nauc_recall_at_20_std value: 8.01887379774591 - type: nauc_recall_at_3_diff1 value: 41.3611355564578 - type: nauc_recall_at_3_max value: 30.190666918387272 - type: nauc_recall_at_3_std value: 0.7366693042344981 - type: nauc_recall_at_5_diff1 value: 38.46041757825592 - type: nauc_recall_at_5_max value: 31.35545227469271 - type: nauc_recall_at_5_std value: 3.226901160844341 - type: ndcg_at_1 value: 31.637999999999998 - type: ndcg_at_10 value: 43.805 - type: ndcg_at_100 value: 49.168 - type: ndcg_at_1000 value: 50.77700000000001 - type: ndcg_at_20 value: 45.866 - type: ndcg_at_3 value: 38.608 - type: ndcg_at_5 value: 41.152 - type: precision_at_1 value: 31.637999999999998 - type: precision_at_10 value: 6.61 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_20 value: 3.7800000000000002 - type: precision_at_3 value: 16.195999999999998 - type: precision_at_5 value: 11.209 - type: recall_at_1 value: 29.429 - type: recall_at_10 value: 57.327 - type: recall_at_100 value: 81.74900000000001 - type: recall_at_1000 value: 93.967 - type: recall_at_20 value: 65.01400000000001 - type: recall_at_3 value: 43.472 - type: recall_at_5 value: 49.521 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval (default) type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: main_score value: 34.63 - type: map_at_1 value: 20.541999999999998 - type: map_at_10 value: 29.121000000000002 - type: map_at_100 value: 30.389 - type: map_at_1000 value: 30.497999999999998 - type: map_at_20 value: 29.787999999999997 - type: map_at_3 value: 26.514 - type: map_at_5 value: 27.723 - type: mrr_at_1 value: 24.62686567164179 - type: mrr_at_10 value: 33.77897220247966 - type: mrr_at_100 value: 34.71645100175941 - type: mrr_at_1000 value: 34.77428365380689 - type: mrr_at_20 value: 34.31909140865809 - type: mrr_at_3 value: 31.281094527363194 - type: mrr_at_5 value: 32.568407960199 - type: nauc_map_at_1000_diff1 value: 31.065597401371054 - type: nauc_map_at_1000_max value: 22.53058113245784 - type: nauc_map_at_1000_std value: 3.385336368837248 - type: nauc_map_at_100_diff1 value: 31.066996795756317 - type: nauc_map_at_100_max value: 22.526621520577233 - type: nauc_map_at_100_std value: 3.390224080489411 - type: nauc_map_at_10_diff1 value: 30.98735163587709 - type: nauc_map_at_10_max value: 22.033975223583145 - type: nauc_map_at_10_std value: 3.037362136271266 - type: nauc_map_at_1_diff1 value: 34.7860915604864 - type: nauc_map_at_1_max value: 21.990883014000932 - type: nauc_map_at_1_std value: 3.215046066755989 - type: nauc_map_at_20_diff1 value: 30.95841793371864 - type: nauc_map_at_20_max value: 22.312212038670587 - type: nauc_map_at_20_std value: 3.204234721808634 - type: nauc_map_at_3_diff1 value: 31.873464867905415 - type: nauc_map_at_3_max value: 22.344535220057306 - type: nauc_map_at_3_std value: 3.037466472476692 - type: nauc_map_at_5_diff1 value: 31.298770866792836 - type: nauc_map_at_5_max value: 22.02799162331672 - type: nauc_map_at_5_std value: 2.994008224596537 - type: nauc_mrr_at_1000_diff1 value: 32.58365390317668 - type: nauc_mrr_at_1000_max value: 24.960504988463303 - type: nauc_mrr_at_1000_std value: 3.266331629091531 - type: nauc_mrr_at_100_diff1 value: 32.563483708724526 - type: nauc_mrr_at_100_max value: 24.956287015467943 - type: nauc_mrr_at_100_std value: 3.270422121157774 - type: nauc_mrr_at_10_diff1 value: 32.65613325350289 - type: nauc_mrr_at_10_max value: 24.825654782716384 - type: nauc_mrr_at_10_std value: 3.1340776275891025 - type: nauc_mrr_at_1_diff1 value: 36.55632726985752 - type: nauc_mrr_at_1_max value: 24.4445917993785 - type: nauc_mrr_at_1_std value: 2.264391282317747 - type: nauc_mrr_at_20_diff1 value: 32.47925104262513 - type: nauc_mrr_at_20_max value: 24.89432614603361 - type: nauc_mrr_at_20_std value: 3.1774200263878054 - type: nauc_mrr_at_3_diff1 value: 33.50322152633588 - type: nauc_mrr_at_3_max value: 25.199564396471096 - type: nauc_mrr_at_3_std value: 2.9397581352257345 - type: nauc_mrr_at_5_diff1 value: 32.9982729251397 - type: nauc_mrr_at_5_max value: 24.890193912899377 - type: nauc_mrr_at_5_std value: 3.0867452313583623 - type: nauc_ndcg_at_1000_diff1 value: 30.026151364827403 - type: nauc_ndcg_at_1000_max value: 24.49889088739547 - type: nauc_ndcg_at_1000_std value: 5.381413285104224 - type: nauc_ndcg_at_100_diff1 value: 29.80539228010773 - type: nauc_ndcg_at_100_max value: 24.309010907634338 - type: nauc_ndcg_at_100_std value: 5.232303167670201 - type: nauc_ndcg_at_10_diff1 value: 29.691994838075185 - type: nauc_ndcg_at_10_max value: 22.67822625590708 - type: nauc_ndcg_at_10_std value: 3.499987146410407 - type: nauc_ndcg_at_1_diff1 value: 36.55632726985752 - type: nauc_ndcg_at_1_max value: 24.4445917993785 - type: nauc_ndcg_at_1_std value: 2.264391282317747 - type: nauc_ndcg_at_20_diff1 value: 29.345854238086844 - type: nauc_ndcg_at_20_max value: 23.323621216002355 - type: nauc_ndcg_at_20_std value: 3.9174664108448236 - type: nauc_ndcg_at_3_diff1 value: 31.580762995014105 - type: nauc_ndcg_at_3_max value: 23.30762843542372 - type: nauc_ndcg_at_3_std value: 3.0944885327411535 - type: nauc_ndcg_at_5_diff1 value: 30.47041676971102 - type: nauc_ndcg_at_5_max value: 22.77605457106532 - type: nauc_ndcg_at_5_std value: 3.3449847079523596 - type: nauc_precision_at_1000_diff1 value: 0.717852604455919 - type: nauc_precision_at_1000_max value: 3.38068239732633 - type: nauc_precision_at_1000_std value: 0.13673896630835028 - type: nauc_precision_at_100_diff1 value: 7.401760552752896 - type: nauc_precision_at_100_max value: 13.294128452575041 - type: nauc_precision_at_100_std value: 4.65501490276724 - type: nauc_precision_at_10_diff1 value: 19.426577293440936 - type: nauc_precision_at_10_max value: 18.143059865611235 - type: nauc_precision_at_10_std value: 3.4033224978068946 - type: nauc_precision_at_1_diff1 value: 36.55632726985752 - type: nauc_precision_at_1_max value: 24.4445917993785 - type: nauc_precision_at_1_std value: 2.264391282317747 - type: nauc_precision_at_20_diff1 value: 15.526124347926789 - type: nauc_precision_at_20_max value: 18.585967204985604 - type: nauc_precision_at_20_std value: 3.3631487559984836 - type: nauc_precision_at_3_diff1 value: 27.11838946665272 - type: nauc_precision_at_3_max value: 22.13989357114677 - type: nauc_precision_at_3_std value: 1.903120042102994 - type: nauc_precision_at_5_diff1 value: 23.35690634122196 - type: nauc_precision_at_5_max value: 19.585624668123234 - type: nauc_precision_at_5_std value: 2.1933428786067988 - type: nauc_recall_at_1000_diff1 value: 16.950131691896043 - type: nauc_recall_at_1000_max value: 39.951723428573956 - type: nauc_recall_at_1000_std value: 35.28642001796766 - type: nauc_recall_at_100_diff1 value: 21.660771108426637 - type: nauc_recall_at_100_max value: 27.98817391149549 - type: nauc_recall_at_100_std value: 15.547143224954521 - type: nauc_recall_at_10_diff1 value: 23.290961405166108 - type: nauc_recall_at_10_max value: 20.728190074086502 - type: nauc_recall_at_10_std value: 3.955634752870681 - type: nauc_recall_at_1_diff1 value: 34.7860915604864 - type: nauc_recall_at_1_max value: 21.990883014000932 - type: nauc_recall_at_1_std value: 3.215046066755989 - type: nauc_recall_at_20_diff1 value: 21.3100020769249 - type: nauc_recall_at_20_max value: 22.417233320077408 - type: nauc_recall_at_20_std value: 5.701968308692029 - type: nauc_recall_at_3_diff1 value: 28.467978075005014 - type: nauc_recall_at_3_max value: 22.86743332429378 - type: nauc_recall_at_3_std value: 4.126266767988962 - type: nauc_recall_at_5_diff1 value: 26.085272342534953 - type: nauc_recall_at_5_max value: 21.547168834265605 - type: nauc_recall_at_5_std value: 4.230798615841751 - type: ndcg_at_1 value: 24.627 - type: ndcg_at_10 value: 34.63 - type: ndcg_at_100 value: 40.501 - type: ndcg_at_1000 value: 42.925000000000004 - type: ndcg_at_20 value: 36.783 - type: ndcg_at_3 value: 29.784 - type: ndcg_at_5 value: 31.607000000000003 - type: precision_at_1 value: 24.627 - type: precision_at_10 value: 6.306000000000001 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_20 value: 3.762 - type: precision_at_3 value: 14.262 - type: precision_at_5 value: 10.025 - type: recall_at_1 value: 20.541999999999998 - type: recall_at_10 value: 46.805 - type: recall_at_100 value: 72.294 - type: recall_at_1000 value: 89.425 - type: recall_at_20 value: 54.481 - type: recall_at_3 value: 33.15 - type: recall_at_5 value: 37.830999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval (default) type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: main_score value: 48.897 - type: map_at_1 value: 32.462 - type: map_at_10 value: 42.954 - type: map_at_100 value: 44.371 - type: map_at_1000 value: 44.484 - type: map_at_20 value: 43.756 - type: map_at_3 value: 39.762 - type: map_at_5 value: 41.515 - type: mrr_at_1 value: 39.46102021174206 - type: mrr_at_10 value: 48.738637578868556 - type: mrr_at_100 value: 49.62686026413403 - type: mrr_at_1000 value: 49.66868518383456 - type: mrr_at_20 value: 49.25907585537658 - type: mrr_at_3 value: 46.310555020853364 - type: mrr_at_5 value: 47.78312479948663 - type: nauc_map_at_1000_diff1 value: 51.87542801592498 - type: nauc_map_at_1000_max value: 33.97981571634409 - type: nauc_map_at_1000_std value: -1.8786792242943482 - type: nauc_map_at_100_diff1 value: 51.85293643969287 - type: nauc_map_at_100_max value: 33.9428890229597 - type: nauc_map_at_100_std value: -1.9332474390946115 - type: nauc_map_at_10_diff1 value: 52.02856985184854 - type: nauc_map_at_10_max value: 33.61198359968745 - type: nauc_map_at_10_std value: -2.6398128511204884 - type: nauc_map_at_1_diff1 value: 56.74886676878923 - type: nauc_map_at_1_max value: 30.22917247812168 - type: nauc_map_at_1_std value: -6.42573662254084 - type: nauc_map_at_20_diff1 value: 51.82428924313089 - type: nauc_map_at_20_max value: 33.751285311806384 - type: nauc_map_at_20_std value: -2.3103774320981803 - type: nauc_map_at_3_diff1 value: 51.86255252819861 - type: nauc_map_at_3_max value: 33.0377584961136 - type: nauc_map_at_3_std value: -3.2636230519519387 - type: nauc_map_at_5_diff1 value: 52.01515212806803 - type: nauc_map_at_5_max value: 33.7459062556087 - type: nauc_map_at_5_std value: -2.693869845552142 - type: nauc_mrr_at_1000_diff1 value: 51.48855418945387 - type: nauc_mrr_at_1000_max value: 35.27912845548713 - type: nauc_mrr_at_1000_std value: -0.08726282212006752 - type: nauc_mrr_at_100_diff1 value: 51.48335893173882 - type: nauc_mrr_at_100_max value: 35.28023925219956 - type: nauc_mrr_at_100_std value: -0.08619390644755517 - type: nauc_mrr_at_10_diff1 value: 51.52941953883595 - type: nauc_mrr_at_10_max value: 35.08219573936157 - type: nauc_mrr_at_10_std value: -0.5918448278251544 - type: nauc_mrr_at_1_diff1 value: 55.31838125779277 - type: nauc_mrr_at_1_max value: 33.77228714612555 - type: nauc_mrr_at_1_std value: -1.499292265426672 - type: nauc_mrr_at_20_diff1 value: 51.408259709777646 - type: nauc_mrr_at_20_max value: 35.162570989755174 - type: nauc_mrr_at_20_std value: -0.2682578167220845 - type: nauc_mrr_at_3_diff1 value: 51.46574092636792 - type: nauc_mrr_at_3_max value: 35.811987430657325 - type: nauc_mrr_at_3_std value: 0.26013601831722494 - type: nauc_mrr_at_5_diff1 value: 51.612013747911526 - type: nauc_mrr_at_5_max value: 35.650056877501655 - type: nauc_mrr_at_5_std value: -0.21245093564084463 - type: nauc_ndcg_at_1000_diff1 value: 50.880872461025305 - type: nauc_ndcg_at_1000_max value: 35.44994521014937 - type: nauc_ndcg_at_1000_std value: 1.118216393534395 - type: nauc_ndcg_at_100_diff1 value: 50.53466908072639 - type: nauc_ndcg_at_100_max value: 35.11045555620107 - type: nauc_ndcg_at_100_std value: 0.8249078981154204 - type: nauc_ndcg_at_10_diff1 value: 50.90734870734591 - type: nauc_ndcg_at_10_max value: 33.771004172948224 - type: nauc_ndcg_at_10_std value: -2.1711028069297633 - type: nauc_ndcg_at_1_diff1 value: 55.31838125779277 - type: nauc_ndcg_at_1_max value: 33.77228714612555 - type: nauc_ndcg_at_1_std value: -1.499292265426672 - type: nauc_ndcg_at_20_diff1 value: 50.23324800143884 - type: nauc_ndcg_at_20_max value: 34.07801014616702 - type: nauc_ndcg_at_20_std value: -1.124681004529109 - type: nauc_ndcg_at_3_diff1 value: 50.25341657253588 - type: nauc_ndcg_at_3_max value: 34.591139933602335 - type: nauc_ndcg_at_3_std value: -1.1956710813776108 - type: nauc_ndcg_at_5_diff1 value: 50.80312504204779 - type: nauc_ndcg_at_5_max value: 34.85042501470775 - type: nauc_ndcg_at_5_std value: -1.396135873756306 - type: nauc_precision_at_1000_diff1 value: -13.557597583919549 - type: nauc_precision_at_1000_max value: 2.8147206953918125 - type: nauc_precision_at_1000_std value: 14.537543538963874 - type: nauc_precision_at_100_diff1 value: -3.987982340720788 - type: nauc_precision_at_100_max value: 12.028213960584699 - type: nauc_precision_at_100_std value: 17.715033463695278 - type: nauc_precision_at_10_diff1 value: 18.57698421541843 - type: nauc_precision_at_10_max value: 24.283366463408097 - type: nauc_precision_at_10_std value: 9.324420531172114 - type: nauc_precision_at_1_diff1 value: 55.31838125779277 - type: nauc_precision_at_1_max value: 33.77228714612555 - type: nauc_precision_at_1_std value: -1.499292265426672 - type: nauc_precision_at_20_diff1 value: 8.944759267836282 - type: nauc_precision_at_20_max value: 20.721165285655687 - type: nauc_precision_at_20_std value: 13.176434479597365 - type: nauc_precision_at_3_diff1 value: 32.237083541824376 - type: nauc_precision_at_3_max value: 32.11555184738906 - type: nauc_precision_at_3_std value: 7.15349181819355 - type: nauc_precision_at_5_diff1 value: 26.273699865022195 - type: nauc_precision_at_5_max value: 30.37038723885166 - type: nauc_precision_at_5_std value: 8.769386986802829 - type: nauc_recall_at_1000_diff1 value: 37.18342037488666 - type: nauc_recall_at_1000_max value: 51.700120834339295 - type: nauc_recall_at_1000_std value: 51.25572071492458 - type: nauc_recall_at_100_diff1 value: 38.1032797078489 - type: nauc_recall_at_100_max value: 35.62651164450783 - type: nauc_recall_at_100_std value: 16.8247368098434 - type: nauc_recall_at_10_diff1 value: 44.77080899011338 - type: nauc_recall_at_10_max value: 29.6963695239568 - type: nauc_recall_at_10_std value: -3.503513207679883 - type: nauc_recall_at_1_diff1 value: 56.74886676878923 - type: nauc_recall_at_1_max value: 30.22917247812168 - type: nauc_recall_at_1_std value: -6.42573662254084 - type: nauc_recall_at_20_diff1 value: 40.23275073277284 - type: nauc_recall_at_20_max value: 29.263920974237713 - type: nauc_recall_at_20_std value: 0.4276885400977964 - type: nauc_recall_at_3_diff1 value: 46.04199760913928 - type: nauc_recall_at_3_max value: 32.835175771043346 - type: nauc_recall_at_3_std value: -2.3805979024363424 - type: nauc_recall_at_5_diff1 value: 45.848157092548504 - type: nauc_recall_at_5_max value: 33.2265904276858 - type: nauc_recall_at_5_std value: -2.0965197326580256 - type: ndcg_at_1 value: 39.461 - type: ndcg_at_10 value: 48.897 - type: ndcg_at_100 value: 54.541 - type: ndcg_at_1000 value: 56.371 - type: ndcg_at_20 value: 51.239000000000004 - type: ndcg_at_3 value: 44.129000000000005 - type: ndcg_at_5 value: 46.424 - type: precision_at_1 value: 39.461 - type: precision_at_10 value: 8.758000000000001 - type: precision_at_100 value: 1.3379999999999999 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 5.135 - type: precision_at_3 value: 20.852999999999998 - type: precision_at_5 value: 14.649000000000001 - type: recall_at_1 value: 32.462 - type: recall_at_10 value: 60.531 - type: recall_at_100 value: 83.878 - type: recall_at_1000 value: 95.30999999999999 - type: recall_at_20 value: 68.771 - type: recall_at_3 value: 46.916000000000004 - type: recall_at_5 value: 53.09199999999999 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval (default) type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: main_score value: 45.226 - type: map_at_1 value: 27.887 - type: map_at_10 value: 39.086999999999996 - type: map_at_100 value: 40.477999999999994 - type: map_at_1000 value: 40.585 - type: map_at_20 value: 39.83 - type: map_at_3 value: 35.875 - type: map_at_5 value: 37.695 - type: mrr_at_1 value: 34.817351598173516 - type: mrr_at_10 value: 45.01653439153436 - type: mrr_at_100 value: 45.87242089610603 - type: mrr_at_1000 value: 45.920675520064755 - type: mrr_at_20 value: 45.507374469348 - type: mrr_at_3 value: 42.465753424657514 - type: mrr_at_5 value: 43.97260273972599 - type: nauc_map_at_1000_diff1 value: 43.95170137620123 - type: nauc_map_at_1000_max value: 37.19129408748076 - type: nauc_map_at_1000_std value: 7.888925157034662 - type: nauc_map_at_100_diff1 value: 43.9558720789432 - type: nauc_map_at_100_max value: 37.214429573625246 - type: nauc_map_at_100_std value: 7.933552664308029 - type: nauc_map_at_10_diff1 value: 44.21929145274994 - type: nauc_map_at_10_max value: 36.65671027839632 - type: nauc_map_at_10_std value: 6.982108869364163 - type: nauc_map_at_1_diff1 value: 49.74596478079841 - type: nauc_map_at_1_max value: 32.56861544149044 - type: nauc_map_at_1_std value: 1.097128889360163 - type: nauc_map_at_20_diff1 value: 44.104092078784234 - type: nauc_map_at_20_max value: 36.99566957257224 - type: nauc_map_at_20_std value: 7.477043291777348 - type: nauc_map_at_3_diff1 value: 44.467213345851086 - type: nauc_map_at_3_max value: 35.03024865450431 - type: nauc_map_at_3_std value: 5.06566672879735 - type: nauc_map_at_5_diff1 value: 44.554827534750636 - type: nauc_map_at_5_max value: 36.31225914769019 - type: nauc_map_at_5_std value: 6.0593177568412475 - type: nauc_mrr_at_1000_diff1 value: 41.8894252387263 - type: nauc_mrr_at_1000_max value: 38.73824247221018 - type: nauc_mrr_at_1000_std value: 10.312822889457024 - type: nauc_mrr_at_100_diff1 value: 41.88062595488504 - type: nauc_mrr_at_100_max value: 38.74215906747668 - type: nauc_mrr_at_100_std value: 10.353181155239255 - type: nauc_mrr_at_10_diff1 value: 41.94013647827115 - type: nauc_mrr_at_10_max value: 38.78288768729759 - type: nauc_mrr_at_10_std value: 10.090580330580437 - type: nauc_mrr_at_1_diff1 value: 47.56077396895218 - type: nauc_mrr_at_1_max value: 36.98399403952428 - type: nauc_mrr_at_1_std value: 6.5721798897773684 - type: nauc_mrr_at_20_diff1 value: 41.89386639716785 - type: nauc_mrr_at_20_max value: 38.68491067215507 - type: nauc_mrr_at_20_std value: 10.182838094619267 - type: nauc_mrr_at_3_diff1 value: 42.01969733662613 - type: nauc_mrr_at_3_max value: 37.800805484199444 - type: nauc_mrr_at_3_std value: 9.483998874247575 - type: nauc_mrr_at_5_diff1 value: 41.65309923696901 - type: nauc_mrr_at_5_max value: 38.54063168917584 - type: nauc_mrr_at_5_std value: 9.673479912636347 - type: nauc_ndcg_at_1000_diff1 value: 41.47176832694651 - type: nauc_ndcg_at_1000_max value: 39.169786971026255 - type: nauc_ndcg_at_1000_std value: 11.679974828658501 - type: nauc_ndcg_at_100_diff1 value: 41.222156890249764 - type: nauc_ndcg_at_100_max value: 39.53250258278856 - type: nauc_ndcg_at_100_std value: 12.933003811182312 - type: nauc_ndcg_at_10_diff1 value: 42.0337725964669 - type: nauc_ndcg_at_10_max value: 38.273909940579124 - type: nauc_ndcg_at_10_std value: 9.593414260430325 - type: nauc_ndcg_at_1_diff1 value: 47.56077396895218 - type: nauc_ndcg_at_1_max value: 36.98399403952428 - type: nauc_ndcg_at_1_std value: 6.5721798897773684 - type: nauc_ndcg_at_20_diff1 value: 41.85575848899653 - type: nauc_ndcg_at_20_max value: 38.82160272309426 - type: nauc_ndcg_at_20_std value: 10.794229083924927 - type: nauc_ndcg_at_3_diff1 value: 41.65599882159262 - type: nauc_ndcg_at_3_max value: 36.15866038270778 - type: nauc_ndcg_at_3_std value: 7.748508197949587 - type: nauc_ndcg_at_5_diff1 value: 42.28410633684388 - type: nauc_ndcg_at_5_max value: 37.74519017293837 - type: nauc_ndcg_at_5_std value: 8.061749452741854 - type: nauc_precision_at_1000_diff1 value: -13.371472140934939 - type: nauc_precision_at_1000_max value: -1.9535541625334698 - type: nauc_precision_at_1000_std value: 8.618739674058643 - type: nauc_precision_at_100_diff1 value: -5.44331936385817 - type: nauc_precision_at_100_max value: 15.019947345639547 - type: nauc_precision_at_100_std value: 23.080372230077405 - type: nauc_precision_at_10_diff1 value: 15.445549733621986 - type: nauc_precision_at_10_max value: 30.89290049169744 - type: nauc_precision_at_10_std value: 20.002890083398132 - type: nauc_precision_at_1_diff1 value: 47.56077396895218 - type: nauc_precision_at_1_max value: 36.98399403952428 - type: nauc_precision_at_1_std value: 6.5721798897773684 - type: nauc_precision_at_20_diff1 value: 8.623105688967403 - type: nauc_precision_at_20_max value: 26.91178852977823 - type: nauc_precision_at_20_std value: 22.17285887384737 - type: nauc_precision_at_3_diff1 value: 26.381468882549814 - type: nauc_precision_at_3_max value: 35.90410043864788 - type: nauc_precision_at_3_std value: 16.101145360947154 - type: nauc_precision_at_5_diff1 value: 22.842829661572875 - type: nauc_precision_at_5_max value: 35.92997099694966 - type: nauc_precision_at_5_std value: 18.18378930746855 - type: nauc_recall_at_1000_diff1 value: 13.266400124330257 - type: nauc_recall_at_1000_max value: 58.21247340815739 - type: nauc_recall_at_1000_std value: 57.31393380709915 - type: nauc_recall_at_100_diff1 value: 25.95593534295009 - type: nauc_recall_at_100_max value: 45.03843584939201 - type: nauc_recall_at_100_std value: 38.100799360138765 - type: nauc_recall_at_10_diff1 value: 34.789715559053604 - type: nauc_recall_at_10_max value: 38.042187250662884 - type: nauc_recall_at_10_std value: 13.229947908309544 - type: nauc_recall_at_1_diff1 value: 49.74596478079841 - type: nauc_recall_at_1_max value: 32.56861544149044 - type: nauc_recall_at_1_std value: 1.097128889360163 - type: nauc_recall_at_20_diff1 value: 33.384723599926446 - type: nauc_recall_at_20_max value: 39.15835336776037 - type: nauc_recall_at_20_std value: 17.52735115682057 - type: nauc_recall_at_3_diff1 value: 37.99962076163248 - type: nauc_recall_at_3_max value: 33.51343167685077 - type: nauc_recall_at_3_std value: 6.783531552157573 - type: nauc_recall_at_5_diff1 value: 37.02597430521191 - type: nauc_recall_at_5_max value: 36.8381283963646 - type: nauc_recall_at_5_std value: 8.407347972075284 - type: ndcg_at_1 value: 34.817 - type: ndcg_at_10 value: 45.226 - type: ndcg_at_100 value: 50.913 - type: ndcg_at_1000 value: 52.943 - type: ndcg_at_20 value: 47.367 - type: ndcg_at_3 value: 40.332 - type: ndcg_at_5 value: 42.555 - type: precision_at_1 value: 34.817 - type: precision_at_10 value: 8.322000000000001 - type: precision_at_100 value: 1.288 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 4.869 - type: precision_at_3 value: 19.559 - type: precision_at_5 value: 13.79 - type: recall_at_1 value: 27.887 - type: recall_at_10 value: 57.523 - type: recall_at_100 value: 81.853 - type: recall_at_1000 value: 95.36200000000001 - type: recall_at_20 value: 65.069 - type: recall_at_3 value: 43.342000000000006 - type: recall_at_5 value: 49.596000000000004 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval (default) type: CQADupstackRetrieval_is_a_combined_dataset config: default split: test revision: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 44.86833333333333 - type: ndcg_at_10 value: 44.86833333333333 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval (default) type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: main_score value: 39.654 - type: map_at_1 value: 28.488999999999997 - type: map_at_10 value: 35.621 - type: map_at_100 value: 36.662 - type: map_at_1000 value: 36.754 - type: map_at_20 value: 36.215 - type: map_at_3 value: 33.689 - type: map_at_5 value: 34.733999999999995 - type: mrr_at_1 value: 31.901840490797547 - type: mrr_at_10 value: 38.76101616515727 - type: mrr_at_100 value: 39.6328900317746 - type: mrr_at_1000 value: 39.69875777929701 - type: mrr_at_20 value: 39.27824740202471 - type: mrr_at_3 value: 37.11656441717794 - type: mrr_at_5 value: 38.090490797546025 - type: nauc_map_at_1000_diff1 value: 44.60417734115683 - type: nauc_map_at_1000_max value: 40.97869080753014 - type: nauc_map_at_1000_std value: 5.748743395996931 - type: nauc_map_at_100_diff1 value: 44.57736501620202 - type: nauc_map_at_100_max value: 40.97420581082456 - type: nauc_map_at_100_std value: 5.762383589620662 - type: nauc_map_at_10_diff1 value: 44.92204225912857 - type: nauc_map_at_10_max value: 40.675386978230904 - type: nauc_map_at_10_std value: 5.245272300708162 - type: nauc_map_at_1_diff1 value: 51.03525578589323 - type: nauc_map_at_1_max value: 39.02148856903404 - type: nauc_map_at_1_std value: 0.4146617412031749 - type: nauc_map_at_20_diff1 value: 44.58262404664568 - type: nauc_map_at_20_max value: 40.77381417315517 - type: nauc_map_at_20_std value: 5.530849792503221 - type: nauc_map_at_3_diff1 value: 45.930245969820646 - type: nauc_map_at_3_max value: 40.436169462774416 - type: nauc_map_at_3_std value: 3.3879829560660895 - type: nauc_map_at_5_diff1 value: 45.17424281922756 - type: nauc_map_at_5_max value: 40.47857337528189 - type: nauc_map_at_5_std value: 4.414695304860574 - type: nauc_mrr_at_1000_diff1 value: 44.08694838852825 - type: nauc_mrr_at_1000_max value: 42.42348869902589 - type: nauc_mrr_at_1000_std value: 7.942150916764917 - type: nauc_mrr_at_100_diff1 value: 44.04467099375857 - type: nauc_mrr_at_100_max value: 42.43605871354086 - type: nauc_mrr_at_100_std value: 7.956534359718217 - type: nauc_mrr_at_10_diff1 value: 44.266216857247684 - type: nauc_mrr_at_10_max value: 42.30356366796194 - type: nauc_mrr_at_10_std value: 7.644077273142069 - type: nauc_mrr_at_1_diff1 value: 50.221648566432464 - type: nauc_mrr_at_1_max value: 41.235095557704646 - type: nauc_mrr_at_1_std value: 3.7408348785402556 - type: nauc_mrr_at_20_diff1 value: 44.05821823838852 - type: nauc_mrr_at_20_max value: 42.42933700317326 - type: nauc_mrr_at_20_std value: 7.8665259168401445 - type: nauc_mrr_at_3_diff1 value: 45.03683838233249 - type: nauc_mrr_at_3_max value: 42.24769488191134 - type: nauc_mrr_at_3_std value: 6.601038869035635 - type: nauc_mrr_at_5_diff1 value: 44.201862019181455 - type: nauc_mrr_at_5_max value: 42.07946832877691 - type: nauc_mrr_at_5_std value: 7.189671715715843 - type: nauc_ndcg_at_1000_diff1 value: 42.42699854748652 - type: nauc_ndcg_at_1000_max value: 42.43824947781245 - type: nauc_ndcg_at_1000_std value: 9.67675385214925 - type: nauc_ndcg_at_100_diff1 value: 41.51922844841962 - type: nauc_ndcg_at_100_max value: 42.61282487350817 - type: nauc_ndcg_at_100_std value: 10.25445083001239 - type: nauc_ndcg_at_10_diff1 value: 42.574630501270825 - type: nauc_ndcg_at_10_max value: 41.14145061750566 - type: nauc_ndcg_at_10_std value: 7.647757048969349 - type: nauc_ndcg_at_1_diff1 value: 50.221648566432464 - type: nauc_ndcg_at_1_max value: 41.235095557704646 - type: nauc_ndcg_at_1_std value: 3.7408348785402556 - type: nauc_ndcg_at_20_diff1 value: 41.600087618079066 - type: nauc_ndcg_at_20_max value: 41.491254134292376 - type: nauc_ndcg_at_20_std value: 8.596229791444 - type: nauc_ndcg_at_3_diff1 value: 43.82522265410307 - type: nauc_ndcg_at_3_max value: 41.10083488299727 - type: nauc_ndcg_at_3_std value: 5.098425173217254 - type: nauc_ndcg_at_5_diff1 value: 42.72862798064444 - type: nauc_ndcg_at_5_max value: 40.85829769060509 - type: nauc_ndcg_at_5_std value: 6.31424002071968 - type: nauc_precision_at_1000_diff1 value: -2.0820534872545116 - type: nauc_precision_at_1000_max value: 16.298683462791594 - type: nauc_precision_at_1000_std value: 16.97189734146589 - type: nauc_precision_at_100_diff1 value: 6.4514456279287105 - type: nauc_precision_at_100_max value: 30.968130476508765 - type: nauc_precision_at_100_std value: 24.590810752136445 - type: nauc_precision_at_10_diff1 value: 23.83061356229352 - type: nauc_precision_at_10_max value: 37.44657709667713 - type: nauc_precision_at_10_std value: 18.3818856475441 - type: nauc_precision_at_1_diff1 value: 50.221648566432464 - type: nauc_precision_at_1_max value: 41.235095557704646 - type: nauc_precision_at_1_std value: 3.7408348785402556 - type: nauc_precision_at_20_diff1 value: 16.8100155001696 - type: nauc_precision_at_20_max value: 35.019447938152055 - type: nauc_precision_at_20_std value: 20.67504386650297 - type: nauc_precision_at_3_diff1 value: 35.33999854814717 - type: nauc_precision_at_3_max value: 42.464592248955334 - type: nauc_precision_at_3_std value: 11.735324415513306 - type: nauc_precision_at_5_diff1 value: 29.095637605444765 - type: nauc_precision_at_5_max value: 40.80816684911544 - type: nauc_precision_at_5_std value: 15.54403823719892 - type: nauc_recall_at_1000_diff1 value: 30.88859886501841 - type: nauc_recall_at_1000_max value: 47.675952718888595 - type: nauc_recall_at_1000_std value: 37.808899612070284 - type: nauc_recall_at_100_diff1 value: 27.102674231258376 - type: nauc_recall_at_100_max value: 46.24207104250558 - type: nauc_recall_at_100_std value: 29.033516460715735 - type: nauc_recall_at_10_diff1 value: 35.626332465234064 - type: nauc_recall_at_10_max value: 39.7007789760367 - type: nauc_recall_at_10_std value: 12.129960491073899 - type: nauc_recall_at_1_diff1 value: 51.03525578589323 - type: nauc_recall_at_1_max value: 39.02148856903404 - type: nauc_recall_at_1_std value: 0.4146617412031749 - type: nauc_recall_at_20_diff1 value: 31.088505920845705 - type: nauc_recall_at_20_max value: 40.09779003608529 - type: nauc_recall_at_20_std value: 15.383713495321466 - type: nauc_recall_at_3_diff1 value: 39.376987315291004 - type: nauc_recall_at_3_max value: 39.579665630711865 - type: nauc_recall_at_3_std value: 5.903646172290545 - type: nauc_recall_at_5_diff1 value: 36.374552126907986 - type: nauc_recall_at_5_max value: 39.01714515551238 - type: nauc_recall_at_5_std value: 8.765416107748178 - type: ndcg_at_1 value: 31.902 - type: ndcg_at_10 value: 39.654 - type: ndcg_at_100 value: 44.667 - type: ndcg_at_1000 value: 47.038999999999994 - type: ndcg_at_20 value: 41.619 - type: ndcg_at_3 value: 36.317 - type: ndcg_at_5 value: 37.887 - type: precision_at_1 value: 31.902 - type: precision_at_10 value: 5.997 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 3.489 - type: precision_at_3 value: 15.286 - type: precision_at_5 value: 10.306999999999999 - type: recall_at_1 value: 28.488999999999997 - type: recall_at_10 value: 48.684 - type: recall_at_100 value: 71.572 - type: recall_at_1000 value: 89.059 - type: recall_at_20 value: 56.089999999999996 - type: recall_at_3 value: 39.42 - type: recall_at_5 value: 43.461 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval (default) type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: main_score value: 32.957 - type: map_at_1 value: 19.61 - type: map_at_10 value: 27.816999999999997 - type: map_at_100 value: 29.037000000000003 - type: map_at_1000 value: 29.164 - type: map_at_20 value: 28.48 - type: map_at_3 value: 25.212 - type: map_at_5 value: 26.552999999999997 - type: mrr_at_1 value: 23.675154852030282 - type: mrr_at_10 value: 31.855588874687356 - type: mrr_at_100 value: 32.82754708152588 - type: mrr_at_1000 value: 32.899811984634525 - type: mrr_at_20 value: 32.41521823340382 - type: mrr_at_3 value: 29.553796742372164 - type: mrr_at_5 value: 30.799495297086587 - type: nauc_map_at_1000_diff1 value: 37.067009963494954 - type: nauc_map_at_1000_max value: 29.319194409596722 - type: nauc_map_at_1000_std value: 0.9381129561343189 - type: nauc_map_at_100_diff1 value: 37.02118730103881 - type: nauc_map_at_100_max value: 29.308885900656872 - type: nauc_map_at_100_std value: 0.9305359416352115 - type: nauc_map_at_10_diff1 value: 37.055079813792894 - type: nauc_map_at_10_max value: 29.115677528784456 - type: nauc_map_at_10_std value: 0.47079061336618017 - type: nauc_map_at_1_diff1 value: 43.59374607558271 - type: nauc_map_at_1_max value: 27.502697897665936 - type: nauc_map_at_1_std value: -0.7674781552217746 - type: nauc_map_at_20_diff1 value: 37.08280714662923 - type: nauc_map_at_20_max value: 29.214420781305805 - type: nauc_map_at_20_std value: 0.7207141923408105 - type: nauc_map_at_3_diff1 value: 38.12508979586986 - type: nauc_map_at_3_max value: 28.64334196655506 - type: nauc_map_at_3_std value: -0.3639494958439447 - type: nauc_map_at_5_diff1 value: 37.391645974882024 - type: nauc_map_at_5_max value: 28.973156260444533 - type: nauc_map_at_5_std value: -0.026789953157566142 - type: nauc_mrr_at_1000_diff1 value: 37.08768410345192 - type: nauc_mrr_at_1000_max value: 30.226139008765173 - type: nauc_mrr_at_1000_std value: 0.9258173149071044 - type: nauc_mrr_at_100_diff1 value: 37.06958335624731 - type: nauc_mrr_at_100_max value: 30.229943564905703 - type: nauc_mrr_at_100_std value: 0.932361149242787 - type: nauc_mrr_at_10_diff1 value: 37.0206077048578 - type: nauc_mrr_at_10_max value: 30.158443599717195 - type: nauc_mrr_at_10_std value: 0.5492249230345497 - type: nauc_mrr_at_1_diff1 value: 42.978918552672035 - type: nauc_mrr_at_1_max value: 29.114319394090987 - type: nauc_mrr_at_1_std value: -0.7624439199673105 - type: nauc_mrr_at_20_diff1 value: 37.057384418223485 - type: nauc_mrr_at_20_max value: 30.171076020906597 - type: nauc_mrr_at_20_std value: 0.7891456760838766 - type: nauc_mrr_at_3_diff1 value: 37.78963260621373 - type: nauc_mrr_at_3_max value: 30.057936692440613 - type: nauc_mrr_at_3_std value: -0.2723394617050784 - type: nauc_mrr_at_5_diff1 value: 37.428672595130074 - type: nauc_mrr_at_5_max value: 30.21732196933017 - type: nauc_mrr_at_5_std value: 0.046615676950734625 - type: nauc_ndcg_at_1000_diff1 value: 34.910684324371516 - type: nauc_ndcg_at_1000_max value: 30.43187052799894 - type: nauc_ndcg_at_1000_std value: 3.7886613934368976 - type: nauc_ndcg_at_100_diff1 value: 34.435496295156035 - type: nauc_ndcg_at_100_max value: 30.3229405609203 - type: nauc_ndcg_at_100_std value: 3.837221374981068 - type: nauc_ndcg_at_10_diff1 value: 34.84989431829001 - type: nauc_ndcg_at_10_max value: 29.56612074818309 - type: nauc_ndcg_at_10_std value: 1.3497668647221701 - type: nauc_ndcg_at_1_diff1 value: 42.978918552672035 - type: nauc_ndcg_at_1_max value: 29.114319394090987 - type: nauc_ndcg_at_1_std value: -0.7624439199673105 - type: nauc_ndcg_at_20_diff1 value: 34.85666256341009 - type: nauc_ndcg_at_20_max value: 29.749817141122936 - type: nauc_ndcg_at_20_std value: 2.2719371477731314 - type: nauc_ndcg_at_3_diff1 value: 36.47550623795379 - type: nauc_ndcg_at_3_max value: 29.18024982921919 - type: nauc_ndcg_at_3_std value: -0.5158571946638861 - type: nauc_ndcg_at_5_diff1 value: 35.66325406382566 - type: nauc_ndcg_at_5_max value: 29.52486267505514 - type: nauc_ndcg_at_5_std value: 0.1446834436782509 - type: nauc_precision_at_1000_diff1 value: 5.179309010526755 - type: nauc_precision_at_1000_max value: 9.078351835753596 - type: nauc_precision_at_1000_std value: 1.0888951899790398 - type: nauc_precision_at_100_diff1 value: 11.746442333432986 - type: nauc_precision_at_100_max value: 18.328100169309472 - type: nauc_precision_at_100_std value: 6.488315017239334 - type: nauc_precision_at_10_diff1 value: 21.225993531448843 - type: nauc_precision_at_10_max value: 26.786229561182516 - type: nauc_precision_at_10_std value: 3.1118485436954697 - type: nauc_precision_at_1_diff1 value: 42.978918552672035 - type: nauc_precision_at_1_max value: 29.114319394090987 - type: nauc_precision_at_1_std value: -0.7624439199673105 - type: nauc_precision_at_20_diff1 value: 18.36569388308726 - type: nauc_precision_at_20_max value: 24.567477667257474 - type: nauc_precision_at_20_std value: 4.650751092711225 - type: nauc_precision_at_3_diff1 value: 29.268806480620423 - type: nauc_precision_at_3_max value: 29.83598747609324 - type: nauc_precision_at_3_std value: -0.4949630951452181 - type: nauc_precision_at_5_diff1 value: 25.82678700262483 - type: nauc_precision_at_5_max value: 29.633692602172523 - type: nauc_precision_at_5_std value: 0.3502444708980338 - type: nauc_recall_at_1000_diff1 value: 14.762867599197998 - type: nauc_recall_at_1000_max value: 33.77703013085514 - type: nauc_recall_at_1000_std value: 32.6887608409825 - type: nauc_recall_at_100_diff1 value: 21.717683611413836 - type: nauc_recall_at_100_max value: 30.34761714689701 - type: nauc_recall_at_100_std value: 17.14217507105933 - type: nauc_recall_at_10_diff1 value: 27.011051446233097 - type: nauc_recall_at_10_max value: 28.011038995610356 - type: nauc_recall_at_10_std value: 3.886680866597647 - type: nauc_recall_at_1_diff1 value: 43.59374607558271 - type: nauc_recall_at_1_max value: 27.502697897665936 - type: nauc_recall_at_1_std value: -0.7674781552217746 - type: nauc_recall_at_20_diff1 value: 26.40508046848651 - type: nauc_recall_at_20_max value: 27.948123862879175 - type: nauc_recall_at_20_std value: 7.068531738030853 - type: nauc_recall_at_3_diff1 value: 31.750498628363722 - type: nauc_recall_at_3_max value: 28.059646483159213 - type: nauc_recall_at_3_std value: 0.14742455169624066 - type: nauc_recall_at_5_diff1 value: 29.76053437646529 - type: nauc_recall_at_5_max value: 28.594754498676544 - type: nauc_recall_at_5_std value: 1.2832203560417643 - type: ndcg_at_1 value: 23.674999999999997 - type: ndcg_at_10 value: 32.957 - type: ndcg_at_100 value: 38.584 - type: ndcg_at_1000 value: 41.359 - type: ndcg_at_20 value: 35.093999999999994 - type: ndcg_at_3 value: 28.354000000000003 - type: ndcg_at_5 value: 30.305 - type: precision_at_1 value: 23.674999999999997 - type: precision_at_10 value: 6.077 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.146 - type: precision_at_20 value: 3.665 - type: precision_at_3 value: 13.443 - type: precision_at_5 value: 9.600999999999999 - type: recall_at_1 value: 19.61 - type: recall_at_10 value: 44.263000000000005 - type: recall_at_100 value: 69.41199999999999 - type: recall_at_1000 value: 88.994 - type: recall_at_20 value: 52.198 - type: recall_at_3 value: 31.293 - type: recall_at_5 value: 36.415 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval (default) type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: main_score value: 45.958 - type: map_at_1 value: 30.048000000000002 - type: map_at_10 value: 40.239000000000004 - type: map_at_100 value: 41.493 - type: map_at_1000 value: 41.582 - type: map_at_20 value: 40.955000000000005 - type: map_at_3 value: 37.097 - type: map_at_5 value: 38.824 - type: mrr_at_1 value: 35.07462686567165 - type: mrr_at_10 value: 44.19283789386398 - type: mrr_at_100 value: 45.08036630404521 - type: mrr_at_1000 value: 45.12183896199538 - type: mrr_at_20 value: 44.72186969518418 - type: mrr_at_3 value: 41.588930348258664 - type: mrr_at_5 value: 42.91355721393029 - type: nauc_map_at_1000_diff1 value: 48.76811649208976 - type: nauc_map_at_1000_max value: 36.982550067325484 - type: nauc_map_at_1000_std value: -0.5290701509883527 - type: nauc_map_at_100_diff1 value: 48.78866361951362 - type: nauc_map_at_100_max value: 36.99605340092298 - type: nauc_map_at_100_std value: -0.5018270195287452 - type: nauc_map_at_10_diff1 value: 48.928085770942 - type: nauc_map_at_10_max value: 36.73594814898575 - type: nauc_map_at_10_std value: -0.834228741972828 - type: nauc_map_at_1_diff1 value: 54.15059861768532 - type: nauc_map_at_1_max value: 36.44764098320589 - type: nauc_map_at_1_std value: -5.784565726873563 - type: nauc_map_at_20_diff1 value: 48.78043391669103 - type: nauc_map_at_20_max value: 36.89270974821098 - type: nauc_map_at_20_std value: -0.5945049292688708 - type: nauc_map_at_3_diff1 value: 49.79196039319051 - type: nauc_map_at_3_max value: 36.09927970784603 - type: nauc_map_at_3_std value: -2.0296894202771667 - type: nauc_map_at_5_diff1 value: 49.529286793014634 - type: nauc_map_at_5_max value: 36.62049971049548 - type: nauc_map_at_5_std value: -1.0187508539964767 - type: nauc_mrr_at_1000_diff1 value: 47.26105007482722 - type: nauc_mrr_at_1000_max value: 37.69068231080959 - type: nauc_mrr_at_1000_std value: -0.6510844517264812 - type: nauc_mrr_at_100_diff1 value: 47.25846776943622 - type: nauc_mrr_at_100_max value: 37.67838976933151 - type: nauc_mrr_at_100_std value: -0.6433335236107469 - type: nauc_mrr_at_10_diff1 value: 47.18519224298452 - type: nauc_mrr_at_10_max value: 37.62431544151827 - type: nauc_mrr_at_10_std value: -0.8474316078853749 - type: nauc_mrr_at_1_diff1 value: 51.77981410020824 - type: nauc_mrr_at_1_max value: 38.02059405009231 - type: nauc_mrr_at_1_std value: -5.783426776910806 - type: nauc_mrr_at_20_diff1 value: 47.14864249544432 - type: nauc_mrr_at_20_max value: 37.601607893461406 - type: nauc_mrr_at_20_std value: -0.6859574897303896 - type: nauc_mrr_at_3_diff1 value: 47.58252175947335 - type: nauc_mrr_at_3_max value: 37.6324837651506 - type: nauc_mrr_at_3_std value: -1.2482167973735598 - type: nauc_mrr_at_5_diff1 value: 47.448011129354974 - type: nauc_mrr_at_5_max value: 37.7148441309698 - type: nauc_mrr_at_5_std value: -0.7119792397225159 - type: nauc_ndcg_at_1000_diff1 value: 46.6329460576133 - type: nauc_ndcg_at_1000_max value: 37.51805344108184 - type: nauc_ndcg_at_1000_std value: 1.8100059353579894 - type: nauc_ndcg_at_100_diff1 value: 46.66586884984403 - type: nauc_ndcg_at_100_max value: 37.64300440363974 - type: nauc_ndcg_at_100_std value: 2.500233245881423 - type: nauc_ndcg_at_10_diff1 value: 46.615015396347644 - type: nauc_ndcg_at_10_max value: 36.78201798029491 - type: nauc_ndcg_at_10_std value: 1.0809742189657263 - type: nauc_ndcg_at_1_diff1 value: 51.77981410020824 - type: nauc_ndcg_at_1_max value: 38.02059405009231 - type: nauc_ndcg_at_1_std value: -5.783426776910806 - type: nauc_ndcg_at_20_diff1 value: 46.282072099888325 - type: nauc_ndcg_at_20_max value: 37.003478966138836 - type: nauc_ndcg_at_20_std value: 1.9291637916464186 - type: nauc_ndcg_at_3_diff1 value: 47.539278944889126 - type: nauc_ndcg_at_3_max value: 36.43508238199665 - type: nauc_ndcg_at_3_std value: -0.6027788390857911 - type: nauc_ndcg_at_5_diff1 value: 47.55837749401022 - type: nauc_ndcg_at_5_max value: 36.78249382035288 - type: nauc_ndcg_at_5_std value: 0.8497645104808546 - type: nauc_precision_at_1000_diff1 value: -20.71803333315221 - type: nauc_precision_at_1000_max value: -4.38547466190951 - type: nauc_precision_at_1000_std value: -0.0853978825586052 - type: nauc_precision_at_100_diff1 value: -8.67085404598523 - type: nauc_precision_at_100_max value: 9.733682801445893 - type: nauc_precision_at_100_std value: 7.507170439875122 - type: nauc_precision_at_10_diff1 value: 14.495060576585853 - type: nauc_precision_at_10_max value: 24.4514279841787 - type: nauc_precision_at_10_std value: 5.59489027531012 - type: nauc_precision_at_1_diff1 value: 51.77981410020824 - type: nauc_precision_at_1_max value: 38.02059405009231 - type: nauc_precision_at_1_std value: -5.783426776910806 - type: nauc_precision_at_20_diff1 value: 6.509848499042286 - type: nauc_precision_at_20_max value: 20.348715961396525 - type: nauc_precision_at_20_std value: 8.193012313602315 - type: nauc_precision_at_3_diff1 value: 32.384501021918794 - type: nauc_precision_at_3_max value: 31.935466435393828 - type: nauc_precision_at_3_std value: 3.0560771209934994 - type: nauc_precision_at_5_diff1 value: 25.702459594777277 - type: nauc_precision_at_5_max value: 30.014370132120067 - type: nauc_precision_at_5_std value: 6.4512965213006925 - type: nauc_recall_at_1000_diff1 value: 36.20840483033314 - type: nauc_recall_at_1000_max value: 45.47785143996727 - type: nauc_recall_at_1000_std value: 37.14510941691126 - type: nauc_recall_at_100_diff1 value: 39.11101186057974 - type: nauc_recall_at_100_max value: 38.066390280827925 - type: nauc_recall_at_100_std value: 21.470218305879797 - type: nauc_recall_at_10_diff1 value: 39.70476039879197 - type: nauc_recall_at_10_max value: 33.75721430862531 - type: nauc_recall_at_10_std value: 6.8486633835335295 - type: nauc_recall_at_1_diff1 value: 54.15059861768532 - type: nauc_recall_at_1_max value: 36.44764098320589 - type: nauc_recall_at_1_std value: -5.784565726873563 - type: nauc_recall_at_20_diff1 value: 37.86978682409901 - type: nauc_recall_at_20_max value: 33.96219184798075 - type: nauc_recall_at_20_std value: 11.029348617729221 - type: nauc_recall_at_3_diff1 value: 43.72514359112328 - type: nauc_recall_at_3_max value: 33.77645792572399 - type: nauc_recall_at_3_std value: 2.428536024679842 - type: nauc_recall_at_5_diff1 value: 43.06859065126547 - type: nauc_recall_at_5_max value: 34.665515195886755 - type: nauc_recall_at_5_std value: 5.905094189769508 - type: ndcg_at_1 value: 35.075 - type: ndcg_at_10 value: 45.958 - type: ndcg_at_100 value: 51.353 - type: ndcg_at_1000 value: 53.173 - type: ndcg_at_20 value: 48.191 - type: ndcg_at_3 value: 40.473 - type: ndcg_at_5 value: 42.902 - type: precision_at_1 value: 35.075 - type: precision_at_10 value: 7.836 - type: precision_at_100 value: 1.176 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_20 value: 4.529 - type: precision_at_3 value: 18.315 - type: precision_at_5 value: 12.854 - type: recall_at_1 value: 30.048000000000002 - type: recall_at_10 value: 59.248 - type: recall_at_100 value: 82.111 - type: recall_at_1000 value: 94.592 - type: recall_at_20 value: 67.227 - type: recall_at_3 value: 44.471 - type: recall_at_5 value: 50.512 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval (default) type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: main_score value: 43.951 - type: map_at_1 value: 27.964 - type: map_at_10 value: 37.692 - type: map_at_100 value: 39.365 - type: map_at_1000 value: 39.594 - type: map_at_20 value: 38.576 - type: map_at_3 value: 34.388999999999996 - type: map_at_5 value: 36.081 - type: mrr_at_1 value: 33.00395256916996 - type: mrr_at_10 value: 42.18434343434343 - type: mrr_at_100 value: 43.16939140168712 - type: mrr_at_1000 value: 43.21751142486867 - type: mrr_at_20 value: 42.75017657291823 - type: mrr_at_3 value: 39.42687747035574 - type: mrr_at_5 value: 41.037549407114625 - type: nauc_map_at_1000_diff1 value: 45.415876956978444 - type: nauc_map_at_1000_max value: 32.59464568060356 - type: nauc_map_at_1000_std value: 4.262293486763028 - type: nauc_map_at_100_diff1 value: 45.313981831518504 - type: nauc_map_at_100_max value: 32.68688502742583 - type: nauc_map_at_100_std value: 4.039368086319619 - type: nauc_map_at_10_diff1 value: 45.92372812130138 - type: nauc_map_at_10_max value: 32.37880184303658 - type: nauc_map_at_10_std value: 2.7481583678385197 - type: nauc_map_at_1_diff1 value: 52.388363332106294 - type: nauc_map_at_1_max value: 32.184315523196425 - type: nauc_map_at_1_std value: -2.5295830272351103 - type: nauc_map_at_20_diff1 value: 45.32570996908948 - type: nauc_map_at_20_max value: 32.48108405862084 - type: nauc_map_at_20_std value: 3.3087482176392657 - type: nauc_map_at_3_diff1 value: 46.85896834397904 - type: nauc_map_at_3_max value: 32.007995254903484 - type: nauc_map_at_3_std value: 0.5938674689810656 - type: nauc_map_at_5_diff1 value: 46.04911706905517 - type: nauc_map_at_5_max value: 31.503815774957864 - type: nauc_map_at_5_std value: 1.696567086029842 - type: nauc_mrr_at_1000_diff1 value: 44.33835674531675 - type: nauc_mrr_at_1000_max value: 31.313824311436395 - type: nauc_mrr_at_1000_std value: 5.585471654306175 - type: nauc_mrr_at_100_diff1 value: 44.315294514270484 - type: nauc_mrr_at_100_max value: 31.311504710219847 - type: nauc_mrr_at_100_std value: 5.61460359116941 - type: nauc_mrr_at_10_diff1 value: 44.34727343874123 - type: nauc_mrr_at_10_max value: 31.214381968197323 - type: nauc_mrr_at_10_std value: 5.358694756592366 - type: nauc_mrr_at_1_diff1 value: 50.076532500963985 - type: nauc_mrr_at_1_max value: 31.893100393844602 - type: nauc_mrr_at_1_std value: 1.6345537979715576 - type: nauc_mrr_at_20_diff1 value: 44.1861019252696 - type: nauc_mrr_at_20_max value: 31.18274283874542 - type: nauc_mrr_at_20_std value: 5.4141357527576845 - type: nauc_mrr_at_3_diff1 value: 44.84108608280401 - type: nauc_mrr_at_3_max value: 31.260937651084618 - type: nauc_mrr_at_3_std value: 4.32099205393322 - type: nauc_mrr_at_5_diff1 value: 43.957386353594615 - type: nauc_mrr_at_5_max value: 30.521363697945542 - type: nauc_mrr_at_5_std value: 5.111409983030411 - type: nauc_ndcg_at_1000_diff1 value: 43.302642169855055 - type: nauc_ndcg_at_1000_max value: 33.60452429135082 - type: nauc_ndcg_at_1000_std value: 8.11547083584825 - type: nauc_ndcg_at_100_diff1 value: 42.2303708262867 - type: nauc_ndcg_at_100_max value: 33.14409254803362 - type: nauc_ndcg_at_100_std value: 8.506478151524918 - type: nauc_ndcg_at_10_diff1 value: 43.767161847177874 - type: nauc_ndcg_at_10_max value: 32.07274047816015 - type: nauc_ndcg_at_10_std value: 6.481707365740993 - type: nauc_ndcg_at_1_diff1 value: 50.076532500963985 - type: nauc_ndcg_at_1_max value: 31.893100393844602 - type: nauc_ndcg_at_1_std value: 1.6345537979715576 - type: nauc_ndcg_at_20_diff1 value: 42.48660354871869 - type: nauc_ndcg_at_20_max value: 32.14769800363052 - type: nauc_ndcg_at_20_std value: 6.916826847813196 - type: nauc_ndcg_at_3_diff1 value: 44.243795943637885 - type: nauc_ndcg_at_3_max value: 31.48406187592552 - type: nauc_ndcg_at_3_std value: 3.701214987805142 - type: nauc_ndcg_at_5_diff1 value: 43.10518503245774 - type: nauc_ndcg_at_5_max value: 30.40120224782154 - type: nauc_ndcg_at_5_std value: 5.546435005776079 - type: nauc_precision_at_1000_diff1 value: -3.993607814341118 - type: nauc_precision_at_1000_max value: -10.729918180758647 - type: nauc_precision_at_1000_std value: 23.024270860729565 - type: nauc_precision_at_100_diff1 value: -1.6566704673461674 - type: nauc_precision_at_100_max value: 1.458081777116833 - type: nauc_precision_at_100_std value: 28.18670349958774 - type: nauc_precision_at_10_diff1 value: 12.792685733612547 - type: nauc_precision_at_10_max value: 20.206988909219923 - type: nauc_precision_at_10_std value: 22.53427005574754 - type: nauc_precision_at_1_diff1 value: 50.076532500963985 - type: nauc_precision_at_1_max value: 31.893100393844602 - type: nauc_precision_at_1_std value: 1.6345537979715576 - type: nauc_precision_at_20_diff1 value: 3.9538716249460384 - type: nauc_precision_at_20_max value: 16.21789405497108 - type: nauc_precision_at_20_std value: 24.348575609653487 - type: nauc_precision_at_3_diff1 value: 27.339649813425037 - type: nauc_precision_at_3_max value: 26.223578620825194 - type: nauc_precision_at_3_std value: 10.996293038771013 - type: nauc_precision_at_5_diff1 value: 18.869561918004056 - type: nauc_precision_at_5_max value: 20.709270779442967 - type: nauc_precision_at_5_std value: 17.384126283115698 - type: nauc_recall_at_1000_diff1 value: 16.194455177769477 - type: nauc_recall_at_1000_max value: 58.66023925715464 - type: nauc_recall_at_1000_std value: 58.25233058362688 - type: nauc_recall_at_100_diff1 value: 21.15194880649059 - type: nauc_recall_at_100_max value: 32.44572125606809 - type: nauc_recall_at_100_std value: 31.94013583626886 - type: nauc_recall_at_10_diff1 value: 37.66956774103016 - type: nauc_recall_at_10_max value: 30.925800174559832 - type: nauc_recall_at_10_std value: 9.299447104776808 - type: nauc_recall_at_1_diff1 value: 52.388363332106294 - type: nauc_recall_at_1_max value: 32.184315523196425 - type: nauc_recall_at_1_std value: -2.5295830272351103 - type: nauc_recall_at_20_diff1 value: 31.552065521976175 - type: nauc_recall_at_20_max value: 29.74690417386352 - type: nauc_recall_at_20_std value: 14.180880251108768 - type: nauc_recall_at_3_diff1 value: 40.454215107630645 - type: nauc_recall_at_3_max value: 30.042646762149484 - type: nauc_recall_at_3_std value: 2.8753957129080447 - type: nauc_recall_at_5_diff1 value: 36.586530595627345 - type: nauc_recall_at_5_max value: 27.14535453599763 - type: nauc_recall_at_5_std value: 5.997416531615016 - type: ndcg_at_1 value: 33.004 - type: ndcg_at_10 value: 43.951 - type: ndcg_at_100 value: 49.741 - type: ndcg_at_1000 value: 51.946000000000005 - type: ndcg_at_20 value: 46.168 - type: ndcg_at_3 value: 38.550000000000004 - type: ndcg_at_5 value: 41.014 - type: precision_at_1 value: 33.004 - type: precision_at_10 value: 8.577 - type: precision_at_100 value: 1.617 - type: precision_at_1000 value: 0.247 - type: precision_at_20 value: 5.346 - type: precision_at_3 value: 18.05 - type: precision_at_5 value: 13.281 - type: recall_at_1 value: 27.964 - type: recall_at_10 value: 55.702 - type: recall_at_100 value: 81.69999999999999 - type: recall_at_1000 value: 94.926 - type: recall_at_20 value: 64.142 - type: recall_at_3 value: 40.793 - type: recall_at_5 value: 47.046 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval (default) type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: main_score value: 36.787 - type: map_at_1 value: 23.915 - type: map_at_10 value: 31.735000000000003 - type: map_at_100 value: 32.806000000000004 - type: map_at_1000 value: 32.9 - type: map_at_20 value: 32.301 - type: map_at_3 value: 28.436 - type: map_at_5 value: 30.575999999999997 - type: mrr_at_1 value: 25.87800369685767 - type: mrr_at_10 value: 33.96487985212568 - type: mrr_at_100 value: 34.89689439154211 - type: mrr_at_1000 value: 34.95770776172314 - type: mrr_at_20 value: 34.46162046071626 - type: mrr_at_3 value: 31.022797288971038 - type: mrr_at_5 value: 32.991373998767706 - type: nauc_map_at_1000_diff1 value: 41.411411226747745 - type: nauc_map_at_1000_max value: 25.65879736535548 - type: nauc_map_at_1000_std value: -1.0008275040804908 - type: nauc_map_at_100_diff1 value: 41.41167985449119 - type: nauc_map_at_100_max value: 25.6584285870538 - type: nauc_map_at_100_std value: -1.0142856959019102 - type: nauc_map_at_10_diff1 value: 41.56309522812082 - type: nauc_map_at_10_max value: 25.66930315132308 - type: nauc_map_at_10_std value: -1.5502752272271925 - type: nauc_map_at_1_diff1 value: 49.425905570437116 - type: nauc_map_at_1_max value: 23.541197544220545 - type: nauc_map_at_1_std value: -4.360019071552991 - type: nauc_map_at_20_diff1 value: 41.38734082223361 - type: nauc_map_at_20_max value: 25.620079428409127 - type: nauc_map_at_20_std value: -1.4042978268225208 - type: nauc_map_at_3_diff1 value: 43.620208615142644 - type: nauc_map_at_3_max value: 25.71853688922115 - type: nauc_map_at_3_std value: -1.8769387740803976 - type: nauc_map_at_5_diff1 value: 41.97672177355559 - type: nauc_map_at_5_max value: 26.035163926212334 - type: nauc_map_at_5_std value: -2.11363374949669 - type: nauc_mrr_at_1000_diff1 value: 40.49508214793536 - type: nauc_mrr_at_1000_max value: 26.620330593078616 - type: nauc_mrr_at_1000_std value: -0.3634968622281096 - type: nauc_mrr_at_100_diff1 value: 40.465539927932895 - type: nauc_mrr_at_100_max value: 26.61340099486517 - type: nauc_mrr_at_100_std value: -0.35206443295384626 - type: nauc_mrr_at_10_diff1 value: 40.573109996611144 - type: nauc_mrr_at_10_max value: 26.71149031482008 - type: nauc_mrr_at_10_std value: -0.9166267231737095 - type: nauc_mrr_at_1_diff1 value: 48.29138921797353 - type: nauc_mrr_at_1_max value: 24.927185077919813 - type: nauc_mrr_at_1_std value: -4.332258870474254 - type: nauc_mrr_at_20_diff1 value: 40.40723703282917 - type: nauc_mrr_at_20_max value: 26.59812216818852 - type: nauc_mrr_at_20_std value: -0.6209755736362238 - type: nauc_mrr_at_3_diff1 value: 42.1104901364276 - type: nauc_mrr_at_3_max value: 27.158847936548643 - type: nauc_mrr_at_3_std value: -0.4768337585685568 - type: nauc_mrr_at_5_diff1 value: 40.822869162681044 - type: nauc_mrr_at_5_max value: 27.137910001879362 - type: nauc_mrr_at_5_std value: -0.9466391394053442 - type: nauc_ndcg_at_1000_diff1 value: 38.696314753739436 - type: nauc_ndcg_at_1000_max value: 26.428473010143723 - type: nauc_ndcg_at_1000_std value: 2.3402588363330272 - type: nauc_ndcg_at_100_diff1 value: 37.898005515159134 - type: nauc_ndcg_at_100_max value: 25.68578401772755 - type: nauc_ndcg_at_100_std value: 2.6295479217711453 - type: nauc_ndcg_at_10_diff1 value: 38.28392376933128 - type: nauc_ndcg_at_10_max value: 25.850126852320628 - type: nauc_ndcg_at_10_std value: -0.5560800621942364 - type: nauc_ndcg_at_1_diff1 value: 48.29138921797353 - type: nauc_ndcg_at_1_max value: 24.927185077919813 - type: nauc_ndcg_at_1_std value: -4.332258870474254 - type: nauc_ndcg_at_20_diff1 value: 37.673206490621396 - type: nauc_ndcg_at_20_max value: 25.583716405723937 - type: nauc_ndcg_at_20_std value: 0.1953323128781521 - type: nauc_ndcg_at_3_diff1 value: 41.41453304326318 - type: nauc_ndcg_at_3_max value: 26.61748802333722 - type: nauc_ndcg_at_3_std value: -0.5476999435389482 - type: nauc_ndcg_at_5_diff1 value: 38.98483145760039 - type: nauc_ndcg_at_5_max value: 26.777342255255647 - type: nauc_ndcg_at_5_std value: -1.3051979393226087 - type: nauc_precision_at_1000_diff1 value: -14.856110292516775 - type: nauc_precision_at_1000_max value: -5.848771877910694 - type: nauc_precision_at_1000_std value: 15.34411836334217 - type: nauc_precision_at_100_diff1 value: 3.4939759054218333 - type: nauc_precision_at_100_max value: 16.356980505161676 - type: nauc_precision_at_100_std value: 24.608528146713404 - type: nauc_precision_at_10_diff1 value: 18.407011878399366 - type: nauc_precision_at_10_max value: 24.800531781431303 - type: nauc_precision_at_10_std value: 8.698077886826768 - type: nauc_precision_at_1_diff1 value: 48.29138921797353 - type: nauc_precision_at_1_max value: 24.927185077919813 - type: nauc_precision_at_1_std value: -4.332258870474254 - type: nauc_precision_at_20_diff1 value: 14.541755251519852 - type: nauc_precision_at_20_max value: 21.97457692156994 - type: nauc_precision_at_20_std value: 11.578274506336108 - type: nauc_precision_at_3_diff1 value: 33.23900172092169 - type: nauc_precision_at_3_max value: 28.967167315040072 - type: nauc_precision_at_3_std value: 3.6476384007647136 - type: nauc_precision_at_5_diff1 value: 24.289869074161572 - type: nauc_precision_at_5_max value: 30.194681915534748 - type: nauc_precision_at_5_std value: 4.054952118325518 - type: nauc_recall_at_1000_diff1 value: 29.11829826259677 - type: nauc_recall_at_1000_max value: 39.25426036108557 - type: nauc_recall_at_1000_std value: 36.3591900236558 - type: nauc_recall_at_100_diff1 value: 22.900753883773152 - type: nauc_recall_at_100_max value: 20.40038512546472 - type: nauc_recall_at_100_std value: 20.736883688677032 - type: nauc_recall_at_10_diff1 value: 29.183788265901534 - type: nauc_recall_at_10_max value: 24.025061243297948 - type: nauc_recall_at_10_std value: 0.8086675135479778 - type: nauc_recall_at_1_diff1 value: 49.425905570437116 - type: nauc_recall_at_1_max value: 23.541197544220545 - type: nauc_recall_at_1_std value: -4.360019071552991 - type: nauc_recall_at_20_diff1 value: 26.21751562892008 - type: nauc_recall_at_20_max value: 22.78118083757151 - type: nauc_recall_at_20_std value: 3.6627753391462825 - type: nauc_recall_at_3_diff1 value: 37.20946031817167 - type: nauc_recall_at_3_max value: 27.059274716311005 - type: nauc_recall_at_3_std value: 0.8325033099157856 - type: nauc_recall_at_5_diff1 value: 31.269097954181547 - type: nauc_recall_at_5_max value: 26.853918763485463 - type: nauc_recall_at_5_std value: -0.9226280392689135 - type: ndcg_at_1 value: 25.878 - type: ndcg_at_10 value: 36.787 - type: ndcg_at_100 value: 42.085 - type: ndcg_at_1000 value: 44.303 - type: ndcg_at_20 value: 38.690000000000005 - type: ndcg_at_3 value: 30.657 - type: ndcg_at_5 value: 34.242 - type: precision_at_1 value: 25.878 - type: precision_at_10 value: 5.86 - type: precision_at_100 value: 0.9209999999999999 - type: precision_at_1000 value: 0.123 - type: precision_at_20 value: 3.392 - type: precision_at_3 value: 12.815999999999999 - type: precision_at_5 value: 9.76 - type: recall_at_1 value: 23.915 - type: recall_at_10 value: 50.196 - type: recall_at_100 value: 74.66199999999999 - type: recall_at_1000 value: 90.949 - type: recall_at_20 value: 57.404999999999994 - type: recall_at_3 value: 34.156 - type: recall_at_5 value: 42.671 - task: type: Retrieval dataset: name: MTEB ClimateFEVER (default) type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: main_score value: 37.835 - type: map_at_1 value: 16.408 - type: map_at_10 value: 28.102 - type: map_at_100 value: 30.245 - type: map_at_1000 value: 30.44 - type: map_at_20 value: 29.325000000000003 - type: map_at_3 value: 23.49 - type: map_at_5 value: 26.075 - type: mrr_at_1 value: 36.48208469055375 - type: mrr_at_10 value: 49.35310997363119 - type: mrr_at_100 value: 50.12144284733654 - type: mrr_at_1000 value: 50.14901403511052 - type: mrr_at_20 value: 49.86902911912245 - type: mrr_at_3 value: 46.3952225841477 - type: mrr_at_5 value: 48.16720955483177 - type: nauc_map_at_1000_diff1 value: 25.310850675849366 - type: nauc_map_at_1000_max value: 37.09503121120242 - type: nauc_map_at_1000_std value: 20.554977994819744 - type: nauc_map_at_100_diff1 value: 25.299966872724244 - type: nauc_map_at_100_max value: 37.07757844963315 - type: nauc_map_at_100_std value: 20.51941286942183 - type: nauc_map_at_10_diff1 value: 24.97097616375397 - type: nauc_map_at_10_max value: 36.21802106435102 - type: nauc_map_at_10_std value: 19.04179638942543 - type: nauc_map_at_1_diff1 value: 31.079857565386533 - type: nauc_map_at_1_max value: 31.982413172438463 - type: nauc_map_at_1_std value: 10.837120383351104 - type: nauc_map_at_20_diff1 value: 25.274561705603706 - type: nauc_map_at_20_max value: 36.846696717838334 - type: nauc_map_at_20_std value: 20.073241003865924 - type: nauc_map_at_3_diff1 value: 26.01764061167898 - type: nauc_map_at_3_max value: 33.20138049456973 - type: nauc_map_at_3_std value: 14.230139192374121 - type: nauc_map_at_5_diff1 value: 25.09123372044605 - type: nauc_map_at_5_max value: 34.89124594920631 - type: nauc_map_at_5_std value: 16.70319126587545 - type: nauc_mrr_at_1000_diff1 value: 26.375252226612467 - type: nauc_mrr_at_1000_max value: 35.477327849397575 - type: nauc_mrr_at_1000_std value: 21.16791565302958 - type: nauc_mrr_at_100_diff1 value: 26.377160750801053 - type: nauc_mrr_at_100_max value: 35.49211341503135 - type: nauc_mrr_at_100_std value: 21.19391590137402 - type: nauc_mrr_at_10_diff1 value: 26.311212981822052 - type: nauc_mrr_at_10_max value: 35.588662356341594 - type: nauc_mrr_at_10_std value: 21.24369092394658 - type: nauc_mrr_at_1_diff1 value: 27.198678190552865 - type: nauc_mrr_at_1_max value: 31.017785831517703 - type: nauc_mrr_at_1_std value: 16.42737819423067 - type: nauc_mrr_at_20_diff1 value: 26.32032615102818 - type: nauc_mrr_at_20_max value: 35.57367760733253 - type: nauc_mrr_at_20_std value: 21.29294301389274 - type: nauc_mrr_at_3_diff1 value: 26.092036806660612 - type: nauc_mrr_at_3_max value: 34.31665231049064 - type: nauc_mrr_at_3_std value: 19.6674385140531 - type: nauc_mrr_at_5_diff1 value: 26.151603897636 - type: nauc_mrr_at_5_max value: 35.17650680885225 - type: nauc_mrr_at_5_std value: 20.573080891241787 - type: nauc_ndcg_at_1000_diff1 value: 25.65498442794641 - type: nauc_ndcg_at_1000_max value: 40.084443405536575 - type: nauc_ndcg_at_1000_std value: 26.795793663747304 - type: nauc_ndcg_at_100_diff1 value: 25.237187946595334 - type: nauc_ndcg_at_100_max value: 40.07873047722652 - type: nauc_ndcg_at_100_std value: 26.7859861991128 - type: nauc_ndcg_at_10_diff1 value: 24.236337614114206 - type: nauc_ndcg_at_10_max value: 38.22607740025273 - type: nauc_ndcg_at_10_std value: 23.272039117089907 - type: nauc_ndcg_at_1_diff1 value: 27.198678190552865 - type: nauc_ndcg_at_1_max value: 31.017785831517703 - type: nauc_ndcg_at_1_std value: 16.42737819423067 - type: nauc_ndcg_at_20_diff1 value: 24.724738711624312 - type: nauc_ndcg_at_20_max value: 39.24548121605356 - type: nauc_ndcg_at_20_std value: 25.228893154519525 - type: nauc_ndcg_at_3_diff1 value: 24.658317235435362 - type: nauc_ndcg_at_3_max value: 33.335101247559486 - type: nauc_ndcg_at_3_std value: 17.01054703727399 - type: nauc_ndcg_at_5_diff1 value: 24.31704097148463 - type: nauc_ndcg_at_5_max value: 36.14336690565576 - type: nauc_ndcg_at_5_std value: 19.69214379372329 - type: nauc_precision_at_1000_diff1 value: -2.8924045105824114 - type: nauc_precision_at_1000_max value: 5.89979568196701 - type: nauc_precision_at_1000_std value: 19.595702020634185 - type: nauc_precision_at_100_diff1 value: 3.8998389837458203 - type: nauc_precision_at_100_max value: 19.95415054849711 - type: nauc_precision_at_100_std value: 29.065971451387774 - type: nauc_precision_at_10_diff1 value: 9.462651146259638 - type: nauc_precision_at_10_max value: 29.680510389273447 - type: nauc_precision_at_10_std value: 29.345395013388686 - type: nauc_precision_at_1_diff1 value: 27.198678190552865 - type: nauc_precision_at_1_max value: 31.017785831517703 - type: nauc_precision_at_1_std value: 16.42737819423067 - type: nauc_precision_at_20_diff1 value: 8.261243519089712 - type: nauc_precision_at_20_max value: 27.929320115110023 - type: nauc_precision_at_20_std value: 31.459012229844742 - type: nauc_precision_at_3_diff1 value: 15.273777636613955 - type: nauc_precision_at_3_max value: 28.204944302903996 - type: nauc_precision_at_3_std value: 19.80674678483048 - type: nauc_precision_at_5_diff1 value: 11.487918382134389 - type: nauc_precision_at_5_max value: 28.62173130088314 - type: nauc_precision_at_5_std value: 23.626716801834526 - type: nauc_recall_at_1000_diff1 value: 22.332855309918482 - type: nauc_recall_at_1000_max value: 46.19202209060043 - type: nauc_recall_at_1000_std value: 48.263282583608465 - type: nauc_recall_at_100_diff1 value: 18.606992875038713 - type: nauc_recall_at_100_max value: 39.8050305915271 - type: nauc_recall_at_100_std value: 36.24645472497941 - type: nauc_recall_at_10_diff1 value: 18.232071663795725 - type: nauc_recall_at_10_max value: 37.67075857623269 - type: nauc_recall_at_10_std value: 26.788012514411548 - type: nauc_recall_at_1_diff1 value: 31.079857565386533 - type: nauc_recall_at_1_max value: 31.982413172438463 - type: nauc_recall_at_1_std value: 10.837120383351104 - type: nauc_recall_at_20_diff1 value: 18.306236535885443 - type: nauc_recall_at_20_max value: 38.24540146525127 - type: nauc_recall_at_20_std value: 30.329987162287033 - type: nauc_recall_at_3_diff1 value: 22.00237059430624 - type: nauc_recall_at_3_max value: 32.60315366638792 - type: nauc_recall_at_3_std value: 15.991207369096077 - type: nauc_recall_at_5_diff1 value: 19.305335536530087 - type: nauc_recall_at_5_max value: 35.001491825528966 - type: nauc_recall_at_5_std value: 20.46796749831726 - type: ndcg_at_1 value: 36.482 - type: ndcg_at_10 value: 37.835 - type: ndcg_at_100 value: 45.332 - type: ndcg_at_1000 value: 48.503 - type: ndcg_at_20 value: 40.991 - type: ndcg_at_3 value: 31.735999999999997 - type: ndcg_at_5 value: 34.015 - type: precision_at_1 value: 36.482 - type: precision_at_10 value: 11.726 - type: precision_at_100 value: 1.978 - type: precision_at_1000 value: 0.258 - type: precision_at_20 value: 7.234999999999999 - type: precision_at_3 value: 23.822 - type: precision_at_5 value: 18.319 - type: recall_at_1 value: 16.408 - type: recall_at_10 value: 43.915 - type: recall_at_100 value: 69.173 - type: recall_at_1000 value: 86.58 - type: recall_at_20 value: 52.744 - type: recall_at_3 value: 28.682999999999996 - type: recall_at_5 value: 35.481 - task: type: Retrieval dataset: name: MTEB DBPedia (default) type: mteb/dbpedia config: default split: dev revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 55.144000000000005 - type: map_at_1 value: 11.826 - type: map_at_10 value: 27.172 - type: map_at_100 value: 38.257000000000005 - type: map_at_1000 value: 40.097 - type: map_at_20 value: 32.123000000000005 - type: map_at_3 value: 19.369 - type: map_at_5 value: 22.351 - type: mrr_at_1 value: 80.59701492537313 - type: mrr_at_10 value: 86.33499170812604 - type: mrr_at_100 value: 86.45227090143814 - type: mrr_at_1000 value: 86.45227090143814 - type: mrr_at_20 value: 86.40961857379767 - type: mrr_at_3 value: 85.57213930348257 - type: mrr_at_5 value: 86.16915422885573 - type: nauc_map_at_1000_diff1 value: 31.072194916682385 - type: nauc_map_at_1000_max value: 21.804811518161618 - type: nauc_map_at_1000_std value: -2.951237857245905 - type: nauc_map_at_100_diff1 value: 32.56060360145279 - type: nauc_map_at_100_max value: 21.242298925848857 - type: nauc_map_at_100_std value: -6.601591083112349 - type: nauc_map_at_10_diff1 value: 45.43742246641206 - type: nauc_map_at_10_max value: 17.21692770004215 - type: nauc_map_at_10_std value: -26.109238645663996 - type: nauc_map_at_1_diff1 value: 59.342871771182246 - type: nauc_map_at_1_max value: 7.61369981711965 - type: nauc_map_at_1_std value: -43.77056595417028 - type: nauc_map_at_20_diff1 value: 41.28476777471806 - type: nauc_map_at_20_max value: 19.146619219149965 - type: nauc_map_at_20_std value: -18.138173228934672 - type: nauc_map_at_3_diff1 value: 50.01554010863971 - type: nauc_map_at_3_max value: 8.780067252066651 - type: nauc_map_at_3_std value: -38.97142391357302 - type: nauc_map_at_5_diff1 value: 49.10129058095009 - type: nauc_map_at_5_max value: 11.656196663534313 - type: nauc_map_at_5_std value: -34.72355570603387 - type: nauc_mrr_at_1000_diff1 value: 58.78754980587956 - type: nauc_mrr_at_1000_max value: 49.8860031204746 - type: nauc_mrr_at_1000_std value: 8.296926794472618 - type: nauc_mrr_at_100_diff1 value: 58.78754980587956 - type: nauc_mrr_at_100_max value: 49.8860031204746 - type: nauc_mrr_at_100_std value: 8.296926794472618 - type: nauc_mrr_at_10_diff1 value: 58.91162028285357 - type: nauc_mrr_at_10_max value: 50.335451094273985 - type: nauc_mrr_at_10_std value: 9.007586894775534 - type: nauc_mrr_at_1_diff1 value: 57.59201084653059 - type: nauc_mrr_at_1_max value: 37.00330988333697 - type: nauc_mrr_at_1_std value: -1.747744103132987 - type: nauc_mrr_at_20_diff1 value: 58.75119254917311 - type: nauc_mrr_at_20_max value: 50.05039741296804 - type: nauc_mrr_at_20_std value: 8.560730939300612 - type: nauc_mrr_at_3_diff1 value: 59.25818070675737 - type: nauc_mrr_at_3_max value: 50.21290391831141 - type: nauc_mrr_at_3_std value: 5.888545263632479 - type: nauc_mrr_at_5_diff1 value: 58.86883176773856 - type: nauc_mrr_at_5_max value: 50.957401246316245 - type: nauc_mrr_at_5_std value: 9.799770718943135 - type: nauc_ndcg_at_1000_diff1 value: 31.017440394196054 - type: nauc_ndcg_at_1000_max value: 34.76839774920455 - type: nauc_ndcg_at_1000_std value: 18.394503679584197 - type: nauc_ndcg_at_100_diff1 value: 33.46897937355806 - type: nauc_ndcg_at_100_max value: 30.1308096551965 - type: nauc_ndcg_at_100_std value: 4.811329419196584 - type: nauc_ndcg_at_10_diff1 value: 34.738421563806796 - type: nauc_ndcg_at_10_max value: 31.63787832072571 - type: nauc_ndcg_at_10_std value: 6.047471445378135 - type: nauc_ndcg_at_1_diff1 value: 41.838767871859105 - type: nauc_ndcg_at_1_max value: 29.76412378121819 - type: nauc_ndcg_at_1_std value: -6.662981751747337 - type: nauc_ndcg_at_20_diff1 value: 37.2936047770493 - type: nauc_ndcg_at_20_max value: 27.509688843351928 - type: nauc_ndcg_at_20_std value: -4.226207480988211 - type: nauc_ndcg_at_3_diff1 value: 26.741771232683075 - type: nauc_ndcg_at_3_max value: 27.39386896838887 - type: nauc_ndcg_at_3_std value: 1.6639808702221104 - type: nauc_ndcg_at_5_diff1 value: 32.70843930376316 - type: nauc_ndcg_at_5_max value: 27.924846120043256 - type: nauc_ndcg_at_5_std value: 6.138807313274158 - type: nauc_precision_at_1000_diff1 value: -32.41203303482423 - type: nauc_precision_at_1000_max value: 8.093545818882905 - type: nauc_precision_at_1000_std value: 47.02494471043404 - type: nauc_precision_at_100_diff1 value: -31.578281780421502 - type: nauc_precision_at_100_max value: 11.08125301543009 - type: nauc_precision_at_100_std value: 50.533022672180394 - type: nauc_precision_at_10_diff1 value: -22.738530687885405 - type: nauc_precision_at_10_max value: 23.330840950192325 - type: nauc_precision_at_10_std value: 50.76435402136226 - type: nauc_precision_at_1_diff1 value: 57.59201084653059 - type: nauc_precision_at_1_max value: 37.00330988333697 - type: nauc_precision_at_1_std value: -1.747744103132987 - type: nauc_precision_at_20_diff1 value: -25.002019953837003 - type: nauc_precision_at_20_max value: 16.971378988976706 - type: nauc_precision_at_20_std value: 48.07345104684135 - type: nauc_precision_at_3_diff1 value: -8.197173818536056 - type: nauc_precision_at_3_max value: 25.695195187226403 - type: nauc_precision_at_3_std value: 31.111863515602995 - type: nauc_precision_at_5_diff1 value: -12.956574437433844 - type: nauc_precision_at_5_max value: 21.41273346493039 - type: nauc_precision_at_5_std value: 42.55631329398401 - type: nauc_recall_at_1000_diff1 value: 9.76915442349142 - type: nauc_recall_at_1000_max value: 23.74302893109814 - type: nauc_recall_at_1000_std value: 33.123159475147816 - type: nauc_recall_at_100_diff1 value: 13.96782611551897 - type: nauc_recall_at_100_max value: 21.02306088177266 - type: nauc_recall_at_100_std value: 3.0239346149170645 - type: nauc_recall_at_10_diff1 value: 36.502833630310036 - type: nauc_recall_at_10_max value: 15.575967406133087 - type: nauc_recall_at_10_std value: -25.645224052787295 - type: nauc_recall_at_1_diff1 value: 59.342871771182246 - type: nauc_recall_at_1_max value: 7.61369981711965 - type: nauc_recall_at_1_std value: -43.77056595417028 - type: nauc_recall_at_20_diff1 value: 26.27422331579885 - type: nauc_recall_at_20_max value: 13.135043270702166 - type: nauc_recall_at_20_std value: -19.92673944513883 - type: nauc_recall_at_3_diff1 value: 48.18220967640245 - type: nauc_recall_at_3_max value: 9.54094958941248 - type: nauc_recall_at_3_std value: -37.97033782144305 - type: nauc_recall_at_5_diff1 value: 46.575464923304686 - type: nauc_recall_at_5_max value: 12.024807120200766 - type: nauc_recall_at_5_std value: -33.73533843493903 - type: ndcg_at_1 value: 71.642 - type: ndcg_at_10 value: 55.144000000000005 - type: ndcg_at_100 value: 59.753 - type: ndcg_at_1000 value: 66.89500000000001 - type: ndcg_at_20 value: 54.114 - type: ndcg_at_3 value: 62.373 - type: ndcg_at_5 value: 57.926 - type: precision_at_1 value: 80.597 - type: precision_at_10 value: 41.343 - type: precision_at_100 value: 12.030000000000001 - type: precision_at_1000 value: 1.8270000000000002 - type: precision_at_20 value: 31.791000000000004 - type: precision_at_3 value: 63.682 - type: precision_at_5 value: 52.239000000000004 - type: recall_at_1 value: 11.826 - type: recall_at_10 value: 33.28 - type: recall_at_100 value: 65.91 - type: recall_at_1000 value: 88.39200000000001 - type: recall_at_20 value: 44.482 - type: recall_at_3 value: 20.377000000000002 - type: recall_at_5 value: 24.102999999999998 - task: type: Retrieval dataset: name: MTEB DBPedia (default) type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 46.062999999999995 - type: map_at_1 value: 9.913 - type: map_at_10 value: 22.713 - type: map_at_100 value: 32.995999999999995 - type: map_at_1000 value: 34.845 - type: map_at_20 value: 26.650000000000002 - type: map_at_3 value: 16.052 - type: map_at_5 value: 18.892999999999997 - type: mrr_at_1 value: 72.75 - type: mrr_at_10 value: 79.93075396825398 - type: mrr_at_100 value: 80.15202418448516 - type: mrr_at_1000 value: 80.16338022685652 - type: mrr_at_20 value: 80.10524750447352 - type: mrr_at_3 value: 78.375 - type: mrr_at_5 value: 79.5 - type: nauc_map_at_1000_diff1 value: 15.703992161125676 - type: nauc_map_at_1000_max value: 23.35271482732561 - type: nauc_map_at_1000_std value: 31.149527138283002 - type: nauc_map_at_100_diff1 value: 16.785306132760873 - type: nauc_map_at_100_max value: 21.540254096945795 - type: nauc_map_at_100_std value: 28.232069035246422 - type: nauc_map_at_10_diff1 value: 20.402743546183082 - type: nauc_map_at_10_max value: 7.042045670852542 - type: nauc_map_at_10_std value: 0.16763671800997607 - type: nauc_map_at_1_diff1 value: 35.775061062200926 - type: nauc_map_at_1_max value: -3.2698850217174287 - type: nauc_map_at_1_std value: -19.56795709087053 - type: nauc_map_at_20_diff1 value: 18.699651665323326 - type: nauc_map_at_20_max value: 13.328266382559917 - type: nauc_map_at_20_std value: 11.47185661443564 - type: nauc_map_at_3_diff1 value: 25.81987347945424 - type: nauc_map_at_3_max value: -0.15648299152936088 - type: nauc_map_at_3_std value: -13.835424548479757 - type: nauc_map_at_5_diff1 value: 23.439523519895587 - type: nauc_map_at_5_max value: 1.5356852327250021 - type: nauc_map_at_5_std value: -9.703910926625412 - type: nauc_mrr_at_1000_diff1 value: 52.46673675514906 - type: nauc_mrr_at_1000_max value: 63.470733964613935 - type: nauc_mrr_at_1000_std value: 45.63124329941225 - type: nauc_mrr_at_100_diff1 value: 52.453615789844285 - type: nauc_mrr_at_100_max value: 63.46889395676577 - type: nauc_mrr_at_100_std value: 45.60690760740741 - type: nauc_mrr_at_10_diff1 value: 52.418811815325775 - type: nauc_mrr_at_10_max value: 63.458017896693896 - type: nauc_mrr_at_10_std value: 45.69048100462888 - type: nauc_mrr_at_1_diff1 value: 51.64249864649329 - type: nauc_mrr_at_1_max value: 61.7930671192988 - type: nauc_mrr_at_1_std value: 45.65780424635283 - type: nauc_mrr_at_20_diff1 value: 52.51320760078821 - type: nauc_mrr_at_20_max value: 63.45648957193841 - type: nauc_mrr_at_20_std value: 45.643345257424215 - type: nauc_mrr_at_3_diff1 value: 52.684081166956375 - type: nauc_mrr_at_3_max value: 63.47934202170013 - type: nauc_mrr_at_3_std value: 45.258022228781805 - type: nauc_mrr_at_5_diff1 value: 52.404417203072725 - type: nauc_mrr_at_5_max value: 63.622003998330335 - type: nauc_mrr_at_5_std value: 45.56023178180955 - type: nauc_ndcg_at_1000_diff1 value: 21.457460034962793 - type: nauc_ndcg_at_1000_max value: 38.48004433256833 - type: nauc_ndcg_at_1000_std value: 44.50501821602239 - type: nauc_ndcg_at_100_diff1 value: 22.96499973613431 - type: nauc_ndcg_at_100_max value: 32.279961000176996 - type: nauc_ndcg_at_100_std value: 36.24772810425709 - type: nauc_ndcg_at_10_diff1 value: 22.80486448431605 - type: nauc_ndcg_at_10_max value: 31.855350572992712 - type: nauc_ndcg_at_10_std value: 32.02098815228779 - type: nauc_ndcg_at_1_diff1 value: 42.52237678010534 - type: nauc_ndcg_at_1_max value: 43.07107038550254 - type: nauc_ndcg_at_1_std value: 32.29636539687786 - type: nauc_ndcg_at_20_diff1 value: 23.33376144999378 - type: nauc_ndcg_at_20_max value: 29.47723113288734 - type: nauc_ndcg_at_20_std value: 29.39360988758012 - type: nauc_ndcg_at_3_diff1 value: 26.354022177902426 - type: nauc_ndcg_at_3_max value: 34.34518581558593 - type: nauc_ndcg_at_3_std value: 30.620971800188308 - type: nauc_ndcg_at_5_diff1 value: 23.743192738244137 - type: nauc_ndcg_at_5_max value: 31.84064266620126 - type: nauc_ndcg_at_5_std value: 31.185813277650304 - type: nauc_precision_at_1000_diff1 value: -23.397310460810505 - type: nauc_precision_at_1000_max value: 4.094434610744116 - type: nauc_precision_at_1000_std value: 16.721869991290177 - type: nauc_precision_at_100_diff1 value: -9.979052269943192 - type: nauc_precision_at_100_max value: 30.59858046499311 - type: nauc_precision_at_100_std value: 48.98467116206844 - type: nauc_precision_at_10_diff1 value: -5.612358654181445 - type: nauc_precision_at_10_max value: 38.881592521775225 - type: nauc_precision_at_10_std value: 55.44555278772913 - type: nauc_precision_at_1_diff1 value: 51.64249864649329 - type: nauc_precision_at_1_max value: 61.7930671192988 - type: nauc_precision_at_1_std value: 45.65780424635283 - type: nauc_precision_at_20_diff1 value: -5.663214776548806 - type: nauc_precision_at_20_max value: 37.95746951813096 - type: nauc_precision_at_20_std value: 55.85134464939927 - type: nauc_precision_at_3_diff1 value: 5.956898719194746 - type: nauc_precision_at_3_max value: 37.315381572930626 - type: nauc_precision_at_3_std value: 43.463129246499506 - type: nauc_precision_at_5_diff1 value: -0.67640128719057 - type: nauc_precision_at_5_max value: 36.05694594117169 - type: nauc_precision_at_5_std value: 48.36937473304257 - type: nauc_recall_at_1000_diff1 value: 11.230184686028919 - type: nauc_recall_at_1000_max value: 33.60147376937396 - type: nauc_recall_at_1000_std value: 53.068732741076055 - type: nauc_recall_at_100_diff1 value: 15.566530633394684 - type: nauc_recall_at_100_max value: 23.57721391991314 - type: nauc_recall_at_100_std value: 31.386352775767566 - type: nauc_recall_at_10_diff1 value: 17.096462310522874 - type: nauc_recall_at_10_max value: 2.2836136689655127 - type: nauc_recall_at_10_std value: -4.65565377513818 - type: nauc_recall_at_1_diff1 value: 35.775061062200926 - type: nauc_recall_at_1_max value: -3.2698850217174287 - type: nauc_recall_at_1_std value: -19.56795709087053 - type: nauc_recall_at_20_diff1 value: 14.19787786895807 - type: nauc_recall_at_20_max value: 7.524383196640643 - type: nauc_recall_at_20_std value: 5.656566482975458 - type: nauc_recall_at_3_diff1 value: 23.847261122849588 - type: nauc_recall_at_3_max value: -2.611801666377753 - type: nauc_recall_at_3_std value: -16.43695458424158 - type: nauc_recall_at_5_diff1 value: 20.607771671835604 - type: nauc_recall_at_5_max value: -2.949503014688604 - type: nauc_recall_at_5_std value: -14.602394621100709 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 46.062999999999995 - type: ndcg_at_100 value: 51.717999999999996 - type: ndcg_at_1000 value: 59.181 - type: ndcg_at_20 value: 45.837 - type: ndcg_at_3 value: 50.568999999999996 - type: ndcg_at_5 value: 47.981 - type: precision_at_1 value: 72.75 - type: precision_at_10 value: 37.1 - type: precision_at_100 value: 11.98 - type: precision_at_1000 value: 2.284 - type: precision_at_20 value: 28.499999999999996 - type: precision_at_3 value: 54.833 - type: precision_at_5 value: 46.550000000000004 - type: recall_at_1 value: 9.913 - type: recall_at_10 value: 28.154 - type: recall_at_100 value: 58.841 - type: recall_at_1000 value: 82.329 - type: recall_at_20 value: 36.971 - type: recall_at_3 value: 17.336 - type: recall_at_5 value: 21.612000000000002 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: dev revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 90.881 - type: map_at_1 value: 80.818 - type: map_at_10 value: 87.866 - type: map_at_100 value: 88.083 - type: map_at_1000 value: 88.095 - type: map_at_20 value: 87.991 - type: map_at_3 value: 87.069 - type: map_at_5 value: 87.569 - type: mrr_at_1 value: 87.56375637563757 - type: mrr_at_10 value: 92.82259178298779 - type: mrr_at_100 value: 92.84322154467066 - type: mrr_at_1000 value: 92.84344246383182 - type: mrr_at_20 value: 92.83903406133638 - type: mrr_at_3 value: 92.52175217521747 - type: mrr_at_5 value: 92.73627362736265 - type: nauc_map_at_1000_diff1 value: 46.87623575032174 - type: nauc_map_at_1000_max value: 12.297201771693372 - type: nauc_map_at_1000_std value: -9.479310845495277 - type: nauc_map_at_100_diff1 value: 46.84134556922246 - type: nauc_map_at_100_max value: 12.292309938105879 - type: nauc_map_at_100_std value: -9.466678629428921 - type: nauc_map_at_10_diff1 value: 46.181390015451946 - type: nauc_map_at_10_max value: 11.927988984700725 - type: nauc_map_at_10_std value: -9.666045508151084 - type: nauc_map_at_1_diff1 value: 53.10928810328134 - type: nauc_map_at_1_max value: 7.540404621177918 - type: nauc_map_at_1_std value: -13.906212384769297 - type: nauc_map_at_20_diff1 value: 46.49635746130797 - type: nauc_map_at_20_max value: 12.13593751368467 - type: nauc_map_at_20_std value: -9.607633449073036 - type: nauc_map_at_3_diff1 value: 45.940411564236655 - type: nauc_map_at_3_max value: 11.433507590443073 - type: nauc_map_at_3_std value: -10.96299821239248 - type: nauc_map_at_5_diff1 value: 45.87354953980392 - type: nauc_map_at_5_max value: 11.548053546333442 - type: nauc_map_at_5_std value: -10.299403473081103 - type: nauc_mrr_at_1000_diff1 value: 74.96436552895679 - type: nauc_mrr_at_1000_max value: 15.081704623272563 - type: nauc_mrr_at_1000_std value: -21.505452950257524 - type: nauc_mrr_at_100_diff1 value: 74.96337776424838 - type: nauc_mrr_at_100_max value: 15.084165693265266 - type: nauc_mrr_at_100_std value: -21.502705745641805 - type: nauc_mrr_at_10_diff1 value: 74.95512856225042 - type: nauc_mrr_at_10_max value: 15.179216919044547 - type: nauc_mrr_at_10_std value: -21.54772408489513 - type: nauc_mrr_at_1_diff1 value: 75.1059297404218 - type: nauc_mrr_at_1_max value: 11.81006208731222 - type: nauc_mrr_at_1_std value: -20.585909179161106 - type: nauc_mrr_at_20_diff1 value: 74.96842612971291 - type: nauc_mrr_at_20_max value: 15.114351703094453 - type: nauc_mrr_at_20_std value: -21.513817851207094 - type: nauc_mrr_at_3_diff1 value: 75.02285494504581 - type: nauc_mrr_at_3_max value: 16.0556430520842 - type: nauc_mrr_at_3_std value: -21.96831001623427 - type: nauc_mrr_at_5_diff1 value: 74.90651790965175 - type: nauc_mrr_at_5_max value: 15.372261833733539 - type: nauc_mrr_at_5_std value: -21.675988243802003 - type: nauc_ndcg_at_1000_diff1 value: 50.2435944626682 - type: nauc_ndcg_at_1000_max value: 14.561661200135982 - type: nauc_ndcg_at_1000_std value: -8.914496686293512 - type: nauc_ndcg_at_100_diff1 value: 49.45862609681797 - type: nauc_ndcg_at_100_max value: 14.574933247820116 - type: nauc_ndcg_at_100_std value: -8.401737989352354 - type: nauc_ndcg_at_10_diff1 value: 46.70923651777826 - type: nauc_ndcg_at_10_max value: 13.472299853545234 - type: nauc_ndcg_at_10_std value: -8.83553728476895 - type: nauc_ndcg_at_1_diff1 value: 75.1059297404218 - type: nauc_ndcg_at_1_max value: 11.81006208731222 - type: nauc_ndcg_at_1_std value: -20.585909179161106 - type: nauc_ndcg_at_20_diff1 value: 47.55000104826263 - type: nauc_ndcg_at_20_max value: 14.006480095713588 - type: nauc_ndcg_at_20_std value: -8.658752805425454 - type: nauc_ndcg_at_3_diff1 value: 47.637455273739995 - type: nauc_ndcg_at_3_max value: 13.770838942196637 - type: nauc_ndcg_at_3_std value: -11.280620068648076 - type: nauc_ndcg_at_5_diff1 value: 46.43880641265911 - type: nauc_ndcg_at_5_max value: 13.08583931363886 - type: nauc_ndcg_at_5_std value: -10.06515821709641 - type: nauc_precision_at_1000_diff1 value: -7.74658978838917 - type: nauc_precision_at_1000_max value: 4.751261690843568 - type: nauc_precision_at_1000_std value: 9.364113114197997 - type: nauc_precision_at_100_diff1 value: -6.8148922522222115 - type: nauc_precision_at_100_max value: 6.972247112602814 - type: nauc_precision_at_100_std value: 11.878899724333886 - type: nauc_precision_at_10_diff1 value: -9.26742080488489 - type: nauc_precision_at_10_max value: 10.151685398959382 - type: nauc_precision_at_10_std value: 12.57287300284158 - type: nauc_precision_at_1_diff1 value: 75.1059297404218 - type: nauc_precision_at_1_max value: 11.81006208731222 - type: nauc_precision_at_1_std value: -20.585909179161106 - type: nauc_precision_at_20_diff1 value: -9.46809712351495 - type: nauc_precision_at_20_max value: 9.070842702517606 - type: nauc_precision_at_20_std value: 12.63029281322448 - type: nauc_precision_at_3_diff1 value: 4.482731450261291 - type: nauc_precision_at_3_max value: 15.23040684493045 - type: nauc_precision_at_3_std value: 1.6067730909628326 - type: nauc_precision_at_5_diff1 value: -5.71269063574531 - type: nauc_precision_at_5_max value: 11.572460670136449 - type: nauc_precision_at_5_std value: 7.83824414993744 - type: nauc_recall_at_1000_diff1 value: 2.7016711342522663 - type: nauc_recall_at_1000_max value: 38.550518524354906 - type: nauc_recall_at_1000_std value: 46.777091414426614 - type: nauc_recall_at_100_diff1 value: 8.833739498081504 - type: nauc_recall_at_100_max value: 28.457805489841665 - type: nauc_recall_at_100_std value: 32.44508615804357 - type: nauc_recall_at_10_diff1 value: 9.414374970261905 - type: nauc_recall_at_10_max value: 16.400771079732788 - type: nauc_recall_at_10_std value: 11.211729067346221 - type: nauc_recall_at_1_diff1 value: 53.10928810328134 - type: nauc_recall_at_1_max value: 7.540404621177918 - type: nauc_recall_at_1_std value: -13.906212384769297 - type: nauc_recall_at_20_diff1 value: 7.2361585201604255 - type: nauc_recall_at_20_max value: 19.916481947882193 - type: nauc_recall_at_20_std value: 16.717994401180736 - type: nauc_recall_at_3_diff1 value: 23.19365013128098 - type: nauc_recall_at_3_max value: 15.22562423195164 - type: nauc_recall_at_3_std value: -3.6529481843146376 - type: nauc_recall_at_5_diff1 value: 15.503999284173625 - type: nauc_recall_at_5_max value: 14.508056870663811 - type: nauc_recall_at_5_std value: 1.978806929057799 - type: ndcg_at_1 value: 87.564 - type: ndcg_at_10 value: 90.881 - type: ndcg_at_100 value: 91.513 - type: ndcg_at_1000 value: 91.71000000000001 - type: ndcg_at_20 value: 91.148 - type: ndcg_at_3 value: 89.917 - type: ndcg_at_5 value: 90.434 - type: precision_at_1 value: 87.564 - type: precision_at_10 value: 10.711 - type: precision_at_100 value: 1.135 - type: precision_at_1000 value: 0.117 - type: precision_at_20 value: 5.463 - type: precision_at_3 value: 33.993 - type: precision_at_5 value: 20.888 - type: recall_at_1 value: 80.818 - type: recall_at_10 value: 95.22800000000001 - type: recall_at_100 value: 97.52499999999999 - type: recall_at_1000 value: 98.691 - type: recall_at_20 value: 96.081 - type: recall_at_3 value: 92.43299999999999 - type: recall_at_5 value: 93.92200000000001 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 89.917 - type: map_at_1 value: 78.50200000000001 - type: map_at_10 value: 86.568 - type: map_at_100 value: 86.785 - type: map_at_1000 value: 86.797 - type: map_at_20 value: 86.701 - type: map_at_3 value: 85.59400000000001 - type: map_at_5 value: 86.223 - type: mrr_at_1 value: 84.77347734773477 - type: mrr_at_10 value: 91.097966939551 - type: mrr_at_100 value: 91.12558512468273 - type: mrr_at_1000 value: 91.1260701737618 - type: mrr_at_20 value: 91.11946032681844 - type: mrr_at_3 value: 90.68406840684058 - type: mrr_at_5 value: 90.98784878487835 - type: nauc_map_at_1000_diff1 value: 50.87906171648577 - type: nauc_map_at_1000_max value: 7.146488902357113 - type: nauc_map_at_1000_std value: -12.846432203603294 - type: nauc_map_at_100_diff1 value: 50.81856235257227 - type: nauc_map_at_100_max value: 7.142093753041584 - type: nauc_map_at_100_std value: -12.819609867775798 - type: nauc_map_at_10_diff1 value: 50.334680606872986 - type: nauc_map_at_10_max value: 7.0836766324370695 - type: nauc_map_at_10_std value: -12.768283326531977 - type: nauc_map_at_1_diff1 value: 56.03047128824491 - type: nauc_map_at_1_max value: 1.9657828096288057 - type: nauc_map_at_1_std value: -16.09258344775108 - type: nauc_map_at_20_diff1 value: 50.59898980840294 - type: nauc_map_at_20_max value: 7.171824094888314 - type: nauc_map_at_20_std value: -12.755654528759749 - type: nauc_map_at_3_diff1 value: 50.10970484630358 - type: nauc_map_at_3_max value: 6.495427590658401 - type: nauc_map_at_3_std value: -14.334341284587198 - type: nauc_map_at_5_diff1 value: 50.085796858441846 - type: nauc_map_at_5_max value: 6.9713526722279235 - type: nauc_map_at_5_std value: -13.24882433153497 - type: nauc_mrr_at_1000_diff1 value: 71.7413632225038 - type: nauc_mrr_at_1000_max value: 3.865641782196838 - type: nauc_mrr_at_1000_std value: -24.555236632082018 - type: nauc_mrr_at_100_diff1 value: 71.73848550292642 - type: nauc_mrr_at_100_max value: 3.868547078561582 - type: nauc_mrr_at_100_std value: -24.549516364510097 - type: nauc_mrr_at_10_diff1 value: 71.71567149170303 - type: nauc_mrr_at_10_max value: 3.996112870850431 - type: nauc_mrr_at_10_std value: -24.507926982679656 - type: nauc_mrr_at_1_diff1 value: 72.45922013700734 - type: nauc_mrr_at_1_max value: 1.8703455839128875 - type: nauc_mrr_at_1_std value: -23.12219651563944 - type: nauc_mrr_at_20_diff1 value: 71.74174120635641 - type: nauc_mrr_at_20_max value: 3.929695014596715 - type: nauc_mrr_at_20_std value: -24.492801146396122 - type: nauc_mrr_at_3_diff1 value: 71.6212411128049 - type: nauc_mrr_at_3_max value: 4.227925028200142 - type: nauc_mrr_at_3_std value: -25.64285955172264 - type: nauc_mrr_at_5_diff1 value: 71.80132592467288 - type: nauc_mrr_at_5_max value: 4.1553514465112995 - type: nauc_mrr_at_5_std value: -24.93394619376225 - type: nauc_ndcg_at_1000_diff1 value: 53.6216140857924 - type: nauc_ndcg_at_1000_max value: 8.199696972556648 - type: nauc_ndcg_at_1000_std value: -12.848833254863706 - type: nauc_ndcg_at_100_diff1 value: 52.4771074390175 - type: nauc_ndcg_at_100_max value: 8.266327098153694 - type: nauc_ndcg_at_100_std value: -12.141877748527016 - type: nauc_ndcg_at_10_diff1 value: 50.39079678583025 - type: nauc_ndcg_at_10_max value: 8.460346209587346 - type: nauc_ndcg_at_10_std value: -11.739805102684473 - type: nauc_ndcg_at_1_diff1 value: 72.45922013700734 - type: nauc_ndcg_at_1_max value: 1.8703455839128875 - type: nauc_ndcg_at_1_std value: -23.12219651563944 - type: nauc_ndcg_at_20_diff1 value: 51.17449748619954 - type: nauc_ndcg_at_20_max value: 8.560656277843842 - type: nauc_ndcg_at_20_std value: -11.721957002532669 - type: nauc_ndcg_at_3_diff1 value: 51.697701767290724 - type: nauc_ndcg_at_3_max value: 7.949689650260239 - type: nauc_ndcg_at_3_std value: -15.497849863574933 - type: nauc_ndcg_at_5_diff1 value: 50.49788213345009 - type: nauc_ndcg_at_5_max value: 8.380898947808362 - type: nauc_ndcg_at_5_std value: -13.119756502356564 - type: nauc_precision_at_1000_diff1 value: -4.321234329511238 - type: nauc_precision_at_1000_max value: 4.842614825492312 - type: nauc_precision_at_1000_std value: 3.517128181017838 - type: nauc_precision_at_100_diff1 value: -7.201118735439735 - type: nauc_precision_at_100_max value: 6.529523563838742 - type: nauc_precision_at_100_std value: 7.106363711097527 - type: nauc_precision_at_10_diff1 value: -9.482064191334755 - type: nauc_precision_at_10_max value: 10.994306197736153 - type: nauc_precision_at_10_std value: 9.958273491520254 - type: nauc_precision_at_1_diff1 value: 72.45922013700734 - type: nauc_precision_at_1_max value: 1.8703455839128875 - type: nauc_precision_at_1_std value: -23.12219651563944 - type: nauc_precision_at_20_diff1 value: -9.380072735429245 - type: nauc_precision_at_20_max value: 9.856465558009173 - type: nauc_precision_at_20_std value: 9.131673380453492 - type: nauc_precision_at_3_diff1 value: 9.586710337314623 - type: nauc_precision_at_3_max value: 14.740209113800102 - type: nauc_precision_at_3_std value: -3.891333715748583 - type: nauc_precision_at_5_diff1 value: -3.998520236788054 - type: nauc_precision_at_5_max value: 13.422868860819156 - type: nauc_precision_at_5_std value: 6.108452997840511 - type: nauc_recall_at_1000_diff1 value: 3.385758105150115 - type: nauc_recall_at_1000_max value: 47.3665730767981 - type: nauc_recall_at_1000_std value: 56.87746303806031 - type: nauc_recall_at_100_diff1 value: -2.028014907991153 - type: nauc_recall_at_100_max value: 32.48324188848066 - type: nauc_recall_at_100_std value: 44.261168385513336 - type: nauc_recall_at_10_diff1 value: 10.768002004459115 - type: nauc_recall_at_10_max value: 22.566005820537097 - type: nauc_recall_at_10_std value: 17.40223735419854 - type: nauc_recall_at_1_diff1 value: 56.03047128824491 - type: nauc_recall_at_1_max value: 1.9657828096288057 - type: nauc_recall_at_1_std value: -16.09258344775108 - type: nauc_recall_at_20_diff1 value: 6.801138990752192 - type: nauc_recall_at_20_max value: 26.58420813169432 - type: nauc_recall_at_20_std value: 25.593452124921424 - type: nauc_recall_at_3_diff1 value: 28.43603012844233 - type: nauc_recall_at_3_max value: 13.635019609839791 - type: nauc_recall_at_3_std value: -7.307728685928379 - type: nauc_recall_at_5_diff1 value: 19.599627188133983 - type: nauc_recall_at_5_max value: 17.90056850206721 - type: nauc_recall_at_5_std value: 3.353861530030554 - type: ndcg_at_1 value: 84.773 - type: ndcg_at_10 value: 89.917 - type: ndcg_at_100 value: 90.577 - type: ndcg_at_1000 value: 90.739 - type: ndcg_at_20 value: 90.22200000000001 - type: ndcg_at_3 value: 88.601 - type: ndcg_at_5 value: 89.35499999999999 - type: precision_at_1 value: 84.773 - type: precision_at_10 value: 10.696 - type: precision_at_100 value: 1.13 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 5.455 - type: precision_at_3 value: 33.663 - type: precision_at_5 value: 20.801 - type: recall_at_1 value: 78.50200000000001 - type: recall_at_10 value: 95.64099999999999 - type: recall_at_100 value: 98.05 - type: recall_at_1000 value: 98.964 - type: recall_at_20 value: 96.619 - type: recall_at_3 value: 92.11500000000001 - type: recall_at_5 value: 94.06 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: train revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 90.021 - type: map_at_1 value: 77.215 - type: map_at_10 value: 86.476 - type: map_at_100 value: 86.761 - type: map_at_1000 value: 86.777 - type: map_at_20 value: 86.644 - type: map_at_3 value: 85.468 - type: map_at_5 value: 86.114 - type: mrr_at_1 value: 85.91202986977507 - type: mrr_at_10 value: 92.10172296159176 - type: mrr_at_100 value: 92.11177503330649 - type: mrr_at_1000 value: 92.11183644281331 - type: mrr_at_20 value: 92.10977698448572 - type: mrr_at_3 value: 91.81556021005755 - type: mrr_at_5 value: 92.04623136933206 - type: nauc_map_at_1000_diff1 value: 37.58072321236068 - type: nauc_map_at_1000_max value: -6.510278319693357 - type: nauc_map_at_1000_std value: -18.5792270431547 - type: nauc_map_at_100_diff1 value: 37.52385817661018 - type: nauc_map_at_100_max value: -6.489982072051949 - type: nauc_map_at_100_std value: -18.540942037635315 - type: nauc_map_at_10_diff1 value: 36.72584282122918 - type: nauc_map_at_10_max value: -6.378333016857416 - type: nauc_map_at_10_std value: -18.334301752515383 - type: nauc_map_at_1_diff1 value: 43.69122799154449 - type: nauc_map_at_1_max value: -11.63127334717789 - type: nauc_map_at_1_std value: -20.7658737657603 - type: nauc_map_at_20_diff1 value: 37.15506375729163 - type: nauc_map_at_20_max value: -6.429970912214997 - type: nauc_map_at_20_std value: -18.42568919268748 - type: nauc_map_at_3_diff1 value: 36.215420008113746 - type: nauc_map_at_3_max value: -6.550185095475879 - type: nauc_map_at_3_std value: -19.166433923188197 - type: nauc_map_at_5_diff1 value: 36.27440671840188 - type: nauc_map_at_5_max value: -6.295231222513407 - type: nauc_map_at_5_std value: -18.381810402883904 - type: nauc_mrr_at_1000_diff1 value: 63.48752265792847 - type: nauc_mrr_at_1000_max value: -19.18676872869155 - type: nauc_mrr_at_1000_std value: -39.57174458519824 - type: nauc_mrr_at_100_diff1 value: 63.48736991454802 - type: nauc_mrr_at_100_max value: -19.185964488505324 - type: nauc_mrr_at_100_std value: -39.571005370486844 - type: nauc_mrr_at_10_diff1 value: 63.496892773682575 - type: nauc_mrr_at_10_max value: -19.137184489398113 - type: nauc_mrr_at_10_std value: -39.61121405465908 - type: nauc_mrr_at_1_diff1 value: 63.8931650178703 - type: nauc_mrr_at_1_max value: -19.13870592744866 - type: nauc_mrr_at_1_std value: -36.21650937803273 - type: nauc_mrr_at_20_diff1 value: 63.48977631792124 - type: nauc_mrr_at_20_max value: -19.167118938060913 - type: nauc_mrr_at_20_std value: -39.57706812851535 - type: nauc_mrr_at_3_diff1 value: 63.32934405332199 - type: nauc_mrr_at_3_max value: -19.24641986865118 - type: nauc_mrr_at_3_std value: -40.940129761950985 - type: nauc_mrr_at_5_diff1 value: 63.517348684708644 - type: nauc_mrr_at_5_max value: -19.11256790994168 - type: nauc_mrr_at_5_std value: -39.9749657068304 - type: nauc_ndcg_at_1000_diff1 value: 41.076101906247835 - type: nauc_ndcg_at_1000_max value: -7.226733640213606 - type: nauc_ndcg_at_1000_std value: -20.509409301747596 - type: nauc_ndcg_at_100_diff1 value: 39.912775071923846 - type: nauc_ndcg_at_100_max value: -6.6031024308101305 - type: nauc_ndcg_at_100_std value: -19.488976518418685 - type: nauc_ndcg_at_10_diff1 value: 36.991054890053746 - type: nauc_ndcg_at_10_max value: -5.703804107983826 - type: nauc_ndcg_at_10_std value: -18.30890245336646 - type: nauc_ndcg_at_1_diff1 value: 63.8931650178703 - type: nauc_ndcg_at_1_max value: -19.13870592744866 - type: nauc_ndcg_at_1_std value: -36.21650937803273 - type: nauc_ndcg_at_20_diff1 value: 38.06195629005128 - type: nauc_ndcg_at_20_max value: -5.956938984887445 - type: nauc_ndcg_at_20_std value: -18.55811206090083 - type: nauc_ndcg_at_3_diff1 value: 38.3253264990881 - type: nauc_ndcg_at_3_max value: -6.160356060424505 - type: nauc_ndcg_at_3_std value: -21.17644073772092 - type: nauc_ndcg_at_5_diff1 value: 36.81395160037575 - type: nauc_ndcg_at_5_max value: -5.5184833028226015 - type: nauc_ndcg_at_5_std value: -18.855728016827573 - type: nauc_precision_at_1000_diff1 value: -1.798023567581113 - type: nauc_precision_at_1000_max value: 2.075676216126402 - type: nauc_precision_at_1000_std value: 0.6661076521215061 - type: nauc_precision_at_100_diff1 value: -3.4104407178365914 - type: nauc_precision_at_100_max value: 4.0047525056348565 - type: nauc_precision_at_100_std value: 2.9538134117977 - type: nauc_precision_at_10_diff1 value: -7.971971190220629 - type: nauc_precision_at_10_max value: 5.79095981673231 - type: nauc_precision_at_10_std value: 2.679701881943801 - type: nauc_precision_at_1_diff1 value: 63.8931650178703 - type: nauc_precision_at_1_max value: -19.13870592744866 - type: nauc_precision_at_1_std value: -36.21650937803273 - type: nauc_precision_at_20_diff1 value: -5.97650346358847 - type: nauc_precision_at_20_max value: 5.356231824212161 - type: nauc_precision_at_20_std value: 3.3717231487953927 - type: nauc_precision_at_3_diff1 value: -4.338422835263307 - type: nauc_precision_at_3_max value: 5.225732964596468 - type: nauc_precision_at_3_std value: -7.216509536122836 - type: nauc_precision_at_5_diff1 value: -8.546583059668556 - type: nauc_precision_at_5_max value: 6.3921561938488995 - type: nauc_precision_at_5_std value: 0.14590803478964773 - type: nauc_recall_at_1000_diff1 value: -14.550446134779385 - type: nauc_recall_at_1000_max value: 40.7272814014902 - type: nauc_recall_at_1000_std value: 51.09977581242159 - type: nauc_recall_at_100_diff1 value: -9.382110771276123 - type: nauc_recall_at_100_max value: 29.248829469706678 - type: nauc_recall_at_100_std value: 35.13007427579197 - type: nauc_recall_at_10_diff1 value: -1.9178724742563424 - type: nauc_recall_at_10_max value: 17.388506357276793 - type: nauc_recall_at_10_std value: 14.607463593218906 - type: nauc_recall_at_1_diff1 value: 43.69122799154449 - type: nauc_recall_at_1_max value: -11.63127334717789 - type: nauc_recall_at_1_std value: -20.7658737657603 - type: nauc_recall_at_20_diff1 value: -4.360500447701097 - type: nauc_recall_at_20_max value: 21.02263450303614 - type: nauc_recall_at_20_std value: 20.999393483063248 - type: nauc_recall_at_3_diff1 value: 11.835627611412372 - type: nauc_recall_at_3_max value: 6.73026263313079 - type: nauc_recall_at_3_std value: -6.139330166444412 - type: nauc_recall_at_5_diff1 value: 3.847666226700295 - type: nauc_recall_at_5_max value: 12.82319379524697 - type: nauc_recall_at_5_std value: 5.2049518693364165 - type: ndcg_at_1 value: 85.912 - type: ndcg_at_10 value: 90.021 - type: ndcg_at_100 value: 90.807 - type: ndcg_at_1000 value: 91.022 - type: ndcg_at_20 value: 90.36800000000001 - type: ndcg_at_3 value: 88.95100000000001 - type: ndcg_at_5 value: 89.54299999999999 - type: precision_at_1 value: 85.912 - type: precision_at_10 value: 11.17 - type: precision_at_100 value: 1.205 - type: precision_at_1000 value: 0.125 - type: precision_at_20 value: 5.742 - type: precision_at_3 value: 34.993 - type: precision_at_5 value: 21.653 - type: recall_at_1 value: 77.215 - type: recall_at_10 value: 95.27 - type: recall_at_100 value: 97.946 - type: recall_at_1000 value: 99.151 - type: recall_at_20 value: 96.282 - type: recall_at_3 value: 92.061 - type: recall_at_5 value: 93.881 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: dev revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 46.132 - type: map_at_1 value: 26.173999999999996 - type: map_at_10 value: 38.342999999999996 - type: map_at_100 value: 40.264 - type: map_at_1000 value: 40.43 - type: map_at_20 value: 39.446 - type: map_at_3 value: 33.975 - type: map_at_5 value: 36.434 - type: mrr_at_1 value: 46.800000000000004 - type: mrr_at_10 value: 54.254126984126984 - type: mrr_at_100 value: 54.923209054678026 - type: mrr_at_1000 value: 54.96385524659587 - type: mrr_at_20 value: 54.642069278330894 - type: mrr_at_3 value: 51.96666666666668 - type: mrr_at_5 value: 53.36666666666666 - type: nauc_map_at_1000_diff1 value: 49.841885106876695 - type: nauc_map_at_1000_max value: 30.36895689778847 - type: nauc_map_at_1000_std value: 1.7567744666421903 - type: nauc_map_at_100_diff1 value: 49.81372794693455 - type: nauc_map_at_100_max value: 30.31791638948266 - type: nauc_map_at_100_std value: 1.7727102636629064 - type: nauc_map_at_10_diff1 value: 49.799159621528446 - type: nauc_map_at_10_max value: 28.95097185909244 - type: nauc_map_at_10_std value: -0.2143787100918625 - type: nauc_map_at_1_diff1 value: 52.58007399240151 - type: nauc_map_at_1_max value: 23.415428952222296 - type: nauc_map_at_1_std value: -3.4523781889766534 - type: nauc_map_at_20_diff1 value: 49.77759278250616 - type: nauc_map_at_20_max value: 29.637020999394448 - type: nauc_map_at_20_std value: 0.9417068184996975 - type: nauc_map_at_3_diff1 value: 50.15320410883135 - type: nauc_map_at_3_max value: 25.672823727430483 - type: nauc_map_at_3_std value: -3.6368832994092495 - type: nauc_map_at_5_diff1 value: 49.73253471375265 - type: nauc_map_at_5_max value: 27.452729712955946 - type: nauc_map_at_5_std value: -2.597504538318964 - type: nauc_mrr_at_1000_diff1 value: 59.23823771450779 - type: nauc_mrr_at_1000_max value: 43.689096630807406 - type: nauc_mrr_at_1000_std value: 6.006395209759317 - type: nauc_mrr_at_100_diff1 value: 59.24508199769832 - type: nauc_mrr_at_100_max value: 43.707191670788845 - type: nauc_mrr_at_100_std value: 6.038811740941315 - type: nauc_mrr_at_10_diff1 value: 59.18050290269257 - type: nauc_mrr_at_10_max value: 43.68703710709348 - type: nauc_mrr_at_10_std value: 5.920147856790965 - type: nauc_mrr_at_1_diff1 value: 61.23049191214833 - type: nauc_mrr_at_1_max value: 42.82186697869064 - type: nauc_mrr_at_1_std value: 5.226665401704537 - type: nauc_mrr_at_20_diff1 value: 59.20345490177547 - type: nauc_mrr_at_20_max value: 43.71801475513994 - type: nauc_mrr_at_20_std value: 6.06326305891993 - type: nauc_mrr_at_3_diff1 value: 59.51435687918044 - type: nauc_mrr_at_3_max value: 42.75973795344299 - type: nauc_mrr_at_3_std value: 3.7021523288826534 - type: nauc_mrr_at_5_diff1 value: 59.33809476755813 - type: nauc_mrr_at_5_max value: 43.35457262061369 - type: nauc_mrr_at_5_std value: 5.133928801400819 - type: nauc_ndcg_at_1000_diff1 value: 52.201491960514424 - type: nauc_ndcg_at_1000_max value: 36.67184214497183 - type: nauc_ndcg_at_1000_std value: 7.063547365940826 - type: nauc_ndcg_at_100_diff1 value: 51.6839609303026 - type: nauc_ndcg_at_100_max value: 36.54239095504816 - type: nauc_ndcg_at_100_std value: 8.305198443785065 - type: nauc_ndcg_at_10_diff1 value: 51.015102739483666 - type: nauc_ndcg_at_10_max value: 33.38470092473942 - type: nauc_ndcg_at_10_std value: 3.4372330157713913 - type: nauc_ndcg_at_1_diff1 value: 61.23049191214833 - type: nauc_ndcg_at_1_max value: 42.82186697869064 - type: nauc_ndcg_at_1_std value: 5.226665401704537 - type: nauc_ndcg_at_20_diff1 value: 51.148241453136286 - type: nauc_ndcg_at_20_max value: 34.415266899737986 - type: nauc_ndcg_at_20_std value: 5.722948452578717 - type: nauc_ndcg_at_3_diff1 value: 50.183107867516384 - type: nauc_ndcg_at_3_max value: 31.825660975728017 - type: nauc_ndcg_at_3_std value: 0.05987477146294962 - type: nauc_ndcg_at_5_diff1 value: 50.27752187238947 - type: nauc_ndcg_at_5_max value: 31.58055768641312 - type: nauc_ndcg_at_5_std value: 0.095638813464201 - type: nauc_precision_at_1000_diff1 value: -1.081891577216482 - type: nauc_precision_at_1000_max value: 22.772384668021623 - type: nauc_precision_at_1000_std value: 20.37369910022167 - type: nauc_precision_at_100_diff1 value: 4.865265359179138 - type: nauc_precision_at_100_max value: 28.950539208916727 - type: nauc_precision_at_100_std value: 27.88929247051143 - type: nauc_precision_at_10_diff1 value: 18.581939701749484 - type: nauc_precision_at_10_max value: 32.5407981760264 - type: nauc_precision_at_10_std value: 18.06686305505164 - type: nauc_precision_at_1_diff1 value: 61.23049191214833 - type: nauc_precision_at_1_max value: 42.82186697869064 - type: nauc_precision_at_1_std value: 5.226665401704537 - type: nauc_precision_at_20_diff1 value: 12.547121372367496 - type: nauc_precision_at_20_max value: 30.247027897607875 - type: nauc_precision_at_20_std value: 23.213776336403853 - type: nauc_precision_at_3_diff1 value: 33.47981633285446 - type: nauc_precision_at_3_max value: 32.05249666039517 - type: nauc_precision_at_3_std value: 3.7643758682601813 - type: nauc_precision_at_5_diff1 value: 24.156736607137386 - type: nauc_precision_at_5_max value: 31.58120543424835 - type: nauc_precision_at_5_std value: 8.826547060575736 - type: nauc_recall_at_1000_diff1 value: 44.70168791342202 - type: nauc_recall_at_1000_max value: 40.019041375679365 - type: nauc_recall_at_1000_std value: 26.28492676001751 - type: nauc_recall_at_100_diff1 value: 38.85858202136479 - type: nauc_recall_at_100_max value: 35.63673405628285 - type: nauc_recall_at_100_std value: 26.480426298783005 - type: nauc_recall_at_10_diff1 value: 41.87765017247146 - type: nauc_recall_at_10_max value: 26.94832721731921 - type: nauc_recall_at_10_std value: 5.096767252321309 - type: nauc_recall_at_1_diff1 value: 52.58007399240151 - type: nauc_recall_at_1_max value: 23.415428952222296 - type: nauc_recall_at_1_std value: -3.4523781889766534 - type: nauc_recall_at_20_diff1 value: 40.31961054933225 - type: nauc_recall_at_20_max value: 29.149084076136273 - type: nauc_recall_at_20_std value: 12.080660943653156 - type: nauc_recall_at_3_diff1 value: 44.845037051363235 - type: nauc_recall_at_3_max value: 22.163030784764484 - type: nauc_recall_at_3_std value: -5.426325332659164 - type: nauc_recall_at_5_diff1 value: 43.36113793278537 - type: nauc_recall_at_5_max value: 23.182744951367788 - type: nauc_recall_at_5_std value: -3.634417407112399 - type: ndcg_at_1 value: 46.800000000000004 - type: ndcg_at_10 value: 46.132 - type: ndcg_at_100 value: 52.410000000000004 - type: ndcg_at_1000 value: 55.057 - type: ndcg_at_20 value: 48.679 - type: ndcg_at_3 value: 42.487 - type: ndcg_at_5 value: 43.586999999999996 - type: precision_at_1 value: 46.800000000000004 - type: precision_at_10 value: 11.74 - type: precision_at_100 value: 1.8419999999999999 - type: precision_at_1000 value: 0.22799999999999998 - type: precision_at_20 value: 7.07 - type: precision_at_3 value: 26.200000000000003 - type: precision_at_5 value: 19.16 - type: recall_at_1 value: 26.173999999999996 - type: recall_at_10 value: 52.979 - type: recall_at_100 value: 76.048 - type: recall_at_1000 value: 92.054 - type: recall_at_20 value: 60.624 - type: recall_at_3 value: 38.657000000000004 - type: recall_at_5 value: 44.862 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 43.887 - type: map_at_1 value: 21.397 - type: map_at_10 value: 35.811 - type: map_at_100 value: 37.661 - type: map_at_1000 value: 37.839 - type: map_at_20 value: 36.727 - type: map_at_3 value: 31.493 - type: map_at_5 value: 33.992 - type: mrr_at_1 value: 42.74691358024691 - type: mrr_at_10 value: 52.44727366255143 - type: mrr_at_100 value: 53.157106113787755 - type: mrr_at_1000 value: 53.19590692557363 - type: mrr_at_20 value: 52.788702294851234 - type: mrr_at_3 value: 50.231481481481474 - type: mrr_at_5 value: 51.604938271604915 - type: nauc_map_at_1000_diff1 value: 44.99013932786583 - type: nauc_map_at_1000_max value: 36.2931656288237 - type: nauc_map_at_1000_std value: 2.744952096504704 - type: nauc_map_at_100_diff1 value: 44.86944269697463 - type: nauc_map_at_100_max value: 36.18298281198049 - type: nauc_map_at_100_std value: 2.7487976881234784 - type: nauc_map_at_10_diff1 value: 44.701036690482844 - type: nauc_map_at_10_max value: 34.91880124794292 - type: nauc_map_at_10_std value: 1.5099484081332097 - type: nauc_map_at_1_diff1 value: 50.85379952260034 - type: nauc_map_at_1_max value: 27.394421957915572 - type: nauc_map_at_1_std value: -3.6437293825619923 - type: nauc_map_at_20_diff1 value: 44.643893347140214 - type: nauc_map_at_20_max value: 35.78032300474766 - type: nauc_map_at_20_std value: 2.0540696985077713 - type: nauc_map_at_3_diff1 value: 46.924921206244605 - type: nauc_map_at_3_max value: 31.95948324092745 - type: nauc_map_at_3_std value: -0.24644658949620132 - type: nauc_map_at_5_diff1 value: 45.299548947339346 - type: nauc_map_at_5_max value: 33.560927993044636 - type: nauc_map_at_5_std value: -0.09229167862135255 - type: nauc_mrr_at_1000_diff1 value: 53.97584579514102 - type: nauc_mrr_at_1000_max value: 41.39325946543948 - type: nauc_mrr_at_1000_std value: 2.7797248987216774 - type: nauc_mrr_at_100_diff1 value: 53.95469720996498 - type: nauc_mrr_at_100_max value: 41.41453164205358 - type: nauc_mrr_at_100_std value: 2.8260988232101902 - type: nauc_mrr_at_10_diff1 value: 53.72315979312175 - type: nauc_mrr_at_10_max value: 41.177743822376904 - type: nauc_mrr_at_10_std value: 2.563267516014612 - type: nauc_mrr_at_1_diff1 value: 57.590727821071155 - type: nauc_mrr_at_1_max value: 41.635385860154074 - type: nauc_mrr_at_1_std value: -0.44532344504198534 - type: nauc_mrr_at_20_diff1 value: 53.83801635440246 - type: nauc_mrr_at_20_max value: 41.28524524541232 - type: nauc_mrr_at_20_std value: 2.5331225115409577 - type: nauc_mrr_at_3_diff1 value: 54.39722667585212 - type: nauc_mrr_at_3_max value: 40.54145465851505 - type: nauc_mrr_at_3_std value: 1.6925912897229027 - type: nauc_mrr_at_5_diff1 value: 53.691867160376816 - type: nauc_mrr_at_5_max value: 40.94797527156675 - type: nauc_mrr_at_5_std value: 2.227219454930413 - type: nauc_ndcg_at_1000_diff1 value: 47.28950242475927 - type: nauc_ndcg_at_1000_max value: 40.558784896965015 - type: nauc_ndcg_at_1000_std value: 6.916048078136412 - type: nauc_ndcg_at_100_diff1 value: 45.803609057238724 - type: nauc_ndcg_at_100_max value: 39.9247602434488 - type: nauc_ndcg_at_100_std value: 8.070013922609293 - type: nauc_ndcg_at_10_diff1 value: 44.601721852568154 - type: nauc_ndcg_at_10_max value: 36.7523945635637 - type: nauc_ndcg_at_10_std value: 3.7741680838463916 - type: nauc_ndcg_at_1_diff1 value: 57.590727821071155 - type: nauc_ndcg_at_1_max value: 41.635385860154074 - type: nauc_ndcg_at_1_std value: -0.44532344504198534 - type: nauc_ndcg_at_20_diff1 value: 44.84087184273544 - type: nauc_ndcg_at_20_max value: 38.32125780917691 - type: nauc_ndcg_at_20_std value: 4.548886454834896 - type: nauc_ndcg_at_3_diff1 value: 46.45102235679583 - type: nauc_ndcg_at_3_max value: 36.9633250683586 - type: nauc_ndcg_at_3_std value: 2.369907620024769 - type: nauc_ndcg_at_5_diff1 value: 44.32017759567463 - type: nauc_ndcg_at_5_max value: 35.90479608408539 - type: nauc_ndcg_at_5_std value: 1.450222645028762 - type: nauc_precision_at_1000_diff1 value: 1.3454169253303294 - type: nauc_precision_at_1000_max value: 23.88451750412882 - type: nauc_precision_at_1000_std value: 12.591204064713308 - type: nauc_precision_at_100_diff1 value: 6.012218731725929 - type: nauc_precision_at_100_max value: 30.969198659050733 - type: nauc_precision_at_100_std value: 18.35239521849261 - type: nauc_precision_at_10_diff1 value: 16.908790779236835 - type: nauc_precision_at_10_max value: 37.080559157562455 - type: nauc_precision_at_10_std value: 12.110645329690259 - type: nauc_precision_at_1_diff1 value: 57.590727821071155 - type: nauc_precision_at_1_max value: 41.635385860154074 - type: nauc_precision_at_1_std value: -0.44532344504198534 - type: nauc_precision_at_20_diff1 value: 12.877352199360345 - type: nauc_precision_at_20_max value: 37.364422905122815 - type: nauc_precision_at_20_std value: 13.813344186459652 - type: nauc_precision_at_3_diff1 value: 32.81390693003651 - type: nauc_precision_at_3_max value: 38.89224188329493 - type: nauc_precision_at_3_std value: 6.490943672811113 - type: nauc_precision_at_5_diff1 value: 23.31033104699241 - type: nauc_precision_at_5_max value: 37.026347485355956 - type: nauc_precision_at_5_std value: 6.082794133847137 - type: nauc_recall_at_1000_diff1 value: 40.21199090930344 - type: nauc_recall_at_1000_max value: 45.44325141564459 - type: nauc_recall_at_1000_std value: 39.95206397839652 - type: nauc_recall_at_100_diff1 value: 28.694180171434674 - type: nauc_recall_at_100_max value: 36.16137724563645 - type: nauc_recall_at_100_std value: 29.362576415720426 - type: nauc_recall_at_10_diff1 value: 30.82350118152907 - type: nauc_recall_at_10_max value: 28.84721188763083 - type: nauc_recall_at_10_std value: 6.871358974808361 - type: nauc_recall_at_1_diff1 value: 50.85379952260034 - type: nauc_recall_at_1_max value: 27.394421957915572 - type: nauc_recall_at_1_std value: -3.6437293825619923 - type: nauc_recall_at_20_diff1 value: 30.494672593660365 - type: nauc_recall_at_20_max value: 32.451452059083 - type: nauc_recall_at_20_std value: 8.857752757738012 - type: nauc_recall_at_3_diff1 value: 37.98407967492573 - type: nauc_recall_at_3_max value: 26.531560809821137 - type: nauc_recall_at_3_std value: 1.2955663995782718 - type: nauc_recall_at_5_diff1 value: 32.84916383815314 - type: nauc_recall_at_5_max value: 26.621206298631378 - type: nauc_recall_at_5_std value: 1.6024978706362352 - type: ndcg_at_1 value: 42.747 - type: ndcg_at_10 value: 43.887 - type: ndcg_at_100 value: 50.485 - type: ndcg_at_1000 value: 53.400999999999996 - type: ndcg_at_20 value: 46.098 - type: ndcg_at_3 value: 40.602 - type: ndcg_at_5 value: 41.725 - type: precision_at_1 value: 42.747 - type: precision_at_10 value: 11.991 - type: precision_at_100 value: 1.889 - type: precision_at_1000 value: 0.241 - type: precision_at_20 value: 6.959999999999999 - type: precision_at_3 value: 27.058 - type: precision_at_5 value: 19.814999999999998 - type: recall_at_1 value: 21.397 - type: recall_at_10 value: 50.678 - type: recall_at_100 value: 75.108 - type: recall_at_1000 value: 92.465 - type: recall_at_20 value: 57.474000000000004 - type: recall_at_3 value: 37.391000000000005 - type: recall_at_5 value: 43.566 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: train revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 45.074 - type: map_at_1 value: 22.921 - type: map_at_10 value: 37.062 - type: map_at_100 value: 38.869 - type: map_at_1000 value: 39.031 - type: map_at_20 value: 38.073 - type: map_at_3 value: 32.482 - type: map_at_5 value: 34.975 - type: mrr_at_1 value: 42.81818181818181 - type: mrr_at_10 value: 52.01925685425696 - type: mrr_at_100 value: 52.76535915811975 - type: mrr_at_1000 value: 52.80323713270641 - type: mrr_at_20 value: 52.46928188075179 - type: mrr_at_3 value: 49.563636363636505 - type: mrr_at_5 value: 51.04090909090917 - type: nauc_map_at_1000_diff1 value: 45.10345424051492 - type: nauc_map_at_1000_max value: 29.68487371437469 - type: nauc_map_at_1000_std value: 1.238229479331942 - type: nauc_map_at_100_diff1 value: 45.07560751433321 - type: nauc_map_at_100_max value: 29.621328097853137 - type: nauc_map_at_100_std value: 1.1967771682187873 - type: nauc_map_at_10_diff1 value: 44.843509175193056 - type: nauc_map_at_10_max value: 28.618388907804658 - type: nauc_map_at_10_std value: -0.17386075400517237 - type: nauc_map_at_1_diff1 value: 49.47111917296565 - type: nauc_map_at_1_max value: 20.0742470618401 - type: nauc_map_at_1_std value: -4.129360092632688 - type: nauc_map_at_20_diff1 value: 44.95018685490344 - type: nauc_map_at_20_max value: 29.150108596298434 - type: nauc_map_at_20_std value: 0.6249683074740969 - type: nauc_map_at_3_diff1 value: 45.01551197502368 - type: nauc_map_at_3_max value: 25.1628789711796 - type: nauc_map_at_3_std value: -3.321515508442981 - type: nauc_map_at_5_diff1 value: 44.91318371210472 - type: nauc_map_at_5_max value: 27.12198758255798 - type: nauc_map_at_5_std value: -1.8418885545143031 - type: nauc_mrr_at_1000_diff1 value: 51.02890753099619 - type: nauc_mrr_at_1000_max value: 37.20699525567458 - type: nauc_mrr_at_1000_std value: 3.189109744356073 - type: nauc_mrr_at_100_diff1 value: 51.015583067584146 - type: nauc_mrr_at_100_max value: 37.20945921198165 - type: nauc_mrr_at_100_std value: 3.2119457438429047 - type: nauc_mrr_at_10_diff1 value: 50.938326208533056 - type: nauc_mrr_at_10_max value: 37.2328138702086 - type: nauc_mrr_at_10_std value: 3.1417844227142577 - type: nauc_mrr_at_1_diff1 value: 54.83336818983676 - type: nauc_mrr_at_1_max value: 35.941190580000395 - type: nauc_mrr_at_1_std value: 0.11480196188945171 - type: nauc_mrr_at_20_diff1 value: 50.97564795196412 - type: nauc_mrr_at_20_max value: 37.22205264818766 - type: nauc_mrr_at_20_std value: 3.2001064750905672 - type: nauc_mrr_at_3_diff1 value: 51.12200690387213 - type: nauc_mrr_at_3_max value: 36.605143686242045 - type: nauc_mrr_at_3_std value: 1.9427581254272008 - type: nauc_mrr_at_5_diff1 value: 51.08466836245801 - type: nauc_mrr_at_5_max value: 37.23852403243883 - type: nauc_mrr_at_5_std value: 2.7992259556688466 - type: nauc_ndcg_at_1000_diff1 value: 45.6295653089338 - type: nauc_ndcg_at_1000_max value: 34.25244958857478 - type: nauc_ndcg_at_1000_std value: 5.968157773281027 - type: nauc_ndcg_at_100_diff1 value: 45.15925091294929 - type: nauc_ndcg_at_100_max value: 33.77292060148967 - type: nauc_ndcg_at_100_std value: 6.252767106085369 - type: nauc_ndcg_at_10_diff1 value: 44.63262132249889 - type: nauc_ndcg_at_10_max value: 31.804054311383613 - type: nauc_ndcg_at_10_std value: 2.868169824330679 - type: nauc_ndcg_at_1_diff1 value: 54.83336818983676 - type: nauc_ndcg_at_1_max value: 35.941190580000395 - type: nauc_ndcg_at_1_std value: 0.11480196188945171 - type: nauc_ndcg_at_20_diff1 value: 44.73531667035927 - type: nauc_ndcg_at_20_max value: 32.36405405932841 - type: nauc_ndcg_at_20_std value: 4.234168192043894 - type: nauc_ndcg_at_3_diff1 value: 45.180068719892965 - type: nauc_ndcg_at_3_max value: 31.144658941814473 - type: nauc_ndcg_at_3_std value: 0.15981365840386932 - type: nauc_ndcg_at_5_diff1 value: 44.91186731928022 - type: nauc_ndcg_at_5_max value: 31.097528102462903 - type: nauc_ndcg_at_5_std value: 1.0978416567636418 - type: nauc_precision_at_1000_diff1 value: 0.10884757461177323 - type: nauc_precision_at_1000_max value: 22.44073868984244 - type: nauc_precision_at_1000_std value: 18.425802177787244 - type: nauc_precision_at_100_diff1 value: 8.326770033288243 - type: nauc_precision_at_100_max value: 29.87121252902087 - type: nauc_precision_at_100_std value: 22.471637271023955 - type: nauc_precision_at_10_diff1 value: 20.3859018808304 - type: nauc_precision_at_10_max value: 35.387490020659186 - type: nauc_precision_at_10_std value: 14.452716344612679 - type: nauc_precision_at_1_diff1 value: 54.83336818983676 - type: nauc_precision_at_1_max value: 35.941190580000395 - type: nauc_precision_at_1_std value: 0.11480196188945171 - type: nauc_precision_at_20_diff1 value: 16.24605754303343 - type: nauc_precision_at_20_max value: 33.818393780875525 - type: nauc_precision_at_20_std value: 18.42940330763103 - type: nauc_precision_at_3_diff1 value: 31.181315158851408 - type: nauc_precision_at_3_max value: 35.71839391755647 - type: nauc_precision_at_3_std value: 4.86245107443907 - type: nauc_precision_at_5_diff1 value: 26.18450860125776 - type: nauc_precision_at_5_max value: 36.32130007403958 - type: nauc_precision_at_5_std value: 9.106489600607265 - type: nauc_recall_at_1000_diff1 value: 21.411131898774677 - type: nauc_recall_at_1000_max value: 34.541893106658605 - type: nauc_recall_at_1000_std value: 40.6467864769445 - type: nauc_recall_at_100_diff1 value: 28.25747320103834 - type: nauc_recall_at_100_max value: 29.192936775640888 - type: nauc_recall_at_100_std value: 22.38141045002714 - type: nauc_recall_at_10_diff1 value: 33.183148689667306 - type: nauc_recall_at_10_max value: 26.115736478754542 - type: nauc_recall_at_10_std value: 5.779562369828712 - type: nauc_recall_at_1_diff1 value: 49.47111917296565 - type: nauc_recall_at_1_max value: 20.0742470618401 - type: nauc_recall_at_1_std value: -4.129360092632688 - type: nauc_recall_at_20_diff1 value: 31.3273565134318 - type: nauc_recall_at_20_max value: 26.118667671265268 - type: nauc_recall_at_20_std value: 10.337063376342904 - type: nauc_recall_at_3_diff1 value: 37.71800914450827 - type: nauc_recall_at_3_max value: 21.998612117129866 - type: nauc_recall_at_3_std value: -2.8573409678442667 - type: nauc_recall_at_5_diff1 value: 36.035788981718326 - type: nauc_recall_at_5_max value: 24.462942381019985 - type: nauc_recall_at_5_std value: 0.5720741719496573 - type: ndcg_at_1 value: 42.818 - type: ndcg_at_10 value: 45.074 - type: ndcg_at_100 value: 51.405 - type: ndcg_at_1000 value: 54.092 - type: ndcg_at_20 value: 47.555 - type: ndcg_at_3 value: 40.735 - type: ndcg_at_5 value: 42.229 - type: precision_at_1 value: 42.818 - type: precision_at_10 value: 12.110999999999999 - type: precision_at_100 value: 1.876 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_20 value: 7.117999999999999 - type: precision_at_3 value: 26.473000000000003 - type: precision_at_5 value: 19.465 - type: recall_at_1 value: 22.921 - type: recall_at_10 value: 52.942 - type: recall_at_100 value: 76.61200000000001 - type: recall_at_1000 value: 92.793 - type: recall_at_20 value: 60.809999999999995 - type: recall_at_3 value: 37.830999999999996 - type: recall_at_5 value: 44.279 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: dev revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 77.35600000000001 - type: map_at_1 value: 42.299 - type: map_at_10 value: 70.006 - type: map_at_100 value: 70.775 - type: map_at_1000 value: 70.82300000000001 - type: map_at_20 value: 70.47099999999999 - type: map_at_3 value: 66.81200000000001 - type: map_at_5 value: 68.85 - type: mrr_at_1 value: 84.59702588580869 - type: mrr_at_10 value: 89.3224608857067 - type: mrr_at_100 value: 89.42205720574383 - type: mrr_at_1000 value: 89.425588995421 - type: mrr_at_20 value: 89.38641899747822 - type: mrr_at_3 value: 88.68184321644944 - type: mrr_at_5 value: 89.0995043143014 - type: nauc_map_at_1000_diff1 value: 11.875767523175762 - type: nauc_map_at_1000_max value: 23.23376674530728 - type: nauc_map_at_1000_std value: 18.523605995632938 - type: nauc_map_at_100_diff1 value: 11.85910449749788 - type: nauc_map_at_100_max value: 23.239547476164876 - type: nauc_map_at_100_std value: 18.565229607460537 - type: nauc_map_at_10_diff1 value: 11.607663265355745 - type: nauc_map_at_10_max value: 22.923495646620154 - type: nauc_map_at_10_std value: 18.030180953748534 - type: nauc_map_at_1_diff1 value: 69.04595571010425 - type: nauc_map_at_1_max value: 42.68450581268141 - type: nauc_map_at_1_std value: 3.9078744944302226 - type: nauc_map_at_20_diff1 value: 11.723969128072866 - type: nauc_map_at_20_max value: 23.11544870270342 - type: nauc_map_at_20_std value: 18.41858338547983 - type: nauc_map_at_3_diff1 value: 11.195009895256332 - type: nauc_map_at_3_max value: 21.124864974433763 - type: nauc_map_at_3_std value: 14.668115105817323 - type: nauc_map_at_5_diff1 value: 11.399725827702468 - type: nauc_map_at_5_max value: 22.68356071435758 - type: nauc_map_at_5_std value: 17.006805900547196 - type: nauc_mrr_at_1000_diff1 value: 67.99516710058342 - type: nauc_mrr_at_1000_max value: 45.15957182658708 - type: nauc_mrr_at_1000_std value: 5.625688035185145 - type: nauc_mrr_at_100_diff1 value: 68.00038022639141 - type: nauc_mrr_at_100_max value: 45.1718894878634 - type: nauc_mrr_at_100_std value: 5.642257978446126 - type: nauc_mrr_at_10_diff1 value: 67.97643955659808 - type: nauc_mrr_at_10_max value: 45.24875815550117 - type: nauc_mrr_at_10_std value: 5.6282245777631825 - type: nauc_mrr_at_1_diff1 value: 69.04595571010425 - type: nauc_mrr_at_1_max value: 42.68450581268141 - type: nauc_mrr_at_1_std value: 3.9078744944302226 - type: nauc_mrr_at_20_diff1 value: 67.98186373375957 - type: nauc_mrr_at_20_max value: 45.16955056454227 - type: nauc_mrr_at_20_std value: 5.643021098296383 - type: nauc_mrr_at_3_diff1 value: 67.74068066479995 - type: nauc_mrr_at_3_max value: 45.233627819514496 - type: nauc_mrr_at_3_std value: 5.073903037944697 - type: nauc_mrr_at_5_diff1 value: 67.90073680819802 - type: nauc_mrr_at_5_max value: 45.28874529948139 - type: nauc_mrr_at_5_std value: 5.533506436522208 - type: nauc_ndcg_at_1000_diff1 value: 18.45245983930683 - type: nauc_ndcg_at_1000_max value: 27.416507398330854 - type: nauc_ndcg_at_1000_std value: 20.799288194838745 - type: nauc_ndcg_at_100_diff1 value: 17.774579523633484 - type: nauc_ndcg_at_100_max value: 27.484015450724563 - type: nauc_ndcg_at_100_std value: 21.824361827289604 - type: nauc_ndcg_at_10_diff1 value: 16.454456871906594 - type: nauc_ndcg_at_10_max value: 26.248157142106788 - type: nauc_ndcg_at_10_std value: 19.85534143153061 - type: nauc_ndcg_at_1_diff1 value: 69.04595571010425 - type: nauc_ndcg_at_1_max value: 42.68450581268141 - type: nauc_ndcg_at_1_std value: 3.9078744944302226 - type: nauc_ndcg_at_20_diff1 value: 16.783596764102448 - type: nauc_ndcg_at_20_max value: 26.674447936981803 - type: nauc_ndcg_at_20_std value: 20.955085734378283 - type: nauc_ndcg_at_3_diff1 value: 16.323138577650877 - type: nauc_ndcg_at_3_max value: 23.919505607419378 - type: nauc_ndcg_at_3_std value: 14.438155012059939 - type: nauc_ndcg_at_5_diff1 value: 16.252513953720612 - type: nauc_ndcg_at_5_max value: 25.834906380090715 - type: nauc_ndcg_at_5_std value: 17.797879786189498 - type: nauc_precision_at_1000_diff1 value: -5.612996021391802 - type: nauc_precision_at_1000_max value: 29.621124808949475 - type: nauc_precision_at_1000_std value: 60.2180272898463 - type: nauc_precision_at_100_diff1 value: -0.4655256365736023 - type: nauc_precision_at_100_max value: 27.863131801262153 - type: nauc_precision_at_100_std value: 48.24283178268865 - type: nauc_precision_at_10_diff1 value: 1.467484417678075 - type: nauc_precision_at_10_max value: 23.063996835379925 - type: nauc_precision_at_10_std value: 30.225428590871395 - type: nauc_precision_at_1_diff1 value: 69.04595571010425 - type: nauc_precision_at_1_max value: 42.68450581268141 - type: nauc_precision_at_1_std value: 3.9078744944302226 - type: nauc_precision_at_20_diff1 value: 0.16098170706775244 - type: nauc_precision_at_20_max value: 23.545698533798383 - type: nauc_precision_at_20_std value: 35.3738609349459 - type: nauc_precision_at_3_diff1 value: 4.822099897775316 - type: nauc_precision_at_3_max value: 19.882902254898795 - type: nauc_precision_at_3_std value: 17.397463603075302 - type: nauc_precision_at_5_diff1 value: 3.1779150794512656 - type: nauc_precision_at_5_max value: 22.753201773071552 - type: nauc_precision_at_5_std value: 24.028684632710412 - type: nauc_recall_at_1000_diff1 value: -5.6129960213919 - type: nauc_recall_at_1000_max value: 29.62112480894871 - type: nauc_recall_at_1000_std value: 60.2180272898464 - type: nauc_recall_at_100_diff1 value: -0.4655256365738292 - type: nauc_recall_at_100_max value: 27.863131801261865 - type: nauc_recall_at_100_std value: 48.24283178268853 - type: nauc_recall_at_10_diff1 value: 1.4674844176780142 - type: nauc_recall_at_10_max value: 23.063996835379864 - type: nauc_recall_at_10_std value: 30.225428590871335 - type: nauc_recall_at_1_diff1 value: 69.04595571010425 - type: nauc_recall_at_1_max value: 42.68450581268141 - type: nauc_recall_at_1_std value: 3.9078744944302226 - type: nauc_recall_at_20_diff1 value: 0.16098170706756573 - type: nauc_recall_at_20_max value: 23.545698533798166 - type: nauc_recall_at_20_std value: 35.37386093494575 - type: nauc_recall_at_3_diff1 value: 4.822099897775345 - type: nauc_recall_at_3_max value: 19.882902254898895 - type: nauc_recall_at_3_std value: 17.397463603075416 - type: nauc_recall_at_5_diff1 value: 3.177915079451333 - type: nauc_recall_at_5_max value: 22.75320177307157 - type: nauc_recall_at_5_std value: 24.028684632710416 - type: ndcg_at_1 value: 84.597 - type: ndcg_at_10 value: 77.35600000000001 - type: ndcg_at_100 value: 79.84700000000001 - type: ndcg_at_1000 value: 80.739 - type: ndcg_at_20 value: 78.457 - type: ndcg_at_3 value: 73.02499999999999 - type: ndcg_at_5 value: 75.493 - type: precision_at_1 value: 84.597 - type: precision_at_10 value: 16.091 - type: precision_at_100 value: 1.8010000000000002 - type: precision_at_1000 value: 0.192 - type: precision_at_20 value: 8.399 - type: precision_at_3 value: 47.292 - type: precision_at_5 value: 30.318 - type: recall_at_1 value: 42.299 - type: recall_at_10 value: 80.457 - type: recall_at_100 value: 90.03999999999999 - type: recall_at_1000 value: 95.91499999999999 - type: recall_at_20 value: 83.991 - type: recall_at_3 value: 70.938 - type: recall_at_5 value: 75.794 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 75.62 - type: map_at_1 value: 41.715 - type: map_at_10 value: 67.84400000000001 - type: map_at_100 value: 68.676 - type: map_at_1000 value: 68.72399999999999 - type: map_at_20 value: 68.351 - type: map_at_3 value: 64.332 - type: map_at_5 value: 66.618 - type: mrr_at_1 value: 83.43011478730588 - type: mrr_at_10 value: 88.32890689474063 - type: mrr_at_100 value: 88.45342904155198 - type: mrr_at_1000 value: 88.45692717602427 - type: mrr_at_20 value: 88.41265148599933 - type: mrr_at_3 value: 87.6097231600268 - type: mrr_at_5 value: 88.08102633355813 - type: nauc_map_at_1000_diff1 value: 9.465654364107301 - type: nauc_map_at_1000_max value: 15.417980238546377 - type: nauc_map_at_1000_std value: 12.078075854093665 - type: nauc_map_at_100_diff1 value: 9.442359625098023 - type: nauc_map_at_100_max value: 15.412594933146517 - type: nauc_map_at_100_std value: 12.110494024932517 - type: nauc_map_at_10_diff1 value: 9.459426708991023 - type: nauc_map_at_10_max value: 15.311848156939039 - type: nauc_map_at_10_std value: 11.55461807074889 - type: nauc_map_at_1_diff1 value: 65.05713874046143 - type: nauc_map_at_1_max value: 39.626722996510665 - type: nauc_map_at_1_std value: -0.3991780785384316 - type: nauc_map_at_20_diff1 value: 9.328534555998699 - type: nauc_map_at_20_max value: 15.307575956530108 - type: nauc_map_at_20_std value: 11.96904723212192 - type: nauc_map_at_3_diff1 value: 8.915324889938061 - type: nauc_map_at_3_max value: 13.514273119710563 - type: nauc_map_at_3_std value: 8.332620819223683 - type: nauc_map_at_5_diff1 value: 8.63645860950366 - type: nauc_map_at_5_max value: 14.350213952951254 - type: nauc_map_at_5_std value: 10.554511015067682 - type: nauc_mrr_at_1000_diff1 value: 64.29376507350443 - type: nauc_mrr_at_1000_max value: 42.432971323016226 - type: nauc_mrr_at_1000_std value: 1.103214916935443 - type: nauc_mrr_at_100_diff1 value: 64.29483641804482 - type: nauc_mrr_at_100_max value: 42.438961831187314 - type: nauc_mrr_at_100_std value: 1.108904601847414 - type: nauc_mrr_at_10_diff1 value: 64.31510468330697 - type: nauc_mrr_at_10_max value: 42.52427399840782 - type: nauc_mrr_at_10_std value: 1.131217952433522 - type: nauc_mrr_at_1_diff1 value: 65.05713874046143 - type: nauc_mrr_at_1_max value: 39.626722996510665 - type: nauc_mrr_at_1_std value: -0.3991780785384316 - type: nauc_mrr_at_20_diff1 value: 64.28943699159083 - type: nauc_mrr_at_20_max value: 42.48416850113432 - type: nauc_mrr_at_20_std value: 1.1557131772785048 - type: nauc_mrr_at_3_diff1 value: 63.94398567446783 - type: nauc_mrr_at_3_max value: 42.543599757686565 - type: nauc_mrr_at_3_std value: 0.8656592208469659 - type: nauc_mrr_at_5_diff1 value: 64.26440164249783 - type: nauc_mrr_at_5_max value: 42.76831128910234 - type: nauc_mrr_at_5_std value: 0.9815638280513239 - type: nauc_ndcg_at_1000_diff1 value: 15.819261980172072 - type: nauc_ndcg_at_1000_max value: 20.40080036519792 - type: nauc_ndcg_at_1000_std value: 14.437662972269072 - type: nauc_ndcg_at_100_diff1 value: 14.934115203495086 - type: nauc_ndcg_at_100_max value: 20.17258598061381 - type: nauc_ndcg_at_100_std value: 15.368792248125951 - type: nauc_ndcg_at_10_diff1 value: 14.601053630285463 - type: nauc_ndcg_at_10_max value: 19.4487220332248 - type: nauc_ndcg_at_10_std value: 13.167535068795317 - type: nauc_ndcg_at_1_diff1 value: 65.05713874046143 - type: nauc_ndcg_at_1_max value: 39.626722996510665 - type: nauc_ndcg_at_1_std value: -0.3991780785384316 - type: nauc_ndcg_at_20_diff1 value: 14.179531301272236 - type: nauc_ndcg_at_20_max value: 19.472746452573293 - type: nauc_ndcg_at_20_std value: 14.501827055912294 - type: nauc_ndcg_at_3_diff1 value: 14.108042690817394 - type: nauc_ndcg_at_3_max value: 16.987464708832828 - type: nauc_ndcg_at_3_std value: 8.179470755035126 - type: nauc_ndcg_at_5_diff1 value: 13.385764378384962 - type: nauc_ndcg_at_5_max value: 17.933522110142857 - type: nauc_ndcg_at_5_std value: 11.19858703808597 - type: nauc_precision_at_1000_diff1 value: -11.509824758756242 - type: nauc_precision_at_1000_max value: 22.55648484580021 - type: nauc_precision_at_1000_std value: 52.19288714530133 - type: nauc_precision_at_100_diff1 value: -7.139163153266277 - type: nauc_precision_at_100_max value: 18.186960433502737 - type: nauc_precision_at_100_std value: 41.56352667223246 - type: nauc_precision_at_10_diff1 value: 0.19926178236397488 - type: nauc_precision_at_10_max value: 15.790669273945133 - type: nauc_precision_at_10_std value: 22.227701276074303 - type: nauc_precision_at_1_diff1 value: 65.05713874046143 - type: nauc_precision_at_1_max value: 39.626722996510665 - type: nauc_precision_at_1_std value: -0.3991780785384316 - type: nauc_precision_at_20_diff1 value: -3.7308762969820637 - type: nauc_precision_at_20_max value: 15.252245858128093 - type: nauc_precision_at_20_std value: 28.673602701400558 - type: nauc_precision_at_3_diff1 value: 2.200279758618242 - type: nauc_precision_at_3_max value: 12.01603816399143 - type: nauc_precision_at_3_std value: 10.776563947053933 - type: nauc_precision_at_5_diff1 value: -0.656454595582822 - type: nauc_precision_at_5_max value: 12.954740919197965 - type: nauc_precision_at_5_std value: 16.594853377568537 - type: nauc_recall_at_1000_diff1 value: -11.50982475875598 - type: nauc_recall_at_1000_max value: 22.55648484580021 - type: nauc_recall_at_1000_std value: 52.19288714530176 - type: nauc_recall_at_100_diff1 value: -7.139163153266106 - type: nauc_recall_at_100_max value: 18.186960433502737 - type: nauc_recall_at_100_std value: 41.56352667223245 - type: nauc_recall_at_10_diff1 value: 0.19926178236406988 - type: nauc_recall_at_10_max value: 15.790669273945342 - type: nauc_recall_at_10_std value: 22.22770127607443 - type: nauc_recall_at_1_diff1 value: 65.05713874046143 - type: nauc_recall_at_1_max value: 39.626722996510665 - type: nauc_recall_at_1_std value: -0.3991780785384316 - type: nauc_recall_at_20_diff1 value: -3.7308762969819664 - type: nauc_recall_at_20_max value: 15.252245858128083 - type: nauc_recall_at_20_std value: 28.673602701400608 - type: nauc_recall_at_3_diff1 value: 2.200279758618139 - type: nauc_recall_at_3_max value: 12.016038163991432 - type: nauc_recall_at_3_std value: 10.776563947053829 - type: nauc_recall_at_5_diff1 value: -0.6564545955828385 - type: nauc_recall_at_5_max value: 12.954740919197997 - type: nauc_recall_at_5_std value: 16.59485337756855 - type: ndcg_at_1 value: 83.43 - type: ndcg_at_10 value: 75.62 - type: ndcg_at_100 value: 78.365 - type: ndcg_at_1000 value: 79.278 - type: ndcg_at_20 value: 76.831 - type: ndcg_at_3 value: 70.86200000000001 - type: ndcg_at_5 value: 73.64 - type: precision_at_1 value: 83.43 - type: precision_at_10 value: 15.776000000000002 - type: precision_at_100 value: 1.79 - type: precision_at_1000 value: 0.191 - type: precision_at_20 value: 8.276 - type: precision_at_3 value: 45.631 - type: precision_at_5 value: 29.572 - type: recall_at_1 value: 41.715 - type: recall_at_10 value: 78.879 - type: recall_at_100 value: 89.507 - type: recall_at_1000 value: 95.537 - type: recall_at_20 value: 82.762 - type: recall_at_3 value: 68.447 - type: recall_at_5 value: 73.92999999999999 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: train revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 77.837 - type: map_at_1 value: 42.368 - type: map_at_10 value: 70.482 - type: map_at_100 value: 71.25399999999999 - type: map_at_1000 value: 71.3 - type: map_at_20 value: 70.951 - type: map_at_3 value: 67.094 - type: map_at_5 value: 69.28699999999999 - type: mrr_at_1 value: 84.73647058823529 - type: mrr_at_10 value: 89.43228011204313 - type: mrr_at_100 value: 89.53538640990537 - type: mrr_at_1000 value: 89.53820110602267 - type: mrr_at_20 value: 89.5025639405047 - type: mrr_at_3 value: 88.76078431372584 - type: mrr_at_5 value: 89.21313725490114 - type: nauc_map_at_1000_diff1 value: 12.622422238298029 - type: nauc_map_at_1000_max value: 24.134646613977147 - type: nauc_map_at_1000_std value: 18.559113679096974 - type: nauc_map_at_100_diff1 value: 12.595518910984365 - type: nauc_map_at_100_max value: 24.13615988100401 - type: nauc_map_at_100_std value: 18.594772743956266 - type: nauc_map_at_10_diff1 value: 12.31736038153525 - type: nauc_map_at_10_max value: 23.887804934291093 - type: nauc_map_at_10_std value: 18.137521899470006 - type: nauc_map_at_1_diff1 value: 68.72516447237027 - type: nauc_map_at_1_max value: 44.3569136727875 - type: nauc_map_at_1_std value: 6.39841495768188 - type: nauc_map_at_20_diff1 value: 12.468069986147025 - type: nauc_map_at_20_max value: 24.078546039077274 - type: nauc_map_at_20_std value: 18.522291511348463 - type: nauc_map_at_3_diff1 value: 11.842231338011665 - type: nauc_map_at_3_max value: 22.112542722165667 - type: nauc_map_at_3_std value: 14.832260061022543 - type: nauc_map_at_5_diff1 value: 12.034798052329245 - type: nauc_map_at_5_max value: 23.31731384989271 - type: nauc_map_at_5_std value: 17.01434920419027 - type: nauc_mrr_at_1000_diff1 value: 68.07028540743218 - type: nauc_mrr_at_1000_max value: 47.244151670522704 - type: nauc_mrr_at_1000_std value: 9.103356279698557 - type: nauc_mrr_at_100_diff1 value: 68.07124406272081 - type: nauc_mrr_at_100_max value: 47.251355072908616 - type: nauc_mrr_at_100_std value: 9.114544406098922 - type: nauc_mrr_at_10_diff1 value: 68.05566531720568 - type: nauc_mrr_at_10_max value: 47.34781296160981 - type: nauc_mrr_at_10_std value: 9.162073165810337 - type: nauc_mrr_at_1_diff1 value: 68.72516447237027 - type: nauc_mrr_at_1_max value: 44.3569136727875 - type: nauc_mrr_at_1_std value: 6.39841495768188 - type: nauc_mrr_at_20_diff1 value: 68.06579079523253 - type: nauc_mrr_at_20_max value: 47.29519256825747 - type: nauc_mrr_at_20_std value: 9.157454906021048 - type: nauc_mrr_at_3_diff1 value: 67.86665880252679 - type: nauc_mrr_at_3_max value: 47.32534131711564 - type: nauc_mrr_at_3_std value: 8.794606309056801 - type: nauc_mrr_at_5_diff1 value: 68.01593510697437 - type: nauc_mrr_at_5_max value: 47.43102895637358 - type: nauc_mrr_at_5_std value: 9.090489695071675 - type: nauc_ndcg_at_1000_diff1 value: 19.409351180430658 - type: nauc_ndcg_at_1000_max value: 28.708136310658155 - type: nauc_ndcg_at_1000_std value: 21.135251598909345 - type: nauc_ndcg_at_100_diff1 value: 18.544111410209364 - type: nauc_ndcg_at_100_max value: 28.691312106667215 - type: nauc_ndcg_at_100_std value: 22.159472487586196 - type: nauc_ndcg_at_10_diff1 value: 17.18622230783884 - type: nauc_ndcg_at_10_max value: 27.61517105165476 - type: nauc_ndcg_at_10_std value: 20.381795917366187 - type: nauc_ndcg_at_1_diff1 value: 68.72516447237027 - type: nauc_ndcg_at_1_max value: 44.3569136727875 - type: nauc_ndcg_at_1_std value: 6.39841495768188 - type: nauc_ndcg_at_20_diff1 value: 17.621217561108292 - type: nauc_ndcg_at_20_max value: 28.220217881192745 - type: nauc_ndcg_at_20_std value: 21.634321155851048 - type: nauc_ndcg_at_3_diff1 value: 16.95281740780042 - type: nauc_ndcg_at_3_max value: 25.139541410129908 - type: nauc_ndcg_at_3_std value: 15.071626218489095 - type: nauc_ndcg_at_5_diff1 value: 16.85509256640343 - type: nauc_ndcg_at_5_max value: 26.62380882436261 - type: nauc_ndcg_at_5_std value: 18.144940484549487 - type: nauc_precision_at_1000_diff1 value: -2.498904728204529 - type: nauc_precision_at_1000_max value: 33.673710106830924 - type: nauc_precision_at_1000_std value: 60.30188328802003 - type: nauc_precision_at_100_diff1 value: -0.708165353412955 - type: nauc_precision_at_100_max value: 29.52115017710721 - type: nauc_precision_at_100_std value: 49.19453346494841 - type: nauc_precision_at_10_diff1 value: 2.2783774953634794 - type: nauc_precision_at_10_max value: 24.999953606470182 - type: nauc_precision_at_10_std value: 30.42307537842161 - type: nauc_precision_at_1_diff1 value: 68.72516447237027 - type: nauc_precision_at_1_max value: 44.3569136727875 - type: nauc_precision_at_1_std value: 6.39841495768188 - type: nauc_precision_at_20_diff1 value: 1.1464298366823311 - type: nauc_precision_at_20_max value: 26.511392023129375 - type: nauc_precision_at_20_std value: 36.70867843499613 - type: nauc_precision_at_3_diff1 value: 5.688601758765791 - type: nauc_precision_at_3_max value: 21.188583258128727 - type: nauc_precision_at_3_std value: 17.592622457537157 - type: nauc_precision_at_5_diff1 value: 3.77247674190975 - type: nauc_precision_at_5_max value: 23.106552905037606 - type: nauc_precision_at_5_std value: 23.561612818949644 - type: nauc_recall_at_1000_diff1 value: -2.498904728204562 - type: nauc_recall_at_1000_max value: 33.67371010683099 - type: nauc_recall_at_1000_std value: 60.301883288019994 - type: nauc_recall_at_100_diff1 value: -0.7081653534129272 - type: nauc_recall_at_100_max value: 29.52115017710731 - type: nauc_recall_at_100_std value: 49.194533464948535 - type: nauc_recall_at_10_diff1 value: 2.2783774953635603 - type: nauc_recall_at_10_max value: 24.999953606470118 - type: nauc_recall_at_10_std value: 30.423075378421586 - type: nauc_recall_at_1_diff1 value: 68.72516447237027 - type: nauc_recall_at_1_max value: 44.3569136727875 - type: nauc_recall_at_1_std value: 6.39841495768188 - type: nauc_recall_at_20_diff1 value: 1.146429836682064 - type: nauc_recall_at_20_max value: 26.5113920231293 - type: nauc_recall_at_20_std value: 36.70867843499605 - type: nauc_recall_at_3_diff1 value: 5.688601758765744 - type: nauc_recall_at_3_max value: 21.18858325812871 - type: nauc_recall_at_3_std value: 17.592622457537157 - type: nauc_recall_at_5_diff1 value: 3.7724767419099234 - type: nauc_recall_at_5_max value: 23.106552905037674 - type: nauc_recall_at_5_std value: 23.561612818949783 - type: ndcg_at_1 value: 84.736 - type: ndcg_at_10 value: 77.837 - type: ndcg_at_100 value: 80.357 - type: ndcg_at_1000 value: 81.183 - type: ndcg_at_20 value: 78.949 - type: ndcg_at_3 value: 73.258 - type: ndcg_at_5 value: 75.919 - type: precision_at_1 value: 84.736 - type: precision_at_10 value: 16.250999999999998 - type: precision_at_100 value: 1.82 - type: precision_at_1000 value: 0.193 - type: precision_at_20 value: 8.482000000000001 - type: precision_at_3 value: 47.475 - type: precision_at_5 value: 30.581999999999997 - type: recall_at_1 value: 42.368 - type: recall_at_10 value: 81.255 - type: recall_at_100 value: 90.994 - type: recall_at_1000 value: 96.398 - type: recall_at_20 value: 84.824 - type: recall_at_3 value: 71.21300000000001 - type: recall_at_5 value: 76.456 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 43.462 - type: map_at_1 value: 23.25 - type: map_at_10 value: 36.224000000000004 - type: map_at_100 value: 37.349 - type: map_at_1000 value: 37.391999999999996 - type: map_at_20 value: 36.921 - type: map_at_3 value: 32.208 - type: map_at_5 value: 34.573 - type: mrr_at_1 value: 23.88252148997135 - type: mrr_at_10 value: 36.85216832673849 - type: mrr_at_100 value: 37.90739898332828 - type: mrr_at_1000 value: 37.94515095895543 - type: mrr_at_20 value: 37.51240671241301 - type: mrr_at_3 value: 32.91786055396362 - type: mrr_at_5 value: 35.23304680038204 - type: nauc_map_at_1000_diff1 value: 36.39047949939039 - type: nauc_map_at_1000_max value: 2.3578743172188035 - type: nauc_map_at_1000_std value: -18.727873389577592 - type: nauc_map_at_100_diff1 value: 36.384143241496226 - type: nauc_map_at_100_max value: 2.3497513932749614 - type: nauc_map_at_100_std value: -18.70122938038941 - type: nauc_map_at_10_diff1 value: 36.33329278355692 - type: nauc_map_at_10_max value: 2.138450676545341 - type: nauc_map_at_10_std value: -19.45579958491671 - type: nauc_map_at_1_diff1 value: 39.404102475568564 - type: nauc_map_at_1_max value: 2.7206579628418126 - type: nauc_map_at_1_std value: -16.855247645496085 - type: nauc_map_at_20_diff1 value: 36.302767883282456 - type: nauc_map_at_20_max value: 2.2735066233134695 - type: nauc_map_at_20_std value: -18.973295136131522 - type: nauc_map_at_3_diff1 value: 36.56553095724739 - type: nauc_map_at_3_max value: 2.3275087952103526 - type: nauc_map_at_3_std value: -19.3527032157449 - type: nauc_map_at_5_diff1 value: 36.40211831532397 - type: nauc_map_at_5_max value: 2.235741458377666 - type: nauc_map_at_5_std value: -19.701014659193824 - type: nauc_mrr_at_1000_diff1 value: 36.438574231588525 - type: nauc_mrr_at_1000_max value: 2.485811765062565 - type: nauc_mrr_at_1000_std value: -18.5317957659061 - type: nauc_mrr_at_100_diff1 value: 36.432843922329596 - type: nauc_mrr_at_100_max value: 2.4824945841823816 - type: nauc_mrr_at_100_std value: -18.50245936037501 - type: nauc_mrr_at_10_diff1 value: 36.37249341280693 - type: nauc_mrr_at_10_max value: 2.3153304860037607 - type: nauc_mrr_at_10_std value: -19.22693970447962 - type: nauc_mrr_at_1_diff1 value: 39.38128062971168 - type: nauc_mrr_at_1_max value: 2.7209494702622874 - type: nauc_mrr_at_1_std value: -16.953692595799737 - type: nauc_mrr_at_20_diff1 value: 36.3579490781177 - type: nauc_mrr_at_20_max value: 2.4387677123377283 - type: nauc_mrr_at_20_std value: -18.732976355263567 - type: nauc_mrr_at_3_diff1 value: 36.533228792596574 - type: nauc_mrr_at_3_max value: 2.361606755695883 - type: nauc_mrr_at_3_std value: -19.245211696661034 - type: nauc_mrr_at_5_diff1 value: 36.3816321319283 - type: nauc_mrr_at_5_max value: 2.3437756296821632 - type: nauc_mrr_at_5_std value: -19.471789402286344 - type: nauc_ndcg_at_1000_diff1 value: 35.79039219929976 - type: nauc_ndcg_at_1000_max value: 2.811728033687246 - type: nauc_ndcg_at_1000_std value: -17.338286061955813 - type: nauc_ndcg_at_100_diff1 value: 35.59261399719066 - type: nauc_ndcg_at_100_max value: 2.7108910063207783 - type: nauc_ndcg_at_100_std value: -16.30247877675029 - type: nauc_ndcg_at_10_diff1 value: 35.33021934007167 - type: nauc_ndcg_at_10_max value: 1.8215726138615624 - type: nauc_ndcg_at_10_std value: -20.06278292037688 - type: nauc_ndcg_at_1_diff1 value: 39.38128062971168 - type: nauc_ndcg_at_1_max value: 2.7209494702622874 - type: nauc_ndcg_at_1_std value: -16.953692595799737 - type: nauc_ndcg_at_20_diff1 value: 35.166139885264435 - type: nauc_ndcg_at_20_max value: 2.2458844698840195 - type: nauc_ndcg_at_20_std value: -18.248706272894776 - type: nauc_ndcg_at_3_diff1 value: 35.815749048912664 - type: nauc_ndcg_at_3_max value: 2.138161873272173 - type: nauc_ndcg_at_3_std value: -20.118216970119295 - type: nauc_ndcg_at_5_diff1 value: 35.55268589882809 - type: nauc_ndcg_at_5_max value: 2.0174915835937095 - type: nauc_ndcg_at_5_std value: -20.691081813335547 - type: nauc_precision_at_1000_diff1 value: -3.3391122943171885 - type: nauc_precision_at_1000_max value: 11.198425802216269 - type: nauc_precision_at_1000_std value: 13.383104359443937 - type: nauc_precision_at_100_diff1 value: 12.850391114610302 - type: nauc_precision_at_100_max value: 8.157136543556543 - type: nauc_precision_at_100_std value: 16.476563311300353 - type: nauc_precision_at_10_diff1 value: 28.63945922218073 - type: nauc_precision_at_10_max value: 0.455900949813612 - type: nauc_precision_at_10_std value: -20.77018206831735 - type: nauc_precision_at_1_diff1 value: 39.38128062971168 - type: nauc_precision_at_1_max value: 2.7209494702622874 - type: nauc_precision_at_1_std value: -16.953692595799737 - type: nauc_precision_at_20_diff1 value: 24.195296149610957 - type: nauc_precision_at_20_max value: 2.5484785002551718 - type: nauc_precision_at_20_std value: -10.930465943156257 - type: nauc_precision_at_3_diff1 value: 33.06268024815025 - type: nauc_precision_at_3_max value: 1.6291541332500454 - type: nauc_precision_at_3_std value: -22.18898625767765 - type: nauc_precision_at_5_diff1 value: 31.65289218498212 - type: nauc_precision_at_5_max value: 1.2951472084768743 - type: nauc_precision_at_5_std value: -23.27704936042841 - type: nauc_recall_at_1000_diff1 value: 23.23177983481788 - type: nauc_recall_at_1000_max value: 38.7253356088564 - type: nauc_recall_at_1000_std value: 67.48000156648311 - type: nauc_recall_at_100_diff1 value: 28.544420505491562 - type: nauc_recall_at_100_max value: 7.671908258293046 - type: nauc_recall_at_100_std value: 21.858917656037523 - type: nauc_recall_at_10_diff1 value: 31.49652837714782 - type: nauc_recall_at_10_max value: 0.4106392530350634 - type: nauc_recall_at_10_std value: -21.78064007132412 - type: nauc_recall_at_1_diff1 value: 39.404102475568564 - type: nauc_recall_at_1_max value: 2.7206579628418126 - type: nauc_recall_at_1_std value: -16.855247645496085 - type: nauc_recall_at_20_diff1 value: 29.666357411097906 - type: nauc_recall_at_20_max value: 1.9441414764681684 - type: nauc_recall_at_20_std value: -12.932407352213746 - type: nauc_recall_at_3_diff1 value: 33.55593640265306 - type: nauc_recall_at_3_max value: 1.5516845419621723 - type: nauc_recall_at_3_std value: -22.119363526106568 - type: nauc_recall_at_5_diff1 value: 32.857815579888154 - type: nauc_recall_at_5_max value: 1.2405193929536131 - type: nauc_recall_at_5_std value: -23.542815544770555 - type: ndcg_at_1 value: 23.883 - type: ndcg_at_10 value: 43.462 - type: ndcg_at_100 value: 48.845 - type: ndcg_at_1000 value: 49.883 - type: ndcg_at_20 value: 45.921 - type: ndcg_at_3 value: 35.321999999999996 - type: ndcg_at_5 value: 39.512 - type: precision_at_1 value: 23.883 - type: precision_at_10 value: 6.862 - type: precision_at_100 value: 0.9560000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 3.946 - type: precision_at_3 value: 15.076 - type: precision_at_5 value: 11.158 - type: recall_at_1 value: 23.25 - type: recall_at_10 value: 65.694 - type: recall_at_100 value: 90.554 - type: recall_at_1000 value: 98.378 - type: recall_at_20 value: 75.224 - type: recall_at_3 value: 43.628 - type: recall_at_5 value: 53.659 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: test revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 74.139 - type: map_at_1 value: 2.464 - type: map_at_10 value: 16.541 - type: map_at_100 value: 44.478 - type: map_at_1000 value: 53.15 - type: map_at_20 value: 25.904 - type: map_at_3 value: 6.765000000000001 - type: map_at_5 value: 9.983 - type: mrr_at_1 value: 95.34883720930233 - type: mrr_at_10 value: 97.28682170542636 - type: mrr_at_100 value: 97.28682170542636 - type: mrr_at_1000 value: 97.28682170542636 - type: mrr_at_20 value: 97.28682170542636 - type: mrr_at_3 value: 97.28682170542636 - type: mrr_at_5 value: 97.28682170542636 - type: nauc_map_at_1000_diff1 value: -24.31518623918347 - type: nauc_map_at_1000_max value: 33.70070261129663 - type: nauc_map_at_1000_std value: 52.73406144577475 - type: nauc_map_at_100_diff1 value: -6.716075858891885 - type: nauc_map_at_100_max value: 14.830377435009204 - type: nauc_map_at_100_std value: 22.182430558548326 - type: nauc_map_at_10_diff1 value: 22.52761274919368 - type: nauc_map_at_10_max value: -10.100583311291869 - type: nauc_map_at_10_std value: -24.033121680575295 - type: nauc_map_at_1_diff1 value: 34.97928775395744 - type: nauc_map_at_1_max value: -29.165988209556343 - type: nauc_map_at_1_std value: -40.87952221234793 - type: nauc_map_at_20_diff1 value: 15.889296464003886 - type: nauc_map_at_20_max value: -4.223749887147732 - type: nauc_map_at_20_std value: -11.765238600018108 - type: nauc_map_at_3_diff1 value: 35.02306731951517 - type: nauc_map_at_3_max value: -25.811140250024874 - type: nauc_map_at_3_std value: -37.502121900015425 - type: nauc_map_at_5_diff1 value: 31.60050502637396 - type: nauc_map_at_5_max value: -19.753939742728406 - type: nauc_map_at_5_std value: -32.326759394631495 - type: nauc_mrr_at_1000_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_1000_max value: -5.264078482070403 - type: nauc_mrr_at_1000_std value: -16.896242659959608 - type: nauc_mrr_at_100_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_100_max value: -5.264078482070403 - type: nauc_mrr_at_100_std value: -16.896242659959608 - type: nauc_mrr_at_10_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_10_max value: -5.264078482070403 - type: nauc_mrr_at_10_std value: -16.896242659959608 - type: nauc_mrr_at_1_diff1 value: 7.609161311583414 - type: nauc_mrr_at_1_max value: -3.1385223772769497 - type: nauc_mrr_at_1_std value: -28.92678640083504 - type: nauc_mrr_at_20_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_20_max value: -5.264078482070403 - type: nauc_mrr_at_20_std value: -16.896242659959608 - type: nauc_mrr_at_3_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_3_max value: -5.264078482070403 - type: nauc_mrr_at_3_std value: -16.896242659959608 - type: nauc_mrr_at_5_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_5_max value: -5.264078482070403 - type: nauc_mrr_at_5_std value: -16.896242659959608 - type: nauc_ndcg_at_1000_diff1 value: -30.3495925805214 - type: nauc_ndcg_at_1000_max value: 48.80276747021238 - type: nauc_ndcg_at_1000_std value: 54.598664753311596 - type: nauc_ndcg_at_100_diff1 value: -21.4043832806614 - type: nauc_ndcg_at_100_max value: 30.876451567336744 - type: nauc_ndcg_at_100_std value: 49.443818028199324 - type: nauc_ndcg_at_10_diff1 value: -0.45843729874817324 - type: nauc_ndcg_at_10_max value: 19.369035024488383 - type: nauc_ndcg_at_10_std value: 15.441351418216314 - type: nauc_ndcg_at_1_diff1 value: 27.57020304062517 - type: nauc_ndcg_at_1_max value: 13.126334420445016 - type: nauc_ndcg_at_1_std value: -29.628242116322607 - type: nauc_ndcg_at_20_diff1 value: -15.246366332733999 - type: nauc_ndcg_at_20_max value: 14.478542591051463 - type: nauc_ndcg_at_20_std value: 27.20707635200001 - type: nauc_ndcg_at_3_diff1 value: 14.58709456804409 - type: nauc_ndcg_at_3_max value: 13.824849529705482 - type: nauc_ndcg_at_3_std value: -8.313833570480671 - type: nauc_ndcg_at_5_diff1 value: 8.91665165479885 - type: nauc_ndcg_at_5_max value: 13.930708098322576 - type: nauc_ndcg_at_5_std value: 2.127642899981599 - type: nauc_precision_at_1000_diff1 value: -40.268595202063054 - type: nauc_precision_at_1000_max value: 25.88884164935188 - type: nauc_precision_at_1000_std value: 55.568406766964415 - type: nauc_precision_at_100_diff1 value: -42.911915287643346 - type: nauc_precision_at_100_max value: 30.08901353124011 - type: nauc_precision_at_100_std value: 62.17803024269468 - type: nauc_precision_at_10_diff1 value: -43.802137487466524 - type: nauc_precision_at_10_max value: 41.558045207768075 - type: nauc_precision_at_10_std value: 66.11133414044444 - type: nauc_precision_at_1_diff1 value: 7.609161311583414 - type: nauc_precision_at_1_max value: -3.1385223772769497 - type: nauc_precision_at_1_std value: -28.92678640083504 - type: nauc_precision_at_20_diff1 value: -45.342704264263865 - type: nauc_precision_at_20_max value: 26.376743923651265 - type: nauc_precision_at_20_std value: 64.3163432020867 - type: nauc_precision_at_3_diff1 value: -16.02113730834142 - type: nauc_precision_at_3_max value: 24.617646770629815 - type: nauc_precision_at_3_std value: 35.79299638781981 - type: nauc_precision_at_5_diff1 value: -18.344530395955896 - type: nauc_precision_at_5_max value: 34.95602706071007 - type: nauc_precision_at_5_std value: 55.121489979935255 - type: nauc_recall_at_1000_diff1 value: -43.604640987833875 - type: nauc_recall_at_1000_max value: 58.59201591599778 - type: nauc_recall_at_1000_std value: 58.04926306248595 - type: nauc_recall_at_100_diff1 value: -1.8581886293054308 - type: nauc_recall_at_100_max value: 17.598407276190557 - type: nauc_recall_at_100_std value: 16.1056507235371 - type: nauc_recall_at_10_diff1 value: 24.296861713164493 - type: nauc_recall_at_10_max value: -12.840082189664468 - type: nauc_recall_at_10_std value: -27.648232955581015 - type: nauc_recall_at_1_diff1 value: 34.97928775395744 - type: nauc_recall_at_1_max value: -29.165988209556343 - type: nauc_recall_at_1_std value: -40.87952221234793 - type: nauc_recall_at_20_diff1 value: 17.34425404446603 - type: nauc_recall_at_20_max value: -6.759844869600909 - type: nauc_recall_at_20_std value: -16.34420887019204 - type: nauc_recall_at_3_diff1 value: 35.7400036137557 - type: nauc_recall_at_3_max value: -26.22669187910205 - type: nauc_recall_at_3_std value: -38.248247791322314 - type: nauc_recall_at_5_diff1 value: 33.10320420212989 - type: nauc_recall_at_5_max value: -20.833157601550315 - type: nauc_recall_at_5_std value: -34.06908006216781 - type: ndcg_at_1 value: 76.744 - type: ndcg_at_10 value: 74.139 - type: ndcg_at_100 value: 68.147 - type: ndcg_at_1000 value: 75.65899999999999 - type: ndcg_at_20 value: 71.788 - type: ndcg_at_3 value: 75.696 - type: ndcg_at_5 value: 74.787 - type: precision_at_1 value: 95.34899999999999 - type: precision_at_10 value: 84.186 - type: precision_at_100 value: 40.163 - type: precision_at_1000 value: 7.457999999999999 - type: precision_at_20 value: 74.767 - type: precision_at_3 value: 89.922 - type: precision_at_5 value: 87.442 - type: recall_at_1 value: 2.464 - type: recall_at_10 value: 17.910999999999998 - type: recall_at_100 value: 55.969 - type: recall_at_1000 value: 82.416 - type: recall_at_20 value: 28.829 - type: recall_at_3 value: 6.866 - type: recall_at_5 value: 10.45 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: train revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 40.276 - type: map_at_1 value: 20.773 - type: map_at_10 value: 33.187 - type: map_at_100 value: 34.445 - type: map_at_1000 value: 34.491 - type: map_at_20 value: 33.969 - type: map_at_3 value: 29.156 - type: map_at_5 value: 31.446 - type: mrr_at_1 value: 21.359250326580362 - type: mrr_at_10 value: 33.705331647898106 - type: mrr_at_100 value: 34.90938915980538 - type: mrr_at_1000 value: 34.949373687506714 - type: mrr_at_20 value: 34.459868257867136 - type: mrr_at_3 value: 29.754569308269037 - type: mrr_at_5 value: 32.00982292750348 - type: nauc_map_at_1000_diff1 value: 34.01601087498396 - type: nauc_map_at_1000_max value: -1.7691442171563223 - type: nauc_map_at_1000_std value: -19.828285053003967 - type: nauc_map_at_100_diff1 value: 34.00675015775064 - type: nauc_map_at_100_max value: -1.7686866050766759 - type: nauc_map_at_100_std value: -19.794937232515526 - type: nauc_map_at_10_diff1 value: 33.925657930927954 - type: nauc_map_at_10_max value: -1.9081926342048643 - type: nauc_map_at_10_std value: -20.459142515845954 - type: nauc_map_at_1_diff1 value: 37.86779004020525 - type: nauc_map_at_1_max value: -1.693381899018092 - type: nauc_map_at_1_std value: -18.888409837359983 - type: nauc_map_at_20_diff1 value: 33.95897235069661 - type: nauc_map_at_20_max value: -1.8385762082257249 - type: nauc_map_at_20_std value: -20.049973139551135 - type: nauc_map_at_3_diff1 value: 34.1811433717322 - type: nauc_map_at_3_max value: -1.9862134491651453 - type: nauc_map_at_3_std value: -20.7157496103899 - type: nauc_map_at_5_diff1 value: 33.945489663762515 - type: nauc_map_at_5_max value: -1.9633952142297522 - type: nauc_map_at_5_std value: -20.83632680413325 - type: nauc_mrr_at_1000_diff1 value: 33.999206219812045 - type: nauc_mrr_at_1000_max value: -1.7412465287451229 - type: nauc_mrr_at_1000_std value: -19.800789638791937 - type: nauc_mrr_at_100_diff1 value: 33.99041315883828 - type: nauc_mrr_at_100_max value: -1.7393575325316621 - type: nauc_mrr_at_100_std value: -19.7676764349925 - type: nauc_mrr_at_10_diff1 value: 33.90510191763504 - type: nauc_mrr_at_10_max value: -1.8632220774794626 - type: nauc_mrr_at_10_std value: -20.39043116739617 - type: nauc_mrr_at_1_diff1 value: 37.92957327608907 - type: nauc_mrr_at_1_max value: -1.6241365807332726 - type: nauc_mrr_at_1_std value: -19.02476057424658 - type: nauc_mrr_at_20_diff1 value: 33.94188630069156 - type: nauc_mrr_at_20_max value: -1.799932652089817 - type: nauc_mrr_at_20_std value: -19.997042702823485 - type: nauc_mrr_at_3_diff1 value: 34.16520468314214 - type: nauc_mrr_at_3_max value: -1.9279951943420828 - type: nauc_mrr_at_3_std value: -20.706091936842984 - type: nauc_mrr_at_5_diff1 value: 33.92480963299017 - type: nauc_mrr_at_5_max value: -1.9122782451155143 - type: nauc_mrr_at_5_std value: -20.781713634553793 - type: nauc_ndcg_at_1000_diff1 value: 33.184126158160126 - type: nauc_ndcg_at_1000_max value: -1.1875420124951162 - type: nauc_ndcg_at_1000_std value: -18.23591819025179 - type: nauc_ndcg_at_100_diff1 value: 32.935688069598314 - type: nauc_ndcg_at_100_max value: -1.0828464321478635 - type: nauc_ndcg_at_100_std value: -16.99124635594882 - type: nauc_ndcg_at_10_diff1 value: 32.5885629805019 - type: nauc_ndcg_at_10_max value: -1.8951992549933268 - type: nauc_ndcg_at_10_std value: -20.400520136402704 - type: nauc_ndcg_at_1_diff1 value: 37.953966660906325 - type: nauc_ndcg_at_1_max value: -1.637085728039103 - type: nauc_ndcg_at_1_std value: -19.029991106168055 - type: nauc_ndcg_at_20_diff1 value: 32.659068964537944 - type: nauc_ndcg_at_20_max value: -1.6414522913717806 - type: nauc_ndcg_at_20_std value: -18.857438624779295 - type: nauc_ndcg_at_3_diff1 value: 33.13495243897897 - type: nauc_ndcg_at_3_max value: -2.056752787606917 - type: nauc_ndcg_at_3_std value: -21.17861388162733 - type: nauc_ndcg_at_5_diff1 value: 32.69463838392566 - type: nauc_ndcg_at_5_max value: -2.025092695004754 - type: nauc_ndcg_at_5_std value: -21.34771429039138 - type: nauc_precision_at_1000_diff1 value: -2.8558032644991016 - type: nauc_precision_at_1000_max value: 9.86657019787611 - type: nauc_precision_at_1000_std value: 10.988749489672406 - type: nauc_precision_at_100_diff1 value: 12.864328710169968 - type: nauc_precision_at_100_max value: 7.464201984721404 - type: nauc_precision_at_100_std value: 16.13392945907579 - type: nauc_precision_at_10_diff1 value: 26.399898010761824 - type: nauc_precision_at_10_max value: -1.2999170215959819 - type: nauc_precision_at_10_std value: -18.71491641617564 - type: nauc_precision_at_1_diff1 value: 37.953966660906325 - type: nauc_precision_at_1_max value: -1.637085728039103 - type: nauc_precision_at_1_std value: -19.029991106168055 - type: nauc_precision_at_20_diff1 value: 23.79119509543501 - type: nauc_precision_at_20_max value: 0.17939408447227603 - type: nauc_precision_at_20_std value: -10.441178169364324 - type: nauc_precision_at_3_diff1 value: 30.04047755424759 - type: nauc_precision_at_3_max value: -2.136156697163606 - type: nauc_precision_at_3_std value: -22.2944352990041 - type: nauc_precision_at_5_diff1 value: 28.422010621063933 - type: nauc_precision_at_5_max value: -1.9424211602360555 - type: nauc_precision_at_5_std value: -22.333141313684994 - type: nauc_recall_at_1000_diff1 value: 13.732116062991514 - type: nauc_recall_at_1000_max value: 45.18551288931526 - type: nauc_recall_at_1000_std value: 71.21674392317534 - type: nauc_recall_at_100_diff1 value: 24.303127023267894 - type: nauc_recall_at_100_max value: 8.834243296556114 - type: nauc_recall_at_100_std value: 23.97303108762705 - type: nauc_recall_at_10_diff1 value: 28.10048351507634 - type: nauc_recall_at_10_max value: -1.8539512450800857 - type: nauc_recall_at_10_std value: -19.61933014312325 - type: nauc_recall_at_1_diff1 value: 37.86779004020525 - type: nauc_recall_at_1_max value: -1.693381899018092 - type: nauc_recall_at_1_std value: -18.888409837359983 - type: nauc_recall_at_20_diff1 value: 27.298837251716414 - type: nauc_recall_at_20_max value: -0.6338536811417125 - type: nauc_recall_at_20_std value: -11.839172034010947 - type: nauc_recall_at_3_diff1 value: 30.29606466428335 - type: nauc_recall_at_3_max value: -2.286134715776902 - type: nauc_recall_at_3_std value: -22.284294332227482 - type: nauc_recall_at_5_diff1 value: 29.11776633049639 - type: nauc_recall_at_5_max value: -2.227765233466803 - type: nauc_recall_at_5_std value: -22.613701283140504 - type: ndcg_at_1 value: 21.353 - type: ndcg_at_10 value: 40.276 - type: ndcg_at_100 value: 46.323 - type: ndcg_at_1000 value: 47.418 - type: ndcg_at_20 value: 43.053999999999995 - type: ndcg_at_3 value: 32.055 - type: ndcg_at_5 value: 36.138 - type: precision_at_1 value: 21.353 - type: precision_at_10 value: 6.486 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.818 - type: precision_at_3 value: 13.739 - type: precision_at_5 value: 10.309 - type: recall_at_1 value: 20.773 - type: recall_at_10 value: 62.275999999999996 - type: recall_at_100 value: 90.217 - type: recall_at_1000 value: 98.519 - type: recall_at_20 value: 73.072 - type: recall_at_3 value: 39.855000000000004 - type: recall_at_5 value: 49.675999999999995 - task: type: Retrieval dataset: name: MTEB NFCorpus (default) type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: main_score value: 37.283 - type: map_at_1 value: 5.574 - type: map_at_10 value: 14.005 - type: map_at_100 value: 17.796 - type: map_at_1000 value: 19.283 - type: map_at_20 value: 15.578 - type: map_at_3 value: 10.236 - type: map_at_5 value: 11.899 - type: mrr_at_1 value: 46.749226006191954 - type: mrr_at_10 value: 56.59811292938226 - type: mrr_at_100 value: 57.12051023998412 - type: mrr_at_1000 value: 57.15371186820038 - type: mrr_at_20 value: 56.916688370838195 - type: mrr_at_3 value: 54.12796697626418 - type: mrr_at_5 value: 55.768833849329205 - type: nauc_map_at_1000_diff1 value: 28.635277848807 - type: nauc_map_at_1000_max value: 35.35613366796442 - type: nauc_map_at_1000_std value: 17.10747783924917 - type: nauc_map_at_100_diff1 value: 29.755264219349424 - type: nauc_map_at_100_max value: 34.327008938244944 - type: nauc_map_at_100_std value: 13.445288572684394 - type: nauc_map_at_10_diff1 value: 32.48957394170802 - type: nauc_map_at_10_max value: 27.80407105939758 - type: nauc_map_at_10_std value: 1.9070818822162425 - type: nauc_map_at_1_diff1 value: 50.027513759193376 - type: nauc_map_at_1_max value: 19.429910518237936 - type: nauc_map_at_1_std value: -8.97104145052985 - type: nauc_map_at_20_diff1 value: 31.56634560890853 - type: nauc_map_at_20_max value: 31.051371548545692 - type: nauc_map_at_20_std value: 6.504916213964518 - type: nauc_map_at_3_diff1 value: 38.42783943501391 - type: nauc_map_at_3_max value: 22.268789244002495 - type: nauc_map_at_3_std value: -3.875096100356707 - type: nauc_map_at_5_diff1 value: 35.358236844401475 - type: nauc_map_at_5_max value: 23.849302939085845 - type: nauc_map_at_5_std value: -2.3503635251536994 - type: nauc_mrr_at_1000_diff1 value: 30.746859712785913 - type: nauc_mrr_at_1000_max value: 53.6904747530386 - type: nauc_mrr_at_1000_std value: 31.47487691466055 - type: nauc_mrr_at_100_diff1 value: 30.763063585195706 - type: nauc_mrr_at_100_max value: 53.7250123160408 - type: nauc_mrr_at_100_std value: 31.50978078188992 - type: nauc_mrr_at_10_diff1 value: 30.82775738393116 - type: nauc_mrr_at_10_max value: 53.4071427116327 - type: nauc_mrr_at_10_std value: 31.263564750803962 - type: nauc_mrr_at_1_diff1 value: 32.106085379422524 - type: nauc_mrr_at_1_max value: 47.77541655844478 - type: nauc_mrr_at_1_std value: 24.786702037536276 - type: nauc_mrr_at_20_diff1 value: 30.719148309921696 - type: nauc_mrr_at_20_max value: 53.70017178047271 - type: nauc_mrr_at_20_std value: 31.467979505375443 - type: nauc_mrr_at_3_diff1 value: 30.981638809404405 - type: nauc_mrr_at_3_max value: 53.3270677412482 - type: nauc_mrr_at_3_std value: 30.26681784453818 - type: nauc_mrr_at_5_diff1 value: 30.969579053025992 - type: nauc_mrr_at_5_max value: 53.700404196240385 - type: nauc_mrr_at_5_std value: 30.24431182973286 - type: nauc_ndcg_at_1000_diff1 value: 26.077520236345453 - type: nauc_ndcg_at_1000_max value: 50.44278008464641 - type: nauc_ndcg_at_1000_std value: 36.462860570166185 - type: nauc_ndcg_at_100_diff1 value: 25.784205218824514 - type: nauc_ndcg_at_100_max value: 44.6479793696097 - type: nauc_ndcg_at_100_std value: 29.51865427077206 - type: nauc_ndcg_at_10_diff1 value: 23.20557245363688 - type: nauc_ndcg_at_10_max value: 42.22895428413661 - type: nauc_ndcg_at_10_std value: 25.969842351518235 - type: nauc_ndcg_at_1_diff1 value: 33.427281404508435 - type: nauc_ndcg_at_1_max value: 46.94546610566201 - type: nauc_ndcg_at_1_std value: 24.496790902482985 - type: nauc_ndcg_at_20_diff1 value: 23.43536419777015 - type: nauc_ndcg_at_20_max value: 42.0469006433796 - type: nauc_ndcg_at_20_std value: 27.24688044890543 - type: nauc_ndcg_at_3_diff1 value: 25.933255443748944 - type: nauc_ndcg_at_3_max value: 45.01703507302794 - type: nauc_ndcg_at_3_std value: 24.53456197157044 - type: nauc_ndcg_at_5_diff1 value: 24.329950172007088 - type: nauc_ndcg_at_5_max value: 42.83693422152606 - type: nauc_ndcg_at_5_std value: 24.11535369089384 - type: nauc_precision_at_1000_diff1 value: -12.669594168389192 - type: nauc_precision_at_1000_max value: 8.798164077517391 - type: nauc_precision_at_1000_std value: 33.81862573258825 - type: nauc_precision_at_100_diff1 value: -7.005181564872601 - type: nauc_precision_at_100_max value: 22.648723626866374 - type: nauc_precision_at_100_std value: 43.65426389346721 - type: nauc_precision_at_10_diff1 value: 4.8405576299864945 - type: nauc_precision_at_10_max value: 39.91286717889381 - type: nauc_precision_at_10_std value: 35.574065561205096 - type: nauc_precision_at_1_diff1 value: 32.106085379422524 - type: nauc_precision_at_1_max value: 47.77541655844478 - type: nauc_precision_at_1_std value: 24.786702037536276 - type: nauc_precision_at_20_diff1 value: 0.08875655110882817 - type: nauc_precision_at_20_max value: 34.77100967209973 - type: nauc_precision_at_20_std value: 39.851412685464176 - type: nauc_precision_at_3_diff1 value: 16.574574215758624 - type: nauc_precision_at_3_max value: 45.42842355154502 - type: nauc_precision_at_3_std value: 28.31538323007723 - type: nauc_precision_at_5_diff1 value: 10.494687717697923 - type: nauc_precision_at_5_max value: 42.0168314602896 - type: nauc_precision_at_5_std value: 30.72486385311608 - type: nauc_recall_at_1000_diff1 value: 9.418427515050707 - type: nauc_recall_at_1000_max value: 27.143782318814182 - type: nauc_recall_at_1000_std value: 27.349192687153284 - type: nauc_recall_at_100_diff1 value: 16.884742295138704 - type: nauc_recall_at_100_max value: 27.5200727845606 - type: nauc_recall_at_100_std value: 16.76172862155474 - type: nauc_recall_at_10_diff1 value: 23.894239139033917 - type: nauc_recall_at_10_max value: 20.19653160625137 - type: nauc_recall_at_10_std value: -1.1818405987921334 - type: nauc_recall_at_1_diff1 value: 50.027513759193376 - type: nauc_recall_at_1_max value: 19.429910518237936 - type: nauc_recall_at_1_std value: -8.97104145052985 - type: nauc_recall_at_20_diff1 value: 23.687099370897887 - type: nauc_recall_at_20_max value: 24.6629558566208 - type: nauc_recall_at_20_std value: 5.407720319345621 - type: nauc_recall_at_3_diff1 value: 34.403660975814034 - type: nauc_recall_at_3_max value: 20.066555724505257 - type: nauc_recall_at_3_std value: -3.63779773997605 - type: nauc_recall_at_5_diff1 value: 27.409120048379066 - type: nauc_recall_at_5_max value: 17.871400437143393 - type: nauc_recall_at_5_std value: -4.490534640413254 - type: ndcg_at_1 value: 45.201 - type: ndcg_at_10 value: 37.283 - type: ndcg_at_100 value: 34.019 - type: ndcg_at_1000 value: 42.339 - type: ndcg_at_20 value: 34.827000000000005 - type: ndcg_at_3 value: 42.841 - type: ndcg_at_5 value: 40.778 - type: precision_at_1 value: 46.749 - type: precision_at_10 value: 27.771 - type: precision_at_100 value: 8.762 - type: precision_at_1000 value: 2.137 - type: precision_at_20 value: 20.759 - type: precision_at_3 value: 41.073 - type: precision_at_5 value: 35.975 - type: recall_at_1 value: 5.574 - type: recall_at_10 value: 18.631 - type: recall_at_100 value: 34.352 - type: recall_at_1000 value: 64.57000000000001 - type: recall_at_20 value: 22.359 - type: recall_at_3 value: 11.440999999999999 - type: recall_at_5 value: 14.493 - task: type: Retrieval dataset: name: MTEB NQ (default) type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: main_score value: 61.028999999999996 - type: map_at_1 value: 37.177 - type: map_at_10 value: 53.40899999999999 - type: map_at_100 value: 54.298 - type: map_at_1000 value: 54.315000000000005 - type: map_at_20 value: 54.025 - type: map_at_3 value: 49.05 - type: map_at_5 value: 51.82 - type: mrr_at_1 value: 41.59907300115875 - type: mrr_at_10 value: 55.78067235005224 - type: mrr_at_100 value: 56.41660993735389 - type: mrr_at_1000 value: 56.42754475461054 - type: mrr_at_20 value: 56.23518276066669 - type: mrr_at_3 value: 52.37543453070661 - type: mrr_at_5 value: 54.548088064889775 - type: nauc_map_at_1000_diff1 value: 37.27249375628604 - type: nauc_map_at_1000_max value: 27.392138921419324 - type: nauc_map_at_1000_std value: -3.5900106216193315 - type: nauc_map_at_100_diff1 value: 37.2697901014825 - type: nauc_map_at_100_max value: 27.405921213076223 - type: nauc_map_at_100_std value: -3.573566659351339 - type: nauc_map_at_10_diff1 value: 37.16335435590572 - type: nauc_map_at_10_max value: 27.413006448193094 - type: nauc_map_at_10_std value: -3.9602938844810303 - type: nauc_map_at_1_diff1 value: 40.79178035869281 - type: nauc_map_at_1_max value: 21.840846704021168 - type: nauc_map_at_1_std value: -6.154432706859515 - type: nauc_map_at_20_diff1 value: 37.19465980632151 - type: nauc_map_at_20_max value: 27.472653634570786 - type: nauc_map_at_20_std value: -3.6471752193658094 - type: nauc_map_at_3_diff1 value: 37.00050883840103 - type: nauc_map_at_3_max value: 26.166201606832622 - type: nauc_map_at_3_std value: -5.058745283770789 - type: nauc_map_at_5_diff1 value: 37.312001024201614 - type: nauc_map_at_5_max value: 27.20835796415595 - type: nauc_map_at_5_std value: -4.534370816807776 - type: nauc_mrr_at_1000_diff1 value: 37.0970736659852 - type: nauc_mrr_at_1000_max value: 27.50593927169649 - type: nauc_mrr_at_1000_std value: -1.4306799570196265 - type: nauc_mrr_at_100_diff1 value: 37.097509694127424 - type: nauc_mrr_at_100_max value: 27.51661298886077 - type: nauc_mrr_at_100_std value: -1.4199131237737803 - type: nauc_mrr_at_10_diff1 value: 36.932844699119116 - type: nauc_mrr_at_10_max value: 27.621686914876264 - type: nauc_mrr_at_10_std value: -1.5134823279039098 - type: nauc_mrr_at_1_diff1 value: 40.02588975690894 - type: nauc_mrr_at_1_max value: 23.299213673927742 - type: nauc_mrr_at_1_std value: -3.2449821682928857 - type: nauc_mrr_at_20_diff1 value: 37.03753600016832 - type: nauc_mrr_at_20_max value: 27.595623068393866 - type: nauc_mrr_at_20_std value: -1.420887979592882 - type: nauc_mrr_at_3_diff1 value: 36.91182898204814 - type: nauc_mrr_at_3_max value: 27.152051504473885 - type: nauc_mrr_at_3_std value: -1.9927562689418785 - type: nauc_mrr_at_5_diff1 value: 36.99585850355028 - type: nauc_mrr_at_5_max value: 27.595839086884865 - type: nauc_mrr_at_5_std value: -1.647378331798377 - type: nauc_ndcg_at_1000_diff1 value: 36.81876435190347 - type: nauc_ndcg_at_1000_max value: 28.829624794175935 - type: nauc_ndcg_at_1000_std value: -1.65861992216032 - type: nauc_ndcg_at_100_diff1 value: 36.78530077714473 - type: nauc_ndcg_at_100_max value: 29.345829163429332 - type: nauc_ndcg_at_100_std value: -0.9834660238902133 - type: nauc_ndcg_at_10_diff1 value: 36.12614493982964 - type: nauc_ndcg_at_10_max value: 29.68306077249619 - type: nauc_ndcg_at_10_std value: -2.2988088369038424 - type: nauc_ndcg_at_1_diff1 value: 40.02588975690894 - type: nauc_ndcg_at_1_max value: 23.299213673927742 - type: nauc_ndcg_at_1_std value: -3.2449821682928857 - type: nauc_ndcg_at_20_diff1 value: 36.305901085440176 - type: nauc_ndcg_at_20_max value: 29.900293267731914 - type: nauc_ndcg_at_20_std value: -1.299150832053996 - type: nauc_ndcg_at_3_diff1 value: 36.08231518905999 - type: nauc_ndcg_at_3_max value: 27.551888883244995 - type: nauc_ndcg_at_3_std value: -4.148899293368668 - type: nauc_ndcg_at_5_diff1 value: 36.46875305559966 - type: nauc_ndcg_at_5_max value: 29.164887327209787 - type: nauc_ndcg_at_5_std value: -3.3697390325217076 - type: nauc_precision_at_1000_diff1 value: -10.3219194845074 - type: nauc_precision_at_1000_max value: 3.539745607347162 - type: nauc_precision_at_1000_std value: 14.732306584403634 - type: nauc_precision_at_100_diff1 value: -6.560356132891633 - type: nauc_precision_at_100_max value: 10.337169381451696 - type: nauc_precision_at_100_std value: 19.20600399831645 - type: nauc_precision_at_10_diff1 value: 8.363445709346582 - type: nauc_precision_at_10_max value: 23.63627616639036 - type: nauc_precision_at_10_std value: 10.673622244929492 - type: nauc_precision_at_1_diff1 value: 40.02588975690894 - type: nauc_precision_at_1_max value: 23.299213673927742 - type: nauc_precision_at_1_std value: -3.2449821682928857 - type: nauc_precision_at_20_diff1 value: 1.4455832869975551 - type: nauc_precision_at_20_max value: 19.98564944586283 - type: nauc_precision_at_20_std value: 16.313152259234684 - type: nauc_precision_at_3_diff1 value: 22.401426703012387 - type: nauc_precision_at_3_max value: 27.664284153790934 - type: nauc_precision_at_3_std value: 2.0415835028145013 - type: nauc_precision_at_5_diff1 value: 16.858040191181527 - type: nauc_precision_at_5_max value: 26.95159466584669 - type: nauc_precision_at_5_std value: 5.337376948898463 - type: nauc_recall_at_1000_diff1 value: 33.419325094531246 - type: nauc_recall_at_1000_max value: 81.65994088738964 - type: nauc_recall_at_1000_std value: 63.36886394313217 - type: nauc_recall_at_100_diff1 value: 33.73442949813673 - type: nauc_recall_at_100_max value: 64.50622866427926 - type: nauc_recall_at_100_std value: 46.52235851200254 - type: nauc_recall_at_10_diff1 value: 29.788714544862056 - type: nauc_recall_at_10_max value: 38.99828655870941 - type: nauc_recall_at_10_std value: 1.7091690344792725 - type: nauc_recall_at_1_diff1 value: 40.79178035869281 - type: nauc_recall_at_1_max value: 21.840846704021168 - type: nauc_recall_at_1_std value: -6.154432706859515 - type: nauc_recall_at_20_diff1 value: 29.268077606585464 - type: nauc_recall_at_20_max value: 46.544672010268386 - type: nauc_recall_at_20_std value: 11.559943847242257 - type: nauc_recall_at_3_diff1 value: 32.274860688833726 - type: nauc_recall_at_3_max value: 29.74799709828914 - type: nauc_recall_at_3_std value: -4.408458412201667 - type: nauc_recall_at_5_diff1 value: 32.393551871375514 - type: nauc_recall_at_5_max value: 34.33472583999946 - type: nauc_recall_at_5_std value: -2.6839106423963486 - type: ndcg_at_1 value: 41.599000000000004 - type: ndcg_at_10 value: 61.028999999999996 - type: ndcg_at_100 value: 64.55 - type: ndcg_at_1000 value: 64.948 - type: ndcg_at_20 value: 62.971 - type: ndcg_at_3 value: 53.122 - type: ndcg_at_5 value: 57.607 - type: precision_at_1 value: 41.599000000000004 - type: precision_at_10 value: 9.754 - type: precision_at_100 value: 1.172 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 5.346 - type: precision_at_3 value: 23.880000000000003 - type: precision_at_5 value: 16.964000000000002 - type: recall_at_1 value: 37.177 - type: recall_at_10 value: 81.658 - type: recall_at_100 value: 96.497 - type: recall_at_1000 value: 99.445 - type: recall_at_20 value: 88.75800000000001 - type: recall_at_3 value: 61.525 - type: recall_at_5 value: 71.76 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval (default) type: mteb/quora config: default split: dev revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 89.036 - type: map_at_1 value: 71.101 - type: map_at_10 value: 85.455 - type: map_at_100 value: 85.994 - type: map_at_1000 value: 86.008 - type: map_at_20 value: 85.828 - type: map_at_3 value: 82.53399999999999 - type: map_at_5 value: 84.436 - type: mrr_at_1 value: 81.86 - type: mrr_at_10 value: 88.11046031746035 - type: mrr_at_100 value: 88.19975129757977 - type: mrr_at_1000 value: 88.20025683960115 - type: mrr_at_20 value: 88.17505422553023 - type: mrr_at_3 value: 87.21666666666681 - type: mrr_at_5 value: 87.86166666666674 - type: nauc_map_at_1000_diff1 value: 76.87108519650897 - type: nauc_map_at_1000_max value: 33.61242692238016 - type: nauc_map_at_1000_std value: -41.17597310279849 - type: nauc_map_at_100_diff1 value: 76.87153736524259 - type: nauc_map_at_100_max value: 33.54970297094648 - type: nauc_map_at_100_std value: -41.25992178085852 - type: nauc_map_at_10_diff1 value: 77.09438545715085 - type: nauc_map_at_10_max value: 33.2308328259168 - type: nauc_map_at_10_std value: -42.899051862463516 - type: nauc_map_at_1_diff1 value: 80.4545167505852 - type: nauc_map_at_1_max value: 23.403575293489297 - type: nauc_map_at_1_std value: -38.73915078390272 - type: nauc_map_at_20_diff1 value: 76.94979482879727 - type: nauc_map_at_20_max value: 33.3965542820201 - type: nauc_map_at_20_std value: -41.86565874579091 - type: nauc_map_at_3_diff1 value: 77.49566624548056 - type: nauc_map_at_3_max value: 31.780987466527982 - type: nauc_map_at_3_std value: -44.21854519305753 - type: nauc_map_at_5_diff1 value: 77.42771789228605 - type: nauc_map_at_5_max value: 32.68020733774396 - type: nauc_map_at_5_std value: -44.02529373114044 - type: nauc_mrr_at_1000_diff1 value: 77.2505984468272 - type: nauc_mrr_at_1000_max value: 35.55233116927507 - type: nauc_mrr_at_1000_std value: -36.53616122640594 - type: nauc_mrr_at_100_diff1 value: 77.2505647746378 - type: nauc_mrr_at_100_max value: 35.55185874722589 - type: nauc_mrr_at_100_std value: -36.536878149072706 - type: nauc_mrr_at_10_diff1 value: 77.28454775401565 - type: nauc_mrr_at_10_max value: 35.66029990876809 - type: nauc_mrr_at_10_std value: -36.59040430274804 - type: nauc_mrr_at_1_diff1 value: 77.78026873953571 - type: nauc_mrr_at_1_max value: 34.24444208714401 - type: nauc_mrr_at_1_std value: -35.78176040034259 - type: nauc_mrr_at_20_diff1 value: 77.26647675316424 - type: nauc_mrr_at_20_max value: 35.55846836956988 - type: nauc_mrr_at_20_std value: -36.573881740702944 - type: nauc_mrr_at_3_diff1 value: 76.97249605916133 - type: nauc_mrr_at_3_max value: 35.75239213026302 - type: nauc_mrr_at_3_std value: -36.66948654144912 - type: nauc_mrr_at_5_diff1 value: 77.23448498990302 - type: nauc_mrr_at_5_max value: 35.66032506714416 - type: nauc_mrr_at_5_std value: -36.38867782403099 - type: nauc_ndcg_at_1000_diff1 value: 76.78192029636689 - type: nauc_ndcg_at_1000_max value: 34.838983961231115 - type: nauc_ndcg_at_1000_std value: -38.7139917221289 - type: nauc_ndcg_at_100_diff1 value: 76.74994017852701 - type: nauc_ndcg_at_100_max value: 34.5562459567844 - type: nauc_ndcg_at_100_std value: -39.1159390113717 - type: nauc_ndcg_at_10_diff1 value: 77.03700409583301 - type: nauc_ndcg_at_10_max value: 34.49775612114203 - type: nauc_ndcg_at_10_std value: -42.03003149796472 - type: nauc_ndcg_at_1_diff1 value: 77.81816314669393 - type: nauc_ndcg_at_1_max value: 34.07485459082228 - type: nauc_ndcg_at_1_std value: -35.94895056306454 - type: nauc_ndcg_at_20_diff1 value: 76.96510332497088 - type: nauc_ndcg_at_20_max value: 34.450082024564146 - type: nauc_ndcg_at_20_std value: -40.63314555768711 - type: nauc_ndcg_at_3_diff1 value: 76.151643391554 - type: nauc_ndcg_at_3_max value: 34.66383376117758 - type: nauc_ndcg_at_3_std value: -41.39392660300224 - type: nauc_ndcg_at_5_diff1 value: 76.92278503649814 - type: nauc_ndcg_at_5_max value: 34.35931928202013 - type: nauc_ndcg_at_5_std value: -42.28302402211198 - type: nauc_precision_at_1000_diff1 value: -44.32392932408826 - type: nauc_precision_at_1000_max value: -1.5976203820441983 - type: nauc_precision_at_1000_std value: 38.70649763774179 - type: nauc_precision_at_100_diff1 value: -44.12260005400485 - type: nauc_precision_at_100_max value: -3.0647204564936312 - type: nauc_precision_at_100_std value: 36.21137758417562 - type: nauc_precision_at_10_diff1 value: -38.874503464270056 - type: nauc_precision_at_10_max value: -0.7995397378969676 - type: nauc_precision_at_10_std value: 25.08941543528278 - type: nauc_precision_at_1_diff1 value: 77.81816314669393 - type: nauc_precision_at_1_max value: 34.07485459082228 - type: nauc_precision_at_1_std value: -35.94895056306454 - type: nauc_precision_at_20_diff1 value: -41.93097475974228 - type: nauc_precision_at_20_max value: -2.691181750976814 - type: nauc_precision_at_20_std value: 30.655007568557085 - type: nauc_precision_at_3_diff1 value: -21.109490315436517 - type: nauc_precision_at_3_max value: 9.49736775358964 - type: nauc_precision_at_3_std value: 9.195033684093397 - type: nauc_precision_at_5_diff1 value: -32.49764534227595 - type: nauc_precision_at_5_max value: 3.0490365273648803 - type: nauc_precision_at_5_std value: 18.119935851058468 - type: nauc_recall_at_1000_diff1 value: 75.62341631050762 - type: nauc_recall_at_1000_max value: 83.86481603169511 - type: nauc_recall_at_1000_std value: 58.55405944964621 - type: nauc_recall_at_100_diff1 value: 65.95496827539912 - type: nauc_recall_at_100_max value: 14.97452268550046 - type: nauc_recall_at_100_std value: -62.18680465170524 - type: nauc_recall_at_10_diff1 value: 75.08434366486102 - type: nauc_recall_at_10_max value: 32.852276917018116 - type: nauc_recall_at_10_std value: -62.12970511272648 - type: nauc_recall_at_1_diff1 value: 80.4545167505852 - type: nauc_recall_at_1_max value: 23.403575293489297 - type: nauc_recall_at_1_std value: -38.73915078390272 - type: nauc_recall_at_20_diff1 value: 75.66480840772607 - type: nauc_recall_at_20_max value: 31.230359729601208 - type: nauc_recall_at_20_std value: -64.11261226121559 - type: nauc_recall_at_3_diff1 value: 73.81582560951404 - type: nauc_recall_at_3_max value: 31.052473048456708 - type: nauc_recall_at_3_std value: -49.45567344158681 - type: nauc_recall_at_5_diff1 value: 74.06384098137175 - type: nauc_recall_at_5_max value: 31.48187742884454 - type: nauc_recall_at_5_std value: -53.45142194227105 - type: ndcg_at_1 value: 81.84 - type: ndcg_at_10 value: 89.036 - type: ndcg_at_100 value: 90.08800000000001 - type: ndcg_at_1000 value: 90.171 - type: ndcg_at_20 value: 89.632 - type: ndcg_at_3 value: 86.39 - type: ndcg_at_5 value: 87.943 - type: precision_at_1 value: 81.84 - type: precision_at_10 value: 13.464 - type: precision_at_100 value: 1.49 - type: precision_at_1000 value: 0.152 - type: precision_at_20 value: 7.0760000000000005 - type: precision_at_3 value: 38.027 - type: precision_at_5 value: 24.951999999999998 - type: recall_at_1 value: 71.101 - type: recall_at_10 value: 96.071 - type: recall_at_100 value: 99.641 - type: recall_at_1000 value: 99.98700000000001 - type: recall_at_20 value: 97.961 - type: recall_at_3 value: 88.436 - type: recall_at_5 value: 92.898 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval (default) type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 89.208 - type: map_at_1 value: 71.635 - type: map_at_10 value: 85.625 - type: map_at_100 value: 86.236 - type: map_at_1000 value: 86.251 - type: map_at_20 value: 86.036 - type: map_at_3 value: 82.664 - type: map_at_5 value: 84.588 - type: mrr_at_1 value: 82.42 - type: mrr_at_10 value: 88.43901190476178 - type: mrr_at_100 value: 88.52632666726963 - type: mrr_at_1000 value: 88.52691231190065 - type: mrr_at_20 value: 88.5086530013243 - type: mrr_at_3 value: 87.52666666666644 - type: mrr_at_5 value: 88.16716666666639 - type: nauc_map_at_1000_diff1 value: 76.69308460928899 - type: nauc_map_at_1000_max value: 35.4676191405908 - type: nauc_map_at_1000_std value: -42.45246342350121 - type: nauc_map_at_100_diff1 value: 76.69724007993696 - type: nauc_map_at_100_max value: 35.44406733319827 - type: nauc_map_at_100_std value: -42.503413138162486 - type: nauc_map_at_10_diff1 value: 76.91685742813964 - type: nauc_map_at_10_max value: 35.02153657433807 - type: nauc_map_at_10_std value: -44.367365466570426 - type: nauc_map_at_1_diff1 value: 80.55801255675962 - type: nauc_map_at_1_max value: 27.058161138340527 - type: nauc_map_at_1_std value: -39.4963211510531 - type: nauc_map_at_20_diff1 value: 76.76447537369087 - type: nauc_map_at_20_max value: 35.32040158644433 - type: nauc_map_at_20_std value: -43.21303554960284 - type: nauc_map_at_3_diff1 value: 77.40499840514137 - type: nauc_map_at_3_max value: 33.10906358569285 - type: nauc_map_at_3_std value: -46.04737347284554 - type: nauc_map_at_5_diff1 value: 77.15728738532938 - type: nauc_map_at_5_max value: 34.33464314840439 - type: nauc_map_at_5_std value: -45.89958892369562 - type: nauc_mrr_at_1000_diff1 value: 77.31291439145946 - type: nauc_mrr_at_1000_max value: 37.230887514872805 - type: nauc_mrr_at_1000_std value: -39.38330115067387 - type: nauc_mrr_at_100_diff1 value: 77.31258475265957 - type: nauc_mrr_at_100_max value: 37.2318332422385 - type: nauc_mrr_at_100_std value: -39.38278945609743 - type: nauc_mrr_at_10_diff1 value: 77.27217320343534 - type: nauc_mrr_at_10_max value: 37.26080710249818 - type: nauc_mrr_at_10_std value: -39.5294415983385 - type: nauc_mrr_at_1_diff1 value: 78.23833876100495 - type: nauc_mrr_at_1_max value: 36.656764402278775 - type: nauc_mrr_at_1_std value: -37.255149721562184 - type: nauc_mrr_at_20_diff1 value: 77.30440129198894 - type: nauc_mrr_at_20_max value: 37.24212487079394 - type: nauc_mrr_at_20_std value: -39.40823051440391 - type: nauc_mrr_at_3_diff1 value: 77.0650697336263 - type: nauc_mrr_at_3_max value: 37.338365680984595 - type: nauc_mrr_at_3_std value: -39.61465396146359 - type: nauc_mrr_at_5_diff1 value: 77.23689991901227 - type: nauc_mrr_at_5_max value: 37.402095366186515 - type: nauc_mrr_at_5_std value: -39.81000570358434 - type: nauc_ndcg_at_1000_diff1 value: 76.52492111059385 - type: nauc_ndcg_at_1000_max value: 36.4917030050163 - type: nauc_ndcg_at_1000_std value: -40.57405843022022 - type: nauc_ndcg_at_100_diff1 value: 76.52885222990776 - type: nauc_ndcg_at_100_max value: 36.459002270403104 - type: nauc_ndcg_at_100_std value: -40.700799028706136 - type: nauc_ndcg_at_10_diff1 value: 76.47989448348181 - type: nauc_ndcg_at_10_max value: 36.07571701542727 - type: nauc_ndcg_at_10_std value: -43.68216832570433 - type: nauc_ndcg_at_1_diff1 value: 78.21904562929713 - type: nauc_ndcg_at_1_max value: 36.68800580256306 - type: nauc_ndcg_at_1_std value: -37.1106119214964 - type: nauc_ndcg_at_20_diff1 value: 76.51018855356082 - type: nauc_ndcg_at_20_max value: 36.25847353699082 - type: nauc_ndcg_at_20_std value: -42.26728405297162 - type: nauc_ndcg_at_3_diff1 value: 75.98751306811951 - type: nauc_ndcg_at_3_max value: 35.53532168839834 - type: nauc_ndcg_at_3_std value: -43.22027231551964 - type: nauc_ndcg_at_5_diff1 value: 76.41353684969529 - type: nauc_ndcg_at_5_max value: 35.84158818150277 - type: nauc_ndcg_at_5_std value: -44.678250163660735 - type: nauc_precision_at_1000_diff1 value: -44.547524496944504 - type: nauc_precision_at_1000_max value: -7.017755716303293 - type: nauc_precision_at_1000_std value: 37.81857144040679 - type: nauc_precision_at_100_diff1 value: -44.2990697671559 - type: nauc_precision_at_100_max value: -7.090370898560614 - type: nauc_precision_at_100_std value: 36.74158403150684 - type: nauc_precision_at_10_diff1 value: -39.80812285102048 - type: nauc_precision_at_10_max value: -3.2239932083528116 - type: nauc_precision_at_10_std value: 26.540899746112927 - type: nauc_precision_at_1_diff1 value: 78.21904562929713 - type: nauc_precision_at_1_max value: 36.68800580256306 - type: nauc_precision_at_1_std value: -37.1106119214964 - type: nauc_precision_at_20_diff1 value: -42.72592324685673 - type: nauc_precision_at_20_max value: -5.3434665602492455 - type: nauc_precision_at_20_std value: 32.0763404810473 - type: nauc_precision_at_3_diff1 value: -20.448213979815964 - type: nauc_precision_at_3_max value: 6.48540224514135 - type: nauc_precision_at_3_std value: 7.144269812256157 - type: nauc_precision_at_5_diff1 value: -32.73748400918877 - type: nauc_precision_at_5_max value: 0.5351204546857261 - type: nauc_precision_at_5_std value: 17.21939760056977 - type: nauc_recall_at_1000_diff1 value: 54.36176817603542 - type: nauc_recall_at_1000_max value: 8.42245797354225 - type: nauc_recall_at_1000_std value: 20.82920230407764 - type: nauc_recall_at_100_diff1 value: 70.75825465627794 - type: nauc_recall_at_100_max value: 40.02545502828442 - type: nauc_recall_at_100_std value: -29.381365717773434 - type: nauc_recall_at_10_diff1 value: 71.99814968277674 - type: nauc_recall_at_10_max value: 33.07283139289303 - type: nauc_recall_at_10_std value: -61.868754150647 - type: nauc_recall_at_1_diff1 value: 80.55801255675962 - type: nauc_recall_at_1_max value: 27.058161138340527 - type: nauc_recall_at_1_std value: -39.4963211510531 - type: nauc_recall_at_20_diff1 value: 72.20770471431179 - type: nauc_recall_at_20_max value: 34.27388608815473 - type: nauc_recall_at_20_std value: -57.02562075619354 - type: nauc_recall_at_3_diff1 value: 73.33228189075119 - type: nauc_recall_at_3_max value: 31.031018188701548 - type: nauc_recall_at_3_std value: -51.71143501327714 - type: nauc_recall_at_5_diff1 value: 72.23242137345602 - type: nauc_recall_at_5_max value: 32.306978089143975 - type: nauc_recall_at_5_std value: -58.18075857337518 - type: ndcg_at_1 value: 82.43 - type: ndcg_at_10 value: 89.208 - type: ndcg_at_100 value: 90.312 - type: ndcg_at_1000 value: 90.39500000000001 - type: ndcg_at_20 value: 89.822 - type: ndcg_at_3 value: 86.443 - type: ndcg_at_5 value: 88.051 - type: precision_at_1 value: 82.43 - type: precision_at_10 value: 13.513 - type: precision_at_100 value: 1.532 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.158 - type: precision_at_3 value: 37.753 - type: precision_at_5 value: 24.886 - type: recall_at_1 value: 71.635 - type: recall_at_10 value: 95.967 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.98599999999999 - type: recall_at_20 value: 97.897 - type: recall_at_3 value: 88.036 - type: recall_at_5 value: 92.551 - task: type: Retrieval dataset: name: MTEB SCIDOCS (default) type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: main_score value: 22.585 - type: map_at_1 value: 5.267 - type: map_at_10 value: 13.682 - type: map_at_100 value: 15.821 - type: map_at_1000 value: 16.155 - type: map_at_20 value: 14.776 - type: map_at_3 value: 9.447999999999999 - type: map_at_5 value: 11.537 - type: mrr_at_1 value: 25.900000000000002 - type: mrr_at_10 value: 37.2399206349206 - type: mrr_at_100 value: 38.27279652206334 - type: mrr_at_1000 value: 38.32018340983372 - type: mrr_at_20 value: 37.88470320013656 - type: mrr_at_3 value: 33.70000000000001 - type: mrr_at_5 value: 35.929999999999964 - type: nauc_map_at_1000_diff1 value: 15.010512584883928 - type: nauc_map_at_1000_max value: 28.131592592280125 - type: nauc_map_at_1000_std value: 18.23227227598505 - type: nauc_map_at_100_diff1 value: 15.038422438580948 - type: nauc_map_at_100_max value: 28.118579098188683 - type: nauc_map_at_100_std value: 18.102627506796637 - type: nauc_map_at_10_diff1 value: 15.2281617921156 - type: nauc_map_at_10_max value: 26.358609940161813 - type: nauc_map_at_10_std value: 14.028442329121555 - type: nauc_map_at_1_diff1 value: 19.804944135000376 - type: nauc_map_at_1_max value: 20.639841719764735 - type: nauc_map_at_1_std value: 8.423093067457737 - type: nauc_map_at_20_diff1 value: 15.2511720546573 - type: nauc_map_at_20_max value: 27.7290112272419 - type: nauc_map_at_20_std value: 16.279489028653636 - type: nauc_map_at_3_diff1 value: 18.969154716718396 - type: nauc_map_at_3_max value: 25.211069495284065 - type: nauc_map_at_3_std value: 8.183585306093075 - type: nauc_map_at_5_diff1 value: 16.995226268024048 - type: nauc_map_at_5_max value: 26.05551249234277 - type: nauc_map_at_5_std value: 10.672250037070603 - type: nauc_mrr_at_1000_diff1 value: 18.900489928879864 - type: nauc_mrr_at_1000_max value: 24.818364671912125 - type: nauc_mrr_at_1000_std value: 13.55809626059453 - type: nauc_mrr_at_100_diff1 value: 18.885312642782274 - type: nauc_mrr_at_100_max value: 24.815818576928283 - type: nauc_mrr_at_100_std value: 13.59041082400011 - type: nauc_mrr_at_10_diff1 value: 18.840497849547965 - type: nauc_mrr_at_10_max value: 24.508418448385445 - type: nauc_mrr_at_10_std value: 13.24104462801846 - type: nauc_mrr_at_1_diff1 value: 19.939676779904232 - type: nauc_mrr_at_1_max value: 20.867982502501388 - type: nauc_mrr_at_1_std value: 8.654485218204698 - type: nauc_mrr_at_20_diff1 value: 18.75686501314611 - type: nauc_mrr_at_20_max value: 24.764731653376685 - type: nauc_mrr_at_20_std value: 13.593035396029709 - type: nauc_mrr_at_3_diff1 value: 19.762798012479887 - type: nauc_mrr_at_3_max value: 24.851437035247397 - type: nauc_mrr_at_3_std value: 11.616646922331773 - type: nauc_mrr_at_5_diff1 value: 19.48751619117306 - type: nauc_mrr_at_5_max value: 25.02565432972893 - type: nauc_mrr_at_5_std value: 13.096726015560694 - type: nauc_ndcg_at_1000_diff1 value: 14.421194341988578 - type: nauc_ndcg_at_1000_max value: 29.46627137066849 - type: nauc_ndcg_at_1000_std value: 25.294914478704282 - type: nauc_ndcg_at_100_diff1 value: 14.188910253634393 - type: nauc_ndcg_at_100_max value: 29.675945969703676 - type: nauc_ndcg_at_100_std value: 25.152541930218398 - type: nauc_ndcg_at_10_diff1 value: 14.950700299876996 - type: nauc_ndcg_at_10_max value: 26.552125339735355 - type: nauc_ndcg_at_10_std value: 16.423237887520827 - type: nauc_ndcg_at_1_diff1 value: 19.939676779904232 - type: nauc_ndcg_at_1_max value: 20.867982502501388 - type: nauc_ndcg_at_1_std value: 8.654485218204698 - type: nauc_ndcg_at_20_diff1 value: 14.646062844584721 - type: nauc_ndcg_at_20_max value: 29.019613358216105 - type: nauc_ndcg_at_20_std value: 20.258510159436103 - type: nauc_ndcg_at_3_diff1 value: 19.14228516186438 - type: nauc_ndcg_at_3_max value: 25.884698532628796 - type: nauc_ndcg_at_3_std value: 10.082340457184428 - type: nauc_ndcg_at_5_diff1 value: 17.648427955677832 - type: nauc_ndcg_at_5_max value: 26.960002111496234 - type: nauc_ndcg_at_5_std value: 13.165986859638604 - type: nauc_precision_at_1000_diff1 value: 3.837505819613137 - type: nauc_precision_at_1000_max value: 22.085273204384773 - type: nauc_precision_at_1000_std value: 37.749767215473746 - type: nauc_precision_at_100_diff1 value: 6.0618779651125525 - type: nauc_precision_at_100_max value: 26.55293689015515 - type: nauc_precision_at_100_std value: 35.92840742685366 - type: nauc_precision_at_10_diff1 value: 9.609219002496197 - type: nauc_precision_at_10_max value: 24.7210313158673 - type: nauc_precision_at_10_std value: 19.688687883244082 - type: nauc_precision_at_1_diff1 value: 19.939676779904232 - type: nauc_precision_at_1_max value: 20.867982502501388 - type: nauc_precision_at_1_std value: 8.654485218204698 - type: nauc_precision_at_20_diff1 value: 8.491039455217111 - type: nauc_precision_at_20_max value: 28.41137144178967 - type: nauc_precision_at_20_std value: 26.3995307896142 - type: nauc_precision_at_3_diff1 value: 18.574797308038786 - type: nauc_precision_at_3_max value: 27.317203178234887 - type: nauc_precision_at_3_std value: 10.752025361042627 - type: nauc_precision_at_5_diff1 value: 15.19646090790648 - type: nauc_precision_at_5_max value: 27.46968680886624 - type: nauc_precision_at_5_std value: 15.291114444897175 - type: nauc_recall_at_1000_diff1 value: 3.8560988027864984 - type: nauc_recall_at_1000_max value: 21.962689956944313 - type: nauc_recall_at_1000_std value: 39.54218946626981 - type: nauc_recall_at_100_diff1 value: 6.027047924475086 - type: nauc_recall_at_100_max value: 26.199898112709867 - type: nauc_recall_at_100_std value: 36.2830620090185 - type: nauc_recall_at_10_diff1 value: 9.535572267531073 - type: nauc_recall_at_10_max value: 24.611837567240595 - type: nauc_recall_at_10_std value: 19.643464138242795 - type: nauc_recall_at_1_diff1 value: 19.804944135000376 - type: nauc_recall_at_1_max value: 20.639841719764735 - type: nauc_recall_at_1_std value: 8.423093067457737 - type: nauc_recall_at_20_diff1 value: 8.380441122318603 - type: nauc_recall_at_20_max value: 28.304675323191418 - type: nauc_recall_at_20_std value: 26.478505583494798 - type: nauc_recall_at_3_diff1 value: 18.589842650254056 - type: nauc_recall_at_3_max value: 27.267022468432433 - type: nauc_recall_at_3_std value: 10.489972416983772 - type: nauc_recall_at_5_diff1 value: 14.991522037739355 - type: nauc_recall_at_5_max value: 27.171074789756666 - type: nauc_recall_at_5_std value: 15.06566087881635 - type: ndcg_at_1 value: 25.900000000000002 - type: ndcg_at_10 value: 22.585 - type: ndcg_at_100 value: 30.666 - type: ndcg_at_1000 value: 36.356 - type: ndcg_at_20 value: 25.469 - type: ndcg_at_3 value: 20.892 - type: ndcg_at_5 value: 18.617 - type: precision_at_1 value: 25.900000000000002 - type: precision_at_10 value: 11.84 - type: precision_at_100 value: 2.3539999999999996 - type: precision_at_1000 value: 0.372 - type: precision_at_20 value: 7.595000000000001 - type: precision_at_3 value: 19.467000000000002 - type: precision_at_5 value: 16.5 - type: recall_at_1 value: 5.267 - type: recall_at_10 value: 24.023 - type: recall_at_100 value: 47.825 - type: recall_at_1000 value: 75.613 - type: recall_at_20 value: 30.814999999999998 - type: recall_at_3 value: 11.831999999999999 - type: recall_at_5 value: 16.742 - task: type: Retrieval dataset: name: MTEB SciFact (default) type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 73.095 - type: map_at_1 value: 58.760999999999996 - type: map_at_10 value: 68.645 - type: map_at_100 value: 69.273 - type: map_at_1000 value: 69.28999999999999 - type: map_at_20 value: 69.148 - type: map_at_3 value: 65.93 - type: map_at_5 value: 67.227 - type: mrr_at_1 value: 62.0 - type: mrr_at_10 value: 69.9334656084656 - type: mrr_at_100 value: 70.4425638039262 - type: mrr_at_1000 value: 70.4592383022689 - type: mrr_at_20 value: 70.3430039931975 - type: mrr_at_3 value: 67.94444444444444 - type: mrr_at_5 value: 68.9111111111111 - type: nauc_map_at_1000_diff1 value: 73.89926164336681 - type: nauc_map_at_1000_max value: 58.520107712601245 - type: nauc_map_at_1000_std value: 6.203966518670752 - type: nauc_map_at_100_diff1 value: 73.88266895863376 - type: nauc_map_at_100_max value: 58.52869559413426 - type: nauc_map_at_100_std value: 6.2094530706982605 - type: nauc_map_at_10_diff1 value: 73.83454676041971 - type: nauc_map_at_10_max value: 58.728632474849476 - type: nauc_map_at_10_std value: 6.161321625117715 - type: nauc_map_at_1_diff1 value: 75.8262967666803 - type: nauc_map_at_1_max value: 50.75430912296499 - type: nauc_map_at_1_std value: -3.611304329879618 - type: nauc_map_at_20_diff1 value: 73.7570380099859 - type: nauc_map_at_20_max value: 58.579878823697186 - type: nauc_map_at_20_std value: 6.331471307882834 - type: nauc_map_at_3_diff1 value: 73.8670063410728 - type: nauc_map_at_3_max value: 56.097293037109296 - type: nauc_map_at_3_std value: 3.118147916941721 - type: nauc_map_at_5_diff1 value: 73.85961347670359 - type: nauc_map_at_5_max value: 56.73699214051663 - type: nauc_map_at_5_std value: 4.106265483441233 - type: nauc_mrr_at_1000_diff1 value: 74.43827928989487 - type: nauc_mrr_at_1000_max value: 60.4918184019879 - type: nauc_mrr_at_1000_std value: 8.2550027653635 - type: nauc_mrr_at_100_diff1 value: 74.42093690901741 - type: nauc_mrr_at_100_max value: 60.499273965963 - type: nauc_mrr_at_100_std value: 8.259231345026938 - type: nauc_mrr_at_10_diff1 value: 74.35347564500812 - type: nauc_mrr_at_10_max value: 60.84757750349501 - type: nauc_mrr_at_10_std value: 8.661941517184076 - type: nauc_mrr_at_1_diff1 value: 76.705227209796 - type: nauc_mrr_at_1_max value: 57.32137546277776 - type: nauc_mrr_at_1_std value: 4.129875191007982 - type: nauc_mrr_at_20_diff1 value: 74.30079205050251 - type: nauc_mrr_at_20_max value: 60.53532363656904 - type: nauc_mrr_at_20_std value: 8.32956272621327 - type: nauc_mrr_at_3_diff1 value: 74.87770487889848 - type: nauc_mrr_at_3_max value: 60.084677423267784 - type: nauc_mrr_at_3_std value: 7.3354753376762964 - type: nauc_mrr_at_5_diff1 value: 74.40302787656852 - type: nauc_mrr_at_5_max value: 60.069030786945795 - type: nauc_mrr_at_5_std value: 7.9515339665590075 - type: nauc_ndcg_at_1000_diff1 value: 73.66774503145189 - type: nauc_ndcg_at_1000_max value: 60.51016113928767 - type: nauc_ndcg_at_1000_std value: 8.65619371919538 - type: nauc_ndcg_at_100_diff1 value: 73.31381886910967 - type: nauc_ndcg_at_100_max value: 60.804013515995535 - type: nauc_ndcg_at_100_std value: 8.968020348251471 - type: nauc_ndcg_at_10_diff1 value: 72.99733432767304 - type: nauc_ndcg_at_10_max value: 62.116824264281135 - type: nauc_ndcg_at_10_std value: 9.809485757709925 - type: nauc_ndcg_at_1_diff1 value: 76.705227209796 - type: nauc_ndcg_at_1_max value: 57.32137546277776 - type: nauc_ndcg_at_1_std value: 4.129875191007982 - type: nauc_ndcg_at_20_diff1 value: 72.52123153995032 - type: nauc_ndcg_at_20_max value: 61.27934142158071 - type: nauc_ndcg_at_20_std value: 9.86085851593245 - type: nauc_ndcg_at_3_diff1 value: 73.29758270502096 - type: nauc_ndcg_at_3_max value: 59.004555912521774 - type: nauc_ndcg_at_3_std value: 6.372325905257958 - type: nauc_ndcg_at_5_diff1 value: 72.98853570048864 - type: nauc_ndcg_at_5_max value: 58.64946586595039 - type: nauc_ndcg_at_5_std value: 6.492229141399973 - type: nauc_precision_at_1000_diff1 value: -18.039255567985364 - type: nauc_precision_at_1000_max value: 20.62036001220385 - type: nauc_precision_at_1000_std value: 48.84436760568162 - type: nauc_precision_at_100_diff1 value: -7.274183459314691 - type: nauc_precision_at_100_max value: 27.97079336127723 - type: nauc_precision_at_100_std value: 45.54563683450541 - type: nauc_precision_at_10_diff1 value: 18.09725433020935 - type: nauc_precision_at_10_max value: 49.11398598954457 - type: nauc_precision_at_10_std value: 43.237184128141266 - type: nauc_precision_at_1_diff1 value: 76.705227209796 - type: nauc_precision_at_1_max value: 57.32137546277776 - type: nauc_precision_at_1_std value: 4.129875191007982 - type: nauc_precision_at_20_diff1 value: 1.3410525627186838 - type: nauc_precision_at_20_max value: 37.35867159476222 - type: nauc_precision_at_20_std value: 48.245728802102036 - type: nauc_precision_at_3_diff1 value: 46.28921347186669 - type: nauc_precision_at_3_max value: 55.29086984891835 - type: nauc_precision_at_3_std value: 25.485619635597068 - type: nauc_precision_at_5_diff1 value: 36.10414877829668 - type: nauc_precision_at_5_max value: 50.74423891086506 - type: nauc_precision_at_5_std value: 29.633563462559685 - type: nauc_recall_at_1000_diff1 value: 100.0 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 55.4154995331476 - type: nauc_recall_at_100_diff1 value: 63.437597261126946 - type: nauc_recall_at_100_max value: 76.15157173980718 - type: nauc_recall_at_100_std value: 27.439309056956162 - type: nauc_recall_at_10_diff1 value: 66.76520922141613 - type: nauc_recall_at_10_max value: 74.88986784140963 - type: nauc_recall_at_10_std value: 22.76893323200783 - type: nauc_recall_at_1_diff1 value: 75.8262967666803 - type: nauc_recall_at_1_max value: 50.75430912296499 - type: nauc_recall_at_1_std value: -3.611304329879618 - type: nauc_recall_at_20_diff1 value: 57.56881264902657 - type: nauc_recall_at_20_max value: 74.94173978131198 - type: nauc_recall_at_20_std value: 30.5661658602836 - type: nauc_recall_at_3_diff1 value: 69.47119910780243 - type: nauc_recall_at_3_max value: 59.27944653429989 - type: nauc_recall_at_3_std value: 6.2814183903482546 - type: nauc_recall_at_5_diff1 value: 68.10420927979328 - type: nauc_recall_at_5_max value: 60.164296893761815 - type: nauc_recall_at_5_std value: 9.5025037567499 - type: ndcg_at_1 value: 62.0 - type: ndcg_at_10 value: 73.095 - type: ndcg_at_100 value: 75.57199999999999 - type: ndcg_at_1000 value: 76.03 - type: ndcg_at_20 value: 74.785 - type: ndcg_at_3 value: 68.527 - type: ndcg_at_5 value: 70.333 - type: precision_at_1 value: 62.0 - type: precision_at_10 value: 9.667 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.2170000000000005 - type: precision_at_3 value: 26.667 - type: precision_at_5 value: 17.267 - type: recall_at_1 value: 58.760999999999996 - type: recall_at_10 value: 85.422 - type: recall_at_100 value: 96.0 - type: recall_at_1000 value: 99.667 - type: recall_at_20 value: 91.93299999999999 - type: recall_at_3 value: 72.906 - type: recall_at_5 value: 77.694 - task: type: Retrieval dataset: name: MTEB SciFact (default) type: mteb/scifact config: default split: train revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 76.527 - type: map_at_1 value: 62.159 - type: map_at_10 value: 72.298 - type: map_at_100 value: 72.789 - type: map_at_1000 value: 72.80499999999999 - type: map_at_20 value: 72.658 - type: map_at_3 value: 69.697 - type: map_at_5 value: 71.405 - type: mrr_at_1 value: 65.01854140914709 - type: mrr_at_10 value: 73.3364235681912 - type: mrr_at_100 value: 73.69023773006475 - type: mrr_at_1000 value: 73.70379275258956 - type: mrr_at_20 value: 73.58899784126623 - type: mrr_at_3 value: 71.63164400494436 - type: mrr_at_5 value: 72.6266996291718 - type: nauc_map_at_1000_diff1 value: 72.26196805521474 - type: nauc_map_at_1000_max value: 54.82473601925078 - type: nauc_map_at_1000_std value: 7.532896905808398 - type: nauc_map_at_100_diff1 value: 72.26762601665212 - type: nauc_map_at_100_max value: 54.84436183081319 - type: nauc_map_at_100_std value: 7.553915623782155 - type: nauc_map_at_10_diff1 value: 72.09152947041464 - type: nauc_map_at_10_max value: 54.566662723409344 - type: nauc_map_at_10_std value: 6.8617531224659984 - type: nauc_map_at_1_diff1 value: 76.44362554275227 - type: nauc_map_at_1_max value: 47.92837030943323 - type: nauc_map_at_1_std value: 1.2712665978711795 - type: nauc_map_at_20_diff1 value: 72.1932546895839 - type: nauc_map_at_20_max value: 54.77868328671626 - type: nauc_map_at_20_std value: 7.5390256852193085 - type: nauc_map_at_3_diff1 value: 72.32463213490826 - type: nauc_map_at_3_max value: 51.82850176376716 - type: nauc_map_at_3_std value: 3.313691247008456 - type: nauc_map_at_5_diff1 value: 72.07694535940702 - type: nauc_map_at_5_max value: 53.746544557259725 - type: nauc_map_at_5_std value: 5.460765188941276 - type: nauc_mrr_at_1000_diff1 value: 71.91364820971862 - type: nauc_mrr_at_1000_max value: 55.999150811401144 - type: nauc_mrr_at_1000_std value: 10.398705225694902 - type: nauc_mrr_at_100_diff1 value: 71.9166900352723 - type: nauc_mrr_at_100_max value: 56.0158980617252 - type: nauc_mrr_at_100_std value: 10.416397031952592 - type: nauc_mrr_at_10_diff1 value: 71.6000299472608 - type: nauc_mrr_at_10_max value: 55.91890883710817 - type: nauc_mrr_at_10_std value: 10.291906323764916 - type: nauc_mrr_at_1_diff1 value: 76.49718519036318 - type: nauc_mrr_at_1_max value: 54.12604217431032 - type: nauc_mrr_at_1_std value: 8.333140302649584 - type: nauc_mrr_at_20_diff1 value: 71.83180901219741 - type: nauc_mrr_at_20_max value: 55.95516059386792 - type: nauc_mrr_at_20_std value: 10.410595110736114 - type: nauc_mrr_at_3_diff1 value: 71.41066101878594 - type: nauc_mrr_at_3_max value: 56.33030426786812 - type: nauc_mrr_at_3_std value: 9.807092627499873 - type: nauc_mrr_at_5_diff1 value: 71.48457263107547 - type: nauc_mrr_at_5_max value: 55.79523079804451 - type: nauc_mrr_at_5_std value: 9.56339540662926 - type: nauc_ndcg_at_1000_diff1 value: 71.00844332582724 - type: nauc_ndcg_at_1000_max value: 56.0830968411215 - type: nauc_ndcg_at_1000_std value: 10.12536414515097 - type: nauc_ndcg_at_100_diff1 value: 71.08255901217294 - type: nauc_ndcg_at_100_max value: 56.58354344196779 - type: nauc_ndcg_at_100_std value: 10.788436869510683 - type: nauc_ndcg_at_10_diff1 value: 70.0351612983415 - type: nauc_ndcg_at_10_max value: 55.69237259785501 - type: nauc_ndcg_at_10_std value: 9.098137226872005 - type: nauc_ndcg_at_1_diff1 value: 76.49718519036318 - type: nauc_ndcg_at_1_max value: 54.12604217431032 - type: nauc_ndcg_at_1_std value: 8.333140302649584 - type: nauc_ndcg_at_20_diff1 value: 70.55288229160162 - type: nauc_ndcg_at_20_max value: 56.02912372617168 - type: nauc_ndcg_at_20_std value: 10.658004918812695 - type: nauc_ndcg_at_3_diff1 value: 70.05425859113052 - type: nauc_ndcg_at_3_max value: 53.60471853426119 - type: nauc_ndcg_at_3_std value: 5.230816816865092 - type: nauc_ndcg_at_5_diff1 value: 69.93016148017965 - type: nauc_ndcg_at_5_max value: 54.4721191074644 - type: nauc_ndcg_at_5_std value: 6.577620935495792 - type: nauc_precision_at_1000_diff1 value: -34.15207795410865 - type: nauc_precision_at_1000_max value: 19.192406477803747 - type: nauc_precision_at_1000_std value: 44.20120249056698 - type: nauc_precision_at_100_diff1 value: -21.92421802281828 - type: nauc_precision_at_100_max value: 27.932025006196444 - type: nauc_precision_at_100_std value: 46.15700787499129 - type: nauc_precision_at_10_diff1 value: 1.4405770914568594 - type: nauc_precision_at_10_max value: 39.638084561158536 - type: nauc_precision_at_10_std value: 36.69460260973796 - type: nauc_precision_at_1_diff1 value: 76.49718519036318 - type: nauc_precision_at_1_max value: 54.12604217431032 - type: nauc_precision_at_1_std value: 8.333140302649584 - type: nauc_precision_at_20_diff1 value: -9.073464951503986 - type: nauc_precision_at_20_max value: 33.43558333269937 - type: nauc_precision_at_20_std value: 43.649313315759635 - type: nauc_precision_at_3_diff1 value: 33.24438747635695 - type: nauc_precision_at_3_max value: 49.669129551161866 - type: nauc_precision_at_3_std value: 20.597427388463906 - type: nauc_precision_at_5_diff1 value: 14.390391464956412 - type: nauc_precision_at_5_max value: 42.21194236044368 - type: nauc_precision_at_5_std value: 27.341151685288402 - type: nauc_recall_at_1000_diff1 value: -13.439275396098257 - type: nauc_recall_at_1000_max value: 70.2668332789378 - type: nauc_recall_at_1000_std value: 81.47725384292593 - type: nauc_recall_at_100_diff1 value: 63.12484158375845 - type: nauc_recall_at_100_max value: 78.21397899681712 - type: nauc_recall_at_100_std value: 47.95971895328952 - type: nauc_recall_at_10_diff1 value: 59.258619066241124 - type: nauc_recall_at_10_max value: 55.72780924365118 - type: nauc_recall_at_10_std value: 12.070465110706309 - type: nauc_recall_at_1_diff1 value: 76.44362554275227 - type: nauc_recall_at_1_max value: 47.92837030943323 - type: nauc_recall_at_1_std value: 1.2712665978711795 - type: nauc_recall_at_20_diff1 value: 60.27194163739572 - type: nauc_recall_at_20_max value: 57.859640930044556 - type: nauc_recall_at_20_std value: 24.959871261637183 - type: nauc_recall_at_3_diff1 value: 63.809558015026404 - type: nauc_recall_at_3_max value: 50.68780898644539 - type: nauc_recall_at_3_std value: 0.37064353382673126 - type: nauc_recall_at_5_diff1 value: 61.34563891446967 - type: nauc_recall_at_5_max value: 52.02870480839336 - type: nauc_recall_at_5_std value: 3.3678431493557657 - type: ndcg_at_1 value: 65.019 - type: ndcg_at_10 value: 76.527 - type: ndcg_at_100 value: 78.476 - type: ndcg_at_1000 value: 78.859 - type: ndcg_at_20 value: 77.608 - type: ndcg_at_3 value: 72.237 - type: ndcg_at_5 value: 74.578 - type: precision_at_1 value: 65.019 - type: precision_at_10 value: 9.963 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.235 - type: precision_at_3 value: 28.224 - type: precision_at_5 value: 18.541 - type: recall_at_1 value: 62.159 - type: recall_at_10 value: 88.177 - type: recall_at_100 value: 96.70400000000001 - type: recall_at_1000 value: 99.629 - type: recall_at_20 value: 92.171 - type: recall_at_3 value: 76.98 - type: recall_at_5 value: 82.39800000000001 - task: type: Retrieval dataset: name: MTEB TRECCOVID (default) type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: main_score value: 85.786 - type: map_at_1 value: 0.241 - type: map_at_10 value: 2.2560000000000002 - type: map_at_100 value: 13.478000000000002 - type: map_at_1000 value: 32.080999999999996 - type: map_at_20 value: 4.034 - type: map_at_3 value: 0.721 - type: map_at_5 value: 1.202 - type: mrr_at_1 value: 92.0 - type: mrr_at_10 value: 95.66666666666666 - type: mrr_at_100 value: 95.66666666666666 - type: mrr_at_1000 value: 95.66666666666666 - type: mrr_at_20 value: 95.66666666666666 - type: mrr_at_3 value: 95.66666666666666 - type: mrr_at_5 value: 95.66666666666666 - type: nauc_map_at_1000_diff1 value: -33.856397215348224 - type: nauc_map_at_1000_max value: 52.442628978801686 - type: nauc_map_at_1000_std value: 78.121550023329 - type: nauc_map_at_100_diff1 value: -24.62901955392776 - type: nauc_map_at_100_max value: 23.848254681406715 - type: nauc_map_at_100_std value: 44.891168295557435 - type: nauc_map_at_10_diff1 value: 8.624081477851847 - type: nauc_map_at_10_max value: -9.045454596970382 - type: nauc_map_at_10_std value: -5.7784874943617375 - type: nauc_map_at_1_diff1 value: 17.522197196988433 - type: nauc_map_at_1_max value: -9.591987859324789 - type: nauc_map_at_1_std value: -7.711185842864 - type: nauc_map_at_20_diff1 value: -0.3901783306886495 - type: nauc_map_at_20_max value: -2.061541912435094 - type: nauc_map_at_20_std value: 5.1798742009931 - type: nauc_map_at_3_diff1 value: 13.263750752688159 - type: nauc_map_at_3_max value: -9.833822942004682 - type: nauc_map_at_3_std value: -9.816054237663943 - type: nauc_map_at_5_diff1 value: 11.492446526529632 - type: nauc_map_at_5_max value: -10.413949409485241 - type: nauc_map_at_5_std value: -11.239134010710497 - type: nauc_mrr_at_1000_diff1 value: -31.20376355670401 - type: nauc_mrr_at_1000_max value: 46.59197012138196 - type: nauc_mrr_at_1000_std value: 80.28442146089233 - type: nauc_mrr_at_100_diff1 value: -31.20376355670401 - type: nauc_mrr_at_100_max value: 46.59197012138196 - type: nauc_mrr_at_100_std value: 80.28442146089233 - type: nauc_mrr_at_10_diff1 value: -31.20376355670401 - type: nauc_mrr_at_10_max value: 46.59197012138196 - type: nauc_mrr_at_10_std value: 80.28442146089233 - type: nauc_mrr_at_1_diff1 value: -29.108309990663138 - type: nauc_mrr_at_1_max value: 43.23062558356683 - type: nauc_mrr_at_1_std value: 78.64145658263308 - type: nauc_mrr_at_20_diff1 value: -31.20376355670401 - type: nauc_mrr_at_20_max value: 46.59197012138196 - type: nauc_mrr_at_20_std value: 80.28442146089233 - type: nauc_mrr_at_3_diff1 value: -31.20376355670401 - type: nauc_mrr_at_3_max value: 46.59197012138196 - type: nauc_mrr_at_3_std value: 80.28442146089233 - type: nauc_mrr_at_5_diff1 value: -31.20376355670401 - type: nauc_mrr_at_5_max value: 46.59197012138196 - type: nauc_mrr_at_5_std value: 80.28442146089233 - type: nauc_ndcg_at_1000_diff1 value: -30.02494733757554 - type: nauc_ndcg_at_1000_max value: 46.879741543484386 - type: nauc_ndcg_at_1000_std value: 71.28860776857371 - type: nauc_ndcg_at_100_diff1 value: -40.382758704499686 - type: nauc_ndcg_at_100_max value: 46.81853301905501 - type: nauc_ndcg_at_100_std value: 78.08882504276026 - type: nauc_ndcg_at_10_diff1 value: -37.9762225498264 - type: nauc_ndcg_at_10_max value: 33.818776701290645 - type: nauc_ndcg_at_10_std value: 60.60876378870803 - type: nauc_ndcg_at_1_diff1 value: -29.64995269631029 - type: nauc_ndcg_at_1_max value: 11.702932828760678 - type: nauc_ndcg_at_1_std value: 46.36707663197732 - type: nauc_ndcg_at_20_diff1 value: -34.21566964686303 - type: nauc_ndcg_at_20_max value: 35.71546714747097 - type: nauc_ndcg_at_20_std value: 64.96478634285614 - type: nauc_ndcg_at_3_diff1 value: -40.87606957878375 - type: nauc_ndcg_at_3_max value: 34.266783345764296 - type: nauc_ndcg_at_3_std value: 59.417588176302125 - type: nauc_ndcg_at_5_diff1 value: -40.86776131403312 - type: nauc_ndcg_at_5_max value: 32.103157304099696 - type: nauc_ndcg_at_5_std value: 53.26187123017394 - type: nauc_precision_at_1000_diff1 value: -27.155383361683644 - type: nauc_precision_at_1000_max value: 47.99609392284812 - type: nauc_precision_at_1000_std value: 53.130872385717154 - type: nauc_precision_at_100_diff1 value: -44.040520753793835 - type: nauc_precision_at_100_max value: 49.40807778768706 - type: nauc_precision_at_100_std value: 76.68780066667708 - type: nauc_precision_at_10_diff1 value: -38.63910231606874 - type: nauc_precision_at_10_max value: 42.93405560776088 - type: nauc_precision_at_10_std value: 66.83323199380891 - type: nauc_precision_at_1_diff1 value: -29.108309990663138 - type: nauc_precision_at_1_max value: 43.23062558356683 - type: nauc_precision_at_1_std value: 78.64145658263308 - type: nauc_precision_at_20_diff1 value: -35.962158439352734 - type: nauc_precision_at_20_max value: 36.22370294628403 - type: nauc_precision_at_20_std value: 65.49049101917842 - type: nauc_precision_at_3_diff1 value: -53.11469565992303 - type: nauc_precision_at_3_max value: 62.111220033865045 - type: nauc_precision_at_3_std value: 67.69895731218259 - type: nauc_precision_at_5_diff1 value: -53.04735248757662 - type: nauc_precision_at_5_max value: 60.29588164734101 - type: nauc_precision_at_5_std value: 61.332609813217566 - type: nauc_recall_at_1000_diff1 value: -26.68853089093055 - type: nauc_recall_at_1000_max value: 40.15392752238839 - type: nauc_recall_at_1000_std value: 58.18451441165892 - type: nauc_recall_at_100_diff1 value: -15.581247880461934 - type: nauc_recall_at_100_max value: 10.81212430083709 - type: nauc_recall_at_100_std value: 27.018420696008477 - type: nauc_recall_at_10_diff1 value: 11.246082508546243 - type: nauc_recall_at_10_max value: -13.581652280948264 - type: nauc_recall_at_10_std value: -11.980214279022423 - type: nauc_recall_at_1_diff1 value: 17.522197196988433 - type: nauc_recall_at_1_max value: -9.591987859324789 - type: nauc_recall_at_1_std value: -7.711185842864 - type: nauc_recall_at_20_diff1 value: 4.890473144429516 - type: nauc_recall_at_20_max value: -8.848258614984216 - type: nauc_recall_at_20_std value: -4.194164888978863 - type: nauc_recall_at_3_diff1 value: 13.525152290557976 - type: nauc_recall_at_3_max value: -13.266833552882778 - type: nauc_recall_at_3_std value: -14.734712973008559 - type: nauc_recall_at_5_diff1 value: 12.38086304308239 - type: nauc_recall_at_5_max value: -14.125430291797542 - type: nauc_recall_at_5_std value: -16.303159417191377 - type: ndcg_at_1 value: 90.0 - type: ndcg_at_10 value: 85.786 - type: ndcg_at_100 value: 65.689 - type: ndcg_at_1000 value: 57.51500000000001 - type: ndcg_at_20 value: 81.291 - type: ndcg_at_3 value: 89.531 - type: ndcg_at_5 value: 88.435 - type: precision_at_1 value: 92.0 - type: precision_at_10 value: 90.0 - type: precision_at_100 value: 67.64 - type: precision_at_1000 value: 25.422 - type: precision_at_20 value: 84.89999999999999 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 93.2 - type: recall_at_1 value: 0.241 - type: recall_at_10 value: 2.37 - type: recall_at_100 value: 16.242 - type: recall_at_1000 value: 53.702000000000005 - type: recall_at_20 value: 4.343 - type: recall_at_3 value: 0.744 - type: recall_at_5 value: 1.248 - task: type: Retrieval dataset: name: MTEB Touche2020 (default) type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: main_score value: 30.676 - type: map_at_1 value: 3.17 - type: map_at_10 value: 12.838 - type: map_at_100 value: 19.455 - type: map_at_1000 value: 21.096999999999998 - type: map_at_20 value: 15.781 - type: map_at_3 value: 6.938 - type: map_at_5 value: 9.324 - type: mrr_at_1 value: 38.775510204081634 - type: mrr_at_10 value: 54.38208616780046 - type: mrr_at_100 value: 54.88429833086117 - type: mrr_at_1000 value: 54.88429833086117 - type: mrr_at_20 value: 54.69357918606039 - type: mrr_at_3 value: 51.02040816326531 - type: mrr_at_5 value: 52.44897959183673 - type: nauc_map_at_1000_diff1 value: 11.768546469752255 - type: nauc_map_at_1000_max value: -6.234751836059205 - type: nauc_map_at_1000_std value: -0.5086610596792738 - type: nauc_map_at_100_diff1 value: 12.210218562618925 - type: nauc_map_at_100_max value: -7.479895692892787 - type: nauc_map_at_100_std value: -3.9456755950311653 - type: nauc_map_at_10_diff1 value: 17.872233692928692 - type: nauc_map_at_10_max value: -1.4391736686946837 - type: nauc_map_at_10_std value: -19.04083165317906 - type: nauc_map_at_1_diff1 value: 26.952695929538866 - type: nauc_map_at_1_max value: -23.861150686867994 - type: nauc_map_at_1_std value: -36.57857926974273 - type: nauc_map_at_20_diff1 value: 15.79525205450058 - type: nauc_map_at_20_max value: -5.818581673388666 - type: nauc_map_at_20_std value: -14.222828899523332 - type: nauc_map_at_3_diff1 value: 24.296906628915092 - type: nauc_map_at_3_max value: -3.075381662286569 - type: nauc_map_at_3_std value: -25.324259455516085 - type: nauc_map_at_5_diff1 value: 23.81656417505337 - type: nauc_map_at_5_max value: -3.736702154899666 - type: nauc_map_at_5_std value: -25.914105892424722 - type: nauc_mrr_at_1000_diff1 value: 17.59241956039767 - type: nauc_mrr_at_1000_max value: -33.70575077889871 - type: nauc_mrr_at_1000_std value: -31.563016486948225 - type: nauc_mrr_at_100_diff1 value: 17.59241956039767 - type: nauc_mrr_at_100_max value: -33.70575077889871 - type: nauc_mrr_at_100_std value: -31.563016486948225 - type: nauc_mrr_at_10_diff1 value: 16.7444853592715 - type: nauc_mrr_at_10_max value: -34.67620993606911 - type: nauc_mrr_at_10_std value: -30.36717732372874 - type: nauc_mrr_at_1_diff1 value: 24.89375000365368 - type: nauc_mrr_at_1_max value: -30.815417372385873 - type: nauc_mrr_at_1_std value: -44.687809069434245 - type: nauc_mrr_at_20_diff1 value: 17.80682781563912 - type: nauc_mrr_at_20_max value: -33.65132043726252 - type: nauc_mrr_at_20_std value: -30.788168935299247 - type: nauc_mrr_at_3_diff1 value: 16.98952594458621 - type: nauc_mrr_at_3_max value: -31.87405417907046 - type: nauc_mrr_at_3_std value: -32.99668568417734 - type: nauc_mrr_at_5_diff1 value: 17.692734228351465 - type: nauc_mrr_at_5_max value: -31.478014354340267 - type: nauc_mrr_at_5_std value: -34.27625710571425 - type: nauc_ndcg_at_1000_diff1 value: 7.2521145392859925 - type: nauc_ndcg_at_1000_max value: -11.879052032552305 - type: nauc_ndcg_at_1000_std value: 16.868276570948492 - type: nauc_ndcg_at_100_diff1 value: 9.68273273743821 - type: nauc_ndcg_at_100_max value: -19.509766471983163 - type: nauc_ndcg_at_100_std value: 10.902137038006767 - type: nauc_ndcg_at_10_diff1 value: 15.249688997310848 - type: nauc_ndcg_at_10_max value: -10.630040416461807 - type: nauc_ndcg_at_10_std value: -12.375334439103657 - type: nauc_ndcg_at_1_diff1 value: 23.20606123961159 - type: nauc_ndcg_at_1_max value: -29.329783979356527 - type: nauc_ndcg_at_1_std value: -44.10128294915467 - type: nauc_ndcg_at_20_diff1 value: 13.146989938292835 - type: nauc_ndcg_at_20_max value: -17.320226384710132 - type: nauc_ndcg_at_20_std value: -9.593117671485109 - type: nauc_ndcg_at_3_diff1 value: 18.262720339591553 - type: nauc_ndcg_at_3_max value: -10.618248628559396 - type: nauc_ndcg_at_3_std value: -24.069451775959436 - type: nauc_ndcg_at_5_diff1 value: 23.015053471568216 - type: nauc_ndcg_at_5_max value: -7.6818187454174485 - type: nauc_ndcg_at_5_std value: -23.610640745384508 - type: nauc_precision_at_1000_diff1 value: -21.295596373775506 - type: nauc_precision_at_1000_max value: 33.313558338532154 - type: nauc_precision_at_1000_std value: 36.00306839548485 - type: nauc_precision_at_100_diff1 value: -8.17984508673104 - type: nauc_precision_at_100_max value: -3.5218633922770186 - type: nauc_precision_at_100_std value: 64.06409459764816 - type: nauc_precision_at_10_diff1 value: 9.669119653314857 - type: nauc_precision_at_10_max value: -7.486292775323736 - type: nauc_precision_at_10_std value: 6.05291075028193 - type: nauc_precision_at_1_diff1 value: 24.89375000365368 - type: nauc_precision_at_1_max value: -30.815417372385873 - type: nauc_precision_at_1_std value: -44.687809069434245 - type: nauc_precision_at_20_diff1 value: 5.612232465910688 - type: nauc_precision_at_20_max value: -9.493221506431967 - type: nauc_precision_at_20_std value: 21.580627790601074 - type: nauc_precision_at_3_diff1 value: 17.374772867960296 - type: nauc_precision_at_3_max value: -5.4513905841762496 - type: nauc_precision_at_3_std value: -18.247738169868203 - type: nauc_precision_at_5_diff1 value: 24.856012104520754 - type: nauc_precision_at_5_max value: -1.689335249747221 - type: nauc_precision_at_5_std value: -17.759731374287938 - type: nauc_recall_at_1000_diff1 value: -16.083745923678773 - type: nauc_recall_at_1000_max value: -6.4871691773402285 - type: nauc_recall_at_1000_std value: 72.67593737144807 - type: nauc_recall_at_100_diff1 value: -2.2459215656431395 - type: nauc_recall_at_100_max value: -22.74818872908392 - type: nauc_recall_at_100_std value: 32.77497339706697 - type: nauc_recall_at_10_diff1 value: 8.670501799477833 - type: nauc_recall_at_10_max value: -9.585611028753716 - type: nauc_recall_at_10_std value: -10.351304338231115 - type: nauc_recall_at_1_diff1 value: 26.952695929538866 - type: nauc_recall_at_1_max value: -23.861150686867994 - type: nauc_recall_at_1_std value: -36.57857926974273 - type: nauc_recall_at_20_diff1 value: 8.556995668015755 - type: nauc_recall_at_20_max value: -17.78731664551538 - type: nauc_recall_at_20_std value: -2.6521355533836433 - type: nauc_recall_at_3_diff1 value: 21.343842933377587 - type: nauc_recall_at_3_max value: -2.6294436308829456 - type: nauc_recall_at_3_std value: -21.662684580036945 - type: nauc_recall_at_5_diff1 value: 20.98116651540531 - type: nauc_recall_at_5_max value: -6.952288993104518 - type: nauc_recall_at_5_std value: -24.78098743592733 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 30.676 - type: ndcg_at_100 value: 41.345 - type: ndcg_at_1000 value: 52.586 - type: ndcg_at_20 value: 31.176 - type: ndcg_at_3 value: 35.467 - type: ndcg_at_5 value: 32.784 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 27.346999999999998 - type: precision_at_100 value: 8.265 - type: precision_at_1000 value: 1.58 - type: precision_at_20 value: 20.51 - type: precision_at_3 value: 38.775999999999996 - type: precision_at_5 value: 33.061 - type: recall_at_1 value: 3.17 - type: recall_at_10 value: 19.188 - type: recall_at_100 value: 50.775000000000006 - type: recall_at_1000 value: 85.392 - type: recall_at_20 value: 28.061000000000003 - type: recall_at_3 value: 7.949000000000001 - type: recall_at_5 value: 11.863 --- <h1 align="center">Combination of Embedding Models: <a href="https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5">Arctic M (v1.5)</a> & <a href="https://huggingface.co/BAAI/bge-small-en-v1.5">BGE Small (en; v1.5)</a></h1> <h4 align="center"> <p> <a href="#acknowledgement">Acknowledgement</a> | <a href=#combination-of-embedding-models>Combination of Embedding Models</a> | <a href=#usage>Usage</a> | <a href=#citation>Citation</a> | <a href=#license>License</a> <p> </h4> ## Acknowledgement First of all, we want to acknowledge the original creators of the [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) and [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) models which are used to create this model. Our model is just a combination of these two models, and we have not made any changes to the original models. Furthermore, we want to acknowledge the team of Marqo, who has worked on the idea of combining two models through concatenation in parallel to ourselves. Their initial effort allowed to re-use existing pieces of code, in particular the [modeling script](https://huggingface.co/PaDaS-Lab/arctic-m-bge-small/blob/main/modeling_arctic_m_bge_small.py) for bringing the combined model to HuggingFace. ## Combination of Embedding Models ### Overview Embedding models have become increasingly powerful and applicable across various use cases. However, the next significant challenge lies in enhancing their efficiency in terms of resource consumption. Our goal is to experiment with combining two embedding models to achieve better performance with fewer resources. ### Key Insights 1. **Diversity Matters**: Initial findings suggest that combining models with differing characteristics can complement each other, resulting in improved outcomes. To design an effective combination, the diversity of the models—evaluated by factors like MTEB performance, architecture, and training data—is crucial. 2. **Combination Technique**: - We combine the embeddings of two models using the most straightforward approach: concatenation. - Prior to concatenation, we normalize the embeddings to ensure they are on the same scale. This step is vital for achieving coherent and meaningful results. ### Implementation We combined the following models: - **[Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5)** - **[BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)** #### Model Details - **Output Embedding Dimensions**: 1152 (768 + 384) - **Total Parameters**: 142M (109M + 33M) ### Results This combination demonstrated notable performance on the **MTEB Leaderboard**, offering a promising foundation for further experimentation: - **Performance Improvement**: The average nDCG@10 on the MTEB English Retrieval benchmark increased from **55.14 to 56.5**, climbing several spots on the leaderboard—a feat often requiring extensive engineering efforts. - **Comparison with Chimera Model**: Interestingly, the **[Chimera model](https://huggingface.co/Marqo/marqo-chimera-arctic-bge-m)**, which employs more potent models individually, performs worse on the leaderboard. This raises questions about: - The role of parameter count. - Differences in training processes. - How effectively two models complement each other for specific benchmark tasks. ### Future Directions While the results are promising, we acknowledge the complexity of model combinations and the importance of focusing on more than leaderboard rankings. The simplicity of concatenating embeddings yielding tangible gains emphasizes the potential for further exploration in this area. We look forward to conducting additional experiments and engaging in discussions to deepen our understanding of effective model combinations. ## Usage ```python import numpy as np import torch from torch.utils.data import DataLoader from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding from functools import partial from datasets import Dataset from tqdm import tqdm from typing import * NUM_WORKERS = 4 BATCH_SIZE = 32 def transform_func(tokenizer: PreTrainedTokenizerFast, max_length: int, examples: Dict[str, List]) -> BatchEncoding: return tokenizer(examples['contents'], max_length=max_length, padding=True, return_token_type_ids=False, truncation=True) def move_to_cuda(sample): if len(sample) == 0: return {} def _move_to_cuda(maybe_tensor): if torch.is_tensor(maybe_tensor): return maybe_tensor.cuda(non_blocking=True) elif isinstance(maybe_tensor, dict): return {key: _move_to_cuda(value) for key, value in maybe_tensor.items()} elif isinstance(maybe_tensor, list): return [_move_to_cuda(x) for x in maybe_tensor] elif isinstance(maybe_tensor, tuple): return tuple([_move_to_cuda(x) for x in maybe_tensor]) elif isinstance(maybe_tensor, Mapping): return type(maybe_tensor)({k: _move_to_cuda(v) for k, v in maybe_tensor.items()}) else: return maybe_tensor return _move_to_cuda(sample) class RetrievalModel(): def __init__(self, pretrained_model_name: str, **kwargs): self.pretrained_model_name = pretrained_model_name self.encoder = AutoModel.from_pretrained(pretrained_model_name, trust_remote_code=True) self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name, trust_remote_code=True) self.gpu_count = torch.cuda.device_count() self.batch_size = BATCH_SIZE self.query_instruction = 'Represent this sentence for searching relevant passages: {}' self.document_instruction = '{}' self.pool_type = 'cls' self.max_length = 512 self.encoder.cuda() self.encoder.eval() def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray: input_texts = [self.query_instruction.format(q) for q in queries] return self._do_encode(input_texts) def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray: input_texts = [self.document_instruction.format('{} {}'.format(d.get('title', ''), d['text']).strip()) for d in corpus] return self._do_encode(input_texts) @torch.no_grad() def _do_encode(self, input_texts: List[str]) -> np.ndarray: dataset: Dataset = Dataset.from_dict({'contents': input_texts}) dataset.set_transform(partial(transform_func, self.tokenizer, self.max_length)) data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8) data_loader = DataLoader( dataset, batch_size=self.batch_size * self.gpu_count, shuffle=False, drop_last=False, num_workers=NUM_WORKERS, collate_fn=data_collator, pin_memory=True) encoded_embeds = [] for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10): batch_dict = move_to_cuda(batch_dict) with torch.amp.autocast('cuda'): outputs = self.encoder(**batch_dict) encoded_embeds.append(outputs.cpu().numpy()) return np.concatenate(encoded_embeds, axis=0) model = RetrievalModel('PaDaS-Lab/arctic-m-bge-small') embeds_q = model.encode_queries(['What is the capital of France?']) # [[-0.01099197 -0.08366653 0.0060241 ... 0.03182805 -0.00674182 0.058571 ]] embeds_d = model.encode_corpus([{'title': 'Paris', 'text': 'Paris is the capital of France.'}]) # [[ 0.0391828 -0.02951912 0.10862264 ... -0.05373885 -0.00368348 0.02323797]] ``` ### Libraries ``` torch==2.5.0 transformers==4.42.3 mteb==1.12.94 ``` ## Citation ```bibtex @misc{https://doi.org/10.48550/arxiv.2407.08275, doi = {10.48550/ARXIV.2407.08275}, url = {https://arxiv.org/abs/2407.08275}, author = {Caspari, Laura and Dastidar, Kanishka Ghosh and Zerhoudi, Saber and Mitrovic, Jelena and Granitzer, Michael}, title = {Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems}, year = {2024}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## License Notice that Arctic M (v1.5) is licensed under [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) and BGE Small (en; v1.5) is licensed under [MIT](https://opensource.org/licenses/MIT) license. Please refer to the licenses of the original models for more details.
[ "SCIFACT" ]
mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF
mradermacher
null
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "not-for-all-audiences", "nsfw", "rp", "roleplay", "role-play", "en", "base_model:Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B", "base_model:quantized:Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
2024-12-31T21:11:15Z
2025-01-01T23:20:56+00:00
29
1
--- base_model: Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B language: - en library_name: transformers license: llama3 tags: - merge - mergekit - lazymergekit - not-for-all-audiences - nsfw - rp - roleplay - role-play quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Cas-Archive/L3-Umbral-Mind-RP-v0.1-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v0.1-8B-GGUF/resolve/main/L3-Umbral-Mind-RP-v0.1-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
[ "CAS" ]
Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF
Zenabius
null
[ "sentence-transformers", "gguf", "mteb", "transformers", "llama-cpp", "gguf-my-repo", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "base_model:intfloat/multilingual-e5-large-instruct", "base_model:quantized:intfloat/multilingual-e5-large-instruct", "license:mit", "model-index", "endpoints_compatible", "region:us", "feature-extraction" ]
2025-02-10T02:46:25Z
2025-02-10T02:46:33+00:00
29
0
--- base_model: intfloat/multilingual-e5-large-instruct language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit tags: - mteb - sentence-transformers - transformers - llama-cpp - gguf-my-repo model-index: - name: multilingual-e5-large-instruct results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.23880597014924 - type: ap value: 39.07351965022687 - type: f1 value: 70.04836733862683 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (de) type: mteb/amazon_counterfactual config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 66.71306209850107 - type: ap value: 79.01499914759529 - type: f1 value: 64.81951817560703 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en-ext) type: mteb/amazon_counterfactual config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.85307346326837 - type: ap value: 22.447519885878737 - type: f1 value: 61.0162730745633 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (ja) type: mteb/amazon_counterfactual config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.04925053533191 - type: ap value: 23.44983217128922 - type: f1 value: 62.5723230907759 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 96.28742500000001 - type: ap value: 94.8449918887462 - type: f1 value: 96.28680923610432 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 56.716 - type: f1 value: 55.76510398266401 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (de) type: mteb/amazon_reviews_multi config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 52.99999999999999 - type: f1 value: 52.00829994765178 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (es) type: mteb/amazon_reviews_multi config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.806000000000004 - type: f1 value: 48.082345914983634 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (fr) type: mteb/amazon_reviews_multi config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.507999999999996 - type: f1 value: 47.68752844642045 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (ja) type: mteb/amazon_reviews_multi config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.709999999999994 - type: f1 value: 47.05870376637181 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.662000000000006 - type: f1 value: 43.42371965372771 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 31.721 - type: map_at_10 value: 49.221 - type: map_at_100 value: 49.884 - type: map_at_1000 value: 49.888 - type: map_at_3 value: 44.31 - type: map_at_5 value: 47.276 - type: mrr_at_1 value: 32.432 - type: mrr_at_10 value: 49.5 - type: mrr_at_100 value: 50.163000000000004 - type: mrr_at_1000 value: 50.166 - type: mrr_at_3 value: 44.618 - type: mrr_at_5 value: 47.541 - type: ndcg_at_1 value: 31.721 - type: ndcg_at_10 value: 58.384 - type: ndcg_at_100 value: 61.111000000000004 - type: ndcg_at_1000 value: 61.187999999999995 - type: ndcg_at_3 value: 48.386 - type: ndcg_at_5 value: 53.708999999999996 - type: precision_at_1 value: 31.721 - type: precision_at_10 value: 8.741 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.057 - type: precision_at_5 value: 14.609 - type: recall_at_1 value: 31.721 - type: recall_at_10 value: 87.411 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 60.171 - type: recall_at_5 value: 73.044 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 46.40419580759799 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.48593255007969 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.889179122289995 - type: mrr value: 77.61146286769556 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.15075203727929 - type: cos_sim_spearman value: 86.9622224570873 - type: euclidean_pearson value: 86.70473853624121 - type: euclidean_spearman value: 86.9622224570873 - type: manhattan_pearson value: 86.21089380980065 - type: manhattan_spearman value: 86.75318154937008 - task: type: BitextMining dataset: name: MTEB BUCC (de-en) type: mteb/bucc-bitext-mining config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.65553235908142 - type: f1 value: 99.60681976339595 - type: precision value: 99.58246346555325 - type: recall value: 99.65553235908142 - task: type: BitextMining dataset: name: MTEB BUCC (fr-en) type: mteb/bucc-bitext-mining config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.26260180497468 - type: f1 value: 99.14520507740848 - type: precision value: 99.08650671362535 - type: recall value: 99.26260180497468 - task: type: BitextMining dataset: name: MTEB BUCC (ru-en) type: mteb/bucc-bitext-mining config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.07412538967787 - type: f1 value: 97.86629719431936 - type: precision value: 97.76238309664012 - type: recall value: 98.07412538967787 - task: type: BitextMining dataset: name: MTEB BUCC (zh-en) type: mteb/bucc-bitext-mining config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.42074776197998 - type: f1 value: 99.38564156573635 - type: precision value: 99.36808846761454 - type: recall value: 99.42074776197998 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.73376623376623 - type: f1 value: 85.68480707214599 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 40.935218072113855 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.276389017675264 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 27.764166666666668 - type: map_at_10 value: 37.298166666666674 - type: map_at_100 value: 38.530166666666666 - type: map_at_1000 value: 38.64416666666667 - type: map_at_3 value: 34.484833333333334 - type: map_at_5 value: 36.0385 - type: mrr_at_1 value: 32.93558333333333 - type: mrr_at_10 value: 41.589749999999995 - type: mrr_at_100 value: 42.425333333333334 - type: mrr_at_1000 value: 42.476333333333336 - type: mrr_at_3 value: 39.26825 - type: mrr_at_5 value: 40.567083333333336 - type: ndcg_at_1 value: 32.93558333333333 - type: ndcg_at_10 value: 42.706583333333334 - type: ndcg_at_100 value: 47.82483333333333 - type: ndcg_at_1000 value: 49.95733333333334 - type: ndcg_at_3 value: 38.064750000000004 - type: ndcg_at_5 value: 40.18158333333333 - type: precision_at_1 value: 32.93558333333333 - type: precision_at_10 value: 7.459833333333334 - type: precision_at_100 value: 1.1830833333333335 - type: precision_at_1000 value: 0.15608333333333332 - type: precision_at_3 value: 17.5235 - type: precision_at_5 value: 12.349833333333333 - type: recall_at_1 value: 27.764166666666668 - type: recall_at_10 value: 54.31775 - type: recall_at_100 value: 76.74350000000001 - type: recall_at_1000 value: 91.45208333333332 - type: recall_at_3 value: 41.23425 - type: recall_at_5 value: 46.73983333333334 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 12.969 - type: map_at_10 value: 21.584999999999997 - type: map_at_100 value: 23.3 - type: map_at_1000 value: 23.5 - type: map_at_3 value: 18.218999999999998 - type: map_at_5 value: 19.983 - type: mrr_at_1 value: 29.316 - type: mrr_at_10 value: 40.033 - type: mrr_at_100 value: 40.96 - type: mrr_at_1000 value: 41.001 - type: mrr_at_3 value: 37.123 - type: mrr_at_5 value: 38.757999999999996 - type: ndcg_at_1 value: 29.316 - type: ndcg_at_10 value: 29.858 - type: ndcg_at_100 value: 36.756 - type: ndcg_at_1000 value: 40.245999999999995 - type: ndcg_at_3 value: 24.822 - type: ndcg_at_5 value: 26.565 - type: precision_at_1 value: 29.316 - type: precision_at_10 value: 9.186 - type: precision_at_100 value: 1.6549999999999998 - type: precision_at_1000 value: 0.22999999999999998 - type: precision_at_3 value: 18.436 - type: precision_at_5 value: 13.876 - type: recall_at_1 value: 12.969 - type: recall_at_10 value: 35.142 - type: recall_at_100 value: 59.143 - type: recall_at_1000 value: 78.594 - type: recall_at_3 value: 22.604 - type: recall_at_5 value: 27.883000000000003 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.527999999999999 - type: map_at_10 value: 17.974999999999998 - type: map_at_100 value: 25.665 - type: map_at_1000 value: 27.406000000000002 - type: map_at_3 value: 13.017999999999999 - type: map_at_5 value: 15.137 - type: mrr_at_1 value: 62.5 - type: mrr_at_10 value: 71.891 - type: mrr_at_100 value: 72.294 - type: mrr_at_1000 value: 72.296 - type: mrr_at_3 value: 69.958 - type: mrr_at_5 value: 71.121 - type: ndcg_at_1 value: 50.875 - type: ndcg_at_10 value: 38.36 - type: ndcg_at_100 value: 44.235 - type: ndcg_at_1000 value: 52.154 - type: ndcg_at_3 value: 43.008 - type: ndcg_at_5 value: 40.083999999999996 - type: precision_at_1 value: 62.5 - type: precision_at_10 value: 30.0 - type: precision_at_100 value: 10.038 - type: precision_at_1000 value: 2.0869999999999997 - type: precision_at_3 value: 46.833000000000006 - type: precision_at_5 value: 38.800000000000004 - type: recall_at_1 value: 8.527999999999999 - type: recall_at_10 value: 23.828 - type: recall_at_100 value: 52.322 - type: recall_at_1000 value: 77.143 - type: recall_at_3 value: 14.136000000000001 - type: recall_at_5 value: 17.761 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 51.51 - type: f1 value: 47.632159862049896 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 60.734 - type: map_at_10 value: 72.442 - type: map_at_100 value: 72.735 - type: map_at_1000 value: 72.75 - type: map_at_3 value: 70.41199999999999 - type: map_at_5 value: 71.80499999999999 - type: mrr_at_1 value: 65.212 - type: mrr_at_10 value: 76.613 - type: mrr_at_100 value: 76.79899999999999 - type: mrr_at_1000 value: 76.801 - type: mrr_at_3 value: 74.8 - type: mrr_at_5 value: 76.12400000000001 - type: ndcg_at_1 value: 65.212 - type: ndcg_at_10 value: 77.988 - type: ndcg_at_100 value: 79.167 - type: ndcg_at_1000 value: 79.452 - type: ndcg_at_3 value: 74.362 - type: ndcg_at_5 value: 76.666 - type: precision_at_1 value: 65.212 - type: precision_at_10 value: 10.003 - type: precision_at_100 value: 1.077 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 29.518 - type: precision_at_5 value: 19.016 - type: recall_at_1 value: 60.734 - type: recall_at_10 value: 90.824 - type: recall_at_100 value: 95.71600000000001 - type: recall_at_1000 value: 97.577 - type: recall_at_3 value: 81.243 - type: recall_at_5 value: 86.90299999999999 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 23.845 - type: map_at_10 value: 39.281 - type: map_at_100 value: 41.422 - type: map_at_1000 value: 41.593 - type: map_at_3 value: 34.467 - type: map_at_5 value: 37.017 - type: mrr_at_1 value: 47.531 - type: mrr_at_10 value: 56.204 - type: mrr_at_100 value: 56.928999999999995 - type: mrr_at_1000 value: 56.962999999999994 - type: mrr_at_3 value: 54.115 - type: mrr_at_5 value: 55.373000000000005 - type: ndcg_at_1 value: 47.531 - type: ndcg_at_10 value: 47.711999999999996 - type: ndcg_at_100 value: 54.510999999999996 - type: ndcg_at_1000 value: 57.103 - type: ndcg_at_3 value: 44.145 - type: ndcg_at_5 value: 45.032 - type: precision_at_1 value: 47.531 - type: precision_at_10 value: 13.194 - type: precision_at_100 value: 2.045 - type: precision_at_1000 value: 0.249 - type: precision_at_3 value: 29.424 - type: precision_at_5 value: 21.451 - type: recall_at_1 value: 23.845 - type: recall_at_10 value: 54.967 - type: recall_at_100 value: 79.11399999999999 - type: recall_at_1000 value: 94.56700000000001 - type: recall_at_3 value: 40.256 - type: recall_at_5 value: 46.215 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 37.819 - type: map_at_10 value: 60.889 - type: map_at_100 value: 61.717999999999996 - type: map_at_1000 value: 61.778 - type: map_at_3 value: 57.254000000000005 - type: map_at_5 value: 59.541 - type: mrr_at_1 value: 75.638 - type: mrr_at_10 value: 82.173 - type: mrr_at_100 value: 82.362 - type: mrr_at_1000 value: 82.37 - type: mrr_at_3 value: 81.089 - type: mrr_at_5 value: 81.827 - type: ndcg_at_1 value: 75.638 - type: ndcg_at_10 value: 69.317 - type: ndcg_at_100 value: 72.221 - type: ndcg_at_1000 value: 73.382 - type: ndcg_at_3 value: 64.14 - type: ndcg_at_5 value: 67.07600000000001 - type: precision_at_1 value: 75.638 - type: precision_at_10 value: 14.704999999999998 - type: precision_at_100 value: 1.698 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 41.394999999999996 - type: precision_at_5 value: 27.162999999999997 - type: recall_at_1 value: 37.819 - type: recall_at_10 value: 73.52499999999999 - type: recall_at_100 value: 84.875 - type: recall_at_1000 value: 92.559 - type: recall_at_3 value: 62.092999999999996 - type: recall_at_5 value: 67.907 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 94.60079999999999 - type: ap value: 92.67396345347356 - type: f1 value: 94.5988098167121 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.285 - type: map_at_10 value: 33.436 - type: map_at_100 value: 34.63 - type: map_at_1000 value: 34.681 - type: map_at_3 value: 29.412 - type: map_at_5 value: 31.715 - type: mrr_at_1 value: 21.848 - type: mrr_at_10 value: 33.979 - type: mrr_at_100 value: 35.118 - type: mrr_at_1000 value: 35.162 - type: mrr_at_3 value: 30.036 - type: mrr_at_5 value: 32.298 - type: ndcg_at_1 value: 21.862000000000002 - type: ndcg_at_10 value: 40.43 - type: ndcg_at_100 value: 46.17 - type: ndcg_at_1000 value: 47.412 - type: ndcg_at_3 value: 32.221 - type: ndcg_at_5 value: 36.332 - type: precision_at_1 value: 21.862000000000002 - type: precision_at_10 value: 6.491 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.744 - type: precision_at_5 value: 10.331999999999999 - type: recall_at_1 value: 21.285 - type: recall_at_10 value: 62.083 - type: recall_at_100 value: 88.576 - type: recall_at_1000 value: 98.006 - type: recall_at_3 value: 39.729 - type: recall_at_5 value: 49.608000000000004 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.92612859097127 - type: f1 value: 93.82370333372853 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (de) type: mteb/mtop_domain config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.67681036911807 - type: f1 value: 92.14191382411472 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (es) type: mteb/mtop_domain config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.26817878585723 - type: f1 value: 91.92824250337878 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (fr) type: mteb/mtop_domain config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.96554963983714 - type: f1 value: 90.02859329630792 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (hi) type: mteb/mtop_domain config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.02509860164935 - type: f1 value: 89.30665159182062 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (th) type: mteb/mtop_domain config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 87.55515370705244 - type: f1 value: 87.94449232331907 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 82.4623803009576 - type: f1 value: 66.06738378772725 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (de) type: mteb/mtop_intent config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.3716539870386 - type: f1 value: 60.37614033396853 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (es) type: mteb/mtop_intent config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 80.34022681787857 - type: f1 value: 58.302008026952 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (fr) type: mteb/mtop_intent config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.72095208268087 - type: f1 value: 59.64524724009049 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (hi) type: mteb/mtop_intent config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.87020437432773 - type: f1 value: 57.80202694670567 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (th) type: mteb/mtop_intent config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.73598553345387 - type: f1 value: 58.19628250675031 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (af) type: mteb/amazon_massive_intent config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.6630800268998 - type: f1 value: 65.00996668051691 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (am) type: mteb/amazon_massive_intent config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.7128446536651 - type: f1 value: 57.95860594874963 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ar) type: mteb/amazon_massive_intent config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.61129791526563 - type: f1 value: 59.75328290206483 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (az) type: mteb/amazon_massive_intent config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.00134498991257 - type: f1 value: 67.0230483991802 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (bn) type: mteb/amazon_massive_intent config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.54068594485541 - type: f1 value: 65.54604628946976 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (cy) type: mteb/amazon_massive_intent config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.032952252858095 - type: f1 value: 58.715741857057104 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (da) type: mteb/amazon_massive_intent config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.80901143241427 - type: f1 value: 68.33963989243877 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (de) type: mteb/amazon_massive_intent config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.47141896435777 - type: f1 value: 69.56765020308262 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (el) type: mteb/amazon_massive_intent config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.2373907195696 - type: f1 value: 69.04529836036467 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 77.05783456624076 - type: f1 value: 74.69430584708174 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (es) type: mteb/amazon_massive_intent config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.82111634162744 - type: f1 value: 70.77228952803762 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fa) type: mteb/amazon_massive_intent config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.25353059852051 - type: f1 value: 71.05310103416411 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fi) type: mteb/amazon_massive_intent config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.28648285137861 - type: f1 value: 69.08020473732226 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fr) type: mteb/amazon_massive_intent config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.31540013449899 - type: f1 value: 70.9426355465791 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (he) type: mteb/amazon_massive_intent config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.2151983860121 - type: f1 value: 67.52541755908858 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hi) type: mteb/amazon_massive_intent config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.58372562205784 - type: f1 value: 69.49769064229827 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hu) type: mteb/amazon_massive_intent config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.9233355749832 - type: f1 value: 69.36311548259593 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hy) type: mteb/amazon_massive_intent config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.07330195023538 - type: f1 value: 64.99882022345572 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (id) type: mteb/amazon_massive_intent config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.62273032952253 - type: f1 value: 70.6394885471001 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (is) type: mteb/amazon_massive_intent config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.77000672494957 - type: f1 value: 62.9368944815065 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (it) type: mteb/amazon_massive_intent config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.453261600538 - type: f1 value: 70.85069934666681 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ja) type: mteb/amazon_massive_intent config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.6906523201076 - type: f1 value: 72.03249740074217 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (jv) type: mteb/amazon_massive_intent config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.03631472763953 - type: f1 value: 59.3165215571852 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ka) type: mteb/amazon_massive_intent config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.913920645595155 - type: f1 value: 57.367337711611285 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (km) type: mteb/amazon_massive_intent config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.42837928715535 - type: f1 value: 52.60527294970906 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (kn) type: mteb/amazon_massive_intent config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.33490248823135 - type: f1 value: 63.213340969404065 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ko) type: mteb/amazon_massive_intent config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.58507061197041 - type: f1 value: 68.40256628040486 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (lv) type: mteb/amazon_massive_intent config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.11230665770006 - type: f1 value: 66.44863577842305 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ml) type: mteb/amazon_massive_intent config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.70073974445192 - type: f1 value: 67.21291337273702 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (mn) type: mteb/amazon_massive_intent config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.43913920645595 - type: f1 value: 64.09838087422806 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ms) type: mteb/amazon_massive_intent config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.80026899798251 - type: f1 value: 68.76986742962444 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (my) type: mteb/amazon_massive_intent config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.78816408876934 - type: f1 value: 62.18781873428972 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nb) type: mteb/amazon_massive_intent config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.6577000672495 - type: f1 value: 68.75171511133003 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nl) type: mteb/amazon_massive_intent config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.42501681237391 - type: f1 value: 71.18434963451544 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pl) type: mteb/amazon_massive_intent config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.64828513786146 - type: f1 value: 70.67741914007422 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pt) type: mteb/amazon_massive_intent config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.62811028917284 - type: f1 value: 71.36402039740959 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ro) type: mteb/amazon_massive_intent config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.88634835238736 - type: f1 value: 69.23701923480677 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ru) type: mteb/amazon_massive_intent config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.15938130464022 - type: f1 value: 71.87792218993388 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sl) type: mteb/amazon_massive_intent config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.96301277740416 - type: f1 value: 67.29584200202983 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sq) type: mteb/amazon_massive_intent config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.49562878278412 - type: f1 value: 66.91716685679431 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sv) type: mteb/amazon_massive_intent config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.6805648957633 - type: f1 value: 72.02723592594374 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sw) type: mteb/amazon_massive_intent config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.00605245460659 - type: f1 value: 60.16716669482932 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ta) type: mteb/amazon_massive_intent config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.90988567585742 - type: f1 value: 63.99405488777784 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (te) type: mteb/amazon_massive_intent config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.62273032952253 - type: f1 value: 65.17213906909481 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (th) type: mteb/amazon_massive_intent config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.50907868190988 - type: f1 value: 69.15165697194853 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tl) type: mteb/amazon_massive_intent config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.30733019502352 - type: f1 value: 66.69024007380474 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tr) type: mteb/amazon_massive_intent config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.24277067921989 - type: f1 value: 68.80515408492947 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ur) type: mteb/amazon_massive_intent config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.49831876260929 - type: f1 value: 64.83778567111116 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (vi) type: mteb/amazon_massive_intent config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.28782784129119 - type: f1 value: 69.3294186700733 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.315400134499 - type: f1 value: 71.22674385243207 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-TW) type: mteb/amazon_massive_intent config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.37794216543377 - type: f1 value: 68.96962492838232 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (af) type: mteb/amazon_massive_scenario config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.33557498318764 - type: f1 value: 72.28949738478356 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (am) type: mteb/amazon_massive_scenario config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.84398117014123 - type: f1 value: 64.71026362091463 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ar) type: mteb/amazon_massive_scenario config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.76462676529925 - type: f1 value: 69.8229667407667 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (az) type: mteb/amazon_massive_scenario config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.02420981842636 - type: f1 value: 71.76576384895898 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (bn) type: mteb/amazon_massive_scenario config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.7572293207801 - type: f1 value: 72.76840765295256 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (cy) type: mteb/amazon_massive_scenario config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.02286482851379 - type: f1 value: 66.17237947327872 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (da) type: mteb/amazon_massive_scenario config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.60928043039678 - type: f1 value: 77.27094731234773 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (de) type: mteb/amazon_massive_scenario config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.68325487558843 - type: f1 value: 77.97530399082261 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (el) type: mteb/amazon_massive_scenario config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.13315400134498 - type: f1 value: 75.97558584796424 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 80.47410894418292 - type: f1 value: 80.52244841473792 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (es) type: mteb/amazon_massive_scenario config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.9670477471419 - type: f1 value: 77.37318805793146 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fa) type: mteb/amazon_massive_scenario config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.09683927370544 - type: f1 value: 77.69773737430847 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fi) type: mteb/amazon_massive_scenario config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.20847343644922 - type: f1 value: 75.17071738727348 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fr) type: mteb/amazon_massive_scenario config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.07464694014796 - type: f1 value: 77.16136207698571 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (he) type: mteb/amazon_massive_scenario config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.53396099529255 - type: f1 value: 73.58296404484122 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hi) type: mteb/amazon_massive_scenario config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.75319435104237 - type: f1 value: 75.24674707850833 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hu) type: mteb/amazon_massive_scenario config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.0948217888366 - type: f1 value: 76.47559490205028 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hy) type: mteb/amazon_massive_scenario config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.07599193006052 - type: f1 value: 70.76028043093511 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (id) type: mteb/amazon_massive_scenario config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.10490921318089 - type: f1 value: 77.01215275283272 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (is) type: mteb/amazon_massive_scenario config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.25756556825824 - type: f1 value: 70.20605314648762 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (it) type: mteb/amazon_massive_scenario config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.08137188971082 - type: f1 value: 77.3899269057439 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ja) type: mteb/amazon_massive_scenario config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.35440484196369 - type: f1 value: 79.58964690002772 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (jv) type: mteb/amazon_massive_scenario config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.42299932750504 - type: f1 value: 68.07844356925413 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ka) type: mteb/amazon_massive_scenario config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.15669132481507 - type: f1 value: 65.89383352608513 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (km) type: mteb/amazon_massive_scenario config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.11432414256894 - type: f1 value: 57.69910594559806 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (kn) type: mteb/amazon_massive_scenario config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.24747814391392 - type: f1 value: 70.42455553830918 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ko) type: mteb/amazon_massive_scenario config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.46267652992603 - type: f1 value: 76.8854559308316 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (lv) type: mteb/amazon_massive_scenario config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.24815063887021 - type: f1 value: 72.77805034658074 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ml) type: mteb/amazon_massive_scenario config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.11566913248151 - type: f1 value: 73.86147988001356 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (mn) type: mteb/amazon_massive_scenario config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.0168123739072 - type: f1 value: 69.38515920054571 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ms) type: mteb/amazon_massive_scenario config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.41156691324814 - type: f1 value: 73.43474953408237 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (my) type: mteb/amazon_massive_scenario config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.39609952925353 - type: f1 value: 67.29731681109291 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nb) type: mteb/amazon_massive_scenario config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.20914593140552 - type: f1 value: 77.07066497935367 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nl) type: mteb/amazon_massive_scenario config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.52387357094821 - type: f1 value: 78.5259569473291 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pl) type: mteb/amazon_massive_scenario config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.6913248150639 - type: f1 value: 76.91201656350455 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pt) type: mteb/amazon_massive_scenario config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.1217215870881 - type: f1 value: 77.41179937912504 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ro) type: mteb/amazon_massive_scenario config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.25891055817083 - type: f1 value: 75.8089244542887 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ru) type: mteb/amazon_massive_scenario config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.70679219905851 - type: f1 value: 78.21459594517711 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sl) type: mteb/amazon_massive_scenario config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.83523873570948 - type: f1 value: 74.86847028401978 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sq) type: mteb/amazon_massive_scenario config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.71755211835911 - type: f1 value: 74.0214326485662 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sv) type: mteb/amazon_massive_scenario config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.06523201075991 - type: f1 value: 79.10545620325138 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sw) type: mteb/amazon_massive_scenario config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.91862811028918 - type: f1 value: 66.50386121217983 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ta) type: mteb/amazon_massive_scenario config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.93140551445865 - type: f1 value: 70.755435928495 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (te) type: mteb/amazon_massive_scenario config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.40753194351042 - type: f1 value: 71.61816115782923 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (th) type: mteb/amazon_massive_scenario config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.1815736381977 - type: f1 value: 75.08016717887205 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tl) type: mteb/amazon_massive_scenario config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.86482851378614 - type: f1 value: 72.39521180006291 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tr) type: mteb/amazon_massive_scenario config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.46940147948891 - type: f1 value: 76.70044085362349 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ur) type: mteb/amazon_massive_scenario config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.89307330195024 - type: f1 value: 71.5721825332298 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (vi) type: mteb/amazon_massive_scenario config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.7511768661735 - type: f1 value: 75.17918654541515 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.69535978480162 - type: f1 value: 78.90019070153316 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-TW) type: mteb/amazon_massive_scenario config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.45729657027572 - type: f1 value: 76.19578371794672 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 36.92715354123554 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 35.53536244162518 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 33.08507884504006 - type: mrr value: 34.32436977159129 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.935 - type: map_at_10 value: 13.297 - type: map_at_100 value: 16.907 - type: map_at_1000 value: 18.391 - type: map_at_3 value: 9.626999999999999 - type: map_at_5 value: 11.190999999999999 - type: mrr_at_1 value: 46.129999999999995 - type: mrr_at_10 value: 54.346000000000004 - type: mrr_at_100 value: 55.067 - type: mrr_at_1000 value: 55.1 - type: mrr_at_3 value: 51.961 - type: mrr_at_5 value: 53.246 - type: ndcg_at_1 value: 44.118 - type: ndcg_at_10 value: 35.534 - type: ndcg_at_100 value: 32.946999999999996 - type: ndcg_at_1000 value: 41.599000000000004 - type: ndcg_at_3 value: 40.25 - type: ndcg_at_5 value: 37.978 - type: precision_at_1 value: 46.129999999999995 - type: precision_at_10 value: 26.842 - type: precision_at_100 value: 8.427 - type: precision_at_1000 value: 2.128 - type: precision_at_3 value: 37.977 - type: precision_at_5 value: 32.879000000000005 - type: recall_at_1 value: 5.935 - type: recall_at_10 value: 17.211000000000002 - type: recall_at_100 value: 34.33 - type: recall_at_1000 value: 65.551 - type: recall_at_3 value: 10.483 - type: recall_at_5 value: 13.078999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 35.231 - type: map_at_10 value: 50.202000000000005 - type: map_at_100 value: 51.154999999999994 - type: map_at_1000 value: 51.181 - type: map_at_3 value: 45.774 - type: map_at_5 value: 48.522 - type: mrr_at_1 value: 39.687 - type: mrr_at_10 value: 52.88 - type: mrr_at_100 value: 53.569 - type: mrr_at_1000 value: 53.58500000000001 - type: mrr_at_3 value: 49.228 - type: mrr_at_5 value: 51.525 - type: ndcg_at_1 value: 39.687 - type: ndcg_at_10 value: 57.754000000000005 - type: ndcg_at_100 value: 61.597 - type: ndcg_at_1000 value: 62.18900000000001 - type: ndcg_at_3 value: 49.55 - type: ndcg_at_5 value: 54.11899999999999 - type: precision_at_1 value: 39.687 - type: precision_at_10 value: 9.313 - type: precision_at_100 value: 1.146 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 22.229 - type: precision_at_5 value: 15.939 - type: recall_at_1 value: 35.231 - type: recall_at_10 value: 78.083 - type: recall_at_100 value: 94.42099999999999 - type: recall_at_1000 value: 98.81 - type: recall_at_3 value: 57.047000000000004 - type: recall_at_5 value: 67.637 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.241 - type: map_at_10 value: 85.462 - type: map_at_100 value: 86.083 - type: map_at_1000 value: 86.09700000000001 - type: map_at_3 value: 82.49499999999999 - type: map_at_5 value: 84.392 - type: mrr_at_1 value: 82.09 - type: mrr_at_10 value: 88.301 - type: mrr_at_100 value: 88.383 - type: mrr_at_1000 value: 88.384 - type: mrr_at_3 value: 87.37 - type: mrr_at_5 value: 88.035 - type: ndcg_at_1 value: 82.12 - type: ndcg_at_10 value: 89.149 - type: ndcg_at_100 value: 90.235 - type: ndcg_at_1000 value: 90.307 - type: ndcg_at_3 value: 86.37599999999999 - type: ndcg_at_5 value: 87.964 - type: precision_at_1 value: 82.12 - type: precision_at_10 value: 13.56 - type: precision_at_100 value: 1.539 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.88 - type: precision_at_5 value: 24.92 - type: recall_at_1 value: 71.241 - type: recall_at_10 value: 96.128 - type: recall_at_100 value: 99.696 - type: recall_at_1000 value: 99.994 - type: recall_at_3 value: 88.181 - type: recall_at_5 value: 92.694 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.59757799655151 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.27391998854624 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.243 - type: map_at_10 value: 10.965 - type: map_at_100 value: 12.934999999999999 - type: map_at_1000 value: 13.256 - type: map_at_3 value: 7.907 - type: map_at_5 value: 9.435 - type: mrr_at_1 value: 20.9 - type: mrr_at_10 value: 31.849 - type: mrr_at_100 value: 32.964 - type: mrr_at_1000 value: 33.024 - type: mrr_at_3 value: 28.517 - type: mrr_at_5 value: 30.381999999999998 - type: ndcg_at_1 value: 20.9 - type: ndcg_at_10 value: 18.723 - type: ndcg_at_100 value: 26.384999999999998 - type: ndcg_at_1000 value: 32.114 - type: ndcg_at_3 value: 17.753 - type: ndcg_at_5 value: 15.558 - type: precision_at_1 value: 20.9 - type: precision_at_10 value: 9.8 - type: precision_at_100 value: 2.078 - type: precision_at_1000 value: 0.345 - type: precision_at_3 value: 16.900000000000002 - type: precision_at_5 value: 13.88 - type: recall_at_1 value: 4.243 - type: recall_at_10 value: 19.885 - type: recall_at_100 value: 42.17 - type: recall_at_1000 value: 70.12 - type: recall_at_3 value: 10.288 - type: recall_at_5 value: 14.072000000000001 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 85.84209174935282 - type: cos_sim_spearman value: 81.73248048438833 - type: euclidean_pearson value: 83.02810070308149 - type: euclidean_spearman value: 81.73248295679514 - type: manhattan_pearson value: 82.95368060376002 - type: manhattan_spearman value: 81.60277910998718 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 88.52628804556943 - type: cos_sim_spearman value: 82.5713913555672 - type: euclidean_pearson value: 85.8796774746988 - type: euclidean_spearman value: 82.57137506803424 - type: manhattan_pearson value: 85.79671002960058 - type: manhattan_spearman value: 82.49445981618027 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 86.23682503505542 - type: cos_sim_spearman value: 87.15008956711806 - type: euclidean_pearson value: 86.79805401524959 - type: euclidean_spearman value: 87.15008956711806 - type: manhattan_pearson value: 86.65298502699244 - type: manhattan_spearman value: 86.97677821948562 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 85.63370304677802 - type: cos_sim_spearman value: 84.97105553540318 - type: euclidean_pearson value: 85.28896108687721 - type: euclidean_spearman value: 84.97105553540318 - type: manhattan_pearson value: 85.09663190337331 - type: manhattan_spearman value: 84.79126831644619 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 90.2614838800733 - type: cos_sim_spearman value: 91.0509162991835 - type: euclidean_pearson value: 90.33098317533373 - type: euclidean_spearman value: 91.05091625871644 - type: manhattan_pearson value: 90.26250435151107 - type: manhattan_spearman value: 90.97999594417519 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.80480973335091 - type: cos_sim_spearman value: 87.313695492969 - type: euclidean_pearson value: 86.49267251576939 - type: euclidean_spearman value: 87.313695492969 - type: manhattan_pearson value: 86.44019901831935 - type: manhattan_spearman value: 87.24205395460392 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 90.05662789380672 - type: cos_sim_spearman value: 90.02759424426651 - type: euclidean_pearson value: 90.4042483422981 - type: euclidean_spearman value: 90.02759424426651 - type: manhattan_pearson value: 90.51446975000226 - type: manhattan_spearman value: 90.08832889933616 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.5975528273532 - type: cos_sim_spearman value: 67.62969861411354 - type: euclidean_pearson value: 69.224275734323 - type: euclidean_spearman value: 67.62969861411354 - type: manhattan_pearson value: 69.3761447059927 - type: manhattan_spearman value: 67.90921005611467 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.11244327231684 - type: cos_sim_spearman value: 88.37902438979035 - type: euclidean_pearson value: 87.86054279847336 - type: euclidean_spearman value: 88.37902438979035 - type: manhattan_pearson value: 87.77257757320378 - type: manhattan_spearman value: 88.25208966098123 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.87174608143563 - type: mrr value: 96.12836872640794 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.760999999999996 - type: map_at_10 value: 67.258 - type: map_at_100 value: 67.757 - type: map_at_1000 value: 67.78800000000001 - type: map_at_3 value: 64.602 - type: map_at_5 value: 65.64 - type: mrr_at_1 value: 60.667 - type: mrr_at_10 value: 68.441 - type: mrr_at_100 value: 68.825 - type: mrr_at_1000 value: 68.853 - type: mrr_at_3 value: 66.444 - type: mrr_at_5 value: 67.26100000000001 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 71.852 - type: ndcg_at_100 value: 73.9 - type: ndcg_at_1000 value: 74.628 - type: ndcg_at_3 value: 67.093 - type: ndcg_at_5 value: 68.58 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.6 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.111 - type: precision_at_5 value: 16.733 - type: recall_at_1 value: 57.760999999999996 - type: recall_at_10 value: 84.967 - type: recall_at_100 value: 93.833 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 71.589 - type: recall_at_5 value: 75.483 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.66633663366336 - type: cos_sim_ap value: 91.17685358899108 - type: cos_sim_f1 value: 82.16818642350559 - type: cos_sim_precision value: 83.26488706365504 - type: cos_sim_recall value: 81.10000000000001 - type: dot_accuracy value: 99.66633663366336 - type: dot_ap value: 91.17663411119032 - type: dot_f1 value: 82.16818642350559 - type: dot_precision value: 83.26488706365504 - type: dot_recall value: 81.10000000000001 - type: euclidean_accuracy value: 99.66633663366336 - type: euclidean_ap value: 91.17685189882275 - type: euclidean_f1 value: 82.16818642350559 - type: euclidean_precision value: 83.26488706365504 - type: euclidean_recall value: 81.10000000000001 - type: manhattan_accuracy value: 99.66633663366336 - type: manhattan_ap value: 91.2241619496737 - type: manhattan_f1 value: 82.20472440944883 - type: manhattan_precision value: 86.51933701657458 - type: manhattan_recall value: 78.3 - type: max_accuracy value: 99.66633663366336 - type: max_ap value: 91.2241619496737 - type: max_f1 value: 82.20472440944883 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 66.85101268897951 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 42.461184054706905 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.44542568873886 - type: mrr value: 52.33656151854681 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.75982974997539 - type: cos_sim_spearman value: 30.385405026539914 - type: dot_pearson value: 30.75982433546523 - type: dot_spearman value: 30.385405026539914 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.22799999999999998 - type: map_at_10 value: 2.064 - type: map_at_100 value: 13.056000000000001 - type: map_at_1000 value: 31.747999999999998 - type: map_at_3 value: 0.67 - type: map_at_5 value: 1.097 - type: mrr_at_1 value: 90.0 - type: mrr_at_10 value: 94.667 - type: mrr_at_100 value: 94.667 - type: mrr_at_1000 value: 94.667 - type: mrr_at_3 value: 94.667 - type: mrr_at_5 value: 94.667 - type: ndcg_at_1 value: 86.0 - type: ndcg_at_10 value: 82.0 - type: ndcg_at_100 value: 64.307 - type: ndcg_at_1000 value: 57.023999999999994 - type: ndcg_at_3 value: 85.816 - type: ndcg_at_5 value: 84.904 - type: precision_at_1 value: 90.0 - type: precision_at_10 value: 85.8 - type: precision_at_100 value: 66.46 - type: precision_at_1000 value: 25.202 - type: precision_at_3 value: 90.0 - type: precision_at_5 value: 89.2 - type: recall_at_1 value: 0.22799999999999998 - type: recall_at_10 value: 2.235 - type: recall_at_100 value: 16.185 - type: recall_at_1000 value: 53.620999999999995 - type: recall_at_3 value: 0.7040000000000001 - type: recall_at_5 value: 1.172 - task: type: BitextMining dataset: name: MTEB Tatoeba (sqi-eng) type: mteb/tatoeba-bitext-mining config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.75 - type: precision value: 96.45 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (fry-eng) type: mteb/tatoeba-bitext-mining config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.54913294797689 - type: f1 value: 82.46628131021194 - type: precision value: 81.1175337186898 - type: recall value: 85.54913294797689 - task: type: BitextMining dataset: name: MTEB Tatoeba (kur-eng) type: mteb/tatoeba-bitext-mining config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.21951219512195 - type: f1 value: 77.33333333333334 - type: precision value: 75.54878048780488 - type: recall value: 81.21951219512195 - task: type: BitextMining dataset: name: MTEB Tatoeba (tur-eng) type: mteb/tatoeba-bitext-mining config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.6 - type: f1 value: 98.26666666666665 - type: precision value: 98.1 - type: recall value: 98.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (deu-eng) type: mteb/tatoeba-bitext-mining config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.5 - type: f1 value: 99.33333333333333 - type: precision value: 99.25 - type: recall value: 99.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (nld-eng) type: mteb/tatoeba-bitext-mining config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.2 - type: precision value: 96.89999999999999 - type: recall value: 97.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (ron-eng) type: mteb/tatoeba-bitext-mining config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.18333333333334 - type: precision value: 96.88333333333333 - type: recall value: 97.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (ang-eng) type: mteb/tatoeba-bitext-mining config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.61194029850746 - type: f1 value: 72.81094527363183 - type: precision value: 70.83333333333333 - type: recall value: 77.61194029850746 - task: type: BitextMining dataset: name: MTEB Tatoeba (ido-eng) type: mteb/tatoeba-bitext-mining config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.91666666666667 - type: precision value: 91.08333333333334 - type: recall value: 93.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (jav-eng) type: mteb/tatoeba-bitext-mining config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.29268292682927 - type: f1 value: 85.27642276422765 - type: precision value: 84.01277584204414 - type: recall value: 88.29268292682927 - task: type: BitextMining dataset: name: MTEB Tatoeba (isl-eng) type: mteb/tatoeba-bitext-mining config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.0 - type: precision value: 94.46666666666668 - type: recall value: 96.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (slv-eng) type: mteb/tatoeba-bitext-mining config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.681652490887 - type: f1 value: 91.90765492102065 - type: precision value: 91.05913325232888 - type: recall value: 93.681652490887 - task: type: BitextMining dataset: name: MTEB Tatoeba (cym-eng) type: mteb/tatoeba-bitext-mining config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.17391304347827 - type: f1 value: 89.97101449275361 - type: precision value: 88.96811594202899 - type: recall value: 92.17391304347827 - task: type: BitextMining dataset: name: MTEB Tatoeba (kaz-eng) type: mteb/tatoeba-bitext-mining config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.43478260869566 - type: f1 value: 87.72173913043478 - type: precision value: 86.42028985507245 - type: recall value: 90.43478260869566 - task: type: BitextMining dataset: name: MTEB Tatoeba (est-eng) type: mteb/tatoeba-bitext-mining config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.4 - type: f1 value: 88.03 - type: precision value: 86.95 - type: recall value: 90.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (heb-eng) type: mteb/tatoeba-bitext-mining config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.4 - type: f1 value: 91.45666666666666 - type: precision value: 90.525 - type: recall value: 93.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (gla-eng) type: mteb/tatoeba-bitext-mining config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.9059107358263 - type: f1 value: 78.32557872364869 - type: precision value: 76.78260286824823 - type: recall value: 81.9059107358263 - task: type: BitextMining dataset: name: MTEB Tatoeba (mar-eng) type: mteb/tatoeba-bitext-mining config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.58333333333333 - type: precision value: 91.73333333333332 - type: recall value: 94.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (lat-eng) type: mteb/tatoeba-bitext-mining config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.10000000000001 - type: f1 value: 74.50500000000001 - type: precision value: 72.58928571428571 - type: recall value: 79.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (bel-eng) type: mteb/tatoeba-bitext-mining config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.6 - type: f1 value: 95.55 - type: precision value: 95.05 - type: recall value: 96.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (pms-eng) type: mteb/tatoeba-bitext-mining config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.0952380952381 - type: f1 value: 77.98458049886621 - type: precision value: 76.1968253968254 - type: recall value: 82.0952380952381 - task: type: BitextMining dataset: name: MTEB Tatoeba (gle-eng) type: mteb/tatoeba-bitext-mining config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.9 - type: f1 value: 84.99190476190476 - type: precision value: 83.65 - type: recall value: 87.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (pes-eng) type: mteb/tatoeba-bitext-mining config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.7 - type: f1 value: 94.56666666666666 - type: precision value: 94.01666666666667 - type: recall value: 95.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (nob-eng) type: mteb/tatoeba-bitext-mining config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.6 - type: f1 value: 98.2 - type: precision value: 98.0 - type: recall value: 98.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (bul-eng) type: mteb/tatoeba-bitext-mining config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.6 - type: f1 value: 94.38333333333334 - type: precision value: 93.78333333333335 - type: recall value: 95.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (cbk-eng) type: mteb/tatoeba-bitext-mining config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.4 - type: f1 value: 84.10380952380952 - type: precision value: 82.67 - type: recall value: 87.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (hun-eng) type: mteb/tatoeba-bitext-mining config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.5 - type: f1 value: 94.33333333333334 - type: precision value: 93.78333333333333 - type: recall value: 95.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (uig-eng) type: mteb/tatoeba-bitext-mining config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.4 - type: f1 value: 86.82000000000001 - type: precision value: 85.64500000000001 - type: recall value: 89.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (rus-eng) type: mteb/tatoeba-bitext-mining config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.1 - type: f1 value: 93.56666666666668 - type: precision value: 92.81666666666666 - type: recall value: 95.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (spa-eng) type: mteb/tatoeba-bitext-mining config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.9 - type: f1 value: 98.6 - type: precision value: 98.45 - type: recall value: 98.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (hye-eng) type: mteb/tatoeba-bitext-mining config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.01347708894879 - type: f1 value: 93.51752021563343 - type: precision value: 92.82794249775381 - type: recall value: 95.01347708894879 - task: type: BitextMining dataset: name: MTEB Tatoeba (tel-eng) type: mteb/tatoeba-bitext-mining config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.00854700854701 - type: f1 value: 96.08262108262107 - type: precision value: 95.65527065527067 - type: recall value: 97.00854700854701 - task: type: BitextMining dataset: name: MTEB Tatoeba (afr-eng) type: mteb/tatoeba-bitext-mining config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.5 - type: f1 value: 95.39999999999999 - type: precision value: 94.88333333333333 - type: recall value: 96.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (mon-eng) type: mteb/tatoeba-bitext-mining config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.5909090909091 - type: f1 value: 95.49242424242425 - type: precision value: 94.9621212121212 - type: recall value: 96.5909090909091 - task: type: BitextMining dataset: name: MTEB Tatoeba (arz-eng) type: mteb/tatoeba-bitext-mining config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.90566037735849 - type: f1 value: 81.85883997204752 - type: precision value: 80.54507337526205 - type: recall value: 84.90566037735849 - task: type: BitextMining dataset: name: MTEB Tatoeba (hrv-eng) type: mteb/tatoeba-bitext-mining config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.5 - type: f1 value: 96.75 - type: precision value: 96.38333333333333 - type: recall value: 97.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (nov-eng) type: mteb/tatoeba-bitext-mining config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.7704280155642 - type: f1 value: 82.99610894941635 - type: precision value: 81.32295719844358 - type: recall value: 86.7704280155642 - task: type: BitextMining dataset: name: MTEB Tatoeba (gsw-eng) type: mteb/tatoeba-bitext-mining config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.52136752136752 - type: f1 value: 61.89662189662191 - type: precision value: 59.68660968660969 - type: recall value: 67.52136752136752 - task: type: BitextMining dataset: name: MTEB Tatoeba (nds-eng) type: mteb/tatoeba-bitext-mining config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.2 - type: f1 value: 86.32 - type: precision value: 85.015 - type: recall value: 89.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (ukr-eng) type: mteb/tatoeba-bitext-mining config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.0 - type: f1 value: 94.78333333333333 - type: precision value: 94.18333333333334 - type: recall value: 96.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (uzb-eng) type: mteb/tatoeba-bitext-mining config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.8785046728972 - type: f1 value: 80.54517133956385 - type: precision value: 79.154984423676 - type: recall value: 83.8785046728972 - task: type: BitextMining dataset: name: MTEB Tatoeba (lit-eng) type: mteb/tatoeba-bitext-mining config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.60000000000001 - type: f1 value: 92.01333333333334 - type: precision value: 91.28333333333333 - type: recall value: 93.60000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (ina-eng) type: mteb/tatoeba-bitext-mining config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.1 - type: f1 value: 96.26666666666667 - type: precision value: 95.85000000000001 - type: recall value: 97.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (lfn-eng) type: mteb/tatoeba-bitext-mining config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.3 - type: f1 value: 80.67833333333333 - type: precision value: 79.03928571428571 - type: recall value: 84.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (zsm-eng) type: mteb/tatoeba-bitext-mining config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.3 - type: f1 value: 96.48333333333332 - type: precision value: 96.08333333333331 - type: recall value: 97.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (ita-eng) type: mteb/tatoeba-bitext-mining config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.7 - type: f1 value: 94.66666666666667 - type: precision value: 94.16666666666667 - type: recall value: 95.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (cmn-eng) type: mteb/tatoeba-bitext-mining config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.2 - type: f1 value: 96.36666666666667 - type: precision value: 95.96666666666668 - type: recall value: 97.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (lvs-eng) type: mteb/tatoeba-bitext-mining config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.80666666666667 - type: precision value: 92.12833333333333 - type: recall value: 94.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (glg-eng) type: mteb/tatoeba-bitext-mining config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.0 - type: f1 value: 96.22333333333334 - type: precision value: 95.875 - type: recall value: 97.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (ceb-eng) type: mteb/tatoeba-bitext-mining config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.33333333333333 - type: f1 value: 70.78174603174602 - type: precision value: 69.28333333333332 - type: recall value: 74.33333333333333 - task: type: BitextMining dataset: name: MTEB Tatoeba (bre-eng) type: mteb/tatoeba-bitext-mining config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 37.6 - type: f1 value: 32.938348952090365 - type: precision value: 31.2811038961039 - type: recall value: 37.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (ben-eng) type: mteb/tatoeba-bitext-mining config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.5 - type: f1 value: 89.13333333333333 - type: precision value: 88.03333333333333 - type: recall value: 91.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (swg-eng) type: mteb/tatoeba-bitext-mining config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.14285714285714 - type: f1 value: 77.67857142857143 - type: precision value: 75.59523809523809 - type: recall value: 82.14285714285714 - task: type: BitextMining dataset: name: MTEB Tatoeba (arq-eng) type: mteb/tatoeba-bitext-mining config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.0450054884742 - type: f1 value: 63.070409283362075 - type: precision value: 60.58992781824835 - type: recall value: 69.0450054884742 - task: type: BitextMining dataset: name: MTEB Tatoeba (kab-eng) type: mteb/tatoeba-bitext-mining config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.1 - type: f1 value: 57.848333333333336 - type: precision value: 55.69500000000001 - type: recall value: 63.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (fra-eng) type: mteb/tatoeba-bitext-mining config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.01666666666667 - type: precision value: 94.5 - type: recall value: 96.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (por-eng) type: mteb/tatoeba-bitext-mining config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.90666666666667 - type: precision value: 94.425 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tat-eng) type: mteb/tatoeba-bitext-mining config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.6 - type: f1 value: 84.61333333333333 - type: precision value: 83.27 - type: recall value: 87.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (oci-eng) type: mteb/tatoeba-bitext-mining config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.4 - type: f1 value: 71.90746031746032 - type: precision value: 70.07027777777778 - type: recall value: 76.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (pol-eng) type: mteb/tatoeba-bitext-mining config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.26666666666667 - type: precision value: 96.95 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (war-eng) type: mteb/tatoeba-bitext-mining config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.8 - type: f1 value: 74.39555555555555 - type: precision value: 72.59416666666667 - type: recall value: 78.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (aze-eng) type: mteb/tatoeba-bitext-mining config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 93.78999999999999 - type: precision value: 93.125 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (vie-eng) type: mteb/tatoeba-bitext-mining config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.1 - type: precision value: 96.75 - type: recall value: 97.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (nno-eng) type: mteb/tatoeba-bitext-mining config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.6 - type: f1 value: 94.25666666666666 - type: precision value: 93.64166666666668 - type: recall value: 95.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (cha-eng) type: mteb/tatoeba-bitext-mining config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 56.934306569343065 - type: f1 value: 51.461591936044485 - type: precision value: 49.37434827945776 - type: recall value: 56.934306569343065 - task: type: BitextMining dataset: name: MTEB Tatoeba (mhr-eng) type: mteb/tatoeba-bitext-mining config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 20.200000000000003 - type: f1 value: 16.91799284049284 - type: precision value: 15.791855158730158 - type: recall value: 20.200000000000003 - task: type: BitextMining dataset: name: MTEB Tatoeba (dan-eng) type: mteb/tatoeba-bitext-mining config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.2 - type: f1 value: 95.3 - type: precision value: 94.85 - type: recall value: 96.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (ell-eng) type: mteb/tatoeba-bitext-mining config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.3 - type: f1 value: 95.11666666666667 - type: precision value: 94.53333333333333 - type: recall value: 96.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (amh-eng) type: mteb/tatoeba-bitext-mining config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.88095238095238 - type: f1 value: 87.14285714285714 - type: precision value: 85.96230158730161 - type: recall value: 89.88095238095238 - task: type: BitextMining dataset: name: MTEB Tatoeba (pam-eng) type: mteb/tatoeba-bitext-mining config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 24.099999999999998 - type: f1 value: 19.630969083349783 - type: precision value: 18.275094905094907 - type: recall value: 24.099999999999998 - task: type: BitextMining dataset: name: MTEB Tatoeba (hsb-eng) type: mteb/tatoeba-bitext-mining config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.4368530020704 - type: f1 value: 79.45183870649709 - type: precision value: 77.7432712215321 - type: recall value: 83.4368530020704 - task: type: BitextMining dataset: name: MTEB Tatoeba (srp-eng) type: mteb/tatoeba-bitext-mining config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.53333333333333 - type: precision value: 93.91666666666666 - type: recall value: 95.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (epo-eng) type: mteb/tatoeba-bitext-mining config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.8 - type: f1 value: 98.48333333333332 - type: precision value: 98.33333333333334 - type: recall value: 98.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (kzj-eng) type: mteb/tatoeba-bitext-mining config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 17.5 - type: f1 value: 14.979285714285714 - type: precision value: 14.23235060690943 - type: recall value: 17.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (awa-eng) type: mteb/tatoeba-bitext-mining config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.93939393939394 - type: f1 value: 91.991341991342 - type: precision value: 91.05339105339105 - type: recall value: 93.93939393939394 - task: type: BitextMining dataset: name: MTEB Tatoeba (fao-eng) type: mteb/tatoeba-bitext-mining config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.31297709923665 - type: f1 value: 86.76844783715012 - type: precision value: 85.63613231552164 - type: recall value: 89.31297709923665 - task: type: BitextMining dataset: name: MTEB Tatoeba (mal-eng) type: mteb/tatoeba-bitext-mining config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.12663755458514 - type: f1 value: 98.93255701115964 - type: precision value: 98.83551673944687 - type: recall value: 99.12663755458514 - task: type: BitextMining dataset: name: MTEB Tatoeba (ile-eng) type: mteb/tatoeba-bitext-mining config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.0 - type: f1 value: 89.77999999999999 - type: precision value: 88.78333333333333 - type: recall value: 92.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (bos-eng) type: mteb/tatoeba-bitext-mining config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.89265536723164 - type: f1 value: 95.85687382297553 - type: precision value: 95.33898305084746 - type: recall value: 96.89265536723164 - task: type: BitextMining dataset: name: MTEB Tatoeba (cor-eng) type: mteb/tatoeba-bitext-mining config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 14.6 - type: f1 value: 11.820611790170615 - type: precision value: 11.022616224355355 - type: recall value: 14.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (cat-eng) type: mteb/tatoeba-bitext-mining config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.93333333333334 - type: precision value: 94.48666666666666 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (eus-eng) type: mteb/tatoeba-bitext-mining config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.6 - type: f1 value: 84.72333333333334 - type: precision value: 83.44166666666666 - type: recall value: 87.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (yue-eng) type: mteb/tatoeba-bitext-mining config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.8 - type: f1 value: 93.47333333333333 - type: precision value: 92.875 - type: recall value: 94.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (swe-eng) type: mteb/tatoeba-bitext-mining config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.6 - type: f1 value: 95.71666666666665 - type: precision value: 95.28333333333335 - type: recall value: 96.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (dtp-eng) type: mteb/tatoeba-bitext-mining config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 17.8 - type: f1 value: 14.511074040901628 - type: precision value: 13.503791000666002 - type: recall value: 17.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (kat-eng) type: mteb/tatoeba-bitext-mining config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.10187667560321 - type: f1 value: 92.46648793565683 - type: precision value: 91.71134941912423 - type: recall value: 94.10187667560321 - task: type: BitextMining dataset: name: MTEB Tatoeba (jpn-eng) type: mteb/tatoeba-bitext-mining config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.0 - type: f1 value: 96.11666666666666 - type: precision value: 95.68333333333334 - type: recall value: 97.0 - task: type: BitextMining dataset: name: MTEB Tatoeba (csb-eng) type: mteb/tatoeba-bitext-mining config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 72.72727272727273 - type: f1 value: 66.58949745906267 - type: precision value: 63.86693017127799 - type: recall value: 72.72727272727273 - task: type: BitextMining dataset: name: MTEB Tatoeba (xho-eng) type: mteb/tatoeba-bitext-mining config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.14084507042254 - type: f1 value: 88.26291079812206 - type: precision value: 87.32394366197182 - type: recall value: 90.14084507042254 - task: type: BitextMining dataset: name: MTEB Tatoeba (orv-eng) type: mteb/tatoeba-bitext-mining config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 64.67065868263472 - type: f1 value: 58.2876627696987 - type: precision value: 55.79255774165953 - type: recall value: 64.67065868263472 - task: type: BitextMining dataset: name: MTEB Tatoeba (ind-eng) type: mteb/tatoeba-bitext-mining config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.6 - type: f1 value: 94.41666666666667 - type: precision value: 93.85 - type: recall value: 95.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (tuk-eng) type: mteb/tatoeba-bitext-mining config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 55.172413793103445 - type: f1 value: 49.63992493549144 - type: precision value: 47.71405113769646 - type: recall value: 55.172413793103445 - task: type: BitextMining dataset: name: MTEB Tatoeba (max-eng) type: mteb/tatoeba-bitext-mining config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.46478873239437 - type: f1 value: 73.4417616811983 - type: precision value: 71.91607981220658 - type: recall value: 77.46478873239437 - task: type: BitextMining dataset: name: MTEB Tatoeba (swh-eng) type: mteb/tatoeba-bitext-mining config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.61538461538461 - type: f1 value: 80.91452991452994 - type: precision value: 79.33760683760683 - type: recall value: 84.61538461538461 - task: type: BitextMining dataset: name: MTEB Tatoeba (hin-eng) type: mteb/tatoeba-bitext-mining config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.6 - type: precision value: 97.3 - type: recall value: 98.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (dsb-eng) type: mteb/tatoeba-bitext-mining config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 75.5741127348643 - type: f1 value: 72.00417536534445 - type: precision value: 70.53467872883321 - type: recall value: 75.5741127348643 - task: type: BitextMining dataset: name: MTEB Tatoeba (ber-eng) type: mteb/tatoeba-bitext-mining config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 62.2 - type: f1 value: 55.577460317460314 - type: precision value: 52.98583333333333 - type: recall value: 62.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (tam-eng) type: mteb/tatoeba-bitext-mining config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.18241042345277 - type: f1 value: 90.6468124709167 - type: precision value: 89.95656894679696 - type: recall value: 92.18241042345277 - task: type: BitextMining dataset: name: MTEB Tatoeba (slk-eng) type: mteb/tatoeba-bitext-mining config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.13333333333333 - type: precision value: 94.66666666666667 - type: recall value: 96.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (tgl-eng) type: mteb/tatoeba-bitext-mining config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 95.85000000000001 - type: precision value: 95.39999999999999 - type: recall value: 96.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (ast-eng) type: mteb/tatoeba-bitext-mining config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.1259842519685 - type: f1 value: 89.76377952755905 - type: precision value: 88.71391076115485 - type: recall value: 92.1259842519685 - task: type: BitextMining dataset: name: MTEB Tatoeba (mkd-eng) type: mteb/tatoeba-bitext-mining config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.49 - type: precision value: 91.725 - type: recall value: 94.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (khm-eng) type: mteb/tatoeba-bitext-mining config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.5623268698061 - type: f1 value: 73.27364463791058 - type: precision value: 71.51947852086357 - type: recall value: 77.5623268698061 - task: type: BitextMining dataset: name: MTEB Tatoeba (ces-eng) type: mteb/tatoeba-bitext-mining config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.56666666666666 - type: precision value: 96.16666666666667 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tzl-eng) type: mteb/tatoeba-bitext-mining config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.34615384615384 - type: f1 value: 61.092032967032964 - type: precision value: 59.27197802197802 - type: recall value: 66.34615384615384 - task: type: BitextMining dataset: name: MTEB Tatoeba (urd-eng) type: mteb/tatoeba-bitext-mining config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.41190476190476 - type: precision value: 92.7 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (ara-eng) type: mteb/tatoeba-bitext-mining config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.10000000000001 - type: f1 value: 91.10000000000001 - type: precision value: 90.13333333333333 - type: recall value: 93.10000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (kor-eng) type: mteb/tatoeba-bitext-mining config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.97333333333334 - type: precision value: 91.14166666666667 - type: recall value: 93.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (yid-eng) type: mteb/tatoeba-bitext-mining config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.21698113207547 - type: f1 value: 90.3796046720575 - type: precision value: 89.56367924528303 - type: recall value: 92.21698113207547 - task: type: BitextMining dataset: name: MTEB Tatoeba (fin-eng) type: mteb/tatoeba-bitext-mining config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.6 - type: f1 value: 96.91666666666667 - type: precision value: 96.6 - type: recall value: 97.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (tha-eng) type: mteb/tatoeba-bitext-mining config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.44525547445255 - type: f1 value: 96.71532846715328 - type: precision value: 96.35036496350365 - type: recall value: 97.44525547445255 - task: type: BitextMining dataset: name: MTEB Tatoeba (wuu-eng) type: mteb/tatoeba-bitext-mining config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.34000000000002 - type: precision value: 91.49166666666667 - type: recall value: 94.1 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.2910000000000004 - type: map_at_10 value: 10.373000000000001 - type: map_at_100 value: 15.612 - type: map_at_1000 value: 17.06 - type: map_at_3 value: 6.119 - type: map_at_5 value: 7.917000000000001 - type: mrr_at_1 value: 44.897999999999996 - type: mrr_at_10 value: 56.054 - type: mrr_at_100 value: 56.82000000000001 - type: mrr_at_1000 value: 56.82000000000001 - type: mrr_at_3 value: 52.381 - type: mrr_at_5 value: 53.81 - type: ndcg_at_1 value: 42.857 - type: ndcg_at_10 value: 27.249000000000002 - type: ndcg_at_100 value: 36.529 - type: ndcg_at_1000 value: 48.136 - type: ndcg_at_3 value: 33.938 - type: ndcg_at_5 value: 29.951 - type: precision_at_1 value: 44.897999999999996 - type: precision_at_10 value: 22.653000000000002 - type: precision_at_100 value: 7.000000000000001 - type: precision_at_1000 value: 1.48 - type: precision_at_3 value: 32.653 - type: precision_at_5 value: 27.755000000000003 - type: recall_at_1 value: 3.2910000000000004 - type: recall_at_10 value: 16.16 - type: recall_at_100 value: 43.908 - type: recall_at_1000 value: 79.823 - type: recall_at_3 value: 7.156 - type: recall_at_5 value: 10.204 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.05879999999999 - type: ap value: 14.609748142799111 - type: f1 value: 54.878956295843096 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 64.61799660441426 - type: f1 value: 64.8698191961434 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 51.32860036611885 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 88.34714192048638 - type: cos_sim_ap value: 80.26732975975634 - type: cos_sim_f1 value: 73.53415148134374 - type: cos_sim_precision value: 69.34767360299276 - type: cos_sim_recall value: 78.25857519788919 - type: dot_accuracy value: 88.34714192048638 - type: dot_ap value: 80.26733698491206 - type: dot_f1 value: 73.53415148134374 - type: dot_precision value: 69.34767360299276 - type: dot_recall value: 78.25857519788919 - type: euclidean_accuracy value: 88.34714192048638 - type: euclidean_ap value: 80.26734337771738 - type: euclidean_f1 value: 73.53415148134374 - type: euclidean_precision value: 69.34767360299276 - type: euclidean_recall value: 78.25857519788919 - type: manhattan_accuracy value: 88.30541813196639 - type: manhattan_ap value: 80.19415808104145 - type: manhattan_f1 value: 73.55143870713441 - type: manhattan_precision value: 73.25307511122743 - type: manhattan_recall value: 73.85224274406332 - type: max_accuracy value: 88.34714192048638 - type: max_ap value: 80.26734337771738 - type: max_f1 value: 73.55143870713441 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.81061047075717 - type: cos_sim_ap value: 87.11747055081017 - type: cos_sim_f1 value: 80.04355498817256 - type: cos_sim_precision value: 78.1165262000733 - type: cos_sim_recall value: 82.06806282722513 - type: dot_accuracy value: 89.81061047075717 - type: dot_ap value: 87.11746902745236 - type: dot_f1 value: 80.04355498817256 - type: dot_precision value: 78.1165262000733 - type: dot_recall value: 82.06806282722513 - type: euclidean_accuracy value: 89.81061047075717 - type: euclidean_ap value: 87.11746919324248 - type: euclidean_f1 value: 80.04355498817256 - type: euclidean_precision value: 78.1165262000733 - type: euclidean_recall value: 82.06806282722513 - type: manhattan_accuracy value: 89.79508673885202 - type: manhattan_ap value: 87.11074390832218 - type: manhattan_f1 value: 80.13002540726349 - type: manhattan_precision value: 77.83826945412311 - type: manhattan_recall value: 82.56082537727133 - type: max_accuracy value: 89.81061047075717 - type: max_ap value: 87.11747055081017 - type: max_f1 value: 80.13002540726349 --- # Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF This model was converted to GGUF format from [`intfloat/multilingual-e5-large-instruct`](https://huggingface.co/intfloat/multilingual-e5-large-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/intfloat/multilingual-e5-large-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF --hf-file multilingual-e5-large-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF --hf-file multilingual-e5-large-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF --hf-file multilingual-e5-large-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Zenabius/multilingual-e5-large-instruct-Q8_0-GGUF --hf-file multilingual-e5-large-instruct-q8_0.gguf -c 2048 ```
[ "BIOSSES", "SCIFACT" ]
legaltextai/modernbert-embed-ft-const-legal-matryoshka
legaltextai
sentence-similarity
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:842", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:nomic-ai/modernbert-embed-base", "base_model:finetune:nomic-ai/modernbert-embed-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-02-17T00:05:31Z
2025-02-17T00:06:03+00:00
29
1
--- base_model: nomic-ai/modernbert-embed-base language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:842 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Discuss the implications of the Insular Cases on the application of the Citizenship Clause to American Samoa, particularly in distinguishing between incorporated and unincorporated territories. What are the practical concerns associated with this distinction? sentences: - 'To the extent jus soli is adopted into the Fourteenth Amendment, the concept of allegiance is manifested by the Citizenship Clause’s mandate that birthright citizens not merely be born within the territorial boundaries of the United States but also “subject to the jurisdiction thereof…” [citations omitted]    Appellants would find any allegiance requirement of no moment because, as non-citizen nationals, American Samoans already “owe[ ] permanent allegiance to the United States.”[citations omitted] Yet, within the context of the Citizenship Clause, “[t]he evident meaning of the[ ] ... words [“subject to the jurisdiction thereof”] is, not merely subject in some respect or degree to the jurisdiction of the United States, but completely subject to their political jurisdiction, and owing them direct and immediate allegiance.” **375 [citations omitted] *306  It was on this basis that the Supreme Court declined to extend constitutional birthright citizenship to Native American tribes. [citations omitted]…Even assuming a background context grounded in principles of jus soli, we are skeptical the framers plainly intended to extend birthright citizenship to distinct, significantly self-governing political territories within the United States’s sphere of sovereignty—even where, as is the case with American Samoa, ultimate governance remains statutorily vested with the United States Government. [citations omitted] III Analysis of the Citizenship Clause’s application to American Samoa would be incomplete absent invocation of the sometimes contentious Insular Cases, where the Supreme Court “addressed whether the Constitution, by its own force, applies in any territory that is not a State.” [citations omitted]   “The doctrine of ‘territorial incorporation’ announced in the Insular Cases distinguishes between incorporated territories, which are intended for statehood from the time of acquisition and in which the entire Constitution applies ex proprio vigore, and unincorporated territories [such as American Samoa], which are not intended for statehood and in which only [certain] fundamental constitutional rights apply by their own force.”[citations omitted].   Appellants and Amici contend the Insular Cases have no application because the Citizenship Clause textually defines its own scope.[citations omitted].   Amici Curiae suggest territorial incorporation doctrine should not be expanded to the Citizenship Clause because the doctrine rests on anachronistic views of race and imperialism. But the Court has continued to invoke the Insular framework when dealing with questions of territorial and extraterritorial application. [citations omitted] Although some aspects of the Insular Cases’ analysis may now be deemed politically incorrect, the framework remains both applicable and of pragmatic use in assessing the applicability of rights to unincorporated territories. [citations omitted]   As the Supreme Court…emphasized, the “common thread uniting the Insular Cases ... [is that] questions of extraterritoriality turn on objective factors and practical concerns, not formalism.” [citations omitted] While “fundamental limitations in favor of personal rights” remain guaranteed to persons born in the unincorporated territories, [citations omitted], the Insular framework recognizes the difficulties that frequently inure when “determin[ing] [whether a] particular provision of the Constitution is applicable,” absent inquiry into the impractical or anomalous. [citations omitted] A  American citizenship “is one of the most valuable rights in the world today.” [citations omitted] “The freedoms and opportunities secured by United States citizenship long have been treasured by persons fortunate enough to be born with them, and are yearned for by countless less fortunate.” [citations omitted]. Accordingly, even if the Insular framework is applicable, Appellants cite to a bevy of cases to argue citizenship is a fundamental right. [citations omitted] But those cases do not arise in the territorial context. Such decisions do not reflect the Court’s considered judgment as to the existence of a fundamental right to citizenship for persons born in the United States’ unincorporated **377 *308 territories. [citations omitted].7    “Fundamental” has a distinct and narrow meaning in the context of territorial rights. It is not sufficient that a right be considered fundamentally important in a colloquial sense or even that a right be “necessary to [the] [ ]American regime of ordered liberty.” [citations omitted]. Under the Insular framework the designation of fundamental extends only to the narrow category of rights and “principles which are the basis of all free government.” [citations omitted]   In this manner the Insular Cases distinguish as universally fundamental those rights so basic as to be integral to free and fair society.' - '633, 649 (concurring opinion). An innkeeper or common carrier has always been allowed to'' exclude drunks, criminals and'' diseased persons, but only because the public’s interest in protecting his and his guests’ health and property outweighs its interest in providing accommodations for this small group of travelers. As a general rule, innkeepers and carriers cannot refuse their services on account of race; though the rule developed in this country that they can provide “separate but equal” facilities. And for a period of our history even,this Court upheld state laws giving sanction to such a rule. Compare Plessy v. Ferguson, 163 U. S. 537, with Gayle v. Browder, 352 U. S. 903, affirming, 142 F. Supp. 707. But surely Shelley v. Kraemer, supra, and Barrows v. Jackson, supra, show that the day has passed when an innkeeper, carrier, housing developer, or retailer can draw a• racial'' line, refuse service to some on account of color, and obtain the aid of a State in enforcing his personal bias by sending outlawed customers to prison or exacting fines from them. Business, such as this restaurant, is still private property. '' Yet there is hardly any private enterprise that does not feel the pinch of some public regulation — from price control, to health and fire inspection, to zoning, to safety measures, to minimum wages and working conditions, to unemployment insurance. When the doors of a business are open to the public, they must be open to all regardless of race if apartheid is not to become engrained in our public places. It cannot by reason of the Equal Protection Clause become so engrained with the aid of state courts, state legislatures, or state police. II. There is even greater reason to bar a State through its judiciary from throwing its weight on the side of racial discrimination in the present case, because we deal here with a place of public accommodation under license from, the State. This is the idea I expressed in Garner v. Louisiana, 368 U. S. 157, where another owner of a restaurant refused service to a customer because he was a Negro. That view is not novel; it.stems from the dissent of the first Mr. Justice Harlan in the Civil Rights Cases, 109 U. S. 3, 58-59: “In every material sense applicable to the practical enforcement of the Fourteenth Amendment, railroad corporations, keepers of inns, and managers of places of public amusement are agents or instrumentalities of the State, because they are charged with duties to the public, and are amenable, in respect of their duties and functions, to governmental regulation. It seems to me that, within the principle settled in Ex parte Virginia, a denial, by these instrumentalities of the State, to the citizen, because of his race, of that equality of civil rights secured to him by law, is a denial by the State, within the meaning of the Fourteenth Amendment. If it be not, then that race is left, in respect of the civil rights in question, practically at the mercy of corporations and individuals wielding power under the States.” The nexus between the State and the private enterprise may be control, as in the case of a state agency. Pennsylvania v. Board of Trusts, 353 U. S. 230. Or the nexus may be one of numerous other devices. “State support of segregated schools through any arrangement, management, funds, or property cannot be squared” with the Equal Protection Clause. Cooper v. Aaron, 358 U. S. 1, 19. Cf. Hampton v. Jacksonville, 304 F. 2d 320. A state-assisted enterprise serving the public does not escape its constitutional duty to serve all customers irrespective of race, even though its actual operation is in the hands of a lessee. Burton v. Wilmington Parking Authority, 365 U. S. 715. Cf. Boynton v. Virginia, 364 U. S. 454. State licensing and surveillance.of a business serving the public also brings its service into the public domain. This restaurant needs a permit from Louisiana to operate; and during the existence of the license the State has broad powers of visitation and control. This restaurant is thus an instrumentality of the State since the State charges it with duties to the public and supervises its performance. The State''s interest in and activity with regard to its restaurants extends far beyond any mere income-producing licensing requirement.' - 'Among other things, courts at this second step have sometimes considered whether an employee’s speech interests are outweighed by “ ‘the interest of the State, as an employer, in promoting the efficiency of the public services it performs through its employees.’ ” Id., at 417, 126 S.Ct. 1951 *2424 (quoting Pickering, 391 U.S. at 568, 88 S.Ct. 1731).   Both sides ask us to employ at least certain aspects of this Pickering–Garcetti framework to resolve Mr. Kennedy’s free speech claim. They share additional common ground too. They agree that Mr. Kennedy’s speech implicates a matter of public concern. See App. to Pet. for Cert. 183; Brief for Respondent 44. They also appear to accept, at least for argument’s sake, that Mr. Kennedy’s speech does not raise questions of academic freedom that may or may not involve “additional” First Amendment “interests” beyond those captured by this framework. Garcetti, 547 U.S. at 425, 126 S.Ct. 1951; see also Keyishian v. Board of Regents of Univ. of State of N. Y., 385 U.S. 589, 603, 87 S.Ct. 675, 17 L.Ed.2d 629 (1967); Brief for Petitioner 26, n. 2. At the first step of the Pickering–Garcetti inquiry, the parties’ disagreement thus turns out to center on one question alone: Did Mr. Kennedy offer his prayers in his capacity as a private citizen, or did they amount to government speech attributable to the District?   Our cases offer some helpful guidance for resolving this question. In Garcetti, the Court concluded that a prosecutor’s internal memorandum to a supervisor was made “pursuant to [his] official duties,” and thus ineligible for First Amendment protection. 547 U.S. at 421, 126 S.Ct. 1951. In reaching this conclusion, the Court relied on the fact that the prosecutor’s speech “fulfill[ed] a responsibility to advise his supervisor about how best to proceed with a pending case.” Ibid. In other words, the prosecutor’s memorandum was government speech because it was speech the government “itself ha[d] commissioned or created” and speech the employee was expected to deliver in the course of carrying out his job. Id., at 422, 126 S.Ct. 1951.   By contrast, in Lane a public employer sought to terminate an employee after he testified at a criminal trial about matters involving his government employment. 573 U.S. at 233, 134 S.Ct. 2369. The Court held that the employee’s speech was protected by the First Amendment. Id., at 231, 134 S.Ct. 2369. In doing so, the Court held that the fact the speech touched on matters related to public employment was not enough to render it government speech. Id., at 239–240, 134 S.Ct. 2369. Instead, the Court explained, the “critical question ... is whether the speech at issue is itself ordinarily within the scope of an employee’s duties.” Id., at 240, 134 S.Ct. 2369. It is an inquiry this Court has said should be undertaken “practical[ly],” rather than with a blinkered focus on the terms of some formal and capacious written job description. Garcetti, 547 U.S. at 424, 126 S.Ct. 1951. To proceed otherwise would be to allow public employers to use “excessively broad job descriptions” to subvert the Constitution’s protections. Ibid.   Applying these lessons here, it seems clear to us that Mr. Kennedy has demonstrated that his speech was private speech, not government speech. When Mr. Kennedy uttered the three prayers that resulted in his suspension, he was not engaged in speech “ordinarily within the scope” of his duties as a coach. Lane, 573 U.S. at 240, 134 S.Ct. 2369. He did not speak pursuant to government policy. He was not seeking to convey a government-created message. He was not instructing players, discussing strategy, encouraging better on-field performance, or engaged in any other speech the District paid him to produce as a coach. See Part I–B, supra. Simply put: Mr. Kennedy’s prayers did not “ow[e their] existence” to Mr. Kennedy’s responsibilities as a public employee.' - source_sentence: Discuss the implications of the Thirteenth Amendment as it relates to Congress's power to enact laws against private racial discrimination in property transactions. How does the text support the assertion that Congress's authority extends beyond state action? sentences: - '––––, ––––, 142 S.Ct. 1539, 1545, ––– L.Ed.2d –––– (2022) (THOMAS, J., concurring) (internal quotation*2301 marks omitted). Either way, the Due Process Clause at most guarantees process. It does not, as the Court’s substantive due process cases suppose, “forbi[d] the government to infringe certain ‘fundamental’ liberty interests at all, no matter what process is provided.” Reno v. Flores, 507 U.S. 292, 302, 113 S.Ct. 1439, 123 L.Ed.2d 1 (1993); see also, e.g.,Collins v. Harker Heights, 503 U.S. 115, 125, 112 S.Ct. 1061, 117 L.Ed.2d 261 (1992).   As I have previously explained, “substantive due process” is an oxymoron that “lack[s] any basis in the Constitution.” Johnson, 576 U.S. at 607–608, 135 S.Ct. 2551 (opinion of THOMAS, J.); see also, e.g.,Vaello Madero, 596 U.S., at ––––, 142 S.Ct., at 1545 (THOMAS, J., concurring) (“[T]ext and history provide little support for modern substantive due process doctrine”). “The notion that a constitutional provision that guarantees only ‘process’ before a person is deprived of life, liberty, or property could define the substance of those rights strains credulity for even the most casual user of words.” McDonald v. Chicago, 561 U.S. 742, 811, 130 S.Ct. 3020, 177 L.Ed.2d 894 (2010) (THOMAS, J., concurring in part and concurring in judgment); see also United States v. Carlton, 512 U.S. 26, 40, 114 S.Ct. 2018, 129 L.Ed.2d 22 (1994) (Scalia, J., concurring in judgment). The resolution of this case is thus straightforward. Because the Due Process Clause does not secure any substantive rights, it does not secure a right to abortion.   The Court today declines to disturb substantive due process jurisprudence generally or the doctrine’s application in other, specific contexts. Cases like Griswold v. Connecticut, 381 U.S. 479, 85 S.Ct. 1678, 14 L.Ed.2d 510 (1965) (right of married persons to obtain contraceptives)*; Lawrence v. Texas, 539 U.S. 558, 123 S.Ct. 2472, 156 L.Ed.2d 508 (2003) (right to engage in private, consensual sexual acts); and Obergefell v. Hodges, 576 U.S. 644, 135 S.Ct. 2584, 192 L.Ed.2d 609 (2015) (right to same-sex marriage), are not at issue. The Court’s abortion cases are unique, see ante, at 2257 – 2258, 2277 – 2278, 2280 – 2281, and no party has asked us to decide “whether our entire Fourteenth Amendment jurisprudence must be preserved or revised,” McDonald, 561 U.S. at 813, 130 S.Ct. 3020 (opinion of THOMAS, J.). Thus, I agree that “[n]othing in [the Court’s] opinion should be understood to cast doubt on precedents that do not concern abortion.” Ante, at 2277 – 2278.   For that reason, in future cases, we should reconsider all of this Court’s substantive due process precedents, including Griswold, Lawrence, and Obergefell. Because any substantive due process decision is “demonstrably erroneous,” Ramos v.Louisiana, 590 U.S. ––––, ––––, 140 S.Ct. 1390, 1424, 206 L.Ed.2d 583 (2020) (THOMAS, J., concurring in judgment), we have a duty to “correct the error” established in those precedents, Gamble v. United States, 587 U.S. ––––, ––––, 139 S.Ct. 1960, 1984-1985, 204 L.Ed.2d 322 (2019) (THOMAS, J., concurring).' - 'On October 21, the superintendent further observed to a state official that “[t]he issue is quickly changing as it has shifted from leading prayer with student athletes, to a coaches [sic] right to conduct” his own prayer “on the 50 yard line.” Id., at 88.   On October 23, shortly before that evening’s game, the District wrote Mr. Kennedy again. It expressed “appreciation” for his “efforts to comply” with the District’s directives, including avoiding “on-the-job prayer with players in the ... football program, both in the locker room prior to games as well as on the field immediately following games.” Id., at 90. The letter also admitted that, during Mr. Kennedy’s recent October 16 postgame prayer, his students were otherwise engaged and not praying with him, and that his prayer was “fleeting.” Id., at 90, 93. Still, the District explained that a “reasonable observer” could think government endorsement of religion had occurred when a “District employee, on the field only by virtue of his employment with the District, still on duty” engaged in “overtly religious conduct.” Id., at 91, 93. The District thus made clear that the only option it would offer Mr. Kennedy was to allow him to pray after a game in a “private location” behind closed doors and “not observable to students or the public.” Id., at 93–94.   After the October 23 game ended, Mr. Kennedy knelt at the 50-yard line, where “no one joined him,” and bowed his head for a “brief, quiet prayer.” 991 F.3d at 1019; App. 173, 236–239. The superintendent informed the District’s board that this prayer “moved closer to what we want,” but nevertheless remained “unconstitutional.” Id., at 96. After the final relevant football game on October 26, Mr. Kennedy again knelt alone to offer a brief prayer as the players engaged in postgame traditions. 443 F.Supp.3d 1223, 1231 (W.D. Wash. 2020); App. to Pet. for Cert. 182. While he was praying, other adults gathered around him on the field. See 443 F.Supp.3d at 1231; App. 97. Later, Mr. Kennedy rejoined his players for a postgame talk, after they had finished singing the school fight song. 443 F.Supp.3d at 1231; App. 103.     C Shortly after the October 26 game, the District placed Mr. Kennedy on paid administrative *2419 leave and prohibited him from “participat[ing], in any capacity, in ... football program activities.” Ibid. In a letter explaining the reasons for this disciplinary action, the superintendent criticized Mr. Kennedy for engaging in “public and demonstrative religious conduct while still on duty as an assistant coach” by offering a prayer following the games on October 16, 23, and 26. Id., at 102. The letter did not allege that Mr. Kennedy performed these prayers with students, and it acknowledged that his prayers took place while students were engaged in unrelated postgame activities. Id., at 103. Additionally, the letter faulted Mr. Kennedy for not being willing to pray behind closed doors. Id., at 102.   In an October 28 Q&A document provided to the public, the District admitted that it possessed “no evidence that students have been directly coerced to pray with Kennedy.” Id., at 105. The Q&A also acknowledged that Mr. Kennedy “ha[d] complied” with the District’s instruction to refrain from his “prior practices of leading players in a pre-game prayer in the locker room or leading players in a post-game prayer immediately following games.” Ibid. But the Q&A asserted that the District could not allow Mr. Kennedy to “engage in a public religious display.” Id., at 105, 107, 110. Otherwise, the District would “violat[e] the ... Establishment Clause” because “reasonable ... students and attendees” might perceive the “district [as] endors[ing] ... religion.” Id., at 105.   While Mr. Kennedy received “uniformly positive evaluations” every other year of his coaching career, after the 2015 season ended in November, the District gave him a poor performance evaluation. Kennedy v. Bremerton School Dist., 869 F.3d 813, 820 (C.A.9 2017).' - 'Nor was the scope of the 1866 Act altered when it was re-enacted in 1870, some two years after the ratification of the Fourteenth Amendment.71 It is quite true that some members of Congress supported the Fourteenth Amendment “in order to eliminate doubt as to the constitutional validity of the Civil Rights Act as applied to the States.” Hurd v. Hodge, 334 U.S. 24, 32—33, 68 S.Ct. 847, 852. But it certainly does not follow that the adoption of the Fourteenth Amendment or the subsequent readoption of the Civil Rights Act were meant somehow to limit its application to state action. The legislative history furnishes not the slightest factual basis for any such speculation, and the conditions prevailing in 1870 make it highly implausible. For by that time most, if not all, of the former Confederate States, then under the control of “reconstructed” legislatures, had formally repudiated racial discrimination, and the focus of congressional concern had clearly shifted from hostile statutes to the activities of groups like the Ku Klux Klan, operating wholly outside the law.72    **2202 *437 Against this background, it would obviously make no sense to assume, without any historical support whatever, that Congress made a silent decision in 1870 to exempt private discrimination from the operation of the Civil Rights Act of 1866.73 “The cardinal rule is that repeals by implication are not favored.” Posadas v. National City Bank, 296 U.S. 497, 503, 56 S.Ct. 349, 352, 80 L.Ed. 351. All Congress said in 1870 was that the 1866 law “is hereby re-enacted.” That is all Congress meant.    As we said in a somewhat different setting two Terms ago, “We think that history leaves no doubt that, if we are to give (the law) the scope that its origins dictate, we must accord it a sweep as broad as its language.” United States v. Price, 383 U.S. 787, 801, 86 S.Ct. 1152, 1160. “We are not at liberty to seek ingenious analytical instruments,” ibid., to carve from s 1982 an exception for private conduct—even though its application to such conduct in the present context is without established precedent. And, as the Attorney General of the United States said at the oral argument of this case, “The fact that the statute lay partially dormant for many years cannot be held to diminish its force today.”       V. The remaining question is whether Congress has power under the Constitution to do what s 1982 purports to do: to prohibit all racial discrimination, private and public, in the sale and rental of property. Our starting point is the Thirteenth Amendment, for it was pursuant *438 to that constitutional provision that Congress originally enacted what is now s 1982. The Amendment consists of two parts. Section 1 states: “Neither slavery nor involuntary servitude, except as a punishment for crime whereby the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction.” Section 2 provides: “Congress shall have power to enforce this article by appropriate legislation.”  As its text reveals, the Thirteenth Amendment “is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States.” Civil Rights Cases, 109 U.S. 3, 20, 3 S.Ct. 18, 28, 27 L.Ed. 835. It has never been doubted, therefore, “that the power vested in Congress to enforce the article by appropriate legislation,” ibid., includes the power to enact laws “direct and primary, operating upon the acts of individuals, whether sanctioned by state legislation or not.” Id., at 23, 3 S.Ct., at 30.74    Thus, the fact that s 1982 operates upon the unofficial acts of private individuals, whether or not sanctioned by state law, presents no constitutional problem. If Congress has power **2203 under the Thirteenth Amendment to eradicate conditions that prevent Negroes from buying and renting property because of their race or color, then no federal statute calculated to achieve that objective *439 can be thought to exceed the constitutional power of Congress simply because it reaches beyond state action to regulate the conduct of private individuals. The constitutional question in this case, therefore, comes to this: Does the authority of Congress to enforce the Thirteenth Amendment “by appropriate legislation” include the power to eliminate all racial barriers to the acquisition of real and personal property? We think the answer to that question is plainly yes.' - source_sentence: According to the statute referenced in the context, what is the standard for establishing the requisite injury necessary for obtaining an injunction under 17 U.S.C. § 1203(b)(1)? sentences: - 'Post-Trial Mem. at 27-28. [263] The statute expressly authorizes injunctions to prevent or restrain violations, 17 U.S.C. § 1203(b)(1), thus demonstrating that the requisite injury need only be threatened. [264] Def. Post-Trial Mem. at 28. [265] Id. at 28-29. [266] See, e.g., Ex. AYZ (Hunt Dep.) at 94-104. [267] Id. 30. [268] Ex. 113. [269] Defendants'' argument would lack merit even if there were credible proof that other circumvention devices actually exist and produce results comparable to DeCSS. The available movies must have been decrypted with DeCSS or something else. As far as this record discloses, any such device or technology would violate the DMCA for the same reasons as does DeCSS. In consequence, this case comes within the principle of Summers v. Tice, 33 Cal.2d 80, 199 P.2d 1 (1948). Where, as here, two or more persons take substantially identical wrongful actions, one and only one of which had to be the source of the plaintiffs'' injury, and it is equally likely that one inflicted the injury as the other, the burden of proof on causation shifts to the defendants, each of which is liable absent proof that its action did not cause the injury. See 4 Fowler V. Harper & Fleming James, Jr., THE LAW OF TORTS §§ 101-04 (2d ed.1996). Defendants'' efforts to avoid the consequences of this common sense principle are unpersuasive. They argue, for example, that plaintiffs may not invoke the theory unless they join as defendants everyone who may have contributed to the injury. Def. Post-Trial Mem. at 32 n. 18 (citing Ex. UZ). It would be difficult to imagine a more nonsensical requirement in the context of this case. Where, as here, harm is done by dissemination of information over the Internet, probably by a substantial number of people all over the world, defendants'' proposed rule would foreclose judicial relief anywhere because joinder of all plainly would be impossible in any one place, and technology does not permit identification of which wrongdoer''s posting or product led to which pirated copy of a copyrighted work. [270] 17 U.S.C. § 1203(b)(1). [271] See, e.g., S.E.C. v. Unique Financial Concepts, Inc., 196 F.3d 1195, 1199 n. 2 (11th Cir.1999) (injunction under Section 20(b) of the Securities Act of 1933, 15 U.S.C. § 77t(b), which permits an injunction "upon a proper showing," requires "a reasonable likelihood that the wrong will be repeated"); Commodity Futures Trading Com''n v. Hunt, 591 F.2d 1211, 1220 (7th Cir.1979) (same under Commodity Exchange Act, 7 U.S.C. § 13a-1(b)); S.E.C. v. Bausch & Lomb Inc., 565 F.2d 8, 18 (2d Cir.1977) (reasonable likelihood of future violations required under § 21(d) of Securities Exchange Act of 1934, 15 U.S.C. § 78u(d), which permits an injunction "upon a proper showing" where person "engaged or ... about to engage in" violation of statute). [272] See, e.g., Rondeau v. Mosinee Paper Corp., 422 U.S. 49, 57, 95 S.Ct. 2069, 45 L.Ed.2d 12 (1975) (injunctive relief in private action under § 13(d) of the Securities Exchange Act of 1934, 15 U.S.C. § 78m(d), as added by the Williams Act, requires a showing of irreparable harm and inadequacy of legal remedies). [273] Tough Traveler, Ltd. v. Outbound Prods., 60 F.3d 964, 967-68 (2d Cir.1995) (trademark); Fisher-Price, Inc. v. Well-Made Toy Mfg. Corp., 25 F.3d 119, 124 (2d Cir.1994) (copyright). [274] See, e.g., Northwestern Nat''l Ins. Co.' - 'Indeed, were we to accept Maine’s argument, our decision in Espinoza would be rendered essentially meaningless. By Maine’s logic, Montana could have obtained the same result that we held violated the First Amendment simply by redefining its tax credit for sponsors of generally available scholarships as limited to “tuition payments for the rough equivalent of a Montana public education”—meaning a secular education. But our holding in Espinoza turned on the substance of free exercise protections, not on the presence or absence of magic words. That holding applies fully whether the prohibited discrimination is in an express provision like § 2951(2) or in a party’s reconceptualization of the public benefit.   Maine may provide a strictly secular education in its public schools. But BCS and Temple Academy—like numerous other recipients of Maine tuition assistance payments—are not public schools. In order to provide an education to children who live in certain parts of its far-flung State, Maine has decided not to operate schools of its own, but instead to offer tuition assistance that parents may direct to the public or private schools of their choice. Maine’s administration of that benefit is subject to the free exercise principles governing any such public benefit program—including the prohibition on denying the benefit based on a recipient’s religious exercise.   The dissents are wrong to say that under our decision today Maine “must” fund religious education. Post, at 2006 (BREYER, J., dissenting). Maine chose to allow some parents to direct state tuition payments to private schools; that decision was not “forced upon” it. Post, at 2014 (SOTOMAYOR, J., dissenting). The State retains a number of options: it could expand the reach of its public school system, increase the availability of transportation, provide some combination of tutoring, remote learning, and partial attendance, or even operate boarding schools of its own. As we held in Espinoza, a “State need not subsidize private education. But once a State decides to do so, it cannot disqualify some private schools solely because they are religious.” 591 U. S., at ––––, 140 S.Ct., at 2261.     B The Court of Appeals also attempted to distinguish this case from Trinity Lutheran and Espinoza on the ground that the funding restrictions in those cases were “solely status-based religious discrimination,” while the challenged provision here “imposes a use-based restriction.” 979 F.3d at 35, 37–38...   In Trinity Lutheran, the Missouri Constitution banned the use of public funds in aid of “any church, sect or denomination of religion.” [citation omitted]. We noted that the case involved “express discrimination based on religious identity,” which was sufficient unto the day in deciding it, and that our opinion did “not address religious uses of funding.” [citation omitted]   So too in Espinoza, the discrimination at issue was described by the Montana Supreme Court as a prohibition on aiding “schools controlled by churches,” and we *2001 analyzed the issue in terms of “religious status and not religious use.” [citation omitted] Foreshadowing Maine’s argument here, Montana argued that its case was different from Trinity Lutheran’s because it involved not playground resurfacing, but general funds that “could be used for religious ends by some recipients, particularly schools that believe faith should ‘permeate[ ]’ everything they do.” [citation omitted] We explained, however, that the strict scrutiny triggered by status-based discrimination could not be avoided by arguing that “one of its goals or effects [was] preventing religious organizations from putting aid to religious uses.” [citation omitted]  And we noted that nothing in our analysis was “meant to suggest that we agree[d] with [Montana] that some lesser degree of scrutiny applies to discrimination against religious uses of government aid.” [citation omitted]   Maine’s argument, however—along with the decision below and Justice BREYER’s dissent—is premised on precisely such a distinction. [citations omitted]   That premise, however, misreads our precedents. In Trinity Lutheran and Espinoza, we held that the Free Exercise Clause forbids discrimination on the basis of religious status. But those decisions never suggested that use-based discrimination is any less offensive to the Free Exercise Clause. This case illustrates why.' - '429 Supreme Court of the United States. SAMUEL M. CLYATT v. UNITED STATES. No. 235. | Argued December 13, 14, 1904. | Decided March 13, 1905. Synopsis ON WRIT of Certiorari to the United States Circuit Court of Appeals for the Fifth Circuit, bringing up for review a judgment of the Circuit Court for the Northern District of Florida, convicting defendant of returning certain specified persons to a condition of peonage, which judgment had been taken to the Circuit Court of Appeals by a writ of error to the Circuit Court. Reversed and the cause remanded for a new trial.   **429 Statement by Mr. Justice Brewer: Considers the constitutionality of Sections 1990 and 5526, Rev. Stat. (U. S. Comp. Stat. 1901, pp. 1266, 3715),  [Anti-Peonage Act] *215 Mr. Justice Brewer delivered the opinion of the court:   …What is peonage? It may be defined as a status or condition of compulsory service, based upon the indebtedness of the peon to the master. The basal fact is indebtedness. As said by Judge Benedict, delivering the opinion in Jaremillo v. Romero, 1 N. M. 190, 194: ‘One fact existed universally: all were indebted to their masters. This was the cord by which they seemed bound to their master’s service.’ Upon this is based a condition of compulsory service. Peonage is sometimes classified as voluntary or involuntary; but this implies simply a difference in the mode of origin, but none in the character of the servitude. The one exists where the debtor voluntarily contracts to enter the service of his creditor. The other is forced upon the debtor by some provision of law. But peonage, however created, is compulsory service,—involuntary servitude. The peon can release himself therefrom, it is true, by the payment of the debt, but otherwise the service is enforced. A clear distinction exists between peonage and the voluntary performance of labor or rendering of services in payment of a debt. In the latter case the debtor, though contracting to pay his indebtedness by labor or service, and subject, like any other contractor, to an action for damages for breach of that contract, can elect at any time to break it, and no law or force compels *216 performance or a continuance of the service. We need not stop to consider any possible limits or exceptional cases, such as the service of a sailor…or the obligations of a child to its parents, or of an apprentice to his master, or the power of the legislature to make unlawful, and punish criminally, an abandonment by an employee of his post of labor in any extreme cases. That which is contemplated by the statute is compulsory service to secure the payment of a debt. Is this legislation within the power of Congress? It may be conceded, as a general proposition, that the ordinary relations of individual to individual are subject to the control of the states, and are not intrusted to the general government; but the 13th Amendment, adopted as an outcome of the Civil War, reads: ‘Sec. 1. Neither slavery nor involuntary servitude, except as a punishment for crime whereof the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction. ‘Sec. 2. Congress shall have power to enforce this article by appropriate legislation.’ This amendment denounces a status or condition, irrespective of the manner or authority by which it is created. The prohibitions of the 14th and 15th Amendments are largely upon the acts of the states; but the 13th Amendment names no party or authority, but simply forbids slavery and involuntary servitude, grants to Congress power to enforce this prohibition by appropriate legislation. The differences between the 13th and subsequent amendments [can be described as follows:] This amendment, as well as the 14th, is undoubtedly self-executing without any ancillary legislation, so far as its terms are applicable to any existing state of circumstances. By its own unaided force and effect it abolished slavery, and *217 established universal freedom. Still, legislation may be necessary and proper to meet all the various cases and circumstances to be affected by it, and to prescribe proper modes of redress for its violation in letter or spirit. And such legislation may be primary and direct in its character; for the amendment is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States. . . .' - source_sentence: How does the standard for applying the Second Amendment, as outlined in the context, compare to the protection of other constitutional rights, such as the freedom of speech in the First Amendment? sentences: - 'Eventually, HCC moved to dismiss the complaint. The District Court granted the motion, concluding that Mr. Wilson lacked standing under Article III. On appeal, a panel of the Fifth Circuit reversed, holding that Mr. Wilson had standing and that his complaint stated a viable First Amendment claim. [citation omitted]   The Fifth Circuit’s merits analysis proceeded in two steps. First, the court concluded that a verbal “reprimand against an elected official for speech addressing a matter of public concern is an actionable First Amendment claim under § 1983.” [citation omitted] Next, the court reasoned that the Board’s imposition of other punishments—such as limiting Mr. Wilson’s eligibility for officer positions and his access to certain funds—did “not violate his First Amendment rights” because Mr. Wilson did not have an “entitlement” to those privileges. [citation omitted] In sum, the court held that Mr. Wilson’s § 1983 action could proceed, but only as to the Board’s unadorned censure resolution. HCC’s request for rehearing en banc failed by an equally divided vote. [citation omitted].   In time, HCC filed a petition for certiorari in this Court. It asked us to review the Fifth Circuit’s judgment that Mr. Wilson may pursue a First Amendment claim based on a purely verbal censure. Last year, we agreed to take up that question. [citation omitted] But as merits briefing unfolded, Mr. Wilson did not just seek to defend the Fifth Circuit’s judgment; he also sought to challenge it in part. Specifically, he argued that the Fifth Circuit erred to the extent that it upheld the Board’s nonverbal punishments as consistent with the First Amendment. Generally, however, when a respondent in this Court seeks to alter a lower court’s judgment, he must file and we must grant a cross-petition for review. [citation omitted] Mr. Wilson filed no such petition in this case. As a result, we decline to take up his *1259 challenge to the Fifth Circuit’s judgment, and the only question before us remains the narrow one on which we granted certiorari: Does Mr. Wilson possess an actionable First Amendment claim arising from the Board’s purely verbal censure?     II A The First Amendment prohibits laws “abridging the freedom of speech.” One obvious implication of that rule is that the government usually may not impose prior restraints on speech. [citation omitted] But other implications follow too. Relevant here, no one before us questions that, “[a]s a general matter,” the First Amendment prohibits government officials from subjecting individuals to “retaliatory actions” after the fact for having engaged in protected speech. [citations omitted] Mr. Wilson argues that the Board’s censure resolution represents exactly that kind of impermissible retaliatory action.   Almost immediately, however, this submission confronts a challenge. When faced with a dispute about the Constitution’s meaning or application, “[l]ong settled and established practice is a consideration of great weight.” [citation omitted] Often, “a regular course of practice” can illuminate or “liquidate” our founding document’s “terms & phrases.” [citations omitted] That principle poses a problem for Mr. Wilson because elected bodies in this country have long exercised the power to censure their members. In fact, no one before us has cited any evidence suggesting that a purely verbal censure analogous to Mr. Wilson’s has ever been widely considered offensive to the First Amendment.   As early as colonial times, the power of assemblies in this country to censure their members was “more or less assumed.” [citation omitted] It seems, too, that assemblies often exercised the power to censure members for views they expressed and actions they took “both within and without the legislature.” [citations omitted]   The parties supply little reason to think the First Amendment was designed or commonly understood to upend this practice…     If anything, censures [of public officials] have proven more common yet at the state and local level…According to HCC and undisputed by Mr. Wilson, it seems elected bodies in this country issued no fewer than 20 censures in August 2020 alone. [citation omitted]   If this longstanding practice does not “put at rest” the question of the Constitution’s meaning for the dispute before us, it surely leaves a “considerable impression.” [citation omitted] On Mr. Wilson’s telling and under the Fifth Circuit’s holding, a purely verbal censure by an elected assembly of one of its own members may offend the First Amendment.' - '[citation omitted]   We assessed the lawfulness of that handgun ban by scrutinizing whether it comported with history and tradition. Although we noted that the ban “would fail constitutional muster” “[u]nder any of the standards of scrutiny that we have applied to enumerated constitutional rights,”…we did not engage in means-end scrutiny when resolving the constitutional question. Instead, we focused on the historically unprecedented nature of the District’s ban, observing that “[f]ew laws in the history of our Nation have come close to [that] severe restriction.” [citation omitted] Likewise, when one of the dissents attempted to justify the District’s prohibition with “founding-era historical precedent,” including “various restrictive laws in the colonial period,” we addressed each purported analogue and concluded that they were either irrelevant or “d[id] not remotely burden the right of self-defense as much as an absolute ban on handguns.” [citations omitted] Thus, our earlier historical analysis sufficed to show that the Second Amendment did not countenance a “complete prohibition” on the use of “the most popular weapon chosen by Americans for self-defense in the home.” [citation omitted]     2 As the foregoing shows, Heller’s methodology centered on constitutional text and *2129 history. Whether it came to defining the character of the right (individual or militia dependent), suggesting the outer limits of the right, or assessing the constitutionality of a particular regulation, Heller relied on text and history. It did not invoke any means-end test such as strict or intermediate scrutiny.   Moreover, Heller and McDonald expressly rejected the application of any “judge-empowering ‘interest-balancing inquiry’ that ‘asks whether the statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests.’ ” [citations omitted] We declined to engage in means-end scrutiny because “[t]he very enumeration of the right takes out of the hands of government—even the Third Branch of Government—the power to decide on a case-by-case basis whether the right is really worth insisting upon.” [citation omitted] We then concluded: “A constitutional guarantee subject to future judges’ assessments of its usefulness is no constitutional guarantee at all.” [citation omitted]   Not only did Heller decline to engage in means-end scrutiny generally, but it also specifically ruled out the intermediate-scrutiny test that respondents and the United States now urge us to adopt. Dissenting in Heller, Justice BREYER’s proposed standard—“ask[ing] whether [a] statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests,” …—simply expressed a classic formulation of intermediate scrutiny in a slightly different way. [ci8tations omitted] In fact, Justice BREYER all but admitted that his Heller dissent advocated for intermediate scrutiny by repeatedly invoking a quintessential intermediate-scrutiny precedent. [citations omitted]Thus, when Heller expressly rejected that dissent’s “interest-balancing inquiry,” [citation omitted] it necessarily rejected intermediate scrutiny.5   In sum, the Courts of Appeals’ second step is inconsistent with Heller’s historical approach and its rejection of means-end scrutiny. We reiterate that the standard for applying the Second Amendment is as follows: When the Second Amendment’s plain text covers an individual’s *2130 conduct, the Constitution presumptively protects that conduct. The government must then justify its regulation by demonstrating that it is consistent with the Nation’s historical tradition of firearm regulation. Only then may a court conclude that the individual’s conduct falls outside the Second Amendment’s “unqualified command.” [citation omitted]     C This Second Amendment standard accords with how we protect other constitutional rights. [One example is] the freedom of speech in the First Amendment, to which Heller repeatedly compared the right to keep and bear arms. [citation omitted] In that context, “[w]hen the Government restricts speech, the Government bears the burden of proving the constitutionality of its actions.” [citations omitted] In some cases, that burden includes showing whether the expressive conduct falls outside of the category of protected speech. [citation omitted] And to carry that burden, the government must generally point to historical evidence about the reach of the First Amendment’s protections.' - 'Roe and Casey thought that one-sided view misguided. In some sense, that is the difference in a nutshell between our precedents and the majority opinion. The constitutional regime we have lived in for the last 50 years recognized competing interests, and sought a balance between them. The constitutional regime we enter today erases the woman’s interest and recognizes only the State’s (or the Federal Government’s).       B The majority makes this change based on a single question: Did the reproductive right recognized in Roe and Casey exist in “1868, the year when the Fourteenth Amendment was ratified”? Ante, at 2252 – 2253. The majority says (and with this much we agree) that the answer to this question is no: In 1868, there was no nationwide right to end a pregnancy, and no thought that the Fourteenth Amendment provided one.   Of course, the majority opinion refers as well to some later and earlier history. On the one side of 1868, it goes back as far as the 13th (the 13th!) century. See ante, at 2249, 142 S.Ct. 2111. But that turns out to be wheel-spinning. First, it is not clear what relevance *2324 such early history should have, even to the majority. See New York State Rifle & Pistol Assn., Inc. v.Bruen, 597 U.S. ––––, ––––, 142 S.Ct. 2111, 2136, ––– L.Ed.2d –––– (2022) (“Historical evidence that long predates [ratification] may not illuminate the scope of the right”). If the early history obviously supported abortion rights, the majority would no doubt say that only the views of the Fourteenth Amendment’s ratifiers are germane. See ibid. (It is “better not to go too far back into antiquity,” except if olden “law survived to become our Founders’ law”). Second—and embarrassingly for the majority—early law in fact does provide some support for abortion rights. Common-law authorities did not treat abortion as a crime before “quickening”—the point when the fetus moved in the womb.2 And early American law followed the common-law rule.3 So the criminal law of that early time might be taken as roughly consonant with Roe’s and Casey’s different treatment of early and late abortions. Better, then, to move forward in time. On the other side of 1868, the majority occasionally notes that many States barred abortion up to the time of Roe. See ante, at 2253, 2260, 142 S.Ct. 2111. That is convenient for the majority, but it is window dressing. As the same majority (plus one) just informed us, “post-ratification adoption or acceptance of laws that are inconsistent with the original meaning of the constitutional text obviously cannot overcome or alter that text.” New York State Rifle & Pistol Assn., Inc., 597 U.S., at –––– – ––––, 142 S.Ct., at 2137. Had the pre-Roe liberalization of abortion laws occurred more quickly and more widely in the 20th century, the majority would say (once again) that only the ratifiers’ views are germane.   The majority’s core legal postulate, then, is that we in the 21st century must read the Fourteenth Amendment just as its ratifiers did. And that is indeed what the majority emphasizes over and over again. See ante, at 2267 (“[T]he most important historical fact [is] how the States regulated abortion when the Fourteenth Amendment was adopted”); see also ante, at 2242 – 2243, 2248 – 2249, and n. 24, 23, 25, 28. If the ratifiers did not understand something as central to freedom, then neither can we. Or said more particularly: If those people did not understand reproductive rights as part of the guarantee of liberty conferred in the Fourteenth Amendment, then those rights do not exist.   As an initial matter, note a mistake in the just preceding sentence. We referred there to the “people” who ratified the Fourteenth Amendment: What rights did those “people” have in their heads at the time? But, of course, “people” did not ratify the Fourteenth Amendment. Men did. So it is perhaps not so surprising that the ratifiers were not perfectly attuned to the importance of reproductive rights for women’s liberty, or for their capacity to participate as equal members of our Nation.' - source_sentence: Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes? sentences: - 'Thus, even if we agreed with the Funeral Home that Rost''s religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court''s grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government''s compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost''s religious exercise is substantially burdened by the EEOC''s enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home''s RFRA defense on this alternative ground.   [ … ] [ … ]   III. CONCLUSION Discrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer''s stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost''s religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court''s grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court''s grant of summary judgment on the EEOC''s discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC''s claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion. [1] We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court. [2] All facts drawn from Def.''s Statement of Facts (R. 55) are undisputed. See R. 64 (Pl.''s Counter Statement of Disputed Facts) (Page ID #2066-88). [3] See also Appellee Br. at 16 ("It is a helpful exercise to think about Price Waterhouse and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm."). [4] Moreover, discrimination because of a person''s transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person''s identification with two religions, an unorthodox religion, or no religion at all. And "religious identity" can be just as fluid, variable, and difficult to define as "gender identity"; after all, both have "a deeply personal, internal genesis that lacks a fixed external referent." Sue Landsittel, Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII, 104 NW. U. L. REV. 1147, 1172 (2010) (advocating for "[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary"). [5] On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity. See R. 53-6 (Rost Dep.' - 'Such laws would furnish the readiest means of compulsion. The 13th *244 Amendment prohibits involuntary servitude except as punishment for crime. But the exception, allowing full latitude for the enforcement of penal laws, does not destroy the prohibition. It does not permit slavery or involuntary servitude to be established or maintained through the operation of the criminal law by making it a crime to refuse to submit to the one or to render the service which would constitute the other. The state may impose involuntary servitude as a punishment for crime, but it may not compel one man to labor for another in payment of a debt, by punishing him as a criminal if he does not perform the service or pay the debt. If the statute in this case had authorized the employing company to seize the debtor, and hold him to the service until he paid the $15, or had furnished the equivalent in labor, its invalidity would not be questioned. It would be equally clear that the state could not authorize its constabulary to prevent the servant from escaping, and to force him to work out his debt. But the state could not avail itself of the sanction of the criminal law to supply the compulsion any more than it could use or authorize the use of physical force. ‘In contemplation of the law, the compulsion to such service by the fear of punishment under a criminal statute is more powerful than any guard which the employer could station.’ Ex parte Hollman, 79 S. C. 22, 21 L.R.A.(N.S.) 249, 60 S. E. p. 24, 14 A. & E. Ann. Cas. 1109. **153 What the state may not do directly it may not do indirectly. If it cannot punish the servant as a criminal for the mere failure or refusal to serve without paying his debt, it is not permitted to accomplish the same result by creating a statutory presumption which, upon proof of no other fact, exposes him to conviction and punishment. Without imputing any actual motive to oppress, we must consider the natural operation of the statute here in question (Henderson v. New York [Henderson v. Wickham] 92 U. S. p. 268, 23 L. ed. 547), and it is apparent that it furnishes a convenient instrument for the coercion *245 which the Constitution and the act of Congress forbid; an instrument of compulsion peculiarly effective as against the poor and the ignorant, its most likely victims. There is no more important concern than to safeguard the freedom of labor upon which alone can enduring prosperity be based. The provision designed to secure it would soon become a barren form if it were possible to establish a statutory presumption of this sort, and to hold over the heads of laborers the threat of punishment for crime, under the name of fraud, but merely upon evidence of failure to work out their debts. The act of Congress deprives of effect all legislative measures of any state through which, directly or indirectly, the prohibited thing, to wit, compulsory service to secure the payment of a debt, may be established or maintained; and we conclude that § 4730, as amended, of the Code of Alabama, in so far as it makes the refusal or failure to perform the act or service, without refunding the money or paying for the property prima facie evidence of the commission received of the crime which the section defines, is in conflict with the 13th Amendment, and the legislation authorized by that Amendment, and is therefore invalid. In this view it is unnecessary to consider the contentions which have been made under the 14th Amendment… Reversed and cause remanded for further proceedings not inconsistent with this opinion. Mr. Justice Holmes, dissenting [omitted]                 2.3 Jones v. Alfred H. Mayer Co.   88 S.Ct. 2186 Supreme Court of the United States Joseph Lee JONES et ux., Petitioners, v. ALFRED H. MAYER CO. et al. No. 645. | Argued April 1 and 2, 1968. | Decided June 17, 1968. Synopsis Action to recover damages and for injunctive relief because of refusal of defendants to sell home in private subdivision to plaintiffs solely because of race. The United States District Court for the Eastern District of Missouri, 255 F.Supp. 115, dismissed complaint, and plaintiffs appealed. The Court of Appeals for the Eighth Circuit, 379 F.2d 33, affirmed, and certiorari was granted. The United States Supreme Court, Mr.' - '[citation omitted]   *1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]   Prior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.   The “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”     B This case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.   Petitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.   BCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.   In 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12.' model-index: - name: ModernBERT Embed base LegalTextAI Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.4838709677419355 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6989247311827957 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7956989247311828 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9247311827956989 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4838709677419355 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.37992831541218625 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2838709677419354 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.17204301075268813 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.21774193548387094 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4883512544802867 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5882616487455197 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7087813620071685 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5864023588218451 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5962578938385393 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49158210371757605 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.4838709677419355 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7204301075268817 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7849462365591398 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9032258064516129 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4838709677419355 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3870967741935483 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.286021505376344 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1677419354838709 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22311827956989244 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5026881720430108 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5936379928315412 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6944444444444444 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5845266760205443 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5949906127325485 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4986982754839258 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.45161290322580644 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6881720430107527 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7956989247311828 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8817204301075269 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.45161290322580644 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.36559139784946226 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.27956989247311825 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.16559139784946234 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.20878136200716843 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.471774193548387 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5806451612903226 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6854838709677419 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5650385704476973 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5673792456050522 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.47608804104449853 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.44086021505376344 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6451612903225806 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7634408602150538 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8387096774193549 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.44086021505376344 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3548387096774194 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.27311827956989243 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.15591397849462363 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1872759856630824 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44534050179211476 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5725806451612904 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.654121863799283 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5356361930824536 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5453490356716165 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.45106439048323554 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.3978494623655914 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6021505376344086 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7096774193548387 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8064516129032258 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3978494623655914 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.34050179211469533 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.26021505376344084 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.153763440860215 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1586021505376344 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4059139784946236 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5259856630824372 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6164874551971326 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5019311887697538 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5081626557433011 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4181782323905875 name: Cosine Map@100 --- # ModernBERT Embed base LegalTextAI Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("legaltextai/modernbert-embed-ft-const-legal-matryoshka") # Run inference sentences = [ "Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes?", 'Thus, even if we\xa0agreed with the Funeral Home that Rost\'s religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court\'s grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government\'s compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost\'s religious exercise is substantially burdened by the EEOC\'s enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home\'s RFRA defense on this alternative ground.\n\n\xa0\n\n[ … ]\n\n[ … ]\n\n\xa0\n\nIII. CONCLUSION\n\nDiscrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer\'s stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost\'s religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court\'s grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court\'s grant of summary judgment on the EEOC\'s discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC\'s claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion.\n\n[1]\xa0We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court.\n\n[2]\xa0All facts drawn from Def.\'s Statement of Facts (R. 55) are undisputed.\xa0See\xa0R. 64 (Pl.\'s Counter Statement of Disputed Facts) (Page ID #2066-88).\n\n[3]\xa0See also\xa0Appellee Br. at 16 ("It is a helpful exercise to think about\xa0Price Waterhouse\xa0and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm.").\n\n[4]\xa0Moreover, discrimination because of a person\'s transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person\'s identification with two religions, an unorthodox religion, or no religion at all. And "religious identity" can be just as fluid, variable, and difficult to define as "gender identity"; after all, both have "a deeply personal, internal genesis that lacks a fixed external referent." Sue Landsittel,\xa0Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII,\xa0104 NW. U. L. REV. 1147, 1172 (2010) (advocating for "[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary").\n\n[5]\xa0On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity.\xa0See\xa0R. 53-6 (Rost Dep.', '[citation omitted]\n\n\xa0\n\n*1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]\n\n\xa0\n\nPrior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.\n\n\xa0\n\nThe “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”\n\n\xa0\n\n\xa0\n\nB\n\nThis case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.\n\n\xa0\n\nPetitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.\n\n\xa0\n\nBCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.\n\n\xa0\n\nIn 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_accuracy@3 | 0.6989 | 0.7204 | 0.6882 | 0.6452 | 0.6022 | | cosine_accuracy@5 | 0.7957 | 0.7849 | 0.7957 | 0.7634 | 0.7097 | | cosine_accuracy@10 | 0.9247 | 0.9032 | 0.8817 | 0.8387 | 0.8065 | | cosine_precision@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_precision@3 | 0.3799 | 0.3871 | 0.3656 | 0.3548 | 0.3405 | | cosine_precision@5 | 0.2839 | 0.286 | 0.2796 | 0.2731 | 0.2602 | | cosine_precision@10 | 0.172 | 0.1677 | 0.1656 | 0.1559 | 0.1538 | | cosine_recall@1 | 0.2177 | 0.2231 | 0.2088 | 0.1873 | 0.1586 | | cosine_recall@3 | 0.4884 | 0.5027 | 0.4718 | 0.4453 | 0.4059 | | cosine_recall@5 | 0.5883 | 0.5936 | 0.5806 | 0.5726 | 0.526 | | cosine_recall@10 | 0.7088 | 0.6944 | 0.6855 | 0.6541 | 0.6165 | | **cosine_ndcg@10** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | | cosine_mrr@10 | 0.5963 | 0.595 | 0.5674 | 0.5453 | 0.5082 | | cosine_map@100 | 0.4916 | 0.4987 | 0.4761 | 0.4511 | 0.4182 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 842 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 842 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 24 tokens</li><li>mean: 42.46 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 236 tokens</li><li>mean: 962.01 tokens</li><li>max: 1056 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Based on the court's ruling, under what circumstances can a college student be held accountable for off-campus speech, and how does this relate to the standards of professionalism in a professional school setting?</code> | <code>A serious question raised by Keefe in this case is whether the First Amendment protected his unprofessional speech from academic disadvantage because it was made in- on-line, off-campus Facebook postings. On appeal, Keefe framed this contention categorically, arguing that a college student may not be punished for off-campus speech unless it is speech that is unprotected by the First Amendment, such as obscenity. We reject this categorical contention. A student may demonstrate an unacceptable lack of professionalism off campus, as well as in the classroom, and by speech as well as conduct. See Yoder v. Univ. of Louisville, 526 Fed-Appx. 537, 545-46 (6th Cir.), cert. denied, — U.S. -, 134 S.Ct. 790, 187 L.Ed.2d 594 (2013); Tatro v. Univ. of Minn., 816 N.W.2d 509, 521 (Minn. 2012). Therefore, college administrators and educators in a professional school have discretion to require compliance with recognized standards of the profession, both on and off campus, “so long as their actions are ...</code> | | <code>Describe the two-step framework that Courts of Appeals have developed for analyzing Second Amendment challenges. What are the implications of the Supreme Court's decision to reject this framework in favor of a historical tradition-based approach?</code> | <code>Petitioners sued respondents for declaratory and injunctive relief under…42 U.S.C. § 1983, alleging that respondents violated their Second and Fourteenth Amendment rights by denying their unrestricted-license applications on the basis that they had failed to show “proper cause,” i.e., had failed to demonstrate a unique need for self-defense.<br><br> <br><br>The District Court dismissed petitioners’ complaint and the Court of Appeals affirmed. [citation omitted] Both courts relied on [a] Court of Appeals’ prior decision…which had sustained New York’s proper-cause standard, holding that the requirement was “substantially related to the achievement of an important governmental interest.” [citation omitted]<br><br> <br><br>We granted certiorari to decide whether New York’s denial of petitioners’ license applications violated the Constitution. [citation omitted]<br><br> <br><br> <br><br>II<br><br>In Heller and McDonald, we held that the Second and Fourteenth Amendments protect an individual right to keep and bear arms for self-defense. ...</code> | | <code>Discuss the implications of the California Alien Land Law as it pertains to the rights of American citizens, specifically in the case of Fred Oyama. How does the law affect his privileges as a citizen, and what constitutional protections are being challenged?</code> | <code>269<br><br>Supreme Court of the United States<br><br>OYAMA et al.<br><br>v.<br><br>STATE OF CALIFORNIA.<br><br>No. 44.<br><br>|<br><br>Argued Oct. 22, 1947.<br><br>|<br><br>Decided Jan. 19, 1948.<br><br>Opinion<br><br>*635 Mr. Chief Justice VINSON delivered the opinion of the Court.<br><br>Petitioners challenge the constitutionality of California’s Alien Land Law1 as it has been applied in this case to effect an escheat of two small parcels of agricultural land.2 One of the petitioners is Fred Oyama, a minor American citizen in whose name title was taken. The other is his father and guardian, Kajiro Oyama, a Japanese citizen not eligible for naturalization,3 who paid the purchase price.<br><br>Petitioners press three attacks on the Alien Land Law as it has been applied in this case: first, that it deprives Fred Oyama of the equal protection of the laws and of his privileges as an American citizen; secondly, that it denies Kajiro Oyama equal protection of the laws; and, thirdly, that it contravenes the due process clause by sanctioning a taking of property after ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 32 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.6038 | 1 | 0.5604 | 0.5631 | 0.5303 | 0.4907 | 0.4335 | | 1.6038 | 2 | 0.5836 | 0.5758 | 0.5715 | 0.5180 | 0.4846 | | 2.6038 | 3 | 0.5768 | 0.5841 | 0.5652 | 0.5296 | 0.4940 | | **3.6038** | **4** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "BEAR", "CAS" ]
higopires/DeB3RTa-small
higopires
fill-mask
[ "transformers", "safetensors", "deberta-v2", "fill-mask", "portuguese", "financial", "bert", "deberta", "nlp", "masked-lm", "dataset:FAKE.BR", "dataset:CAROSIA", "dataset:BBRC", "dataset:OFFCOMBR-3", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-02-19T04:22:10Z
2025-02-21T13:38:32+00:00
29
0
--- datasets: - FAKE.BR - CAROSIA - BBRC - OFFCOMBR-3 library_name: transformers license: mit metrics: - f1 - precision - recall - pr_auc tags: - portuguese - financial - bert - deberta - nlp - fill-mask - masked-lm pt: pt-br inference: true model-index: - name: DeB3RTa-base results: - task: type: text-classification name: Fake News Detection dataset: name: FAKE.BR type: FAKE.BR metrics: - type: f1 value: 0.9598 - task: type: text-classification name: Sentiment Analysis dataset: name: CAROSIA type: CAROSIA metrics: - type: f1 value: 0.8722 - task: type: text-classification name: Regulatory Classification dataset: name: BBRC type: BBRC metrics: - type: f1 value: 0.6712 - task: type: text-classification name: Hate Speech Detection dataset: name: OFFCOMBR-3 type: OFFCOMBR-3 metrics: - type: f1 value: 0.546 --- # DeB3RTa: A Transformer-Based Model for the Portuguese Financial Domain DeB3RTa is a family of transformer-based language models specifically designed for Portuguese financial text processing. These models are built on the DeBERTa-v2 architecture and trained using a comprehensive mixed-domain pretraining strategy that combines financial, political, business management, and accounting corpora. ## Model Variants Two variants are available: - **DeB3RTa-base**: 12 attention heads, 12 layers, intermediate size of 3072, hidden size of 768 (~426M parameters) - **DeB3RTa-small**: 6 attention heads, 12 layers, intermediate size of 1536, hidden size of 384 (~70M parameters) ## Key Features - First Portuguese financial domain-specific transformer model - Mixed-domain pretraining incorporating finance, politics, business, and accounting texts - Enhanced performance on financial NLP tasks compared to general-domain models - Resource-efficient architecture with strong performance-to-parameter ratio - Advanced fine-tuning techniques including layer reinitialization, mixout regularization, and layer-wise learning rate decay ## Performance The models have been evaluated on multiple financial domain tasks: | Task | Dataset | DeB3RTa-base F1 | DeB3RTa-small F1 | |------|----------|-----------------|------------------| | Fake News Detection | FAKE.BR | 0.9906 | 0.9598 | | Sentiment Analysis | CAROSIA | 0.9207 | 0.8722 | | Regulatory Classification | BBRC | 0.7609 | 0.6712 | | Hate Speech Detection | OFFCOMBR-3 | 0.7539 | 0.5460 | ## Training Data The models were trained on a diverse corpus of 1.05 billion tokens, including: - Financial market relevant facts (2003-2023) - Financial patents (2006-2021) - Research articles from Brazilian Scielo - Financial news articles (1999-2023) - Wikipedia articles in Portuguese ## Usage ```python from transformers import AutoModelForMaskedLM, AutoTokenizer # Load model and tokenizer model = AutoModelForMaskedLM.from_pretrained("higopires/DeB3RTa-[base/small]") tokenizer = AutoTokenizer.from_pretrained("higopires/DeB3RTa-[base/small]") # Example usage text = "O mercado financeiro brasileiro apresentou [MASK] no último trimestre." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ``` ## Citations If you use this model in your research, please cite: ```bibtex @article{pires2025deb3rta, AUTHOR = {Pires, Higo and Paucar, Leonardo and Carvalho, Joao Paulo}, TITLE = {DeB3RTa: A Transformer-Based Model for the Portuguese Financial Domain}, JOURNAL = {Big Data and Cognitive Computing}, VOLUME = {9}, YEAR = {2025}, NUMBER = {3}, ARTICLE-NUMBER = {51}, URL = {https://www.mdpi.com/2504-2289/9/3/51}, ISSN = {2504-2289}, ABSTRACT = {The complex and specialized terminology of financial language in Portuguese-speaking markets create significant challenges for natural language processing (NLP) applications, which must capture nuanced linguistic and contextual information to support accurate analysis and decision-making. This paper presents DeB3RTa, a transformer-based model specifically developed through a mixed-domain pretraining strategy that combines extensive corpora from finance, politics, business management, and accounting to enable a nuanced understanding of financial language. DeB3RTa was evaluated against prominent models—including BERTimbau, XLM-RoBERTa, SEC-BERT, BusinessBERT, and GPT-based variants—and consistently achieved significant gains across key financial NLP benchmarks. To maximize adaptability and accuracy, DeB3RTa integrates advanced fine-tuning techniques such as layer reinitialization, mixout regularization, stochastic weight averaging, and layer-wise learning rate decay, which together enhance its performance across varied and high-stakes NLP tasks. These findings underscore the efficacy of mixed-domain pretraining in building high-performance language models for specialized applications. With its robust performance in complex analytical and classification tasks, DeB3RTa offers a powerful tool for advancing NLP in the financial sector and supporting nuanced language processing needs in Portuguese-speaking contexts.}, DOI = {10.3390/bdcc9030051} } ``` ## Limitations - Performance degradation on the smaller variant, particularly for hate speech detection - May require task-specific fine-tuning for optimal performance - Limited evaluation on multilingual financial tasks - Model behavior on very long documents (>128 tokens) not extensively tested ## License MIT License Copyright (c) 2025 Higo Pires Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## Acknowledgments This work was supported by the Instituto Federal de Educação, Ciência e Tecnologia do Maranhão and the Human Language Technology Lab in Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento (INESC-ID).
[ "SCIELO" ]
Qwe1325/Llama-Breeze2-3B-Instruct_8bit
Qwe1325
null
[ "safetensors", "internvl_chat", "custom_code", "en", "zh", "arxiv:2501.13921", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
2025-02-27T02:58:44Z
2025-02-28T00:48:53+00:00
29
0
--- language: - en - zh license: llama3.2 --- # Llama-Breeze2-3B-Instruct-v0_1 【[Paper](https://arxiv.org/abs/2501.13921)】◇【[Kaggle Demo](https://www.kaggle.com/code/ycckaggle/demo-breeze-2-3b)】◇【[Collection](https://huggingface.co/collections/MediaTek-Research/llama-breeze2-67863158443a06a72dd29900)】 **The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities** Llama Breeze 2 is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation. Building upon the [LLaMA 3.2](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), Breeze 2 continues pretraining on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese. It incorporates vision-aware capabilities through a visual encoder and a bridge module, and supports function-calling via prompt templates and post-training on function-calling data. *Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.* *We list all contributors in alphabetical order of their first names, as follows: Chan-Jan Hsu (許湛然), Chia-Sheng Liu (劉佳昇), Meng-Hsi Chen (陳孟羲), Muxi Chen (陳沐希), Po-Chun Hsu (許博竣), Yi-Chang Chen (陳宜昌), and the supervisor Da-Shan Shiu (許大山).* ## Installation ``` pip3 install transformers==4.47.0 pip3 install -U bitsandbytes pip3 install -U mtkresearch ``` ```python from transformers import AutoModel, AutoTokenizer from transformers import GenerationConfig import torch from mtkresearch.llm.prompt import MRPromptV3 model_id = 'Qwe1325/Llama-Breeze2-3B-Instruct_8bit' model = AutoModel.from_pretrained( model_id, torch_dtype=torch.bfloat16, load_in_8bit=True, low_cpu_mem_usage=True, trust_remote_code=True, device_map='auto', img_context_token_id=128212 ).eval() tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, use_fast=False) generation_config = GenerationConfig( max_new_tokens=2048, do_sample=True, temperature=0.01, top_p=0.01, repetition_penalty=1.1, eos_token_id=128009 ) prompt_engine = MRPromptV3() sys_prompt = 'You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.' def _inference(tokenizer, model, generation_config, prompt, pixel_values=None): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) if pixel_values is None: output_tensors = model.generate(**inputs, generation_config=generation_config) else: output_tensors = model.generate(**inputs, generation_config=generation_config, pixel_values=pixel_values.to(model.dtype).to(model.device)) output_str = tokenizer.decode(output_tensors[0]) return output_str ``` ## Feature: Instruction Following ```python conversations = [ {"role": "system", "content": sys_prompt}, {"role": "user", "content": "請問什麼是深度學習?"}, ] prompt = prompt_engine.get_prompt(conversations) output_str = _inference(tokenizer, model, generation_config, prompt) result = prompt_engine.parse_generated_str(output_str) print(result) # {'role': 'assistant', 'content': '深度學習是一種人工智慧技術,主要是透過類似於大腦神經網路的方式來處理和分析資料。這個方法利用多層的人工神經元模仿生物神經網路的運作模式,讓電腦能夠從大量數據中學習並做出預測或決策。\n\n簡單來說,深度學習就是一種用機器學習的方式來訓練電腦,使其能夠像人類一樣理解、分辨及解決問題。這項技術已被廣泛應用在各種領域,如圖像識別、自然語言處理、語音辨識以及自動駕駛等方面。'} ``` ## Feature: Visual Instruction Following Example Image: ![img_example](https://huggingface.co/MediaTek-Research/Breeze2-8B-Instruct-v0_1/resolve/main/misc/test_big_data.png) ```python conversations = [ {"role": "system", "content": sys_prompt}, {"role": "user", "content": [ { "type": "image", "image_path": /path/to/example-image, }, { "type": "text", "text": "請問第二名可獲得多少獎金?" }, ]}, ] prompt, pixel_values = prompt_engine.get_prompt(conversations) output_str = _inference(tokenizer, model, generation_config, prompt, pixel_values=pixel_values) result = prompt_engine.parse_generated_str(output_str) print(result) # {'role': 'assistant', 'content': '第二名可獲得20萬元整。'} ``` ## Feature: Function Calling ```python import json functions = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } ] def fake_get_current_weather(location, unit=None): return {'temperature': 30} mapping = { 'get_current_weather': fake_get_current_weather } # stage 1: query conversations = [ {"role": "user", "content": "請問台北目前溫度是攝氏幾度?"}, ] prompt = prompt_engine.get_prompt(conversations, functions=functions) output_str = _inference(tokenizer, model, generation_config, prompt) result = prompt_engine.parse_generated_str(output_str) print(result) # {'role': 'assistant', 'tool_calls': [{'id': 'call_iuwELWUShiAKE16CVoumawZ4', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"location": "台北", "unit": "celsius"}'}}]} ``` ```python # stage 2: execute called functions conversations.append(result) tool_call = result['tool_calls'][0] func_name = tool_call['function']['name'] func = mapping[func_name] arguments = json.loads(tool_call['function']['arguments']) called_result = func(**arguments) # stage 3: put executed results conversations.append( { 'role': 'tool', 'tool_call_id': tool_call['id'], 'name': func_name, 'content': json.dumps(called_result) } ) prompt = prompt_engine.get_prompt(conversations, functions=functions) output_str2 = _inference(tokenizer, model, generation_config, prompt) result2 = prompt_engine.parse_generated_str(output_str2) print(result2) # {'role': 'assistant', 'content': '台北目前的溫度是攝氏30度。'} ``` ## Citation ``` @article{breeze2, title={The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities}, author={Breeze Team, MediaTek Research}, journal={arXiv}, year={2025}, url={https://arxiv.org/abs/2501.13921} } ```
[ "CHIA" ]
stabletoolbench/MirrorAPI-Cache
stabletoolbench
null
[ "safetensors", "qwen2", "license:mit", "region:us" ]
2025-02-27T17:02:43Z
2025-03-05T08:25:23+00:00
29
0
--- license: mit --- # MirrorAPI-Cache This model is a fine-tuned version of [StableToolBench-MirrorAPI](https://huggingface.co/stabletoolbench/MirrorAPI). ### Training and evaluation data The training data is [`train_cache.json`](https://huggingface.co/datasets/stabletoolbench/MirrorAPI-Training/blob/main/train_cache.json). The testing data is [`test_cache.json`](https://huggingface.co/datasets/stabletoolbench/MirrorAPI-Bench/blob/main/test_cache.json). ## Testing with LLaMA-Factory ### Setting up LLaMA-Factory Please refer to [LLaMA-Factory/README.md](https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#getting-started). ### Data Preparation As we use custom datasets, please make sure to add a dataset description in `dataset_info.json` and specify `dataset: dataset_name` before using it. For instance of adding [`test_cache.json`](https://huggingface.co/datasets/stabletoolbench/MirrorAPI-Bench/blob/main/test_cache.json): ``` { ... "test_cache": { "file_name": "path/to/test_cache.json", "columns": { "prompt": "instruction", "response": "output", "system": "system" } }, ... } ``` For more details, please refer to [LLaMA-Factory/data/README.md](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README.md). ### Quickstart Run the following script under the root path of LLaMA-Factory and adjust the hyperparameters accordingly: ``` #!/bin/bash # Variables to be set up export CUDA_VISIBLE_DEVICES= NPROC_PER_NODE= MODEL_PATH="/path/to/MirrorAPI" OUTPUT_PATH="/path/to/output" EVAL_DATASET="test_cache" # replace with other dataset_name if needed DISTRIBUTED_ARGS=" --nproc_per_node $NPROC_PER_NODE \ --nnodes 1 \ " torchrun $DISTRIBUTED_ARGS src/train.py \ --do_predict \ --predict_with_generate \ --model_name_or_path $MODEL_PATH \ --eval_dataset $EVAL_DATASET \ --max_samples 200 \ # use 200 samples to align with references, remove this line if not needed --stage sft \ --template qwen \ --preprocessing_num_workers 16 \ --finetuning_type full \ --output_dir $OUTPUT_PATH \ --max_new_tokens 2660 \ --bf16 \ --report_to none \ --flash_attn auto \ --cutoff_len 2560 \ --seed 42 \ --per_device_eval_batch_size 1 \ --overwrite_cache ``` ## Prompts When running inference, you should provide two main prompts ### System prompt Sets the overall behavior and indicate whether the model should operate in SFT mode or Chain of Thought (CoT) mode. - To enable CoT mode, prepend [CHAIN_OF_THOUGHT] to your system prompt, which will guide the model to include or leverage chain-of-thought reasoning in its answers. - For standard SFT mode, omit this prefix. __SFT mode:__ ``` Imagine you are an API Server operating within a specialized tool, which contains a collection of distinct APIs. Your role is to deeply understand the function of each API based on their descriptions in the API documentation. As you receive specific inputs for individual API calls within this tool, analyze these inputs to determine their intended purpose. Your task is to craft a JSON formatted response that aligns with the expected output of the API. The JSON scheme is: { "error": "", "response": "" } The error field should remain empty, indicating no errors in processing. The response field should contain the content you formulate based on the API's functionality and the input provided. Ensure that your responses are meaningful, directly addressing the API's intended functionality. The key is to maintain the JSON format's integrity while ensuring that your response is an accurate reflection of the API's intended output within the tool. Please note that your answer should not contain anything other than a json format object, which should be parsable directly to json. Note that: - your response should contain rich information given the api input parameters. - your response must be effective and have practical content. API calls may fail for various reasons, such as invalid input parameters, authentication issues, or server errors. Your goal is to generate a response that accurately reflects the API's intended functionality, even if the input parameters are incorrect. Your response should be informative and relevant to the API's purpose, providing a clear and concise explanation of the expected output based on the input provided. Here is an example: API doc: { "api_name": "List Languages", "api_description": "Get a list of currently supported languages. We are constantly adding more every few weeks.", "required_parameters": [], "optional_parameters": [], "tool_description": "Introducing our cutting-edge text to speech service, designed to provide you with the most realistic human-sounding voices at an affordable price. Our service is fast and reliable, delivering high-quality audio output in a matter of seconds. Additionally, we offer a wide range of languages and a variety of voice choices, so you can find the perfect fit for your project. Whether you need a voiceover for a video, an audiobook, or any other project, our text to speech service has you covered. Ex...", "tool_name": "TTSKraken", "tool_category": "Artificial_Intelligence_Machine_Learning" } Request: data = { "category": "Artificial_Intelligence_Machine_Learning", "tool_name": "TTSKraken", "api_name": "List Languages", "tool_input": "{}", "strip": "filter", } Response: { "error": "", "response": "{"status":0,"msg":"Success","languages":["en","fr-fr","pt-br"]}" } ``` __CoT mode:__ ``` [CHAIN_OF_THOUGHT] You are an API Server operating within a specialized tool, tasked with understanding the purpose of each API based on provided documentation. Your job is to process specific API inputs and craft a well-formatted response reflecting the API's intended functionality. You should first infer the mechanism behind the API and then provide your response based on the input parameters. Your response must follow this JSON structure: { "mechanism_of_the_api": "", "error": "", "response": "" } * MECHANISIM OF THE API: Try to infer how the API functions based on the input parameters. * ERROR: Leave empty unless there's an issue with the input. * RESPONSE: Provide content based on the API's function. If examples are ineffective, give an independent, meaningful response. Note: * Ensure responses are practical, clear, and relevant. * Handle incorrect input gracefully by explaining expected behavior. Example: API doc: { "api_name": "List Languages", "api_description": "Get a list of currently supported languages. We are constantly adding more every few weeks.", "required_parameters": [], "optional_parameters": [], "tool_description": "Introducing our cutting-edge text to speech service, designed to provide you with the most realistic human-sounding voices at an affordable price. Our service is fast and reliable, delivering high-quality audio output in a matter of seconds. Additionally, we offer a wide range of languages and a variety of voice choices, so you can find the perfect fit for your project. Whether you need a voiceover for a video, an audiobook, or any other project, our text to speech service has you covered. Ex...", "tool_name": "TTSKraken", "tool_category": "Artificial_Intelligence_Machine_Learning" } Request: data = { "category": "Artificial_Intelligence_Machine_Learning", "tool_name": "TTSKraken", "api_name": "List Languages", "tool_input": "{}", "strip": "filter", } Response: { "mechanism_of_the_api": "The "List Languages" API for the TTSKraken service returns a list of supported languages for their text-to-speech offerings. It performs a straightforward operation by querying a dynamic data source, likely a database, which stores language information. When the API is invoked, it retrieves all available languages without requiring additional parameters. The list of languages is formatted as a JSON response, as indicated by the example response showing language codes such as "en" for English and "fr-fr" for French. This mechanism allows users to understand what languages the TTSKraken service supports, aligning with the tool's goal of providing diverse, high-quality voice options.", "error": "", "response": "{"status":0,"msg":"Success","languages":["en","fr-fr","pt-br"]}" } Ensure responses are directly aligned with the API's intended output and maintain correct formatting. ``` ### User prompt format - Contains the user’s actual query or task request. - Determines the API functionality to which the model responds. ``` API doc: {{api_doc_in_json_format}} Request: {{request_in_json_format}} ```
[ "CRAFT" ]
Amir13/xlm-roberta-base-ncbi_disease-en
Amir13
token-classification
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "arxiv:2302.09611", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-02-14T13:59:27Z
2023-02-21T06:52:22+00:00
28
0
--- datasets: - ncbi_disease license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: xlm-roberta-base-ncbi_disease-en results: - task: type: token-classification name: Token Classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - type: precision value: 0.8562421185372006 name: Precision - type: recall value: 0.8627700127064803 name: Recall - type: f1 value: 0.859493670886076 name: F1 - type: accuracy value: 0.9868991989319092 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-ncbi_disease-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [ncbi_disease](https://huggingface.co/datasets/ncbi_disease) dataset. It achieves the following results on the evaluation set: - Loss: 0.0496 - Precision: 0.8562 - Recall: 0.8628 - F1: 0.8595 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 170 | 0.0555 | 0.7949 | 0.7980 | 0.7964 | 0.9833 | | No log | 2.0 | 340 | 0.0524 | 0.7404 | 0.8551 | 0.7936 | 0.9836 | | 0.0803 | 3.0 | 510 | 0.0484 | 0.7932 | 0.8869 | 0.8374 | 0.9849 | | 0.0803 | 4.0 | 680 | 0.0496 | 0.8562 | 0.8628 | 0.8595 | 0.9869 | | 0.0803 | 5.0 | 850 | 0.0562 | 0.7976 | 0.8615 | 0.8283 | 0.9848 | | 0.0152 | 6.0 | 1020 | 0.0606 | 0.8086 | 0.8856 | 0.8454 | 0.9846 | | 0.0152 | 7.0 | 1190 | 0.0709 | 0.8412 | 0.8412 | 0.8412 | 0.9866 | | 0.0152 | 8.0 | 1360 | 0.0735 | 0.8257 | 0.8666 | 0.8456 | 0.9843 | | 0.0059 | 9.0 | 1530 | 0.0730 | 0.8343 | 0.8767 | 0.8550 | 0.9866 | | 0.0059 | 10.0 | 1700 | 0.0855 | 0.8130 | 0.8895 | 0.8495 | 0.9843 | | 0.0059 | 11.0 | 1870 | 0.0868 | 0.8263 | 0.8767 | 0.8508 | 0.9860 | | 0.0026 | 12.0 | 2040 | 0.0862 | 0.8273 | 0.8767 | 0.8513 | 0.9858 | | 0.0026 | 13.0 | 2210 | 0.0875 | 0.8329 | 0.8806 | 0.8561 | 0.9859 | | 0.0026 | 14.0 | 2380 | 0.0889 | 0.8287 | 0.8793 | 0.8533 | 0.9859 | | 0.0013 | 15.0 | 2550 | 0.0884 | 0.8321 | 0.8755 | 0.8533 | 0.9861 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2 ### Citation If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
[ "NCBI DISEASE" ]
ManglerFTW/CharHelper_Fine-Tuned
ManglerFTW
text-to-image
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "doi:10.57967/hf/0426", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2023-03-04T13:59:08Z
2023-04-16T22:41:11+00:00
28
3
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- <b>Introduction:</b> This model was trained from the ground up using Stable Tuner's fine-tuning method and utilizing contrast fix for darker darks and bolder colors. The Dataset contains 4900 images trained to 35 epochs. File Name is CharHelper Fine-Tuned.safetensors. Do not forget to download the yaml file and place it in the same directory.<br /> ## Usage: ## IMPORTANT: Because of the nature of the fine-tuning method, this model is sensitive with the CFG Scale. Photorealism tends to like a <b>LOW CFG Scale</b>. Best result can be found between <b>3 and 7</b>. Some subjects that are complex like robots like a higher dfg, while photorealism is mostly achieved with a CFG Scale of 3 or 4.</b> <b>Use Auto for the vae in settings. If you are using a vae based on a SDv1.5 model, you may not get the best results.</b> <br /> CharHelper Fined-Tuned was trained all at once which means the keywords all have more power to them than the previous CharHelper models. CharHelper Fine-Tuned doesn't need keywords but includes them and they can be mixed and matched together in order to achieve a multitude of different styles. Some Keywords were changed slightly from the last version. <b>Keywords:</b> <b>Character Styles:</b> CHV3CBigChief, CHV3CBoxer, CHV3CUrban, CHV3COrc, CHV3CGanesh, CHV3CGolem,CHV3CCyberpunk, CHV3CSamurai, CHV3CRobot, CHV3CZombie, CHV3CBird, CHV3MDragon, CHV3CKnight, CHV3CWizard, CHV3CBarb, CHV3CVehicle, CHV3CTroll, CHV3CReaper, CHV3CRogue, CHV3CAlien <b>Scenery/Styles:</b> CHV3SDark, CHV3SUrban, CHV3SEldritch, CHV3SLighthouse, CHV3SCute, CHV3SMacro, CHV3SSciFi, CHV3SWorld ## Examples: ![Shimmering Details](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00676-1256750850-a%20realistic%20detail%20of%20a%20close%20up%20of%20a%20woman%20with%20blue%20makeup%20on%20her%20face%20in%20the%20dark%2C%20CHV3SDark%2C%20dark%20night%20time%20photo%2C%20taken%20in.png) <b>Shimmering Details</b> a realistic detail of a close up of a woman with blue makeup on her face in the dark, CHV3SDark, dark night time photo, taken in darkness, macro details, glowing blue face, dark skin, femme on a galactic shore, dark blue skin, color portrait, blue holographic face, cosmic girl, Professional, masterpiece, commissioned Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 3, Seed: 1256750850, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![SciFi Creatures](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00718-3489145082-a%20realistic%20detail%20of%20a%20blue%20skinned%20alien%2C%20dark%20supervillain%2C%208k%2C%20epic%20character%20art%2C%20Professional%2C%20masterpiece%2C%20commissioned.png) <b>Aliens</b> a realistic detail of a blue skinned alien, dark supervillain, 8k, epic character art, Professional, masterpiece, commissioned Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 7, Seed: 3489145082, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Creepy Clown Ladies](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00079-912489906-a%20realistic%20detail%20of%20a%20very%20creepy%20zombie%20clown%20lady%2C%20wearing%20ornate%20streetwear%2C%20beautiful%2C%20detailed%20portrait%2C%20complexity%2C%204k%2C.png) <b>Creepy Clown Ladies</b> a realistic detail of a very creepy zombie clown lady, wearing ornate streetwear, beautiful, detailed portrait, complexity, 4k, concept art, sharp focus, volumetric lighting, cinematic lighting, studio quality Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 5.5, Seed: 912489906, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Big Chiefs](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01703-2798464398-an%20analog%20photo%20of%20a%20man%20wearing%20a%20colorful%20feathered%20costume%20with%20ornate%20patterns%20of%20beads%20and%20colorful%20jewels%20at%20a%20carnival%20ce.png) <b>Big Chiefs</b> an analog photo of a man wearing a colorful feathered costume with ornate patterns of beads and colorful jewels at a carnival celebration, CHV3CBigChief, fixed in post, color corrected, Professional, masterpiece, commissioned, attractive face, facial expression, professional hands, professional anatomy Negative prompt: smiling, face paint, long hair, crossed eyes, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 3.5, Seed: 2798464398, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Robotic Spiders](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00920-4212360837-Steampunk%20cybernetic%20biomechanical%20jumping%20spider%2C%20very%20coherent%20symmetrical%20artwork%2C%20CHV3CRobot%2C%20CHV3CVehicle%2C%20CHV3SMacro%2C%20Macr.png) <b>Robotic Spiders</b> Steampunk cybernetic biomechanical jumping spider, very coherent symmetrical artwork, CHV3CRobot, CHV3CVehicle, CHV3SMacro, Macro details, focus stacking, realistic render, 8k, micro detail, elegant, highly detailed, centered, smooth, sharp focus, artgerm, tomasz alen kopera, wlop Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 7, Seed: 4212360837, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Cybernetic Andriods](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00775-3438218591-a%20woman%20with%20tattoos%20and%20a%20face%20mask%2C%20CHV3CCyberpunk%2C%20portrait%20of%20a%20cyberpunk%20cyborg%2C%20portrait%20of%20a%20cyborg%2C%20cyborg%20woman%2C%20cyborg.png) <b>Cybernetic Andriods</b> a woman with tattoos and a face mask, CHV3CCyberpunk, portrait of a cyberpunk cyborg, portrait of a cyborg, cyborg woman, cyborg girl, cute cyborg girl, portrait of a cyberpunk machine, cyberpunk skeleton, cyberpunk face Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 4.5, Seed: 3438218591, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Cute Rubber Duckies](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00610-1139349539-Shiny%20gemstone%20in%20the%20shape%20of%20a%20rubber%20duck%20floating%20in%20a%20pool%20of%20colorful%20perfume%2C%20liquid%20ripples%2C%20waves%2C%20water%20droplets%2C%20phot.png) <b>Cute Rubber Duckies</b> Shiny gemstone in the shape of a rubber duck floating in a pool of colorful perfume, liquid ripples, waves, water droplets, photorealism, mystical, enigmatic, digital oil painting, trending on artstation, Professional, masterpiece, commissioned Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, nfixer Steps: 10, Sampler: DPM++ SDE, CFG scale: 4, Seed: 1139349539, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Big Cheif Ganesha](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/02005-2766758959-Ganesh%20in%20an%20elaborate%20feathered%20costume%20with%202%20arms%2C%20anthropomorphic%20elephant%20Shinigami%20at%20a%20shrine%2C%20a%20realistic%20detail%2C%20CHV3CS.png) <b>Big Cheif Ganesh</b> Ganesh in an elaborate feathered costume with 2 arms, anthropomorphic elephant Shinigami at a shrine, a realistic detail, CHV3CSamurai, CHV3CBigChief, CHV3CGanesh, Professional, masterpiece, commissioned, professional hands, professional anatomy Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 4, Seed: 2766758959, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Astronauts](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01586-3046156075-a%20professional%20Analog%20photo%20of%20a%20female%20space%20astronaut%20wearing%20an%20blue%20and%20white%20space%20suit%20exploring%20a%20river%20in%20a%20dark%20mossy%20c.png) <b>Astronauts</b> a professional Analog photo of a female space astronaut wearing an blue and white space suit exploring a river in a dark mossy canyon on another planet, helmet, medium shot portrait, gold tinted face shield, (dark atmosphere), haze, halation, bloom, dramatic atmosphere, sci-fi movie still Negative prompt: crossed eyes, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 4, Seed: 3046156075, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Zombies](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00814-2922910579-a%20realistic%20detail%20of%20a%20dark%20close-up%20of%20the%20face%20of%20a%20creepy%20haunting%20undead%20zombie%2C%20CHV3CZombie%2C%20horror%20concept%20art%2C%20zombified.png) <b>Zombies</b> a realistic detail of a dark close-up of the face of a creepy haunting undead zombie, CHV3CZombie, horror concept art, zombified mutant flesh creature, Artwork by the walking dead, Professional, masterpiece, commissioned, wojtek fus, stefan gesell, Negative prompt: symmetry, framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 4.5, Seed: 2922910579, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Dark Neon Cyberpunks](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01072-2772342268-a%20beautiful%20geisha%20wearing%20a%20kabuki%20mask%2C%20CHV3CSamurai%20elegant%20neon%20light%20tribal%20armor%2C%20shikigami%2C%20CHV3SDark%20dark%20background%2C%20cy.png) <b>Dark Neon Cyberpunks</b> a beautiful geisha wearing a kabuki mask, CHV3CSamurai elegant neon light tribal armor, shikigami, CHV3SDark dark background, cyberpunk darksynth, Professional, masterpiece, commissioned, professional hands, professional anatomy, muted saturation Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 5, Seed: 2772342268, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Dark Neon Robots](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01096-3588684930-a%20futuristic%20cybernetic%20robot%20wearing%20neon%20samurai%20armor%2C%20dark%20background%2C%20vaporware%2C%20cyberpunk%20darksynth%2C%20Professional%2C%20masterp.png) <b>Dark Neon Robots</b> a futuristic cybernetic robot wearing neon samurai armor, dark background, vaporware, cyberpunk darksynth, Professional, masterpiece, commissioned, muted saturation, artwork by daft punk Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 3.5, Seed: 3588684930, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Dramatic Lighting](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00652-1111180199-a%20realistic%20portrait%20of%20a%20beautiful%20woman%20holding%20a%20paper%20boat%20lantern%20in%20the%20dark%2C%20CHV3SDark%2C%20photo%20taken%20at%20night%2C%20on%20a%20dark%20b.png) <b>Dramatic Lighting</b> a realistic portrait of a beautiful woman holding a paper boat lantern in the dark, CHV3SDark, photo taken at night, on a dark background, floating lanterns, unsplash contest winning photo, shot with sigma f/ 4.2 Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 5, Seed: 1111180199, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Big Chief Bears](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01165-338610140-a%20n%20illustrated%20medium%20shot%20portrait%20of%20an%20anthropomorphic%20dire%20wolf%20in%20a%20colorful%20elaborate%20feathered%20costume%20with%20ornate%20detai.png) <b>Big Chief Bears</b> a n illustrated medium shot portrait of an anthropomorphic dire wolf in a colorful elaborate feathered costume with ornate details, anime style, CHV3CBigChief, warhammer 40k, octane, bling, Professional, masterpiece, commissioned, at a comic-con, artwork by wlop and loish Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 4, Seed: 338610140, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Artistic Landscapes](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01270-45256504-a%20colorful%20vector%20illustration%20of%20a%20neon%20temple%20with%20an%20elaborate%20Torana%20gateway%20in%20absolute%20darkness%20on%20a%20small%20island%20at%20night.png) <b>Artistic Landscapes</b> a colorful vector illustration of a neon temple with an elaborate Torana gateway in absolute darkness on a small island at night with colorful neon star trails, black shadows, clear sky with professional star trails, high antialiasing, night, cliffside, crashing waves, highlands, farm, crisp clean shapes, mountains, serene landscape, neon inkpunk color scheme, painting of a listing for a realty website, artwork by studio ghibli, spirited away Negative prompt: cartoon, painting, painted, drawn, drawing, anime, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality Steps: 10, Sampler: DPM++ SDE, CFG scale: 5.5, Seed: 45256504, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Knights](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00616-241022433-Diablo%20action%20game%20cyborg%20viking%2C%20highly%20detailed%2C%20sharp%20focus%2C%20cinematic%20lighting%2C%20art%2C%20octane%20render%2C%20unreal%20engine%20lumen%2C%20ver.png) <b>Knights</b> Diablo action game cyborg viking, highly detailed, sharp focus, cinematic lighting, art, octane render, unreal engine lumen, very coherent. cinematic, hyper realism, high detail, octane render, 8k, Professional, masterpiece, commissioned Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, nfixer Steps: 10, Sampler: DPM++ SDE, CFG scale: 6, Seed: 241022433, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Fighters](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00282-3289278897-CHV3CKBoxer%2C%20a%20realistic%20detail%20of%20a%20close%20up%20of%20a%20man%20wearing%20vibrant%20boxing%20gloves%20is%20in%20a%20boxing%20ring%2C%20photograph%20by%20Esther%20L.png) <b>Fighters</b> CHV3CKBoxer, a realistic detail of a close up of a man wearing vibrant boxing gloves is in a boxing ring, photograph by Esther Lin, posing for a fight, boxing stance, Professional, masterpiece, commissioned, attractive face, facial expression, professional anatomy Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 4.5, Seed: 3289278897, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Illustrated Characters](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00975-3745736625-A%20medium%20profile%20shot%20of%20an%20anthropomorphic%20evil%20looking%20furry%20bear%20monster%20in%20heavy%20CHV3CKnight%20armor%2C%20hyper%20realistic%2C%20extreme.png) <b>Illustrated Characters</b> A medium profile shot of an anthropomorphic evil looking furry bear monster in heavy CHV3CKnight armor, hyper realistic, extremely detailed, 8k wallpaper, Professional, masterpiece, commissioned, flat shading, ink punk, thick pastel paint, thick pen lines, attractive face, facial expression, professional hands, professional anatomy Negative prompt: over-saturated, over-exposed, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 5.5, Seed: 3745736625, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Stylish Photorealism](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/01569-2814225442-a%20professional%20Analog%20photo%20of%20a%20medium%20shot%20of%20beautiful%20urban%20model%20wearing%20Coco%20Chanel%20out%20at%20night%20in%20the%20city%2C%20armani%20fur%20c.png) <b>Stylish Photorealism</b> a professional Analog photo of a medium shot of beautiful urban model wearing Coco Chanel out at night in the city, armani fur coat, nikon D5600, 35mm lens, Professional, masterpiece, commissioned, attractive face, facial expression, fixed in post, color corrected Negative prompt: crossed eyes, amateur, extra limbs, extra barrel, b&w, close-up, duplicate, mutilated, extra fingers, mutated hands, deformed, blurry, bad proportions, extra limbs, cloned face, out of frame, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, tripod, tube, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy Steps: 10, Sampler: DPM++ SDE, CFG scale: 3.5, Seed: 2814225442, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3 ![Futuristic Masks](https://huggingface.co/ManglerFTW/CharHelper_Fine-Tuned/resolve/main/images/00002-4242822040-tribal%20mask%20in%20wakandan%20style%20cyberpunk%2C%20ultra%20realistic%2C%20concept%20art%2C%20intricate%20details%2C%20eerie%2C%20horror%2C%20highly%20detailed%2C%20photor.png) <b>Futuristic Masks</b> tribal mask in wakandan style cyberpunk, ultra realistic, concept art, intricate details, eerie, horror, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and alphonse mucha, Professional, masterpiece, commissioned Negative prompt: framed, cropped, over-exposed, over-saturated, amateur, (b&w), (close-up), (duplicate), (deformed), blurry, (bad proportions), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, cross-eyes Steps: 10, Sampler: DPM++ SDE, CFG scale: 7, Seed: 4242822040, Size: 768x896, Model hash: 4812a6e5a5, ENSD: 3
[ "BEAR" ]
IIC/roberta-large-bne-ctebmsp
IIC
token-classification
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "biomedical", "clinical", "spanish", "roberta-large-bne", "token-classification", "es", "dataset:lcampillos/ctebmsp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-21T06:50:46Z
2025-01-17T10:50:59+00:00
28
0
--- datasets: - lcampillos/ctebmsp language: es license: apache-2.0 metrics: - f1 pipeline_tag: token-classification tags: - biomedical - clinical - spanish - roberta-large-bne model-index: - name: IIC/roberta-large-bne-ctebmsp results: - task: type: token-classification dataset: name: CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) type: lcampillos/ctebmsp split: test metrics: - type: f1 value: 0.877 name: f1 --- # roberta-large-bne-ctebmsp This model is a finetuned version of roberta-large-bne for the CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.877 Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 64 | | learning rate | 2e-05 | | classifier dropout | 0.1 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtext @article{10.1093/jamia/ocae054, author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, journal = {Journal of the American Medical Informatics Association}, volume = {31}, number = {9}, pages = {2137-2146}, year = {2024}, month = {03}, issn = {1527-974X}, doi = {10.1093/jamia/ocae054}, url = {https://doi.org/10.1093/jamia/ocae054}, } ```
[ "CT-EBM-SP" ]
IIC/XLM_R_Galen-pharmaconer
IIC
token-classification
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "biomedical", "clinical", "spanish", "XLM_R_Galen", "token-classification", "es", "dataset:PlanTL-GOB-ES/pharmaconer", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-21T16:20:10Z
2024-11-25T10:41:28+00:00
28
0
--- datasets: - PlanTL-GOB-ES/pharmaconer language: es license: mit metrics: - f1 pipeline_tag: token-classification tags: - biomedical - clinical - spanish - XLM_R_Galen widget: - text: Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D. - text: ' Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales.' - text: Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos. model-index: - name: IIC/XLM_R_Galen-pharmaconer results: - task: type: token-classification dataset: name: pharmaconer type: PlanTL-GOB-ES/pharmaconer split: test metrics: - type: f1 value: 0.915 name: f1 --- # XLM_R_Galen-pharmaconer This model is a finetuned version of XLM_R_Galen for the pharmaconer dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.915 Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 3e-05 | | classifier dropout | 0.1 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtext @article{10.1093/jamia/ocae054, author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, journal = {Journal of the American Medical Informatics Association}, volume = {31}, number = {9}, pages = {2137-2146}, year = {2024}, month = {03}, issn = {1527-974X}, doi = {10.1093/jamia/ocae054}, url = {https://doi.org/10.1093/jamia/ocae054}, } ```
[ "PHARMACONER" ]
BigSalmon/InformalToFormalLincoln102Paraphrase
BigSalmon
text-generation
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-06-26T19:59:24Z
2023-07-08T22:40:54+00:00
28
0
--- {} --- data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln102Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln102Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` essence: when someone's views are keeping within reasonable. refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ). *** essence: when things are worked through in a petty way. refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling. ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` music before bedtime [makes for being able to relax] -> is a recipe for relaxation. ``` ``` [people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway. ``` ``` in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal. *** politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ). ``` ``` Q: What is whistleblower protection? A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer. Q: Why are whistleblower protections important? A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution. Q: Why would an employer engage in retribution? A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing. ``` ``` original: the meritocratic nature of crowdfunding [MASK] into their vision's viability. infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability. ``` ``` Leadership | Lecture 17: Worker Morale What Workers Look for in Companies: • Benefits o Tuition reimbursement o Paid parental leave o 401K matching o Profit sharing o Pension plans o Free meals • Social responsibility o Environmental stewardship o Charitable contributions o Diversity • Work-life balance o Telecommuting o Paid holidays and vacation o Casual dress • Growth opportunities • Job security • Competitive compensation • Recognition o Open-door policies o Whistleblower protection o Employee-of-the-month awards o Positive performance reviews o Bonuses ``` ``` description: business keywords: for-profit, fiduciary duty, monopolistic, bottom line, return on investment, short-term thinking, capital-intensive, self-interested, risk-taking, fiduciary duty, merger, speculation, profiteering, oversight, capitalism, diversification ``` ``` 3. In this task, you are given a company name and you need to find its industry. McDonalds -- Restaurant Facebook -- Social Network IKEA -- Furniture American Express -- Credit Services Nokia -- Telecom Nintendo -- Entertainment 4. In this task, you are given a Month and you need to convert it to its corresponding season April -- Spring December -- Winter July -- Summer October -- Fall February -- Winter 5. In this task, you are given a sentence with a missing word and you need to predict the correct word. Managers should set an _____ for their employees. -- example Some people spend more than four _____ in the gym. -- hours The police were on the _____ of arresting the suspect. -- verge They were looking for _____ on how to solve the problem. -- guidance What is the _____ of the coffee? -- price 6. In this task, you are given a paragraph and you need to reorder it to make it logical. It was first proposed in 1987. The total length of the bridge is 1,828 meters. The idea of a bridge connects Hong Kong to Macau. -- The idea of bridge connecting Hong Kong and Macau was first proposed in 1987. The total length of the bridge is 1,828 meters. It is a movie about a brave and noble policeman. The film was produced by Americans. They were Kevin Lima and Chris Buck. They are directors. The movie is called Tarzan. -- Produced by Americans Kevin Lima and Chris Buck, Tarzan is a movie about a brave and noble policeman. It was first discovered in the mountains of India. The active ingredients in this plant can stimulate hair growth. The plant is called "Hair Plus." -- First discovered in the mountains of India, Hair Plus is a plant whose active ingredients can stimulate hair growth. ``` ``` trivia: What is the population of South Korea? response: 51 million. *** trivia: What is the minimum voting age in the US? response: 18. *** trivia: What are the first ten amendments of the US constitution called? response: Bill of Rights. ``` ``` ideas: in modern-day america, it is customary for the commander-in-chief to conduct regular press conferences related keywords: transparency, check and balance, sacrosanct, public accountability, adversarial, unscripted, direct access, open government, watchdog, healthy democracy, institutional integrity, right to know, direct line of communication, behind closed doors, updates, track progress, instill confidence, reassure, humanize, leadership style, day-to-day, forthcoming, demystify, ask hard questions *** ideas: i know this one guy who retired so young, attesting to how careful they were with money. related keywords: money management, resourceful, penny-pinching, live below their means, frugal, financial discipline, financial independence, conservative, long-term vision, discretionary spending, deferred gratification, preparedness, self-control, cushion ``` ``` less specific: actors and musicians should ( support democracy ). clarifies: actors and musicians should ( wield their celebrity to amplify pro-democracy messaging / marshal their considerable influence in the service of the democratic cause ). *** less specific: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( be careful ). clarifies: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( master their desires / exercise self-restraint / embrace frugality / restrain their appetite for splendor ). ``` ``` dull: clean emotional heft: spotless, immaculate, pristine *** dull: hot emotional heft: scorching, searing, blistering *** dull: happy emotional heft: euphoric ``` ``` text: {guide: vividly describe the premise of the show "seinfield"} -> set in the heart of bustling new york city, the sitcom "seinfield" follows the everyday {restrict: term that implies they get into trouble but in a comical way} -> misadventures of four neurotic friends. on any given episode, one can find them quarreling over their favorite diner's latest menu change, haggling over the division of household expenses, or contriving a scheme to spy on the apartment's newest resident. mundane as their exploits may be, they never fail to elicit a hearty laugh. {guide: mention how larry david is responsible} -> behind the show's witty, incisive dialogue lies the sharp pen of larry david, who co-created the show with jerry seinfeld. {guide: mention how larry david came up with the most recognizable lines} -> it is his genius that conjured such instantly {restrict: term that imply everybody knows them} -> recognizable quips as "no soup for you!" and "not that there's anything wrong with that!". {guide: mention how humanity should revel in having such good comedians these days} -> as this list of laugh-out-loud lines attests, the world is fortunate to ( count such a sharp comedic mind among its ranks / have such a talented humorist in its midst / have such comedic talent gracing its airwaves ). ``` ``` system: i'm not sure i agree with your assessment of the situation. user: replace "assessment" with a more casual term. chatbot: ( take / read / view ). system: i've been feeling really busy lately, trying to balance work and family responsibilities. user: replace "busy" with a more intense word that conveys it is too much. chatbot: overwhelmed. system: the candidate's stance on immigration is quite nebulous, and it's difficult to discern exactly what they would do if elected. user: replace "nebulous" with a word that conveys a lack of detail. chatbot: ( vague / ambiguous ). ``` ``` user: exorbitant in price, scholarly journals unconscionably define the breadth of one's knowledge awareness by the contents of their wallet. [replace “knowledge awareness” with a more natural expression] chatbot: intellectual horizons. user: can you do another alternative to “intellectual horizons” that has more relation to “scholarly journals”? chatbot: academic enlightenment. ``` ``` key: calculate. syn: estimate, consider, weigh, number, count, apportion, proportion, investigate, reckon, rate, compute. ant: guess, conjecture, hit, chance, risk, stake, miscalculate. ``` ``` description: more forceful version of curious that is less forceful than nosy answer: inquisitive description: more forceful version of hopeful that is less forceful than overconfident answer: optimistic ``` ``` key: inquisitive positive: curious, interested negative: nosy, prying *** key: witty positive: clever, humorous negative: sarcastic, caustic *** key: influential positive: impactful, powerful negative: overbearing, domineering ``` ``` defective: the blogger's { use of language imprecise } confused an already complicated issue. precise: the blogger's ( vague wording ) confused an already complicated issue. defective: the senator's speech was high on { words sounding dignified } but low on concrete proposals. precise: the senator's speech was high on ( lofty rhetoric ) but low on concrete proposals. ``` ``` example: the new car uses gas. boring: uses stronger: guzzles example: he hates people that are rude. boring: hates stronger: loathes, abhors, despises, scorns, detests ```
[ "BEAR" ]
pierre-loic/climate-news-articles
pierre-loic
text-classification
[ "transformers", "pytorch", "safetensors", "flaubert", "text-classification", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-27T08:18:17Z
2023-07-11T09:53:58+00:00
28
1
--- license: cc widget: - text: Nouveaux records d’émissions de CO₂ du secteur énergétique en 2022, selon une étude - text: 'Climat et énergie : les objectifs de l’Union européenne pour 2030 ont du « plomb dans l’aile »' - text: 'Municipales à Paris : Emmanuel Grégoire « se prépare méthodiquement » pour l’après Hidalgo' --- # 🌍 Détection des articles de presse française traitant des sujets liés au climat *🇬🇧 / 🇺🇸 : as this model is trained only on French data, all explanations are written in French in this repository. The goal of the model is to classify titles of French newspapers in two categories : if it's about climate or not.* ## 🗺️ Le contexte Ce modèle de classification de **titres d'article de presse française** a été réalisé pour l'association [Data for good](https://dataforgood.fr/) à Grenoble et plus particulièrement pour l'association [Quota climat](https://www.quotaclimat.org/). L'objectif de ce modèle est de savoir si un **article de presse** traite du **sujet du climat** à partir de son **titre**. Cette tache est complexe car l'algorithme **n'a pas accès au contenu** des articles de presse. Néanmoins, à l'aide des modèles de langage basés sur les [tranformeurs](https://fr.wikipedia.org/wiki/Transformeur) et plus particulièrement les modèles basés sur une architecture [BERT](https://fr.wikipedia.org/wiki/BERT_(mod%C3%A8le_de_langage)), on peut obtenir des résultats intéressants. Nous avons étudié les **deux principaux modèles** basés sur cette architecture et entrainés sur des **corpus en français** : [FlauBERT](https://hal.science/hal-02784776v3/document) et [CamemBERT](https://camembert-model.fr/) ## 📋 L'utilisation du modèle final Le modèle final présenté n'est évidemment **pas parfait** et possède des **biais**. En effet, certains choix du modèles peuvent être discutables : ceci provient du **périmètre de définition** de la notion de **climat**. Pour tester le modèle avec le langage Python, il y a **deux solutions** : - Soit en **téléchargeant le modèle** avec la bibliothèque Python [transformers](https://pypi.org/project/transformers/) Pour tester le modèle, il suffit d'installer la bibliothèque Python [transformers](https://pypi.org/project/transformers/) dans un environnement virtuel et exécuter le code suivant : ```python from transformers import pipeline pipe = pipeline("text-classification", model="pierre-loic/climate-news-articles") sentence = "Guerre en Ukraine, en direct : le président allemand appelle à ne pas « bloquer » Washington pour la livraison d’armes à sous-munitions" print(pipe(sentence)) ``` ``` [{'label': 'NE TRAITE PAS DU CLIMAT', 'score': 0.6566330194473267}] ``` - Soit en appelant l'**API** d'Hugging Face avec la bibliothèque Python [requests](https://pypi.org/project/requests/) Pour appeler l'**API** d'Hugging Face, il vous faut un **token** que vous pouvez récupérer dans votre espace personnel. Il ne vous plus qu'à exécuter le code suivant : ```python import requests API_URL = "https://api-inference.huggingface.co/models/pierre-loic/climate-news-articles" headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Canicule : deux nouveaux départements du Sud-Est placés en vigilance orange lundi", }) print(output) ``` ``` [[{'label': 'TRAITE DU CLIMAT', 'score': 0.511335015296936}, {'label': 'NE TRAITE PAS DU CLIMAT', 'score': 0.48866504430770874}]] ``` ## 🔎 Le détail du travail d'entrainement ### La méthodologie utilisée Différentes pistes d'étude ont été explorées pour aboutir au modèle final : - La **première piste** que nous avons étudiée est de faire prédire la classification des titres d'articles de presse entre "climat" et "pas climat" par [ChatGPT](https://openai.com/blog/chatgpt) grâce à du [prompt engineering](https://en.wikipedia.org/wiki/Prompt_engineering). Les résultats étaient assez intéressants mais le modèle se trompait parfois sur des cas très simples. - La **deuxième piste** que nous avons étudiée est de vectoriser les mots des titres de presse par une méthode Tf-Idf et d'utiliser un modèle de classification ([régression logistique](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) et [random forest](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)). Les résultats étaient légérement meilleurs qu'avec un dummy classifier (qui prédit toujours la classe majoritaire "Climat"). - La **troisième piste** que nous avons étudiée est de vectoriser les titres des articles de presse avec un modèle de type [BERT](https://fr.wikipedia.org/wiki/BERT_(mod%C3%A8le_de_langage)) ([camemBERT](https://camembert-model.fr/) uniquement entrainé sur un corpus francophone) et ensuite d'utiliser un modèle de classification ([régression logistique](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) et [random forest](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)) sur les plongements. Les résultats étaient intéressants. - La **quatrième piste** (celle qui a été retenue pour ce modèle) est de faire un fine-tuning d'un modèle de BERT (FlauBERT ou CamemBERT) pour la tache de classification. ### Les données Les données proviennent d'une collecte de **titres d'articles de presse française** collectés durant plusieurs mois. Nous avons labellisé environ **2000 de ces titres** pour entrainer le modèle. ### Le modèle final Le modèle retenu est un modèle de type FlauBERT avec un **fine-tuning** pour la **classification des articles de presse**. Les **données d'entrainement** ont été **sous-échantilonnées (undersampling)** pour équilibrer les classes. ### Les améliorations envisageables Pour **améliorer le modèle**, il pourrait être intéressant d'**intégrer plus de données** sur les domaines où le modèle **se trompe le plus**.
[ "CAS" ]
TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-fp16
TheBloke
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
2023-06-28T20:23:28Z
2023-07-09T20:24:55+00:00
28
5
--- license: other inference: false --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Manticore 13B Chat Pyg Guanaco fp16 This is fp16 pytorch format model files for [Manticore 13B Chat Pyg Guanaco](https://huggingface.co/Monero/Manticore-13b-Chat-Pyg-Guanaco) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/Manticore-13b-Chat-Pyg-Guanaco) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Manticore 13B Chat Pyg Guanaco Manticore-13b-Chat-Pyg with the Guanaco 13b qLoRa from TimDettmers applied
[ "MONERO" ]
Sriram-Gov/Sarcastic-Headline-Llama2
Sriram-Gov
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2209.11429", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-09-01T20:31:56Z
2023-09-04T09:20:34+00:00
28
1
--- datasets: https://github.com/SriRamGovardhanam/Sarcastic-Headline-Llama2/blob/main/formatted_headline_data.csv license: llama2 --- # Fine tuning Llama 2 by a generated dataset to respond sarcastically The main idea behind the model is to add behaviour to an LLM so that for a given input(news headline) the model responds back with output(sarcastic_headline) in a funny, sarcastic way.<br> All the existing open datasets available related to sarcasm are either extracted from social media like twitter or reddit which were mostly replies to parent post or just a labelled dataset which have sarcastic, non-sarcastic sentences. we are looking for dataset which has normal sentence and corresponding sarcastic version for the model to understand. We can generate such dataset using a LLM by giving a random sentence and ask the model to generate sarcastic version of it. Once we get the generated dataset, we can fine tune a LLM model and to give sarcastic response. ## Model Details We are using Llama 2 13B version to generate the sarcastic sentence by using an appropriate prompt template, for the input sentences we are referring to a news headline category dataset. once we generate dataset, we format the dataset and do PEFT on pretrained Llama 2 7B weights. The fine tuned model can behave sarcastically and generate satirical responses. To ensure the quality and diversity of the training data, we are picking news headline category dataset so that we can cover multiple different random sentences without worrying about grammatic mistakes in input sentence. - **Sorce Dataset:** https://www.kaggle.com/datasets/rmisra/news-category-dataset - **Dataset after ETL:** https://github.com/SriRamGovardhanam/Sarcastic-Headline-Llama2/blob/main/formatted_headline_data.csv - **Model type:** LLM - **Finetuned from model:** Llama2 7B https://huggingface.co/TinyPixel/Llama-2-7B-bf16-sharded/tree/main ### Model Fine tuning code Huggingface team developed a python library autotrain-advanced with which we can fine tune any LLM with just one line of code. You can find python code to generate the data, to fine tune the model in below repo - **Repository:** https://github.com/SriRamGovardhanam/Sarcastic-Headline-Llama2 - **For code line by line breakdown refer:** [Coming soon] ## Uses - **Enhanced Natural Language Understanding:** In applications like chatbots or virtual assistants, a model trained to understand sarcasm can provide more contextually relevant responses, improving user interactions. - **Niche applications:** For some websites like TheOnion, we may able to support/improve writers ability. Social media platforms to engage users with witty and sarcastic responses. ### Direct Use Refer to the Inference code available in repo: https://github.com/SriRamGovardhanam/Sarcastic-Headline-Llama2 ### Downstream Use - **Content Generation:** In creative writing and content creation, the model can be used to inject humor and sarcasm into articles, scripts, advertisements, or marketing materials to make them more engaging. - **Brand Persona:** Some companies adopt a brand persona characterized by humor and sarcasm in their communications. The model can assist in maintaining this tone in marketing campaigns and customer interactions. - **Social Media Engagement:** Brands and influencers on social media may use the model to craft sarcastic posts or responses that resonate with their audience, leading to increased engagement and brand awareness. ### Recommendations - There is a lot of room for improvement here. At ETL level, at the time of generating dataset, we can provide different prompts for different categories available to generate even better funny responses. - Dataset used here to fine tune have only 2100 examples, we can increase dataset size. At the time of fine tuning, because of GPU memory constraints, I have only performed 8 epochs - this can be increased. - I opted for news headline because of quality and diversity of the training data. If sole purpose of the model is more focussed on generating more enticing sarcastic news headline, then another better approach here would be generating news description 1st and generate headline for the description. ## How to Get Started with the Model - For Fine tuning your own dataset, you can use the colab notebook files in this repo: https://github.com/SriRamGovardhanam/Sarcastic-Headline-Llama2 - For a doing a quick inference on this model card, refer to Inference notebook in the same repo. ## Training Details ``` autotrain llm --train --project_name 'sarcastic-headline-gen' --model TinyPixel/Llama-2-7B-bf16-sharded \ --data_path '/content/sarcastic-headline' \ --use_peft \ --use_int4 \ --learning_rate 2e-4 \ --train_batch_size 8 \ --num_train_epochs 8 \ --trainer sft \ --model_max_length 340 > training.log & ``` ### Training Data ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f247058be22790b9cff971/l5FASl8ZWtFD4OctriGbN.png) ### Results Input headline: **mansoons are best for mosquitoes** <br>Input Formatted Template to the fine tuned LLM: ``` You are a savage, disrespectful and witty agent. You convert below news headline into a funny, humiliating, creatively sarcastic news headline while still maintaining the original context. ### headline: mansoons are best for mosquitoes ### sarcastic_headline: ``` <br>Output after Inferencing: ``` You are a savage, disrespectful and witty agent. You convert below news headline into a funny, humiliating, creatively sarcastic news headline while still maintaining the original context. ### headline: mansoons are best for mosquitoes ### sarcastic_headline: Another Study Proves That Men's Sweaty Bums Are The Best Repellent Against Mosquitoes ``` #### Summary - The primary purpose of this model is often to generate humor and entertainment. It can be used in chatbots, virtual assistants, or social media platforms to engage users with witty and sarcastic responses. - One advantage of using Llama2 model instead of chat GPT for dataset generation is, OpenAI will not allow offensive words/ hate speech as rules for a model, even if we include them in prompt template, chatGPT will not produce brutal/ humiliating responses which is reasonable and ethical for such a big organization. - This advatange is a double edged sword, as some people cannot handle these type of responses and may consider them as harrasement/ offensive. ### Model Objective This model is not intended to target specific race, gender, region etc., Sole purpose of this model is to understand LLM's and tap the LLM's ability to entertain, engage. ### Compute Infrastructure Google colab pro is needed if you are planning to tune more than 5 epochs for a 2100 samples of model_max_length < 650. ## Citation The source dataset - news headlines are taken from https://www.kaggle.com/datasets/rmisra/news-category-dataset <br> Misra, Rishabh. "News Category Dataset." arXiv preprint arXiv:2209.11429 (2022). ## Model Card Authors Sriram Govardhanam <br> http://www.linkedin.com/in/SriRamGovardhanam ## Model Card Contact [email protected]
[ "CRAFT" ]
lomahony/pythia-410m-helpful-sft
lomahony
text-generation
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:Anthropic/hh-rlhf", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-11-08T15:48:41Z
2025-01-20T05:40:03+00:00
28
0
--- datasets: - Anthropic/hh-rlhf language: - en license: apache-2.0 tags: - pytorch - causal-lm - pythia --- [Pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) supervised finetuned using TRLx library with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) for 1 epoch. Checkpoints are also uploaded. Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/trlx-pythia/tree/main) [wandb log](https://wandb.ai/lauraomahony999/pythia-sft/runs/quq2097z) See [Pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) for model details [(paper)](https://arxiv.org/abs/2101.00027). See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). You can cite these models if they are helpful as follows: <pre> @inproceedings{o2024attributing, title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, year={2024} } </pre> hf (pretrained=lomahony/pythia-410m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|------:|------|-----:|---------------|------:|---|------| |arc_challenge | 1|none | 0|acc | 0.2355|± |0.0124| | | |none | 0|acc_norm | 0.2594|± |0.0128| |arc_easy | 1|none | 0|acc | 0.5051|± |0.0103| | | |none | 0|acc_norm | 0.4478|± |0.0102| |boolq | 2|none | 0|acc | 0.6113|± |0.0085| |hellaswag | 1|none | 0|acc | 0.3372|± |0.0047| | | |none | 0|acc_norm | 0.4001|± |0.0049| |lambada_openai| 1|none | 0|perplexity |21.8172|± |0.7736| | | |none | 0|acc | 0.3755|± |0.0067| |openbookqa | 1|none | 0|acc | 0.1940|± |0.0177| | | |none | 0|acc_norm | 0.2960|± |0.0204| |piqa | 1|none | 0|acc | 0.6719|± |0.0110| | | |none | 0|acc_norm | 0.6687|± |0.0110| |sciq | 1|none | 0|acc | 0.7700|± |0.0133| | | |none | 0|acc_norm | 0.6540|± |0.0151| |wikitext | 2|none | 0|word_perplexity|23.8136|± |N/A | | | |none | 0|byte_perplexity| 1.8091|± |N/A | | | |none | 0|bits_per_byte | 0.8553|± |N/A | |winogrande | 1|none | 0|acc | 0.5320|± |0.0140| hf (pretrained=lomahony/pythia-410m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|------:|------|-----:|---------------|------:|---|------| |arc_challenge | 1|none | 5|acc | 0.2355|± |0.0124| | | |none | 5|acc_norm | 0.2790|± |0.0131| |arc_easy | 1|none | 5|acc | 0.5274|± |0.0102| | | |none | 5|acc_norm | 0.5072|± |0.0103| |boolq | 2|none | 5|acc | 0.5226|± |0.0087| |hellaswag | 1|none | 5|acc | 0.3367|± |0.0047| | | |none | 5|acc_norm | 0.3991|± |0.0049| |lambada_openai| 1|none | 5|perplexity |37.4791|± |1.3737| | | |none | 5|acc | 0.3049|± |0.0064| |openbookqa | 1|none | 5|acc | 0.1620|± |0.0165| | | |none | 5|acc_norm | 0.2900|± |0.0203| |piqa | 1|none | 5|acc | 0.6708|± |0.0110| | | |none | 5|acc_norm | 0.6676|± |0.0110| |sciq | 1|none | 5|acc | 0.8630|± |0.0109| | | |none | 5|acc_norm | 0.8430|± |0.0115| |wikitext | 2|none | 5|word_perplexity|23.8136|± |N/A | | | |none | 5|byte_perplexity| 1.8091|± |N/A | | | |none | 5|bits_per_byte | 0.8553|± |N/A | |winogrande | 1|none | 5|acc | 0.5272|± |0.0140|
[ "SCIQ" ]
ntc-ai/SDXL-LoRA-slider.superhero
ntc-ai
text-to-image
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
2023-12-11T19:47:31Z
2024-02-06T00:30:32+00:00
28
1
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 language: - en license: mit tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers thumbnail: images/superhero_17_3.0.png widget: - text: superhero output: url: images/superhero_17_3.0.png - text: superhero output: url: images/superhero_19_3.0.png - text: superhero output: url: images/superhero_20_3.0.png - text: superhero output: url: images/superhero_21_3.0.png - text: superhero output: url: images/superhero_22_3.0.png inference: false instance_prompt: superhero --- # ntcai.xyz slider - superhero (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/superhero_17_-3.0.png" width=256 height=256 /> | <img src="images/superhero_17_0.0.png" width=256 height=256 /> | <img src="images/superhero_17_3.0.png" width=256 height=256 /> | | <img src="images/superhero_19_-3.0.png" width=256 height=256 /> | <img src="images/superhero_19_0.0.png" width=256 height=256 /> | <img src="images/superhero_19_3.0.png" width=256 height=256 /> | | <img src="images/superhero_20_-3.0.png" width=256 height=256 /> | <img src="images/superhero_20_0.0.png" width=256 height=256 /> | <img src="images/superhero_20_3.0.png" width=256 height=256 /> | See more at [https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575](https://sliders.ntcai.xyz/sliders/app/loras/3c02c5d7-2101-45a4-a182-2234fa57d575) ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` superhero ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.superhero', weight_name='superhero.safetensors', adapter_name="superhero") # Activate the LoRA pipe.set_adapters(["superhero"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, superhero" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14602+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities. Your support on Patreon will allow us to continue developing new models and tools. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
[ "CRAFT" ]
ntc-ai/SDXL-LoRA-slider.Chiaroscuro
ntc-ai
text-to-image
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
2024-01-29T01:30:43Z
2024-02-10T02:10:12+00:00
28
2
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 language: - en license: mit tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers thumbnail: images/evaluate/Chiaroscuro.../Chiaroscuro_17_3.0.png widget: - text: Chiaroscuro output: url: images/Chiaroscuro_17_3.0.png - text: Chiaroscuro output: url: images/Chiaroscuro_19_3.0.png - text: Chiaroscuro output: url: images/Chiaroscuro_20_3.0.png - text: Chiaroscuro output: url: images/Chiaroscuro_21_3.0.png - text: Chiaroscuro output: url: images/Chiaroscuro_22_3.0.png inference: false instance_prompt: Chiaroscuro --- # ntcai.xyz slider - Chiaroscuro (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/Chiaroscuro_17_-3.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_17_0.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_17_3.0.png" width=256 height=256 /> | | <img src="images/Chiaroscuro_19_-3.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_19_0.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_19_3.0.png" width=256 height=256 /> | | <img src="images/Chiaroscuro_20_-3.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_20_0.0.png" width=256 height=256 /> | <img src="images/Chiaroscuro_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` Chiaroscuro ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.Chiaroscuro', weight_name='Chiaroscuro.safetensors', adapter_name="Chiaroscuro") # Activate the LoRA pipe.set_adapters(["Chiaroscuro"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, Chiaroscuro" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
[ "CRAFT" ]
scoris/scoris-mt-en-lt
scoris
text2text-generation
[ "transformers", "safetensors", "marian", "text2text-generation", "lt", "en", "dataset:scoris/en-lt-merged-data", "license:cc-by-2.5", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-15T12:16:22Z
2024-11-19T10:31:18+00:00
28
1
--- datasets: - scoris/en-lt-merged-data language: - lt - en license: cc-by-2.5 metrics: - sacrebleu --- # Overview ![Scoris logo](https://scoris.lt/logo_smaller.png) This is an English-Lithuanian translation model (Seq2Seq). For Lithuanian-English translation check another model [scoris-mt-lt-en](https://huggingface.co/scoris/scoris-mt-lt-en) Original model: [Helsinki-NLP/opus-mt-tc-big-en-lt](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-lt) Fine-tuned on large merged data set: [scoris/en-lt-merged-data](https://huggingface.co/datasets/scoris/en-lt-merged-data) (5.4 million sentence pairs) Trained on 6 epochs. Made by [Scoris](https://scoris.lt) team # Evaluation: | EN-LT | BLEU | |-----------------------------------|------| | scoris/scoris-mt-en-lt | 41.9 | | Helsinki-NLP/opus-mt-tc-big-en-lt | 34.3 | | Google Translate | 30.8 | | Deepl | 32.3 | _Evaluated on scoris/en-lt-merged-data validation set. Google and Deepl evaluated using a random sample of 1000 sentence pairs._ **According to [Google](https://cloud.google.com/translate/automl/docs/evaluate) BLEU score interpretation is following:** | BLEU Score | Interpretation |----------|---------| | < 10 | Almost useless | 10 - 19 | Hard to get the gist | 20 - 29 | The gist is clear, but has significant grammatical errors | 30 - 40 | Understandable to good translations | **40 - 50** | **High quality translations** | 50 - 60 | Very high quality, adequate, and fluent translations | > 60 | Quality often better than human # Usage You can use the model in the following way: ```python from transformers import MarianMTModel, MarianTokenizer # Specify the model identifier on Hugging Face Model Hub model_name = "scoris/scoris-mt-en-lt" # Load the model and tokenizer from Hugging Face tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) src_text = [ "Once upon a time there were three bears, who lived together in a house of their own in a wood.", "One of them was a little, small wee bear; one was a middle-sized bear, and the other was a great, huge bear.", "One day, after they had made porridge for their breakfast, they walked out into the wood while the porridge was cooling.", "And while they were walking, a little girl came into the house. " ] # Tokenize the text and generate translations translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) # Print out the translations for t in translated: print(tokenizer.decode(t, skip_special_tokens=True)) # Result: # Kažkada buvo trys lokiai, kurie gyveno kartu savame name miške. # Vienas iš jų buvo mažas, mažas lokys; vienas buvo vidutinio dydžio lokys, o kitas buvo didelis, didžiulis lokys. # Vieną dieną, pagaminę košės pusryčiams, jie išėjo į mišką, kol košė vėso. # Jiems einant, į namus atėjo maža mergaitė. ```
[ "BEAR" ]
FreedomIntelligence/Apollo-MedJamba
FreedomIntelligence
text-generation
[ "transformers", "safetensors", "jamba", "text-generation", "custom_code", "arxiv:2403.03640", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-04-23T14:39:57Z
2024-04-25T08:59:39+00:00
28
1
--- license: apache-2.0 --- # MedJamba Multilingual Medical Model Based On Jamba <p align="center"> 👨🏻‍💻<a href="https://github.com/FreedomIntelligence/MedJamba" target="_blank">Github</a> •📃 <a href="https://arxiv.org/abs/2403.03640" target="_blank">Paper</a> </p> ![Apollo](assets/apollo_medium_final.png) ## 🌈 Update * **[2024.04.25]** MedJamba Model is published!🎉 ## Results 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-0.5B" target="_blank">Apollo-0.5B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-1.8B" target="_blank">Apollo-1.8B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-2B" target="_blank">Apollo-2B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-6B" target="_blank">Apollo-6B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-7B" target="_blank">Apollo-7B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-34B" target="_blank">Apollo-34B</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-72B" target="_blank">Apollo-72B</a> 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-MedJamba" target="_blank">MedJamba</a> 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-0.5B-GGUF" target="_blank">Apollo-0.5B-GGUF</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-2B-GGUF" target="_blank">Apollo-2B-GGUF</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF" target="_blank">Apollo-6B-GGUF</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF" target="_blank">Apollo-7B-GGUF</a> ![Apollo](assets/result.png) ## Dataset & Evaluation - Dataset 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/ApolloCorpus" target="_blank">ApolloCorpus <details><summary>Click to expand</summary> ![Apollo](assets/dataset.png) - [Zip File](https://huggingface.co/datasets/FreedomIntelligence/Medbase_data/blob/main/Medbase_data-datasets.zip) - [Data category](https://huggingface.co/datasets/FreedomIntelligence/Medbase_data/tree/main/train) - Pretrain: - data item: - json_name: {data_source}_{language}_{data_type}.json - data_type: medicalBook, medicalGuideline, medicalPaper, medicalWeb(from online forum), medicalWiki - language: en(English), zh(chinese), es(spanish), fr(french), hi(Hindi) - data_type: qa(generated qa from text) - data_type==text: list of string ``` [ "string1", "string2", ... ] ``` - data_type==qa: list of qa pairs(list of string) ``` [ [ "q1", "a1", "q2", "a2", ... ], ... ] ``` - SFT: - json_name: {data_source}_{language}.json - data_type: code, general, math, medicalExam, medicalPatient - data item: list of qa pairs(list of string) ``` [ [ "q1", "a1", "q2", "a2", ... ], ... ] ``` </details> - Evaluation 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/XMedbench" target="_blank">XMedBench</a> <details><summary>Click to expand</summary> - EN: - [MedQA-USMLE](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options) - [MedMCQA](https://huggingface.co/datasets/medmcqa/viewer/default/test) - [PubMedQA](https://huggingface.co/datasets/pubmed_qa): Because the results fluctuated too much, they were not used in the paper. - [MMLU-Medical](https://huggingface.co/datasets/cais/mmlu) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - ZH: - [MedQA-MCMLE](https://huggingface.co/datasets/bigbio/med_qa/viewer/med_qa_zh_4options_bigbio_qa/test) - [CMB-single](https://huggingface.co/datasets/FreedomIntelligence/CMB): Not used in the paper - Randomly sample 2,000 multiple-choice questions with single answer. - [CMMLU-Medical](https://huggingface.co/datasets/haonan-li/cmmlu) - Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology - [CExam](https://github.com/williamliujl/CMExam): Not used in the paper - Randomly sample 2,000 multiple-choice questions - ES: [Head_qa](https://huggingface.co/datasets/head_qa) - FR: [Frenchmedmcqa](https://github.com/qanastek/FrenchMedMCQA) - HI: [MMLU_HI](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Arabic) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine - AR: [MMLU_Ara](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Hindi) - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine </details> ## Results reproduction <details><summary>Click to expand</summary> 1. Download Dataset for project: ``` bash 0.download_data.sh ``` 2. Prepare test and dev for specific model: - Create test data for with special token, you can use ./util/check.ipynb to check models' special tokens ``` bash 1.data_process_test&dev.sh ``` 3. Prepare train data for specific model (Create tokenized data in advance): - You can adjust data Training order and Training Epoch in this step ``` bash 2.data_process_train.sh ``` 4. Train the model - Multi Nodes refer to ./scripts/multi_node_train_*.sh ``` pip install causal-conv1d>=1.2.0 pip install mamba-ssm ``` Node 0: ``` bash ./scripts/3.multinode_train_jamba_rank0.sh ``` ... Node 4: ``` bash ./scripts/3.multinode_train_jamba_rank4.sh ``` 5. Evaluate your model: Generate score for benchmark ``` bash 4.eval.sh ``` 6. Evaluate your model: Play with your ckpts in bash ``` python ./src/evaluate/cli_demo.py --model_name='./ckpts/your/path/tfmr' ``` </details> ## To do - Long Context Capability Evaluation and new Long-Med Benchmark ## Acknowledgment - [HuatuoGPT-II](https://github.com/FreedomIntelligence/HuatuoGPT-II) - [proxy-tuning](https://github.com/alisawuffles/proxy-tuning) - [Apollo](https://github.com/FreedomIntelligence/Apollo) ## Citation Please use the following citation if you intend to use our dataset for training or evaluation: ``` @misc{wang2024apollo, title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People}, author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang}, year={2024}, eprint={2403.03640}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ "HEAD-QA", "MEDQA", "PUBMEDQA" ]
abhinand/Llama-3-Galen-70B-v1
abhinand
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "en", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:aaditya/Llama3-OpenBioLLM-70B", "base_model:finetune:aaditya/Llama3-OpenBioLLM-70B", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-05-07T18:53:45Z
2024-05-07T19:45:31+00:00
28
1
--- base_model: - aaditya/Llama3-OpenBioLLM-70B language: - en library_name: transformers license: llama3 tags: - mergekit - merge --- # Llama-3-Galen-70B-v1 <img src="https://hf.fast360.xyz/production/uploads/60c8619d95d852a24572b025/R73wGdZE3GWeF9QZPvruG.jpeg" width="600" /> This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [aaditya/Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B) as a base. ### Evaluation | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |---------------------|-------|------|-----:|--------|-----:|---|-----:| |pubmedqa | 1|none | 0|acc |0.7820|± |0.0185| |professional_medicine| 0|none | 0|acc |0.9375|± |0.0147| |medical_genetics | 0|none | 0|acc |0.9300|± |0.0256| |college_medicine | 0|none | 0|acc |0.8555|± |0.0268| |college_biology | 0|none | 0|acc |0.9375|± |0.0202| |clinical_knowledge | 0|none | 0|acc |0.9283|± |0.0159| |anatomy | 0|none | 0|acc |0.8444|± |0.0313| |medqa_4options |Yaml |none | 0|acc |0.7777|± |0.0117| | | |none | 0|acc_norm|0.7777|± |0.0117| |medmcqa |Yaml |none | 0|acc |0.7423|± |0.0068| | | |none | 0|acc_norm|0.7423|± |0.0068| **Average:** 0.8594
[ "MEDQA", "PUBMEDQA" ]
DeusImperator/Midnight-Miqu-70B-v1.5_exl2_2.4bpw_rpcal
DeusImperator
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:migtissera/Tess-70B-v1.6", "base_model:merge:migtissera/Tess-70B-v1.6", "base_model:sophosympatheia/Midnight-Miqu-70B-v1.0", "base_model:merge:sophosympatheia/Midnight-Miqu-70B-v1.0", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
2024-05-18T11:28:42Z
2024-05-19T10:12:00+00:00
28
1
--- base_model: - sophosympatheia/Midnight-Miqu-70B-v1.0 - migtissera/Tess-70B-v1.6 library_name: transformers license: other tags: - mergekit - merge --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/Tn9MBg6.png" alt="MidnightMiqu" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> # Midnight-Miqu-70B-v1.5 - EXL2 2.4bpw rpcal This is a 2.4bpw EXL2 quant of [sophosympatheia/Midnight-Miqu-70B-v1.5](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.5) This quant was made using exllamav2-0.0.21 with [pippa dataset](https://huggingface.co/datasets/royallab/PIPPA-cleaned) for RP This quant fits over 20k context on 24GB VRAM on Windows in my local testing (with exl2 Q4 cache), you might be able to get more depending on other things taking VRAM. I tested this quant shortly in some random RPs (including ones over 8k and 20k context) and it seems to work fine. ## Prompt Templates See [sophosympatheia/Midnight-Miqu-70B-v1.5](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.5) for Silly Tavern presets and templates. In general the model uses Vicuna or Mistral formats but others. Further details on prompting this model will also pop up under the [model discussions](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.0/discussions) ## Similar quants 2.4bpw exl2 quant on default dataset: [Midnight-Miqu-70B-v1.5_exl2_2.4bpw](https://huggingface.co/DeusImperator/Midnight-Miqu-70B-v1.5_exl2_2.4bpw) The above quant might be a little smarter based on limited testing, but this rpcal one might be a bit better for RP. ### Original readme below --- ### Overview Looking for the 103B version? You can get it from [FluffyKaeloky/Midnight-Miqu-103B-v1.5](https://huggingface.co/FluffyKaeloky/Midnight-Miqu-103B-v1.5). This is a DARE Linear merge between [sophosympatheia/Midnight-Miqu-70B-v1.0](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.0) and [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6). This version is close in feel and performance to Midnight Miqu v1.0 but I think it picked up some goodness from Tess. Their EQ Bench scores are virtually the same and their post-EXL2 quant perplexity scores were the same too. However, Midnight Miqu v1.5 passes some tests I use that Midnight Miqu v1.0 fails, without sacrificing writing quality. This model is uncensored. *You are responsible for whatever you do with it.* This model was designed for roleplaying and storytelling and I think it does well at both. It may also perform well at other tasks but I have not tested its performance in other areas. ### Long Context Tips You can run this model out to 32K context with alpha_rope set to 1, just like with Miqu. ### Sampler Tips * I recommend using Quadratic Sampling (i.e. smoothing factor) for creative work. I think this version performs best with a smoothing factor close to 0.2. * I recommend using Min-P. Experiment to find your best setting. * You can enable dynamic temperature if you want, but that adds yet another variable to consider and I find it's unnecessary with you're already using Min-P and smoothing factor. * You don't need to use a high repetition penalty with this model, such as going above 1.10, but experiment with it. Experiment with any and all of the settings below! What suits my preferences may not suit yours. If you save the below settings as a .json file, you can import them directly into Silly Tavern. ``` { "temp": 1, "temperature_last": true, "top_p": 1, "top_k": 0, "top_a": 0, "tfs": 1, "epsilon_cutoff": 0, "eta_cutoff": 0, "typical_p": 1, "min_p": 0.12, "rep_pen": 1.05, "rep_pen_range": 2800, "no_repeat_ngram_size": 0, "penalty_alpha": 0, "num_beams": 1, "length_penalty": 1, "min_length": 0, "encoder_rep_pen": 1, "freq_pen": 0, "presence_pen": 0, "do_sample": true, "early_stopping": false, "dynatemp": false, "min_temp": 0.8, "max_temp": 1.35, "dynatemp_exponent": 1, "smoothing_factor": 0.23, "add_bos_token": true, "truncation_length": 2048, "ban_eos_token": false, "skip_special_tokens": true, "streaming": true, "mirostat_mode": 0, "mirostat_tau": 2, "mirostat_eta": 0.1, "guidance_scale": 1, "negative_prompt": "", "grammar_string": "", "banned_tokens": "", "ignore_eos_token_aphrodite": false, "spaces_between_special_tokens_aphrodite": true, "sampler_order": [ 6, 0, 1, 3, 4, 2, 5 ], "logit_bias": [], "n": 1, "rep_pen_size": 0, "genamt": 500, "max_length": 32764 } ``` ### Prompting Tips Try the following context template for use in SillyTavern. It might help, although it's a little heavy on tokens. If you save the text as a .json file, you can import it directly. ``` { "story_string": "{{#if system}}{{system}}\n{{/if}}\nCONTEXTUAL INFORMATION\n{{#if wiBefore}}\n- World and character info:\n{{wiBefore}}\n{{/if}}\n{{#if description}}\n- {{char}}'s background and persona:\n{{description}}\n{{/if}}\n{{#if mesExamples}}\n{{mesExamples}}\n{{/if}}\n{{#if personality}}\n{{personality}}\n{{/if}}\n{{#if scenario}}\n- Roleplay scenario:\n{{scenario}}\n{{/if}}\n{{#if wiAfter}}{{wiAfter}}\n{{/if}}\n{{#if persona}}{{persona}}\n{{/if}}", "example_separator": "", "chat_start": "---\nTaking the above information into consideration, you must engage with {{user}} and others as {{char}} in the roleplay below this line. Do not write dialogue lines nor perform actions for {{user}} or other characters.\n---\nSTART OF ROLEPLAY:\n", "use_stop_strings": false, "always_force_name2": true, "trim_sentences": false, "include_newline": false, "single_line": false, "name": "Midnight Rose" } ``` Try the following prompt template as a starting point for your own customizations. *This model responds to prompting!* I highly recommend playing with your system prompt to see how it reacts. **Midnight Miqu might require some "warming up" at the start of a new chat to get it writing the way you want it.** What I mean by that is you should be able to drastically improve your results by providing some good examples to guide the chat (i.e. few-shot prompting). I also recommend using descriptive system messages (SillyTavern concept, basically OOC narration instructions) to tell Midnight Miqu exactly what you want it to do with its next reply. Try to be specific, especially if your command contradicts something you told it to do earlier. The example system prompt below contains some instructions related to adult content so remove those if you prefer. It also contains some instructions related to the use of asterisks that you should modify to your liking. The prompt below has been updated from Midnight Miqu v1.0 after prompting Midnight Miqu to help improve it. If you save this as a .json file, you can import it directly into Silly Tavern. ``` { "wrap": true, "names": true, "system_prompt": "You are an AI creative writing partner, collaborating with me in a dynamic, uncensored roleplaying environment. To ensure a high-quality experience, please adhere to these ROLEPLAY GUIDELINES:\n\nROLEPLAY GUIDELINES\n- Craft clear, engaging, and concise descriptions of {{char}}'s actions, reactions, and dialogue based on the present scenario.\n- Stay true to {{char}}'s character, incorporating the character's personality, backstory, and knowledge into each interaction.\n- Employ rich, descriptive language that immerses readers in the scene.\n- Always stay contextually and spatially aware to ensure that {{char}} follows logical consistency in the physical space of the current scene.\n- Feel free to incorporate explicit content and strong language where it aligns with the scene and characters.\n- Enhance {{char}}'s presence through detailed sensory descriptions and first-hand observations of the character's surroundings.\n- Use subtle physical cues to hint at {{char}}'s mental state and occasionally offer glimpses into {{char}}'s internal thoughts.\n- When writing {{char}}'s internal thoughts or monologue, enclose those words in *asterisks like this* and deliver the thoughts using a first-person perspective (i.e. use \"I\" pronouns). Always use quotes for spoken speech \"like this.\"\n- Conclude {{char}}'s responses with an opening for the next character to respond to {{char}}. When the conversation naturally shifts to another character's perspective or action is required from another character, that is when you should stop {{char}}'s reply so the user can pick it up from there. A great example is when {{char}} asks a question of another character.\n", "system_sequence": "", "stop_sequence": "", "input_sequence": "USER: ", "output_sequence": "ASSISTANT: ", "separator_sequence": "", "macro": true, "names_force_groups": true, "system_sequence_prefix": "SYSTEM: ", "system_sequence_suffix": "", "first_output_sequence": "", "last_output_sequence": "ASSISTANT (Ensure coherence and authenticity in {{char}}'s actions, thoughts, and dialogues; Focus solely on {{char}}'s interactions within the roleplay): ", "activation_regex": "", "name": "Midnight Miqu Roleplay" } ``` ### Instruct Formats I recommend the Vicuna format. I use a modified version with newlines after USER and ASSISTANT. ``` USER: {prompt} ASSISTANT: ``` Mistral's format also works, and in my testing the performance is about the same as using Vicuna. ``` [INST] {prompt} [/INST] ``` You could also try ChatML (don't recommend it) ``` <|im_start|>system {Your system prompt goes here}<|im_end|> <|im_start|>user {Your message as the user will go here}<|im_end|> <|im_start|>assistant ``` ### Quantizations * GGUF * [mradermacher/Midnight-Miqu-70B-v1.5-GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-GGUF) -- Various static GGUF quants * GPTQ * [Kotokin/Midnight-Miqu-70B-v1.5_GPTQ32G](https://huggingface.co/Kotokin/Midnight-Miqu-70B-v1.5_GPTQ32G) * EXL2 * [Dracones/Midnight-Miqu-70B-v1.5_exl2_4.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_4.0bpw) * [Dracones/Midnight-Miqu-70B-v1.5_exl2_4.5bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_4.5bpw) * [Dracones/Midnight-Miqu-70B-v1.5_exl2_5.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_5.0bpw) * [Dracones/Midnight-Miqu-70B-v1.5_exl2_6.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_6.0bpw) * If you don't see something you're looking for, [try searching Hugging Face](https://huggingface.co/models?search=midnight-miqu-70b-v1.5). There may be newer quants available than what I've documented here. ### Licence and usage restrictions <font color="red">152334H/miqu-1-70b-sf was based on a leaked version of one of Mistral's models.</font> All miqu-derived models, including this merge, are **only suitable for personal use.** Mistral has been cool about it so far, but you should be aware that by downloading this merge you are assuming whatever legal risk is inherent in acquiring and using a model based on leaked weights. This merge comes with no warranties or guarantees of any kind, but you probably already knew that. I am not a lawyer and I do not profess to know what we have gotten ourselves into here. You should consult with a lawyer before using any Hugging Face model beyond private use... but definitely don't use this one for that! ## Merge Details ### Merge Method This model was merged using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using [152334H_miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) as a base. ### Models Merged The following models were included in the merge: * [sophosympatheia/Midnight-Miqu-70B-v1.0](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.0) * [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_linear base_model: /home/llm/mergequant/models/BASE/152334H_miqu-1-70b-sf # base model models: - model: /home/llm/mergequant/models/midnight-miqu-70b-v1.0 - model: /home/llm/mergequant/models/BASE/Tess-70B-v1.6 parameters: weight: 1.0 dtype: float16 ``` ### Notes I tried several methods of merging Midnight Miqu v1.0 with Tess v1.6, and this dare_linear approach worked the best by far. I tried the same approach with other Miqu finetunes like ShinojiResearch/Senku-70B-Full and abideen/Liberated-Miqu-70B, but there was a huge difference in performance. The merge with Tess was the best one. I also tried the SLERP approach I used to create Midnight Miqu v1.0, only using Tess instead of 152334H_miqu-1-70b in that config, and that result was nowhere near as good either.
[ "CRAFT" ]
BSC-NLP4BIA/bsc-bio-ehr-es-carmen-distemist
BSC-NLP4BIA
token-classification
[ "transformers", "pytorch", "roberta", "token-classification", "es", "base_model:PlanTL-GOB-ES/bsc-bio-ehr-es", "base_model:finetune:PlanTL-GOB-ES/bsc-bio-ehr-es", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-06-05T15:36:18Z
2024-07-25T14:19:47+00:00
28
0
--- base_model: PlanTL-GOB-ES/bsc-bio-ehr-es language: - es license: cc-by-4.0 --- # Training data Model trained on the disease mentions of [CARMEN-I](https://zenodo.org/records/10171540) and [DisTEMIST](https://doi.org/10.5281/zenodo.7614764). # Citation Please cite the following works: ``` @inproceedings{distemist, title={{Overview of DisTEMIST at BioASQ: Automatic detection and normalization of diseases from clinical texts: results, methods, evaluation and multilingual resources}}, author={Miranda-Escalada, Antonio and Gascó, Luis and Lima-López, Salvador and Farré-Maduell, Eulàlia and Estrada, Darryl and Nentidis, Anastasios and Krithara, Anastasia and Katsimpras, Georgios and Paliouras, Georgios and Krallinger, Martin}, booktitle={Working Notes of Conference and Labs of the Evaluation (CLEF) Forum. CEUR Workshop Proceedings}, year={2022} } @misc{carmen_physionet, author = {Farre Maduell, Eulalia and Lima-Lopez, Salvador and Frid, Santiago Andres and Conesa, Artur and Asensio, Elisa and Lopez-Rueda, Antonio and Arino, Helena and Calvo, Elena and Bertran, Maria Jesús and Marcos, Maria Angeles and Nofre Maiz, Montserrat and Tañá Velasco, Laura and Marti, Antonia and Farreres, Ricardo and Pastor, Xavier and Borrat Frigola, Xavier and Krallinger, Martin}, title = {{CARMEN-I: A resource of anonymized electronic health records in Spanish and Catalan for training and testing NLP tools (version 1.0.1)}}, year = {2024}, publisher = {PhysioNet}, url = {https://doi.org/10.13026/x7ed-9r91} } @article{physionet, author = {Ary L. Goldberger and Luis A. N. Amaral and Leon Glass and Jeffrey M. Hausdorff and Plamen Ch. Ivanov and Roger G. Mark and Joseph E. Mietus and George B. Moody and Chung-Kang Peng and H. Eugene Stanley }, title = {PhysioBank, PhysioToolkit, and PhysioNet }, journal = {Circulation}, volume = {101}, number = {23}, pages = {e215-e220}, year = {2000}, doi = {10.1161/01.CIR.101.23.e215}, URL = {https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215} } ``` # Contacting authors jan.rodriguez [at] bsc.es ## More information on data, usage, limitations, and performance metrics soon
[ "DISTEMIST" ]
YiDuo1999/Gemma-2-9b-medical
YiDuo1999
text-generation
[ "transformers", "safetensors", "gemma2", "text-generation", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-07-02T07:22:29Z
2024-07-02T10:06:51+00:00
28
0
--- license: gemma --- ## Introduction This repo contains Gemma-2-9b-Medical, a medical language model with 9 billion parameters. This model builds upon the foundation of Gemma-2-9b-base and has been tuned with diverse medical and general instructions. We also use the three strategies in the paper 'Efficient Continual Pre-training by Mitigating the Stability Gap' to mitigate the stability gap during instruction tuning, which boosts the model's medical task performance and reduces the computation consumption. ## 💻 Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_name = "YiDuo1999/Gemma-2-9b-medical" device_map = 'auto' model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True,use_cache=False,device_map=device_map) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token def askme(question): sys_message = ''' You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. ''' # Create messages structured for the chat template messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] # Applying chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100, use_cache=True) # Extract and return the generated text, removing the prompt response_text = tokenizer.batch_decode(outputs)[0].strip() answer = response_text.split('<|im_start|>assistant')[-1].strip() return answer ``` ## 🏆 Evaluation For question-answering tasks, we have | Model | MMLU-Medical | PubMedQA | MedMCQA | MedQA-4-Option | Avg | |:-------------------------------|:-------------|:---------|:--------|:---------------|:-----| | Mistral-7B-instruct | 55.8 | 17.8 | 40.2 | 41.1 | 37.5 | | Zephyr-7B-instruct-β | 63.3 | 46.0 | 43.0 | 48.5 | 48.7 | | PMC-Llama-7B | 59.7 | 59.2 | 57.6 | 49.2 | 53.6 | | Medalpaca-13B | 55.2 | 50.4 | 21.2 | 20.2 | 36.7 | | AlpaCare-13B | 60.2 | 53.8 | 38.5 | 30.4 | 45.7 | | BioMedGPT-LM 7B | 52.0 | 58.6 | 34.9 | 39.3 | 46.2 | | Me-Llama-13B | - | 70.0 | 44.9 | 42.7 | - | | Llama-3-8B instruct | 82.0 | 74.6 | 57.1 | 60.3 | 68.5 | | JSL-Med-Sft-Llama-3-8B | 83.0 | 75.4 | 57.5 | 74.8 | 72.7 | | GPT-3.5-turbo-1106 | 74.0 | 72.6 | 34.9 | 39.3 | 60.6 | | GPT-4 | 85.5 | 69.2 | 69.5 | 83.9 | 77.0 | | Gemma-2-9b-int | 75.0 | 76.0 | 40.3 | 48.9 | 60.0 | | Gemma-2-9b-Medical | 75.0 | 76.0 | 61.3 | 59.7 | 68.0 | | Llama-3-physician-8B instruct | 80.0 | 76.0 | 80.2 | 60.3 | 74.1 | ## Citation ``` @inproceedings{Guo2024EfficientCP, title={Efficient Continual Pre-training by Mitigating the Stability Gap}, author={Yiduo Guo and Jie Fu and Huishuai Zhang and Dongyan Zhao and Yikang Shen}, year={2024}, url={https://api.semanticscholar.org/CorpusID:270688100} } ```
[ "MEDQA", "PUBMEDQA" ]
XeAI/LLaMa_3.2_3B_Instruct_Text2SQL_Legacy
XeAI
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:gretelai/synthetic_text_to_sql", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-11-07T06:06:06Z
2024-11-07T08:54:53+00:00
28
0
--- datasets: - gretelai/synthetic_text_to_sql library_name: transformers license: mit pipeline_tag: text-generation --- # Model Card for LLaMA 3.2 3B Instruct Text2SQL ## Model Details ### Model Description This is a fine-tuned version of LLaMA 3.2 3B Instruct model, specifically optimized for Text-to-SQL generation tasks. The model has been trained to convert natural language queries into structured SQL commands. - **Developed by:** Zhafran Ramadhan - XeAI - **Model type:** Decoder-only Language Model - **Language(s):** English - MultiLingual - **License:** MIT - **Finetuned from model:** LLaMA 3.2 3B Instruct - **Log WandB Report:** [WandB Report](https://wandb.ai/zhafranr/LLaMA_3-2_3B_Instruct_FineTune_Text2SQL/reports/LLaMa-3-2-3B-Instruct-Fine-Tune-Text2SQL--VmlldzoxMDA2NDkzNA) ### Model Sources - **Repository:** [LLaMA 3.2 3B Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) - **Dataset:** [Synthethic Text2SQL](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql) ## How to Get Started with the Model ### Installation ```python pip install transformers torch accelerate ``` ### Input Format and Usage The model expects input in a specific format following this template: ```text <|begin_of_text|><|start_header_id|>system<|end_header_id|> [System context and database schema] <|eot_id|><|start_header_id|>user<|end_header_id|> [User query] <|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ### Basic Usage ```python from transformers import pipeline import torch # Initialize the pipeline generator = pipeline( "text-generation", model="XeAI/LLaMa_3.2_3B_Instruct_Text2SQL", # Replace with your model ID torch_dtype=torch.float16, device_map="auto" ) def generate_sql_query(context, question): # Format the prompt according to the training template prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 07 Nov 2024 You are a specialized SQL query generator focused solely on the provided RAG database. Your tasks are: 1. Generate SQL queries based on user requests that are related to querying the RAG database. 2. Only output the SQL query itself, without any additional explanation or commentary. 3. Use the context provided from the RAG database to craft accurate queries. Context: {context} <|eot_id|><|start_header_id|>user<|end_header_id|> {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" response = generator( prompt, max_length=500, num_return_sequences=1, temperature=0.1, do_sample=True, pad_token_id=generator.tokenizer.eos_token_id ) return response[0]['generated_text'] # Example usage context = """CREATE TABLE upgrades (id INT, cost FLOAT, type TEXT); INSERT INTO upgrades (id, cost, type) VALUES (1, 500, 'Insulation'), (2, 1000, 'HVAC'), (3, 1500, 'Lighting');""" questions = [ "Find the energy efficiency upgrades with the highest cost and their types.", "Show me all upgrades costing less than 1000 dollars.", "Calculate the average cost of all upgrades." ] for question in questions: sql = generate_sql_query(context, question) print(f"\nQuestion: {question}") print(f"Generated SQL: {sql}\n") ``` ### Advanced Usage with Custom System Prompt ```python def generate_sql_with_custom_prompt(context, question, custom_system_prompt=""): base_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 07 Nov 2024 You are a specialized SQL query generator focused solely on the provided RAG database.""" full_prompt = f"""{base_prompt} {custom_system_prompt} Context: {context} <|eot_id|><|start_header_id|>user<|end_header_id|> {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" response = generator( full_prompt, max_length=500, num_return_sequences=1, temperature=0.1, do_sample=True, pad_token_id=generator.tokenizer.eos_token_id ) return response[0]['generated_text'] ``` ### Best Practices 1. **Input Formatting**: - Always include the special tokens (<|begin_of_text|>, <|eot_id|>, etc.) - Provide complete database schema in context - Keep questions clear and focused on data retrieval 2. **Parameter Configuration**: - Use temperature=0.1 for consistent SQL generation - Adjust max_length based on expected query complexity - Enable do_sample for more natural completions 3. **Context Management**: - Include relevant table schemas - Provide sample data when needed - Keep context concise but complete ## Uses ### Direct Use The model is designed for converting natural language questions into SQL queries. It can be used for: - Database query generation from natural language - SQL query assistance - Data analysis automation ### Out-of-Scope Use - Production deployment without human validation - Critical decision-making without human oversight - Direct database execution without query validation ## Training Details ### Training Data - Dataset: [Synthethic Text2SQL](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql) - Data preprocessing: Standard text-to-SQL formatting ### Training Procedure #### Training Hyperparameters - **Total Steps:** 4,149 - **Final Training Loss:** 0.1168 - **Evaluation Loss:** 0.2125 - **Learning Rate:** Dynamic with final LR = 0 - **Epochs:** 2.99 - **Gradient Norm:** 1.3121 #### Performance Metrics - **Training Samples/Second:** 6.291 - **Evaluation Samples/Second:** 19.325 - **Steps/Second:** 3.868 - **Total FLOPS:** 1.92e18 #### Training Infrastructure - **Hardware:** Single NVIDIA H100 GPU - **Training Duration:** 5-6 hours - **Total Runtime:** 16,491.75 seconds - **Model Preparation Time:** 0.0051 seconds ## Evaluation ### Metrics The model's performance was tracked using several key metrics: - **Training Loss:** Started at ~1.2, converged to 0.1168 - **Evaluation Loss:** 0.2125 - **Processing Efficiency:** 19.325 samples per second during evaluation ### Results Summary - Achieved stable convergence after ~4000 steps - Maintained consistent performance metrics throughout training - Shows good balance between training and evaluation loss ## Environmental Impact - **Hardware Type:** NVIDIA H100 GPU - **Hours used:** ~6 hours - **Training Location:** [GPUaaS](www.runpod.io) ## Technical Specifications ### Compute Infrastructure - **GPU:** NVIDIA H100 - **Training Duration:** 5-6 hours - **Total Steps:** 4,149 - **FLOPs Utilized:** 1.92e18 ## Model Card Contact [Contact information to be added by Zhafran Ramadhan] --- *Note: This model card follows the guidelines set by the ML community for responsible AI development and deployment.*
[ "CRAFT" ]
adipanda/ochaco-standard-lora-1
adipanda
text-to-image
[ "diffusers", "flux", "flux-diffusers", "text-to-image", "simpletuner", "safe-for-work", "lora", "template:sd-lora", "standard", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
2024-12-07T20:54:21Z
2024-12-08T16:42:37+00:00
28
0
--- base_model: black-forest-labs/FLUX.1-dev license: other tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - safe-for-work - lora - template:sd-lora - standard inference: true widget: - text: unconditional (blank prompt) parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_0_0.png - text: A scene from My Hero Academia. Ochaco Uraraka holding a sign that says 'I LOVE PROMPTS!', she is standing full body on a beach at sunset. She is wearing her pink and black hero costume with a utility belt. The setting sun casts a dynamic shadow on her smiling face. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_1_0.png - text: A scene from My Hero Academia. Ochaco Uraraka jumping out of a propeller airplane, sky diving. She looks thrilled and her short brown hair is flying upward. The sky is clear and blue, and there are birds pictured in the distance. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_2_0.png - text: 'A scene from My Hero Academia. Ochaco Uraraka spinning a basketball on her finger on a basketball court. She is wearing a Lakers jersey with the #12 on it. The basketball hoop and cheering crowd are in the background. She is beaming with confidence.' parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_3_0.png - text: A scene from My Hero Academia. Ochaco Uraraka is wearing a suit in an office, shaking the hand of a businesswoman. The woman has purple hair and is wearing professional attire. There is a Google logo in the background. It is during daytime, and the overall sentiment is one of accomplishment and celebration. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_4_0.png - text: A scene from My Hero Academia. Ochaco Uraraka is fighting a large brown grizzly bear, deep in a forest. The bear is tall and standing on two legs, roaring. The bear is also wearing a crown because it is the king of all bears. Around them are tall trees and other animals watching in awe. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_5_0.png --- # ochaco-standard-lora-1 This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). No validation prompt was used during training. None ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024x1024` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 166 - Training steps: 3000 - Learning rate: 0.0003 - Learning rate schedule: constant - Warmup steps: 100 - Max grad norm: 2.0 - Effective batch size: 56 - Micro-batch size: 56 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 0.0% - LoRA Rank: 128 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### ochaco-512 - Repeats: 2 - Total number of images: 288 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'adipanda/ochaco-standard-lora-1' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "An astronaut is riding a horse through the jungles of Thailand." ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```
[ "BEAR" ]
dan-lara/Garbage-Classifier-Resnet-50-Finetuning
dan-lara
image-classification
[ "transformers", "resnet", "image-classification", "vision", "recycling", "environment", "fr", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-15T14:49:00Z
2024-12-16T15:34:18+00:00
28
0
--- base_model: - microsoft/resnet-50 language: - fr library_name: transformers license: mit pipeline_tag: image-classification tags: - image-classification - vision - recycling - environment --- # Garbage Classification Model (Fine-tuned ResNet-50) Ce modèle est une version fine-tunée de ResNet-50 pour la classification des images de déchets en 8 catégories, utilisant le [Garbage Dataset](https://www.kaggle.com/datasets/danielferreiralara/normalized-garbage-dataset-for-resnet). Ce modèle est conçu pour des applications environnementales telles que le tri automatique des déchets et la sensibilisation au recyclage. ## Modèle de base Ce modèle est basé sur [ResNet-50 v1.5](https://huggingface.co/microsoft/resnet-50), qui est pré-entraîné sur [ImageNet-1k](https://huggingface.co/datasets/ILSVRC/imagenet-1k). ResNet est une architecture de réseau de neurones convolutionnels qui a introduit les concepts d’apprentissage résiduel et de connexions par saut, permettant ainsi l’entraînement de modèles beaucoup plus profonds. ResNet-50 v1.5 inclut une amélioration dans les blocs de bottleneck, utilisant une stride de 2 dans la convolution 3x3, ce qui le rend légèrement plus précis que v1 (∼0,5 % en top-1). ## Description du Modèle ### Classes cibles Le modèle classifie les images dans les 8 catégories suivantes : - 🔋 Batterie - 📦 Carton - 🔗 Métal - 🍓 Organique - 🗳️ Papier - 🧳 Plastique - 🫙 Verre - 👖 Vêtements ### Prétraitement Les images du dataset ont été normalisées et redimensionnées à une résolution de 224x224, compatible avec l’entrée du modèle ResNet-50. ### Performance Le modèle atteint un **taux de précision global de 94 %** sur le jeu de test du Dataset. Les performances varient légèrement entre les classes en fonction de la diversité des images et des similarités visuelles entre certaines catégories. Voici un simulateur([EcoMind AI](https://ecomind-ai.streamlit.app/)) qui compare notre modèle au ResNet de base et à d'autres technologies telles que Yolo et LLMs (Llama 3.2). ## Utilisation prévue & limitations ### Cas d'utilisation - Automatisation du tri des déchets pour le recyclage. - Développement d'applications éducatives et interactives sur la gestion des déchets. - Recherche en vision par ordinateur appliquée à l'environnement. ### Limitations Ce modèle a été entraîné sur un dataset limité à 8 catégories. Les scénarios impliquant des déchets très spécifiques ou des catégories en dehors de celles mentionnées pourraient nécessiter un retrain ou une extension du dataset. ## Comment utiliser ce modèle Voici un exemple de code pour utiliser ce modèle afin de classifier une image : ```python ``` ## Citations et Références Si vous utilisez ce modèle, merci de citer à la fois le modèle de base ResNet-50 et le Dataset : ### Modèle de base : ```bibtex @inproceedings{he2016deep, title={Deep residual learning for image recognition}, author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={770--778}, year={2016} } ``` ### Dataset Waste Classification : ```bibtex @misc{garbageDatasetResNet24, author = {Ferreira et al.}, title = {8 classes Garbage Dataset for ResNet}, year = {2024}, publisher = {Kaggle}, howpublished = {\url{[https://kaggle.com](https://www.kaggle.com/datasets/danielferreiralara/normalized-garbage-dataset-for-resnet)}} } ``` ## Contact Pour toute question ou suggestion, n’hésitez pas à me contacter à [[email protected]](mailto:[email protected]).
[ "CAS" ]
Aleph-Alpha/Pharia-1-Embedding-4608-control-hf
Aleph-Alpha
null
[ "safetensors", "phariaembed", "custom_code", "license:other", "region:us" ]
2024-12-17T13:51:15Z
2024-12-20T11:49:04+00:00
28
2
--- license: other license_name: open-aleph-license license_link: LICENSE --- # Model Card for Pharia-1-Embedding-4608-control This model card provides an overview of Pharia-1-Embedding-4608-control, an embedding model developed by Aleph Alpha Research*. Pharia-1-Embedding-4608-control has been built on top of Pharia-1-LLM-7B-control. For additional training details, including architecture, tokenization, tokenizer fertility, pre-training, instruction fine-tuning and resource usage we refer to the model card of [Pharia-1-LLM-7B-control](https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control). Due to being trained with a diverse set of instructions, Pharia-1-Embedding-4608-control can deliver customized embeddings at runtime without further finetuning. Pharia-1-Embedding-4608-control was trained on carefully curated data in compliance with applicable EU and national regulations, including copyright and data privacy laws. Furthermore it shows strong cross-lingual performance allowing for prompting and text to be embedded written in different languages. The finetuning was always performed using English instructions. ## Model Overview - **Developed by:** Aleph Alpha Research <!--- **Funded by [optional]:** [More Information Needed]--> <!--- **Shared by [optional]:** [More Information Needed]--> - **Model type/architecture:** Embedding adapter on top of Pharia-1-LLM-7B-control trained with representational instruction-tuning (inspired by the approach of GritLM). - **Language(s) (NLP):** Trained on English, German, French, Spanish. <!--- **License:** [More Information Needed]--> <!--- **Finetuned from model [optional]:** [More Information Needed]--> - **USP:** Model exhibits superior quality in pure cross-lingual tasks for (German, English, French & Spanish pairings, see evaluation below) ### Model Description |Model |Embedding Size|Description| |--------------------------------|--------------|-----------| |Pharia-1-Embedding-4608-control |4608|Pharia-1-Embedding-4608-control is an Embedding model optimized for German, French and Spanish and designed for customizable embeddings at runtime via instructions (prompts)| <!-- Provide a longer summary of what this model is. --> ### Model Access We provide access to our models through the channels listed below. - On-premise installation: Our customers are supplied with our full LLM and Embedding model stack, including model weights and inference runtime. Contact us for options to deploy Pharia-1-Embedding-4608-control in any cloud or on-premise environment. We provide our customers with open access to our full model checkpoint including weights and code for commercial use. Downloadable from Huggingface: An HF-adapted version of our model can be found in our Huggingface repo (https://huggingface.co/Aleph-Alpha/Pharia-1-Embedding-4608-control-hf) together with code snippets that make the model easy to use. Please refer to the changelog for updates to the models served. We do not deprecate officially released versions of old model generations when we release newer versions, so users can continue to have access to available models. No prompt data is stored when using our systems, which means that we do not collect PII (personally identifiable information) for any of our public API users as detailed in our Terms & Conditions. We do not log user inputs to the models. We do not train on user data. - **Note**: The same models are made available to users regardless of their geographic location, and the input language but subject to sanction regimes, technology export regulations, and other restrictions that may apply. The same offering is provided to all countries within and external to the European Union if no legal restrictions apply. ### Intended Use Pharia-1-Embedding-4608-control is intended to be deployed as components of AI systems or applications. Use-cases and the model's capabilities include but are not limited to: information retrieval, semantic search, re-ranking and clustering. #### Out-of-Scope Use Pharia-1-Embedding-4608-control is not to be used for illegal or unlawful actions of any kind and with any illegal or unlawful content. This includes in particular prohibited activities such as engaging in terrorism, violence, human trafficking, illegal distribution of materials to minors, sexual solicitation, any other criminal activities, harassment, discrimination, creating or promoting malicious code or activities risking death or harm, including those related to military or nuclear applications, and activities not in compliance with sanction regimes, technology export regulations, and other restrictions that may apply. The models are to be used following ethical standards. The utilization of our technology is always governed by, and may be limited in accordance with, our Terms of Use, the Open Aleph License, or any specific agreement we might have established with you. For non-anonymous reports, we also provide an appeals mechanism for usage policy violations via our dedicated contact address [[email protected]]([email protected]) to communicate with us. Customers and partners are enabled to use our ticketing system [ticketing system](https://servicedesk.aleph-alpha.de/external) for appeals, claims and feedback. ### Use limitations Beyond the risks & limitations stated in the original [Pharia-1-LLM-7B-control](https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control), the following limitation applies: - Pharia-1-Embedding-4608-control has been optimized on embedding computation only. Therefore, we do not recommend usage for text generation purposes. ## How to Use We provide two access pathways for our Pharia4608 embedding model. The first one leverages the HF ecosystem and can be found here: https://huggingface.co/Aleph-Alpha/Pharia-1-Embedding-4608-control-hf. The code snippet in the box below demonstrates its use. As soon as the model class is invoked, the model will we loaded from the repo and is ready for use. The other access pathway is through our public scaling code base. In this version the model weights were not converted to HF format and the repo https://huggingface.co/Aleph-Alpha/Pharia-1-Embedding-4608-control can be cloned as is. The model path has to be adjusted to the local path where the model was downloaded. The model cards in the corresponding repositories only the code snippet which applies to the specific repo. ### Use with Huggingface ``` from torch.nn import CosineSimilarity from transformers import AutoConfig, AutoModel from transformers import PreTrainedTokenizerFast MODEL_PATH = 'Aleph-Alpha/Pharia-1-Embedding-4608-control-hf' config = AutoConfig.from_pretrained(MODEL_PATH, trust_remote_code=True) tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_PATH) model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, config=config, tokenizer=tokenizer).cuda() query = "Which country is Galileo from?" query_embeddings = model.encode_queries(query, convert_to_tensor=True) print(f"Type of embeddings: {type(query_embeddings)},\n\ shape of query embeddings: {query_embeddings.shape}") # embed the documents: document_1 = "Galileo is a German television program series produced and broadcast on ProSieben television network. It is also sold to broadcasters in other countries (namely Russia and Poland). The first show was broadcast in 1998, and is now stored in the Arctic World Archive in Svalbard, Norway, after being transferred to special film created by Piql." document_embeddings_1 = model.encode_corpus(document_1, convert_to_tensor=True) document_2 = "Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 - 8 January 1642), commonly referred to as Galileo Galilei or mononymously as Galileo, was an Italian (Florentine) astronomer, physicist and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence and present-day Italy." document_embeddings_2 = model.encode_corpus(document_2, convert_to_tensor=True) # customized embeddings steering the query: instruction = "Represent the question about TV shows to find a paragraph that answers it." steered_query_embeddings = model.encode_queries( query, instruction=instruction, convert_to_tensor=True ) # compute similarity between steered query and both documents cossim = CosineSimilarity(dim=0, eps=1e-6) sim1 = round(cossim(document_embeddings_1, steered_query_embeddings).item(), 3) sim2 = round(cossim(document_embeddings_2, steered_query_embeddings).item(), 3) print("Steered embedding causes higher similarity of query to TV show:") print(f"Similarity query/TV show ({sim1}) > similarity query/Italian polymath: ({sim2})") ``` Disclaimer: For the official evaluation scores we used the Scaling compatible checkpoint available under Pharia-1-Embedding-4608-control (https://huggingface.co/Aleph-Alpha/Pharia-1-Embedding-4608-control) ### Example for instruction embedding Pharia-1-Embedding-4608-control is useful for any use-case that relates to estimating the similarity/relevance between text fragments. This is relevant for use-cases such as information retrieval, semantic search, re-ranking and clustering. We use the task of information retrieval as a guiding example where we assume the following query: “Which country is Galileo from?” and two documents: - Galileo is a German television program series produced and broadcast on ProSieben television network. It is also sold to broadcasters in other countries (namely Russia and Poland). The first show was broadcast in 1998, and is now stored in the Arctic World Archive in Svalbard, Norway, after being transferred to special film created by Piql. - Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 - 8 January 1642), commonly referred to as Galileo Galilei or mononymously as Galileo, was an Italian (Florentine) astronomer, physicist and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence and present-day Italy. Source: Wikipedia For our guiding example we assume the context of this use-case is a Question-Answer system for movies and TV shows. **Step 1:** Embed the Query ``` "input": "Which country is Galileo from?" ``` → Embedding: ```[-0.6780134, 0.61449033, 0.102911085, ...]``` **Step 2:** Embed the Documents "input": "Galileo is a German television program series ..." → Embedding: ```[-0.36119246, 0.7793595, -0.38735497, ...]``` "input": "Galileo di Vincenzo Bonaiuti de' Galilei ..." → Embedding: ```[-0.25108248, 1.0496024, -0.20945309, ...]``` **Step 3:** Compare the similarity A typical similarity measure between vectors is cosine similarity. Higher numbers indicate more similar vectors and by extension capture the concept of relevance. In a RAG application these scores determine the ranking during the retrieval step. In this example, we obtain the following cosine similarities: Query vs. German TV show: ~0.661 Query vs. Italian polymath: ~0.757 This implies that the paragraph about the Italian polymath would be ranked higher than the paragraph about the German TV show which is the one we’re interested in. #### Customized Embeddings To further improve performance you can use instructions to steer the model. Instructions can help the model understand nuances of your specific data and ultimately lead to embeddings that are more useful for your use-case. In this case, we aim to get embeddings that would lead to ranking the paragraph about the German TV Show higher than the paragraph about the Italian polymath. **Step 1:** Embed the Query with an Instruction ```"instruction": "Represent the question about TV shows to find a paragraph that answers it."``` ```"input": "input": "Which country is Galileo from?"``` → Embedding: ```[-0.6310919, 1.4309896, -0.85546875, ...]``` **Step 2:** Compare the similarity We leave the embeddings of the documents untouched and now obtain the following cosine similarities: Query vs. German TV show: ~0.632 Query vs. Italian polymath: ~0.512 These new cosine similarities imply that the ranking has indeed changed and the paragraph about the German TV show is **now more relevant**. This shows that instructions can help the model understand nuances in the data better and ultimately lead to embeddings that are more useful for your use-case. #### Tips on using the model - First try and ideally evaluate the model on your data without instructions to see whether performance aligns with your expectations out-of-the-box - If you decide to use an instruction with the aim of further boosting performance we suggest using this template as a guideline * ```Template: Represent the [X] to find a [Y] that [describe how the X and Y relate]``` * Examples 1. Represent the newspaper paragraph to find a newspaper paragraph with the same topic 2. Represent the sentence to find another sentence with the same meaning - In cases where the two texts to compare are different in nature (e.g. query and document) – also called “asymmetric” – we suggest to first add an instruction to query texts only. Again, try and ideally evaluate the model in this setting. Then, if your aim is to further boost performance, we suggest that you add instructions to document texts as well where [X] and [Y] are flipped accordingly. ## Evaluation ### Evaluations on cross-lingual capabilities There are important use cases where one wants to retrieve multiple documents on a topic or answering questions that are formulated in a different language than the query. This increases recall and information retrieval coverage. For testing on cross-lingual capabilities we evaluated Pharia-1-Embedding-4608-control, GritLM, Nvidia-Embed-v2 and BGE-Multilingual-Gemma2 on the MLQA-V1 datasets (Facebook) for German/English and English/Spanish language pairings. For German/French we used the CLSD-WMT19 dataset providing correct and adversarial translations of a sentence in the corresponding pair language. In order to check quality over a larger range of sample size we did the accuracy computations for varying number of samples taken from the MLQA-V1 dataset. For the CLSD-WMT19 evaluation we employed the full set of data (2900 samples available). #### MLQA-V1 Ger/Eng cross-lingual accuracies for the considered models |# of samples|Pharia4608|GritLM|Nvidia-Embed-v2|BGE-Gemma2| |:---:|:---:|:---:|:---:|:---:| |1000|86.0%|82.5%|77.0%|87.0%| |2000|79.5%|73.4%|69.4%|76.8%| |4000|65.3%|59.2%|56.0%|62.7%| |6000|54.3%|48.6%|45.6%|52.6%| |10000|38.6%|32.8%|32.8%|39.4%| #### MLQA-V1 Eng/Esp cross-lingual accuracies for the considered models |# samples|Pharia4608|GritLM|NV-Embed-v2|BGE-Gemma2| |:---:|:---:|:---:|:---:|:---:| |1000|87.5%|82.0%|81.5%|87.0%| |2000|78.5%|73.9%|70.7%|77.0%| |4000|65.5%|59.3%|56.9%|64.2%| |6000|55.3%|49.2%|46.2%|53.4%| |10000|41.7%|35.5%|33.2%|40.0%| #### CLSD-WMT19 Ger/Fra (2900 samples) cross-lingual evaluation for the considered models |Model Name | accuracy | |:-----------------------------:|:--------------------------------:| |Pharia-1-Embedding-4608-control|95.1% | |GritLM-7B |94.2% | |Nvidia-Embed-v2 |93.4% | |BGE-Gemma2 |95.4% | ## Evaluations on MTEB tasks To evaluate our models multilingual capabilities we evaluate it against other source-available, high-performing embedding models listen in the MTEB leaderboard. For the following evaluations we compare the following models: - NVEmbed-V2: The highest scoring model in the MTEB leaderboard at time of the release - BGE-Multilingual-Gemma2: The highest scoring multilingual model in the MTEB leaderboard at the time of release. - GritLM: A generative representational instruction tuned language model. #### Methodology for Multilingual Evaluations (European languages) * Context: MTEB is a collection of tasks across many task types (e.g. classification, retrieval etc.). Furthermore, tasks can have N subsets on different languages. Subsets itself can also contain N languages, e.g. translation-related tasks. Base script actually comes from [gritlm/evaluation/eval_mteb.py at main · ContextualAI/gritlm](https://github.com/ContextualAI/gritlm/blob/main/evaluation/eval_mteb.py) and includes Medi2-style instructions for many MTEB Tasks. The instructions are all in English. All evaluations use Medi2-style instructions except for the “no instructions” case (see above). If a task does not have Medi2-style instructions, we skip the task. As European languages for MTEB tests German, Italian, Spanish, Portuguese and French were used. * For our Multilingual Evaluations (European languages) we use the tasks from [mteb/scripts/task_selection/europe_tasks.csv at main · embeddings-benchmark/mteb](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/task_selection/europe_tasks.csv) and then filter for tasks where there is at least one subset with at least one of the European languages. * We skip BibleNLPBitextMining and FloresBitextMining because they don’t have ‘test’ splits, only ‘train’ split which we don’t want to use for evaluation (→ training data contamination likely) * We evaluate subsets which contain at least one of the European languages → that’s why there is also an “English” language column because there are subsets that are e.g. En ↔︎ De and are thus considered * The tasks that remain are - AmazonCounterfactualClassification - BUCC.v2 - DiaBlaBitextMining - MassiveScenarioClassification - NTREXBitextMining - STS17 * For NTREXBitextMining the subsets are further filtered down to only pairs of the European languages instead of at least one European language - i.e. this gives 20-2=18 translation pair subsets between the 5 languages. -2 because Italian ↔︎ German doesn’t exist. - this is done because otherwise there are 250 translation pair subsets which are not as relevant (e.g. they contain Vietnamese ↔︎ Portuguese) We used the official scores reported in MTEB Leaderboard if reported, but for some models and subset we created the scores ourselves with the official Huggingface checkpoints and instructions referenced in the Paper or Model card. #### Europe by task | Model Name | AmazonCounterfactualClassification | BUCC.v2 | DiaBlaBitextMining | MassiveScenarioClassification | NTREXBitextMining | STS17 | Average | |-------------------------------------------------------|-------------------------------------:|----------:|---------------------:|--------------------------------:|--------------------:|---------:|----------:| | Pharia-1-Embedding-4608-control | 72.49 | 99.19 | 86.51 | 75.58 | 98.24 | 87.67 | 86.61 | | GritLM-7B | 76.64 | 99.43 | 86.45 | 78.93 | 98.46 | 88.07 | 87.99 | | BGE-Multilingual-Gemma2 | 69.72 | 99.38 | 86.90 | 78.57 | 98.58 | 86.69 | 86.64 | | Nvidia-Embed-v2 | 70.72 | 99.14 | 73.22 | 75.21 | 96.65 | 87.36 | 83.72 | #### Europe by language | Model Name | deu-Latn | eng-Latn | fra-Latn | por-Latn | ita-Latn | spa-Latn | Average | |-------------------------------------------------------|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|----------:| | Pharia-1-Embedding-4608-control | 0.925309 | 0.902113 | 0.937961 | 0.953719 | 0.942352 | 0.945642 | 0.934516 | | GritLM-7B | 0.934603 | 0.905669 | 0.942364 | 0.962042 | 0.949731 | 0.947428 | 0.940306 | | BGE-Multilingual-Gemma2| 93.07 | 92.17 | 94.91 | 94.64 | 96.28 | 94.94 | 94.35 | | Nvidia-Embed-v2 | 91.58 | 88.85 | 90.51 | 93.94 | 95.08 | 93.78| 92.29 | #### MTEB – English only | |Retrieval|Classification|STS|Summarization|PairClassification|Clustering|Reranking|Average| |---|--|--|--|--|--|--|--|--| |Nvidia-Embed-v2|62.65|90.37|84.31|30.7|88.67|58.46|60.65|72.31| |BGE-Multilingual-Gemma2|59.24|88.08|83.88|31.2|85.84|54.65|59.72|69.88| |GritLM-7B|57.36|78.65|83.35|30.39|87.29|50.61|60.48|66.58| |Pharia-1-Embedding-4608-control|39.15 |74.40|82.7 |30.95 |81.73|46.23|57.45|58.94| #### Ablation for “No Instruction” case We ablate how performance changes when not using task-specific instructions for the embeddings. |Model Name|ArguAna|AskUbuntuDupQuestions|BIOSSES|Banking77Classification|EmotionClassification|MedrxivClusteringS2S|NFCorpus|STS17|STSBenchmark|SciFact|SummEval|TwitterSemEval2015|Average| |--|--|--|--|--|--|--|--|--|--|--|--|--|--| |Instruction |51.09|61.71|84.56|86.37|51.77|34.29|37.82|89.56|87.08|69.7 |30.95|70.97|**62.99**| |No Instruction |50.23|60.31|84.45|86.36|50.6 |31.87|37.58|88.75|86.39|71.28|31.00|68.92|**62.31**| |Relative Δ|-1.71%|-2.32%|-0.13%|-0.01%|-2.31%|-7.59%|-0.64%|-0.91%|-0.80%|2.22%|0.16%|-2.97%|**-1.09%**| We observe slightly reduced performance across most tasks when not using task-specific instructions with an average loss in performance of roughly 1%. ## Training Details ### Model architecture | | | |-------|-------| |Number of layers|27| |Number of attention heads|36| |Head size|128| |Number of Key-Value heads|4| |Size hidden dimension|4608| |MLP expansion factor|4| |MLP type|Standard| |Vocabulary size|128,000| |Rotary base|1,000,000| |Total parameter count|7,041,544,704| ### Training Pharia-1-Embedding-4608-control is an adapter on top of Pharia-1-LLM-7B-control, trained with a context window of 2048 Tokens. Pharia-1-Embedding-4608-control was trained with representational instruction-tuning (inspired by the approach of GritLM) and a contrastive learning approach. The final layer is an embedding head with weighted mean pooling. The train set consisted of a blend of open-source and proprietary datasets. Further postprocessing was used to optimize for downstream use and multilinguality. ### Tokenization Tokenization taking place in this embedding model takes full advantage of the one in [Pharia-1-LLM-7B-control model](https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control)
[ "BIOSSES", "SCIFACT" ]
JackCloudman/DeepSeek-R1-Distill-Llama-70B-abliterated-4.0bpw-h6-exl2
JackCloudman
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "abliterated", "uncensored", "conversational", "base_model:huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated", "base_model:quantized:huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl2", "region:us" ]
2025-02-02T03:08:45Z
2025-02-02T09:49:22+00:00
28
0
--- base_model: - huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated library_name: transformers pipeline_tag: text-generation tags: - abliterated - uncensored --- ### Exllamav2 Quantized Version of huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated Use the measurement.json file to craft different quantized versions. # huihui-ai/DeepSeek-R1-Distill-Llama-70B-abliterated This is an uncensored version of [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## Use with ollama You can use [huihui_ai/deepseek-r1-abliterated](https://ollama.com/huihui_ai/deepseek-r1-abliterated) directly ``` ollama run huihui_ai/deepseek-r1-abliterated:70b ```
[ "CRAFT" ]
Teradata/bge-small-en-v1.5
Teradata
feature-extraction
[ "onnx", "bert", "feature-extraction", "sentence-similarity", "mteb", "teradata", "en", "license:mit", "model-index", "region:us" ]
2025-02-12T10:47:07Z
2025-03-04T09:44:50+00:00
28
0
--- language: - en license: mit tags: - feature-extraction - sentence-similarity - mteb - onnx - teradata model-index: - name: bge-small-en-v1.5 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.79104477611939 - type: ap value: 37.21923821573361 - type: f1 value: 68.0914945617093 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.75377499999999 - type: ap value: 89.46766124546022 - type: f1 value: 92.73884001331487 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.986 - type: f1 value: 46.55936786727896 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 35.846000000000004 - type: map_at_10 value: 51.388 - type: map_at_100 value: 52.132999999999996 - type: map_at_1000 value: 52.141000000000005 - type: map_at_3 value: 47.037 - type: map_at_5 value: 49.579 - type: mrr_at_1 value: 36.558 - type: mrr_at_10 value: 51.658 - type: mrr_at_100 value: 52.402 - type: mrr_at_1000 value: 52.410000000000004 - type: mrr_at_3 value: 47.345 - type: mrr_at_5 value: 49.797999999999995 - type: ndcg_at_1 value: 35.846000000000004 - type: ndcg_at_10 value: 59.550000000000004 - type: ndcg_at_100 value: 62.596 - type: ndcg_at_1000 value: 62.759 - type: ndcg_at_3 value: 50.666999999999994 - type: ndcg_at_5 value: 55.228 - type: precision_at_1 value: 35.846000000000004 - type: precision_at_10 value: 8.542 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.389 - type: precision_at_5 value: 14.438 - type: recall_at_1 value: 35.846000000000004 - type: recall_at_10 value: 85.42 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.166 - type: recall_at_5 value: 72.191 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.402770198163594 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.01545436974177 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.586465273207196 - type: mrr value: 74.42169019038825 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.1891186537969 - type: cos_sim_spearman value: 83.75492046087288 - type: euclidean_pearson value: 84.11766204805357 - type: euclidean_spearman value: 84.01456493126516 - type: manhattan_pearson value: 84.2132950502772 - type: manhattan_spearman value: 83.89227298813377 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.74025974025975 - type: f1 value: 85.71493566466381 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.467181385006434 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.719496037339056 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 29.587000000000003 - type: map_at_10 value: 41.114 - type: map_at_100 value: 42.532 - type: map_at_1000 value: 42.661 - type: map_at_3 value: 37.483 - type: map_at_5 value: 39.652 - type: mrr_at_1 value: 36.338 - type: mrr_at_10 value: 46.763 - type: mrr_at_100 value: 47.393 - type: mrr_at_1000 value: 47.445 - type: mrr_at_3 value: 43.538 - type: mrr_at_5 value: 45.556000000000004 - type: ndcg_at_1 value: 36.338 - type: ndcg_at_10 value: 47.658 - type: ndcg_at_100 value: 52.824000000000005 - type: ndcg_at_1000 value: 54.913999999999994 - type: ndcg_at_3 value: 41.989 - type: ndcg_at_5 value: 44.944 - type: precision_at_1 value: 36.338 - type: precision_at_10 value: 9.156 - type: precision_at_100 value: 1.4789999999999999 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.85 - type: recall_at_1 value: 29.587000000000003 - type: recall_at_10 value: 60.746 - type: recall_at_100 value: 82.157 - type: recall_at_1000 value: 95.645 - type: recall_at_3 value: 44.821 - type: recall_at_5 value: 52.819 - type: map_at_1 value: 30.239 - type: map_at_10 value: 39.989000000000004 - type: map_at_100 value: 41.196 - type: map_at_1000 value: 41.325 - type: map_at_3 value: 37.261 - type: map_at_5 value: 38.833 - type: mrr_at_1 value: 37.516 - type: mrr_at_10 value: 46.177 - type: mrr_at_100 value: 46.806 - type: mrr_at_1000 value: 46.849000000000004 - type: mrr_at_3 value: 44.002 - type: mrr_at_5 value: 45.34 - type: ndcg_at_1 value: 37.516 - type: ndcg_at_10 value: 45.586 - type: ndcg_at_100 value: 49.897000000000006 - type: ndcg_at_1000 value: 51.955 - type: ndcg_at_3 value: 41.684 - type: ndcg_at_5 value: 43.617 - type: precision_at_1 value: 37.516 - type: precision_at_10 value: 8.522 - type: precision_at_100 value: 1.374 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.105999999999998 - type: precision_at_5 value: 14.152999999999999 - type: recall_at_1 value: 30.239 - type: recall_at_10 value: 55.03 - type: recall_at_100 value: 73.375 - type: recall_at_1000 value: 86.29599999999999 - type: recall_at_3 value: 43.269000000000005 - type: recall_at_5 value: 48.878 - type: map_at_1 value: 38.338 - type: map_at_10 value: 50.468999999999994 - type: map_at_100 value: 51.553000000000004 - type: map_at_1000 value: 51.608 - type: map_at_3 value: 47.107 - type: map_at_5 value: 49.101 - type: mrr_at_1 value: 44.201 - type: mrr_at_10 value: 54.057 - type: mrr_at_100 value: 54.764 - type: mrr_at_1000 value: 54.791000000000004 - type: mrr_at_3 value: 51.56699999999999 - type: mrr_at_5 value: 53.05 - type: ndcg_at_1 value: 44.201 - type: ndcg_at_10 value: 56.379000000000005 - type: ndcg_at_100 value: 60.645 - type: ndcg_at_1000 value: 61.73499999999999 - type: ndcg_at_3 value: 50.726000000000006 - type: ndcg_at_5 value: 53.58500000000001 - type: precision_at_1 value: 44.201 - type: precision_at_10 value: 9.141 - type: precision_at_100 value: 1.216 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.654 - type: precision_at_5 value: 15.723999999999998 - type: recall_at_1 value: 38.338 - type: recall_at_10 value: 70.30499999999999 - type: recall_at_100 value: 88.77199999999999 - type: recall_at_1000 value: 96.49799999999999 - type: recall_at_3 value: 55.218 - type: recall_at_5 value: 62.104000000000006 - type: map_at_1 value: 25.682 - type: map_at_10 value: 33.498 - type: map_at_100 value: 34.461000000000006 - type: map_at_1000 value: 34.544000000000004 - type: map_at_3 value: 30.503999999999998 - type: map_at_5 value: 32.216 - type: mrr_at_1 value: 27.683999999999997 - type: mrr_at_10 value: 35.467999999999996 - type: mrr_at_100 value: 36.32 - type: mrr_at_1000 value: 36.386 - type: mrr_at_3 value: 32.618 - type: mrr_at_5 value: 34.262 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 38.378 - type: ndcg_at_100 value: 43.288 - type: ndcg_at_1000 value: 45.413 - type: ndcg_at_3 value: 32.586 - type: ndcg_at_5 value: 35.499 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 5.864 - type: precision_at_100 value: 0.882 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.718 - type: recall_at_1 value: 25.682 - type: recall_at_10 value: 51.712 - type: recall_at_100 value: 74.446 - type: recall_at_1000 value: 90.472 - type: recall_at_3 value: 36.236000000000004 - type: recall_at_5 value: 43.234 - type: map_at_1 value: 16.073999999999998 - type: map_at_10 value: 24.352999999999998 - type: map_at_100 value: 25.438 - type: map_at_1000 value: 25.545 - type: map_at_3 value: 21.614 - type: map_at_5 value: 23.104 - type: mrr_at_1 value: 19.776 - type: mrr_at_10 value: 28.837000000000003 - type: mrr_at_100 value: 29.755 - type: mrr_at_1000 value: 29.817 - type: mrr_at_3 value: 26.201999999999998 - type: mrr_at_5 value: 27.714 - type: ndcg_at_1 value: 19.776 - type: ndcg_at_10 value: 29.701 - type: ndcg_at_100 value: 35.307 - type: ndcg_at_1000 value: 37.942 - type: ndcg_at_3 value: 24.764 - type: ndcg_at_5 value: 27.025 - type: precision_at_1 value: 19.776 - type: precision_at_10 value: 5.659 - type: precision_at_100 value: 0.971 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 12.065 - type: precision_at_5 value: 8.905000000000001 - type: recall_at_1 value: 16.073999999999998 - type: recall_at_10 value: 41.647 - type: recall_at_100 value: 66.884 - type: recall_at_1000 value: 85.91499999999999 - type: recall_at_3 value: 27.916 - type: recall_at_5 value: 33.729 - type: map_at_1 value: 28.444999999999997 - type: map_at_10 value: 38.218999999999994 - type: map_at_100 value: 39.595 - type: map_at_1000 value: 39.709 - type: map_at_3 value: 35.586 - type: map_at_5 value: 36.895 - type: mrr_at_1 value: 34.841 - type: mrr_at_10 value: 44.106 - type: mrr_at_100 value: 44.98 - type: mrr_at_1000 value: 45.03 - type: mrr_at_3 value: 41.979 - type: mrr_at_5 value: 43.047999999999995 - type: ndcg_at_1 value: 34.841 - type: ndcg_at_10 value: 43.922 - type: ndcg_at_100 value: 49.504999999999995 - type: ndcg_at_1000 value: 51.675000000000004 - type: ndcg_at_3 value: 39.858 - type: ndcg_at_5 value: 41.408 - type: precision_at_1 value: 34.841 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.2449999999999999 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 18.993 - type: precision_at_5 value: 13.032 - type: recall_at_1 value: 28.444999999999997 - type: recall_at_10 value: 54.984 - type: recall_at_100 value: 78.342 - type: recall_at_1000 value: 92.77 - type: recall_at_3 value: 42.842999999999996 - type: recall_at_5 value: 47.247 - type: map_at_1 value: 23.072 - type: map_at_10 value: 32.354 - type: map_at_100 value: 33.800000000000004 - type: map_at_1000 value: 33.908 - type: map_at_3 value: 29.232000000000003 - type: map_at_5 value: 31.049 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 38.03 - type: mrr_at_100 value: 39.032 - type: mrr_at_1000 value: 39.086999999999996 - type: mrr_at_3 value: 35.407 - type: mrr_at_5 value: 36.76 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.231 - type: ndcg_at_100 value: 44.425 - type: ndcg_at_1000 value: 46.771 - type: ndcg_at_3 value: 33.095 - type: ndcg_at_5 value: 35.459 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 7.215000000000001 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 16.058 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 23.072 - type: recall_at_10 value: 50.285999999999994 - type: recall_at_100 value: 76.596 - type: recall_at_1000 value: 92.861 - type: recall_at_3 value: 35.702 - type: recall_at_5 value: 42.152 - type: map_at_1 value: 24.937916666666666 - type: map_at_10 value: 33.755250000000004 - type: map_at_100 value: 34.955999999999996 - type: map_at_1000 value: 35.070499999999996 - type: map_at_3 value: 30.98708333333333 - type: map_at_5 value: 32.51491666666666 - type: mrr_at_1 value: 29.48708333333333 - type: mrr_at_10 value: 37.92183333333334 - type: mrr_at_100 value: 38.76583333333333 - type: mrr_at_1000 value: 38.82466666666667 - type: mrr_at_3 value: 35.45125 - type: mrr_at_5 value: 36.827000000000005 - type: ndcg_at_1 value: 29.48708333333333 - type: ndcg_at_10 value: 39.05225 - type: ndcg_at_100 value: 44.25983333333334 - type: ndcg_at_1000 value: 46.568333333333335 - type: ndcg_at_3 value: 34.271583333333325 - type: ndcg_at_5 value: 36.483916666666666 - type: precision_at_1 value: 29.48708333333333 - type: precision_at_10 value: 6.865749999999999 - type: precision_at_100 value: 1.1195833333333332 - type: precision_at_1000 value: 0.15058333333333335 - type: precision_at_3 value: 15.742083333333333 - type: precision_at_5 value: 11.221916666666667 - type: recall_at_1 value: 24.937916666666666 - type: recall_at_10 value: 50.650416666666665 - type: recall_at_100 value: 73.55383333333334 - type: recall_at_1000 value: 89.61691666666667 - type: recall_at_3 value: 37.27808333333334 - type: recall_at_5 value: 42.99475 - type: map_at_1 value: 23.947 - type: map_at_10 value: 30.575000000000003 - type: map_at_100 value: 31.465 - type: map_at_1000 value: 31.558000000000003 - type: map_at_3 value: 28.814 - type: map_at_5 value: 29.738999999999997 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.415 - type: mrr_at_100 value: 34.18 - type: mrr_at_1000 value: 34.245 - type: mrr_at_3 value: 31.621 - type: mrr_at_5 value: 32.549 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.482 - type: ndcg_at_100 value: 38.915 - type: ndcg_at_1000 value: 41.355 - type: ndcg_at_3 value: 31.139 - type: ndcg_at_5 value: 32.589 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.322 - type: precision_at_100 value: 0.8160000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.344000000000001 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 23.947 - type: recall_at_10 value: 43.647999999999996 - type: recall_at_100 value: 63.851 - type: recall_at_1000 value: 82 - type: recall_at_3 value: 34.288000000000004 - type: recall_at_5 value: 38.117000000000004 - type: map_at_1 value: 16.197 - type: map_at_10 value: 22.968 - type: map_at_100 value: 24.095 - type: map_at_1000 value: 24.217 - type: map_at_3 value: 20.771 - type: map_at_5 value: 21.995 - type: mrr_at_1 value: 19.511 - type: mrr_at_10 value: 26.55 - type: mrr_at_100 value: 27.500999999999998 - type: mrr_at_1000 value: 27.578999999999997 - type: mrr_at_3 value: 24.421 - type: mrr_at_5 value: 25.604 - type: ndcg_at_1 value: 19.511 - type: ndcg_at_10 value: 27.386 - type: ndcg_at_100 value: 32.828 - type: ndcg_at_1000 value: 35.739 - type: ndcg_at_3 value: 23.405 - type: ndcg_at_5 value: 25.255 - type: precision_at_1 value: 19.511 - type: precision_at_10 value: 5.017 - type: precision_at_100 value: 0.91 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 11.023 - type: precision_at_5 value: 8.025 - type: recall_at_1 value: 16.197 - type: recall_at_10 value: 37.09 - type: recall_at_100 value: 61.778 - type: recall_at_1000 value: 82.56599999999999 - type: recall_at_3 value: 26.034000000000002 - type: recall_at_5 value: 30.762 - type: map_at_1 value: 25.41 - type: map_at_10 value: 33.655 - type: map_at_100 value: 34.892 - type: map_at_1000 value: 34.995 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.303 - type: mrr_at_1 value: 29.477999999999998 - type: mrr_at_10 value: 37.443 - type: mrr_at_100 value: 38.383 - type: mrr_at_1000 value: 38.440000000000005 - type: mrr_at_3 value: 34.949999999999996 - type: mrr_at_5 value: 36.228 - type: ndcg_at_1 value: 29.477999999999998 - type: ndcg_at_10 value: 38.769 - type: ndcg_at_100 value: 44.245000000000005 - type: ndcg_at_1000 value: 46.593 - type: ndcg_at_3 value: 33.623 - type: ndcg_at_5 value: 35.766 - type: precision_at_1 value: 29.477999999999998 - type: precision_at_10 value: 6.455 - type: precision_at_100 value: 1.032 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 14.893999999999998 - type: precision_at_5 value: 10.485 - type: recall_at_1 value: 25.41 - type: recall_at_10 value: 50.669 - type: recall_at_100 value: 74.084 - type: recall_at_1000 value: 90.435 - type: recall_at_3 value: 36.679 - type: recall_at_5 value: 41.94 - type: map_at_1 value: 23.339 - type: map_at_10 value: 31.852000000000004 - type: map_at_100 value: 33.411 - type: map_at_1000 value: 33.62 - type: map_at_3 value: 28.929 - type: map_at_5 value: 30.542 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.301 - type: mrr_at_100 value: 37.288 - type: mrr_at_1000 value: 37.349 - type: mrr_at_3 value: 33.663 - type: mrr_at_5 value: 35.165 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 37.462 - type: ndcg_at_100 value: 43.620999999999995 - type: ndcg_at_1000 value: 46.211 - type: ndcg_at_3 value: 32.68 - type: ndcg_at_5 value: 34.981 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.1739999999999995 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.217 - type: precision_at_5 value: 11.265 - type: recall_at_1 value: 23.339 - type: recall_at_10 value: 48.376999999999995 - type: recall_at_100 value: 76.053 - type: recall_at_1000 value: 92.455 - type: recall_at_3 value: 34.735 - type: recall_at_5 value: 40.71 - type: map_at_1 value: 18.925 - type: map_at_10 value: 26.017000000000003 - type: map_at_100 value: 27.034000000000002 - type: map_at_1000 value: 27.156000000000002 - type: map_at_3 value: 23.604 - type: map_at_5 value: 24.75 - type: mrr_at_1 value: 20.333000000000002 - type: mrr_at_10 value: 27.915 - type: mrr_at_100 value: 28.788000000000004 - type: mrr_at_1000 value: 28.877999999999997 - type: mrr_at_3 value: 25.446999999999996 - type: mrr_at_5 value: 26.648 - type: ndcg_at_1 value: 20.333000000000002 - type: ndcg_at_10 value: 30.673000000000002 - type: ndcg_at_100 value: 35.618 - type: ndcg_at_1000 value: 38.517 - type: ndcg_at_3 value: 25.71 - type: ndcg_at_5 value: 27.679 - type: precision_at_1 value: 20.333000000000002 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8130000000000001 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.8740000000000006 - type: recall_at_1 value: 18.925 - type: recall_at_10 value: 43.311 - type: recall_at_100 value: 66.308 - type: recall_at_1000 value: 87.49 - type: recall_at_3 value: 29.596 - type: recall_at_5 value: 34.245 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 13.714 - type: map_at_10 value: 23.194 - type: map_at_100 value: 24.976000000000003 - type: map_at_1000 value: 25.166 - type: map_at_3 value: 19.709 - type: map_at_5 value: 21.523999999999997 - type: mrr_at_1 value: 30.619000000000003 - type: mrr_at_10 value: 42.563 - type: mrr_at_100 value: 43.386 - type: mrr_at_1000 value: 43.423 - type: mrr_at_3 value: 39.555 - type: mrr_at_5 value: 41.268 - type: ndcg_at_1 value: 30.619000000000003 - type: ndcg_at_10 value: 31.836 - type: ndcg_at_100 value: 38.652 - type: ndcg_at_1000 value: 42.088 - type: ndcg_at_3 value: 26.733 - type: ndcg_at_5 value: 28.435 - type: precision_at_1 value: 30.619000000000003 - type: precision_at_10 value: 9.751999999999999 - type: precision_at_100 value: 1.71 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 19.935 - type: precision_at_5 value: 14.984 - type: recall_at_1 value: 13.714 - type: recall_at_10 value: 37.26 - type: recall_at_100 value: 60.546 - type: recall_at_1000 value: 79.899 - type: recall_at_3 value: 24.325 - type: recall_at_5 value: 29.725 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.462 - type: map_at_10 value: 18.637 - type: map_at_100 value: 26.131999999999998 - type: map_at_1000 value: 27.607 - type: map_at_3 value: 13.333 - type: map_at_5 value: 15.654000000000002 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.32600000000001 - type: mrr_at_100 value: 74.60900000000001 - type: mrr_at_1000 value: 74.62 - type: mrr_at_3 value: 72.667 - type: mrr_at_5 value: 73.817 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.028999999999996 - type: ndcg_at_100 value: 44.199 - type: ndcg_at_1000 value: 51.629999999999995 - type: ndcg_at_3 value: 44.113 - type: ndcg_at_5 value: 41.731 - type: precision_at_1 value: 66.25 - type: precision_at_10 value: 31.900000000000002 - type: precision_at_100 value: 10.043000000000001 - type: precision_at_1000 value: 1.926 - type: precision_at_3 value: 47.417 - type: precision_at_5 value: 40.65 - type: recall_at_1 value: 8.462 - type: recall_at_10 value: 24.293 - type: recall_at_100 value: 50.146 - type: recall_at_1000 value: 74.034 - type: recall_at_3 value: 14.967 - type: recall_at_5 value: 18.682000000000002 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.84499999999999 - type: f1 value: 42.48106691979349 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 74.034 - type: map_at_10 value: 82.76 - type: map_at_100 value: 82.968 - type: map_at_1000 value: 82.98299999999999 - type: map_at_3 value: 81.768 - type: map_at_5 value: 82.418 - type: mrr_at_1 value: 80.048 - type: mrr_at_10 value: 87.64999999999999 - type: mrr_at_100 value: 87.712 - type: mrr_at_1000 value: 87.713 - type: mrr_at_3 value: 87.01100000000001 - type: mrr_at_5 value: 87.466 - type: ndcg_at_1 value: 80.048 - type: ndcg_at_10 value: 86.643 - type: ndcg_at_100 value: 87.361 - type: ndcg_at_1000 value: 87.606 - type: ndcg_at_3 value: 85.137 - type: ndcg_at_5 value: 86.016 - type: precision_at_1 value: 80.048 - type: precision_at_10 value: 10.372 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.638 - type: precision_at_5 value: 20.177 - type: recall_at_1 value: 74.034 - type: recall_at_10 value: 93.769 - type: recall_at_100 value: 96.569 - type: recall_at_1000 value: 98.039 - type: recall_at_3 value: 89.581 - type: recall_at_5 value: 91.906 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 20.5 - type: map_at_10 value: 32.857 - type: map_at_100 value: 34.589 - type: map_at_1000 value: 34.778 - type: map_at_3 value: 29.160999999999998 - type: map_at_5 value: 31.033 - type: mrr_at_1 value: 40.123 - type: mrr_at_10 value: 48.776 - type: mrr_at_100 value: 49.495 - type: mrr_at_1000 value: 49.539 - type: mrr_at_3 value: 46.605000000000004 - type: mrr_at_5 value: 47.654 - type: ndcg_at_1 value: 40.123 - type: ndcg_at_10 value: 40.343 - type: ndcg_at_100 value: 46.56 - type: ndcg_at_1000 value: 49.777 - type: ndcg_at_3 value: 37.322 - type: ndcg_at_5 value: 37.791000000000004 - type: precision_at_1 value: 40.123 - type: precision_at_10 value: 11.08 - type: precision_at_100 value: 1.752 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 24.897 - type: precision_at_5 value: 17.809 - type: recall_at_1 value: 20.5 - type: recall_at_10 value: 46.388 - type: recall_at_100 value: 69.552 - type: recall_at_1000 value: 89.011 - type: recall_at_3 value: 33.617999999999995 - type: recall_at_5 value: 38.211 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.135999999999996 - type: map_at_10 value: 61.673 - type: map_at_100 value: 62.562 - type: map_at_1000 value: 62.62 - type: map_at_3 value: 58.467999999999996 - type: map_at_5 value: 60.463 - type: mrr_at_1 value: 78.271 - type: mrr_at_10 value: 84.119 - type: mrr_at_100 value: 84.29299999999999 - type: mrr_at_1000 value: 84.299 - type: mrr_at_3 value: 83.18900000000001 - type: mrr_at_5 value: 83.786 - type: ndcg_at_1 value: 78.271 - type: ndcg_at_10 value: 69.935 - type: ndcg_at_100 value: 73.01299999999999 - type: ndcg_at_1000 value: 74.126 - type: ndcg_at_3 value: 65.388 - type: ndcg_at_5 value: 67.906 - type: precision_at_1 value: 78.271 - type: precision_at_10 value: 14.562 - type: precision_at_100 value: 1.6969999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.841 - type: precision_at_5 value: 27.087 - type: recall_at_1 value: 39.135999999999996 - type: recall_at_10 value: 72.809 - type: recall_at_100 value: 84.86200000000001 - type: recall_at_1000 value: 92.208 - type: recall_at_3 value: 62.76199999999999 - type: recall_at_5 value: 67.718 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.60600000000001 - type: ap value: 86.6579587804335 - type: f1 value: 90.5938853929307 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.852 - type: map_at_10 value: 33.982 - type: map_at_100 value: 35.116 - type: map_at_1000 value: 35.167 - type: map_at_3 value: 30.134 - type: map_at_5 value: 32.340999999999994 - type: mrr_at_1 value: 22.479 - type: mrr_at_10 value: 34.594 - type: mrr_at_100 value: 35.672 - type: mrr_at_1000 value: 35.716 - type: mrr_at_3 value: 30.84 - type: mrr_at_5 value: 32.998 - type: ndcg_at_1 value: 22.493 - type: ndcg_at_10 value: 40.833000000000006 - type: ndcg_at_100 value: 46.357 - type: ndcg_at_1000 value: 47.637 - type: ndcg_at_3 value: 32.995999999999995 - type: ndcg_at_5 value: 36.919000000000004 - type: precision_at_1 value: 22.493 - type: precision_at_10 value: 6.465999999999999 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.030999999999999 - type: precision_at_5 value: 10.413 - type: recall_at_1 value: 21.852 - type: recall_at_10 value: 61.934999999999995 - type: recall_at_100 value: 87.611 - type: recall_at_1000 value: 97.441 - type: recall_at_3 value: 40.583999999999996 - type: recall_at_5 value: 49.992999999999995 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.36069311445507 - type: f1 value: 93.16456330371453 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.74692202462381 - type: f1 value: 58.17903579421599 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.80833893745796 - type: f1 value: 72.70786592684664 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.69872225958305 - type: f1 value: 78.61626934504731 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.058658628717694 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.85561739360599 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.290259910144385 - type: mrr value: 32.44223046102856 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.288 - type: map_at_10 value: 12.267999999999999 - type: map_at_100 value: 15.557000000000002 - type: map_at_1000 value: 16.98 - type: map_at_3 value: 8.866 - type: map_at_5 value: 10.418 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 52.681 - type: mrr_at_100 value: 53.315999999999995 - type: mrr_at_1000 value: 53.357 - type: mrr_at_3 value: 51.393 - type: mrr_at_5 value: 51.903999999999996 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.305 - type: ndcg_at_100 value: 30.825999999999997 - type: ndcg_at_1000 value: 39.393 - type: ndcg_at_3 value: 39.931 - type: ndcg_at_5 value: 37.519999999999996 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.728 - type: precision_at_100 value: 7.932 - type: precision_at_1000 value: 2.07 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 32.879000000000005 - type: recall_at_1 value: 5.288 - type: recall_at_10 value: 16.195 - type: recall_at_100 value: 31.135 - type: recall_at_1000 value: 61.531000000000006 - type: recall_at_3 value: 10.313 - type: recall_at_5 value: 12.754999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 28.216 - type: map_at_10 value: 42.588 - type: map_at_100 value: 43.702999999999996 - type: map_at_1000 value: 43.739 - type: map_at_3 value: 38.177 - type: map_at_5 value: 40.754000000000005 - type: mrr_at_1 value: 31.866 - type: mrr_at_10 value: 45.189 - type: mrr_at_100 value: 46.056000000000004 - type: mrr_at_1000 value: 46.081 - type: mrr_at_3 value: 41.526999999999994 - type: mrr_at_5 value: 43.704 - type: ndcg_at_1 value: 31.837 - type: ndcg_at_10 value: 50.178 - type: ndcg_at_100 value: 54.98800000000001 - type: ndcg_at_1000 value: 55.812 - type: ndcg_at_3 value: 41.853 - type: ndcg_at_5 value: 46.153 - type: precision_at_1 value: 31.837 - type: precision_at_10 value: 8.43 - type: precision_at_100 value: 1.1119999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.911000000000001 - type: recall_at_1 value: 28.216 - type: recall_at_10 value: 70.8 - type: recall_at_100 value: 91.857 - type: recall_at_1000 value: 97.941 - type: recall_at_3 value: 49.196 - type: recall_at_5 value: 59.072 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.22800000000001 - type: map_at_10 value: 85.115 - type: map_at_100 value: 85.72 - type: map_at_1000 value: 85.737 - type: map_at_3 value: 82.149 - type: map_at_5 value: 84.029 - type: mrr_at_1 value: 81.96 - type: mrr_at_10 value: 88.00200000000001 - type: mrr_at_100 value: 88.088 - type: mrr_at_1000 value: 88.089 - type: mrr_at_3 value: 87.055 - type: mrr_at_5 value: 87.715 - type: ndcg_at_1 value: 82.01 - type: ndcg_at_10 value: 88.78 - type: ndcg_at_100 value: 89.91 - type: ndcg_at_1000 value: 90.013 - type: ndcg_at_3 value: 85.957 - type: ndcg_at_5 value: 87.56 - type: precision_at_1 value: 82.01 - type: precision_at_10 value: 13.462 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.732000000000003 - type: recall_at_1 value: 71.22800000000001 - type: recall_at_10 value: 95.69 - type: recall_at_100 value: 99.531 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.632 - type: recall_at_5 value: 92.117 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 52.31768034366916 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.640266772723606 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.7780000000000005 - type: map_at_10 value: 12.299 - type: map_at_100 value: 14.363000000000001 - type: map_at_1000 value: 14.71 - type: map_at_3 value: 8.738999999999999 - type: map_at_5 value: 10.397 - type: mrr_at_1 value: 23.599999999999998 - type: mrr_at_10 value: 34.845 - type: mrr_at_100 value: 35.916 - type: mrr_at_1000 value: 35.973 - type: mrr_at_3 value: 31.7 - type: mrr_at_5 value: 33.535 - type: ndcg_at_1 value: 23.599999999999998 - type: ndcg_at_10 value: 20.522000000000002 - type: ndcg_at_100 value: 28.737000000000002 - type: ndcg_at_1000 value: 34.596 - type: ndcg_at_3 value: 19.542 - type: ndcg_at_5 value: 16.958000000000002 - type: precision_at_1 value: 23.599999999999998 - type: precision_at_10 value: 10.67 - type: precision_at_100 value: 2.259 - type: precision_at_1000 value: 0.367 - type: precision_at_3 value: 18.333 - type: precision_at_5 value: 14.879999999999999 - type: recall_at_1 value: 4.7780000000000005 - type: recall_at_10 value: 21.617 - type: recall_at_100 value: 45.905 - type: recall_at_1000 value: 74.42 - type: recall_at_3 value: 11.148 - type: recall_at_5 value: 15.082999999999998 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.22372750297885 - type: cos_sim_spearman value: 79.40972617119405 - type: euclidean_pearson value: 80.6101072020434 - type: euclidean_spearman value: 79.53844217225202 - type: manhattan_pearson value: 80.57265975286111 - type: manhattan_spearman value: 79.46335611792958 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.43713315520749 - type: cos_sim_spearman value: 77.44128693329532 - type: euclidean_pearson value: 81.63869928101123 - type: euclidean_spearman value: 77.29512977961515 - type: manhattan_pearson value: 81.63704185566183 - type: manhattan_spearman value: 77.29909412738657 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.59451537860527 - type: cos_sim_spearman value: 82.97994638856723 - type: euclidean_pearson value: 82.89478688288412 - type: euclidean_spearman value: 83.58740751053104 - type: manhattan_pearson value: 82.69140840941608 - type: manhattan_spearman value: 83.33665956040555 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.00756527711764 - type: cos_sim_spearman value: 81.83560996841379 - type: euclidean_pearson value: 82.07684151976518 - type: euclidean_spearman value: 82.00913052060511 - type: manhattan_pearson value: 82.05690778488794 - type: manhattan_spearman value: 82.02260252019525 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.13710262895447 - type: cos_sim_spearman value: 87.26412811156248 - type: euclidean_pearson value: 86.94151453230228 - type: euclidean_spearman value: 87.5363796699571 - type: manhattan_pearson value: 86.86989424083748 - type: manhattan_spearman value: 87.47315940781353 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.0230597603627 - type: cos_sim_spearman value: 84.93344499318864 - type: euclidean_pearson value: 84.23754743431141 - type: euclidean_spearman value: 85.09707376597099 - type: manhattan_pearson value: 84.04325160987763 - type: manhattan_spearman value: 84.89353071339909 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.75620824563921 - type: cos_sim_spearman value: 87.15065513706398 - type: euclidean_pearson value: 88.26281533633521 - type: euclidean_spearman value: 87.51963738643983 - type: manhattan_pearson value: 88.25599267618065 - type: manhattan_spearman value: 87.58048736047483 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.74645319195137 - type: cos_sim_spearman value: 65.29996325037214 - type: euclidean_pearson value: 67.04297794086443 - type: euclidean_spearman value: 65.43841726694343 - type: manhattan_pearson value: 67.39459955690904 - type: manhattan_spearman value: 65.92864704413651 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.31291020270801 - type: cos_sim_spearman value: 85.86473738688068 - type: euclidean_pearson value: 85.65537275064152 - type: euclidean_spearman value: 86.13087454209642 - type: manhattan_pearson value: 85.43946955047609 - type: manhattan_spearman value: 85.91568175344916 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.93798118350695 - type: mrr value: 95.93536274908824 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.594 - type: map_at_10 value: 66.81899999999999 - type: map_at_100 value: 67.368 - type: map_at_1000 value: 67.4 - type: map_at_3 value: 64.061 - type: map_at_5 value: 65.47 - type: mrr_at_1 value: 60.667 - type: mrr_at_10 value: 68.219 - type: mrr_at_100 value: 68.655 - type: mrr_at_1000 value: 68.684 - type: mrr_at_3 value: 66.22200000000001 - type: mrr_at_5 value: 67.289 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 71.275 - type: ndcg_at_100 value: 73.642 - type: ndcg_at_1000 value: 74.373 - type: ndcg_at_3 value: 66.521 - type: ndcg_at_5 value: 68.581 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.433 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.556 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 57.594 - type: recall_at_10 value: 83.622 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.64399999999999 - type: recall_at_5 value: 75.983 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.85841584158416 - type: cos_sim_ap value: 96.66996142314342 - type: cos_sim_f1 value: 92.83208020050125 - type: cos_sim_precision value: 93.06532663316584 - type: cos_sim_recall value: 92.60000000000001 - type: dot_accuracy value: 99.85841584158416 - type: dot_ap value: 96.6775307676576 - type: dot_f1 value: 92.69289729177312 - type: dot_precision value: 94.77533960292581 - type: dot_recall value: 90.7 - type: euclidean_accuracy value: 99.86138613861387 - type: euclidean_ap value: 96.6338454403108 - type: euclidean_f1 value: 92.92214357937311 - type: euclidean_precision value: 93.96728016359918 - type: euclidean_recall value: 91.9 - type: manhattan_accuracy value: 99.86237623762376 - type: manhattan_ap value: 96.60370449645053 - type: manhattan_f1 value: 92.91177970423253 - type: manhattan_precision value: 94.7970863683663 - type: manhattan_recall value: 91.10000000000001 - type: max_accuracy value: 99.86237623762376 - type: max_ap value: 96.6775307676576 - type: max_f1 value: 92.92214357937311 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 60.77977058695198 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.2725272535638 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.64052466362125 - type: mrr value: 54.533067014684654 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.677624219206578 - type: cos_sim_spearman value: 30.121368518123447 - type: dot_pearson value: 30.69870088041608 - type: dot_spearman value: 29.61284927093751 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.855 - type: map_at_100 value: 9.885 - type: map_at_1000 value: 23.416999999999998 - type: map_at_3 value: 0.637 - type: map_at_5 value: 1.024 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.067 - type: mrr_at_100 value: 93.067 - type: mrr_at_1000 value: 93.067 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 93.067 - type: ndcg_at_1 value: 82 - type: ndcg_at_10 value: 75.899 - type: ndcg_at_100 value: 55.115 - type: ndcg_at_1000 value: 48.368 - type: ndcg_at_3 value: 79.704 - type: ndcg_at_5 value: 78.39699999999999 - type: precision_at_1 value: 88 - type: precision_at_10 value: 79.60000000000001 - type: precision_at_100 value: 56.06 - type: precision_at_1000 value: 21.206 - type: precision_at_3 value: 84.667 - type: precision_at_5 value: 83.2 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 13.297 - type: recall_at_1000 value: 44.979 - type: recall_at_3 value: 0.6689999999999999 - type: recall_at_5 value: 1.106 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.258 - type: map_at_10 value: 10.439 - type: map_at_100 value: 16.89 - type: map_at_1000 value: 18.407999999999998 - type: map_at_3 value: 5.668 - type: map_at_5 value: 7.718 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.159 - type: mrr_at_100 value: 51.714000000000006 - type: mrr_at_1000 value: 51.714000000000006 - type: mrr_at_3 value: 47.959 - type: mrr_at_5 value: 50.407999999999994 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 26.037 - type: ndcg_at_100 value: 37.924 - type: ndcg_at_1000 value: 49.126999999999995 - type: ndcg_at_3 value: 30.631999999999998 - type: ndcg_at_5 value: 28.571 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 22.857 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 1.529 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.258 - type: recall_at_10 value: 16.554 - type: recall_at_100 value: 48.439 - type: recall_at_1000 value: 82.80499999999999 - type: recall_at_3 value: 7.283 - type: recall_at_5 value: 10.732 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.8858 - type: ap value: 13.835684144362109 - type: f1 value: 53.803351693244586 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.50650820599886 - type: f1 value: 60.84357825979259 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 48.52131044852134 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59337187816654 - type: cos_sim_ap value: 73.23925826533437 - type: cos_sim_f1 value: 67.34693877551021 - type: cos_sim_precision value: 62.40432237730752 - type: cos_sim_recall value: 73.13984168865434 - type: dot_accuracy value: 85.31322644096085 - type: dot_ap value: 72.30723963807422 - type: dot_f1 value: 66.47051612112296 - type: dot_precision value: 62.0792305930845 - type: dot_recall value: 71.53034300791556 - type: euclidean_accuracy value: 85.61125350181797 - type: euclidean_ap value: 73.32843720487845 - type: euclidean_f1 value: 67.36549633745895 - type: euclidean_precision value: 64.60755813953489 - type: euclidean_recall value: 70.36939313984169 - type: manhattan_accuracy value: 85.63509566668654 - type: manhattan_ap value: 73.16658488311325 - type: manhattan_f1 value: 67.20597386434349 - type: manhattan_precision value: 63.60424028268551 - type: manhattan_recall value: 71.2401055408971 - type: max_accuracy value: 85.63509566668654 - type: max_ap value: 73.32843720487845 - type: max_f1 value: 67.36549633745895 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.33779640625606 - type: cos_sim_ap value: 84.83868375898157 - type: cos_sim_f1 value: 77.16506154017773 - type: cos_sim_precision value: 74.62064005753327 - type: cos_sim_recall value: 79.88912842623961 - type: dot_accuracy value: 88.02732176815307 - type: dot_ap value: 83.95089283763002 - type: dot_f1 value: 76.29635101196631 - type: dot_precision value: 73.31771720613288 - type: dot_recall value: 79.52725592854944 - type: euclidean_accuracy value: 88.44452206310397 - type: euclidean_ap value: 84.98384576824827 - type: euclidean_f1 value: 77.29311047696697 - type: euclidean_precision value: 74.51232583065381 - type: euclidean_recall value: 80.28949799815214 - type: manhattan_accuracy value: 88.47362906042613 - type: manhattan_ap value: 84.91421462218432 - type: manhattan_f1 value: 77.05107637204792 - type: manhattan_precision value: 74.74484256243214 - type: manhattan_recall value: 79.50415768401602 - type: max_accuracy value: 88.47362906042613 - type: max_ap value: 84.98384576824827 - type: max_f1 value: 77.29311047696697 --- ***See Disclaimer below*** ---- # A Teradata Vantage compatible Embeddings Model # BAAI/bge-small-en-v1.5 ## Overview of this Model An Embedding Model which maps text (sentence/ paragraphs) into a vector. The [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings. - 33.36M params (Sizes in ONNX format - "fp32": 127.03MB, "int8": 32.4MB, "uint8": 32.4MB) - 512 maximum input tokens - 384 dimensions of output vector - Licence: mit. The released models can be used for commercial purposes free of charge. - Reference to Original Model: https://huggingface.co/BAAI/bge-small-en-v1.5 ## Quickstart: Deploying this Model in Teradata Vantage We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion. **Note:** Ensure you have access to a Teradata Database with BYOM 6.0 installed. To get started, clone the pre-converted model directly from the Teradata HuggingFace repository. ```python import teradataml as tdml import getpass from huggingface_hub import hf_hub_download model_name = "bge-small-en-v1.5" number_dimensions_output = 384 model_file_name = "model.onnx" # Step 1: Download Model from Teradata HuggingFace Page hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./") hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./") # Step 2: Create Connection to Vantage tdml.create_context(host = input('enter your hostname'), username=input('enter your username'), password = getpass.getpass("enter your password")) # Step 3: Load Models into Vantage # a) Embedding model tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = f"onnx/{model_file_name}", table_name = 'embeddings_models' ) # b) Tokenizer tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = 'tokenizer.json', table_name = 'embeddings_tokenizers') # Step 4: Test ONNXEmbeddings Function # Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. # If it has got a different name, just rename it in a subquery/CTE. input_table = "emails.emails" embeddings_query = f""" SELECT * from mldb.ONNXEmbeddings( on {input_table} as InputTable on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION using Accumulate('id', 'txt') ModelOutputTensor('sentence_embedding') EnableMemoryCheck('false') OutputFormat('FLOAT32({number_dimensions_output})') OverwriteCachedModel('true') ) a """ DF_embeddings = tdml.DataFrame.from_query(embeddings_query) DF_embeddings ``` ## What Can I Do with the Embeddings? Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples: - **Semantic Clustering with TD_KMeans:** [Semantic Clustering Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Clustering_Python.ipynb) - **Semantic Distance with TD_VectorDistance:** [Semantic Similarity Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Similarity_Python.ipynb) - **RAG-Based Application with TD_VectorDistance:** [RAG and Bedrock Query PDF Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/RAG_and_Bedrock_QueryPDF.ipynb) ## Deep Dive into Model Conversion to ONNX **The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.** You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format. ### Part 1. Importing and Converting Model using optimum We start by importing the pre-trained [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model from Hugging Face. To enhance performance and ensure compatibility with various execution environments, we'll use the [Optimum](https://github.com/huggingface/optimum) utility to convert the model into the ONNX (Open Neural Network Exchange) format. After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage We are generating ONNX files for multiple different precisions: fp32, int8, uint8 You can find the detailed conversion steps in the file [convert.py](./convert.py) ### Part 2. Running the model in Python with onnxruntime & compare results Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results. If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database. ```python import onnxruntime as rt from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer import transformers sentences_1 = 'How is the weather today?' sentences_2 = 'What is the current weather like today?' # Calculate ONNX result tokenizer = transformers.AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5") predef_sess = rt.InferenceSession("onnx/model.onnx") enc1 = tokenizer(sentences_1) embeddings_1_onnx = predef_sess.run(None, {"input_ids": [enc1.input_ids], "attention_mask": [enc1.attention_mask]}) enc2 = tokenizer(sentences_2) embeddings_2_onnx = predef_sess.run(None, {"input_ids": [enc2.input_ids], "attention_mask": [enc2.attention_mask]}) # Calculate embeddings with SentenceTransformer model = SentenceTransformer(model_id, trust_remote_code=True) embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True) embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True) # Compare results print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0]))) print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer))) ``` You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py) ----- DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata. To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations. While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws. You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.
[ "BIOSSES", "SCIFACT" ]
Teradata/jina-embeddings-v2-base-en
Teradata
feature-extraction
[ "onnx", "bert", "feature-extraction", "sentence-similarity", "mteb", "teradata", "custom_code", "en", "dataset:allenai/c4", "license:apache-2.0", "model-index", "region:us" ]
2025-02-12T16:52:33Z
2025-03-04T09:41:26+00:00
28
0
--- datasets: - allenai/c4 language: en license: apache-2.0 tags: - feature-extraction - sentence-similarity - mteb - onnx - teradata inference: false model-index: - name: jina-embedding-b-en-v2 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.73134328358209 - type: ap value: 37.765427081831035 - type: f1 value: 68.79367444339518 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.544275 - type: ap value: 84.61328675662887 - type: f1 value: 88.51879035862375 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.263999999999996 - type: f1 value: 43.778759656699435 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 21.693 - type: map_at_10 value: 35.487 - type: map_at_100 value: 36.862 - type: map_at_1000 value: 36.872 - type: map_at_3 value: 30.049999999999997 - type: map_at_5 value: 32.966 - type: mrr_at_1 value: 21.977 - type: mrr_at_10 value: 35.565999999999995 - type: mrr_at_100 value: 36.948 - type: mrr_at_1000 value: 36.958 - type: mrr_at_3 value: 30.121 - type: mrr_at_5 value: 33.051 - type: ndcg_at_1 value: 21.693 - type: ndcg_at_10 value: 44.181 - type: ndcg_at_100 value: 49.982 - type: ndcg_at_1000 value: 50.233000000000004 - type: ndcg_at_3 value: 32.830999999999996 - type: ndcg_at_5 value: 38.080000000000005 - type: precision_at_1 value: 21.693 - type: precision_at_10 value: 7.248 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 13.632 - type: precision_at_5 value: 10.725 - type: recall_at_1 value: 21.693 - type: recall_at_10 value: 72.475 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 40.896 - type: recall_at_5 value: 53.627 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.39242428696777 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.675626784714 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.247725694904034 - type: mrr value: 74.91359978894604 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.68003802970496 - type: cos_sim_spearman value: 81.23438110096286 - type: euclidean_pearson value: 81.87462986142582 - type: euclidean_spearman value: 81.23438110096286 - type: manhattan_pearson value: 81.61162566600755 - type: manhattan_spearman value: 81.11329400456184 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.01298701298701 - type: f1 value: 83.31690714969382 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.050108150972086 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.15731442819715 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 31.391999999999996 - type: map_at_10 value: 42.597 - type: map_at_100 value: 44.07 - type: map_at_1000 value: 44.198 - type: map_at_3 value: 38.957 - type: map_at_5 value: 40.961 - type: mrr_at_1 value: 37.196 - type: mrr_at_10 value: 48.152 - type: mrr_at_100 value: 48.928 - type: mrr_at_1000 value: 48.964999999999996 - type: mrr_at_3 value: 45.446 - type: mrr_at_5 value: 47.205999999999996 - type: ndcg_at_1 value: 37.196 - type: ndcg_at_10 value: 49.089 - type: ndcg_at_100 value: 54.471000000000004 - type: ndcg_at_1000 value: 56.385 - type: ndcg_at_3 value: 43.699 - type: ndcg_at_5 value: 46.22 - type: precision_at_1 value: 37.196 - type: precision_at_10 value: 9.313 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 20.839 - type: precision_at_5 value: 14.936 - type: recall_at_1 value: 31.391999999999996 - type: recall_at_10 value: 61.876 - type: recall_at_100 value: 84.214 - type: recall_at_1000 value: 95.985 - type: recall_at_3 value: 46.6 - type: recall_at_5 value: 53.588 - type: map_at_1 value: 29.083 - type: map_at_10 value: 38.812999999999995 - type: map_at_100 value: 40.053 - type: map_at_1000 value: 40.188 - type: map_at_3 value: 36.111 - type: map_at_5 value: 37.519000000000005 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.85 - type: mrr_at_100 value: 45.546 - type: mrr_at_1000 value: 45.593 - type: mrr_at_3 value: 42.686 - type: mrr_at_5 value: 43.909 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 44.443 - type: ndcg_at_100 value: 48.979 - type: ndcg_at_1000 value: 51.154999999999994 - type: ndcg_at_3 value: 40.660000000000004 - type: ndcg_at_5 value: 42.193000000000005 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 8.433 - type: precision_at_100 value: 1.369 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 19.894000000000002 - type: precision_at_5 value: 13.873 - type: recall_at_1 value: 29.083 - type: recall_at_10 value: 54.313 - type: recall_at_100 value: 73.792 - type: recall_at_1000 value: 87.629 - type: recall_at_3 value: 42.257 - type: recall_at_5 value: 47.066 - type: map_at_1 value: 38.556000000000004 - type: map_at_10 value: 50.698 - type: map_at_100 value: 51.705 - type: map_at_1000 value: 51.768 - type: map_at_3 value: 47.848 - type: map_at_5 value: 49.358000000000004 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 54.191 - type: mrr_at_100 value: 54.852999999999994 - type: mrr_at_1000 value: 54.885 - type: mrr_at_3 value: 51.954 - type: mrr_at_5 value: 53.13 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 56.516 - type: ndcg_at_100 value: 60.477000000000004 - type: ndcg_at_1000 value: 61.746 - type: ndcg_at_3 value: 51.601 - type: ndcg_at_5 value: 53.795 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 9.009 - type: precision_at_100 value: 1.189 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.989 - type: precision_at_5 value: 15.473 - type: recall_at_1 value: 38.556000000000004 - type: recall_at_10 value: 70.159 - type: recall_at_100 value: 87.132 - type: recall_at_1000 value: 96.16 - type: recall_at_3 value: 56.906 - type: recall_at_5 value: 62.332 - type: map_at_1 value: 24.238 - type: map_at_10 value: 32.5 - type: map_at_100 value: 33.637 - type: map_at_1000 value: 33.719 - type: map_at_3 value: 30.026999999999997 - type: map_at_5 value: 31.555 - type: mrr_at_1 value: 26.328000000000003 - type: mrr_at_10 value: 34.44 - type: mrr_at_100 value: 35.455999999999996 - type: mrr_at_1000 value: 35.521 - type: mrr_at_3 value: 32.034 - type: mrr_at_5 value: 33.565 - type: ndcg_at_1 value: 26.328000000000003 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 42.728 - type: ndcg_at_1000 value: 44.792 - type: ndcg_at_3 value: 32.368 - type: ndcg_at_5 value: 35.008 - type: precision_at_1 value: 26.328000000000003 - type: precision_at_10 value: 5.7059999999999995 - type: precision_at_100 value: 0.8880000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.672 - type: precision_at_5 value: 9.74 - type: recall_at_1 value: 24.238 - type: recall_at_10 value: 49.829 - type: recall_at_100 value: 75.21 - type: recall_at_1000 value: 90.521 - type: recall_at_3 value: 36.867 - type: recall_at_5 value: 43.241 - type: map_at_1 value: 15.378 - type: map_at_10 value: 22.817999999999998 - type: map_at_100 value: 23.977999999999998 - type: map_at_1000 value: 24.108 - type: map_at_3 value: 20.719 - type: map_at_5 value: 21.889 - type: mrr_at_1 value: 19.03 - type: mrr_at_10 value: 27.022000000000002 - type: mrr_at_100 value: 28.011999999999997 - type: mrr_at_1000 value: 28.096 - type: mrr_at_3 value: 24.855 - type: mrr_at_5 value: 26.029999999999998 - type: ndcg_at_1 value: 19.03 - type: ndcg_at_10 value: 27.526 - type: ndcg_at_100 value: 33.040000000000006 - type: ndcg_at_1000 value: 36.187000000000005 - type: ndcg_at_3 value: 23.497 - type: ndcg_at_5 value: 25.334 - type: precision_at_1 value: 19.03 - type: precision_at_10 value: 4.963 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.360000000000001 - type: precision_at_5 value: 8.134 - type: recall_at_1 value: 15.378 - type: recall_at_10 value: 38.061 - type: recall_at_100 value: 61.754 - type: recall_at_1000 value: 84.259 - type: recall_at_3 value: 26.788 - type: recall_at_5 value: 31.326999999999998 - type: map_at_1 value: 27.511999999999997 - type: map_at_10 value: 37.429 - type: map_at_100 value: 38.818000000000005 - type: map_at_1000 value: 38.924 - type: map_at_3 value: 34.625 - type: map_at_5 value: 36.064 - type: mrr_at_1 value: 33.300999999999995 - type: mrr_at_10 value: 43.036 - type: mrr_at_100 value: 43.894 - type: mrr_at_1000 value: 43.936 - type: mrr_at_3 value: 40.825 - type: mrr_at_5 value: 42.028 - type: ndcg_at_1 value: 33.300999999999995 - type: ndcg_at_10 value: 43.229 - type: ndcg_at_100 value: 48.992000000000004 - type: ndcg_at_1000 value: 51.02100000000001 - type: ndcg_at_3 value: 38.794000000000004 - type: ndcg_at_5 value: 40.65 - type: precision_at_1 value: 33.300999999999995 - type: precision_at_10 value: 7.777000000000001 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.351 - type: precision_at_5 value: 12.762 - type: recall_at_1 value: 27.511999999999997 - type: recall_at_10 value: 54.788000000000004 - type: recall_at_100 value: 79.105 - type: recall_at_1000 value: 92.49199999999999 - type: recall_at_3 value: 41.924 - type: recall_at_5 value: 47.026 - type: map_at_1 value: 24.117 - type: map_at_10 value: 33.32 - type: map_at_100 value: 34.677 - type: map_at_1000 value: 34.78 - type: map_at_3 value: 30.233999999999998 - type: map_at_5 value: 31.668000000000003 - type: mrr_at_1 value: 29.566 - type: mrr_at_10 value: 38.244 - type: mrr_at_100 value: 39.245000000000005 - type: mrr_at_1000 value: 39.296 - type: mrr_at_3 value: 35.864000000000004 - type: mrr_at_5 value: 36.919999999999995 - type: ndcg_at_1 value: 29.566 - type: ndcg_at_10 value: 39.127 - type: ndcg_at_100 value: 44.989000000000004 - type: ndcg_at_1000 value: 47.189 - type: ndcg_at_3 value: 34.039 - type: ndcg_at_5 value: 35.744 - type: precision_at_1 value: 29.566 - type: precision_at_10 value: 7.385999999999999 - type: precision_at_100 value: 1.204 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.286 - type: precision_at_5 value: 11.484 - type: recall_at_1 value: 24.117 - type: recall_at_10 value: 51.559999999999995 - type: recall_at_100 value: 77.104 - type: recall_at_1000 value: 91.79899999999999 - type: recall_at_3 value: 36.82 - type: recall_at_5 value: 41.453 - type: map_at_1 value: 25.17625 - type: map_at_10 value: 34.063916666666664 - type: map_at_100 value: 35.255500000000005 - type: map_at_1000 value: 35.37275 - type: map_at_3 value: 31.351666666666667 - type: map_at_5 value: 32.80608333333333 - type: mrr_at_1 value: 29.59783333333333 - type: mrr_at_10 value: 38.0925 - type: mrr_at_100 value: 38.957249999999995 - type: mrr_at_1000 value: 39.01608333333333 - type: mrr_at_3 value: 35.77625 - type: mrr_at_5 value: 37.04991666666667 - type: ndcg_at_1 value: 29.59783333333333 - type: ndcg_at_10 value: 39.343666666666664 - type: ndcg_at_100 value: 44.488249999999994 - type: ndcg_at_1000 value: 46.83358333333334 - type: ndcg_at_3 value: 34.69708333333333 - type: ndcg_at_5 value: 36.75075 - type: precision_at_1 value: 29.59783333333333 - type: precision_at_10 value: 6.884083333333332 - type: precision_at_100 value: 1.114 - type: precision_at_1000 value: 0.15108333333333332 - type: precision_at_3 value: 15.965250000000003 - type: precision_at_5 value: 11.246500000000001 - type: recall_at_1 value: 25.17625 - type: recall_at_10 value: 51.015999999999984 - type: recall_at_100 value: 73.60174999999998 - type: recall_at_1000 value: 89.849 - type: recall_at_3 value: 37.88399999999999 - type: recall_at_5 value: 43.24541666666666 - type: map_at_1 value: 24.537 - type: map_at_10 value: 31.081999999999997 - type: map_at_100 value: 32.042 - type: map_at_1000 value: 32.141 - type: map_at_3 value: 29.137 - type: map_at_5 value: 30.079 - type: mrr_at_1 value: 27.454 - type: mrr_at_10 value: 33.694 - type: mrr_at_100 value: 34.579 - type: mrr_at_1000 value: 34.649 - type: mrr_at_3 value: 32.004 - type: mrr_at_5 value: 32.794000000000004 - type: ndcg_at_1 value: 27.454 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.641 - type: ndcg_at_1000 value: 42.105 - type: ndcg_at_3 value: 31.276 - type: ndcg_at_5 value: 32.65 - type: precision_at_1 value: 27.454 - type: precision_at_10 value: 5.337 - type: precision_at_100 value: 0.8250000000000001 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 8.895999999999999 - type: recall_at_1 value: 24.537 - type: recall_at_10 value: 44.324999999999996 - type: recall_at_100 value: 65.949 - type: recall_at_1000 value: 84.017 - type: recall_at_3 value: 33.857 - type: recall_at_5 value: 37.316 - type: map_at_1 value: 17.122 - type: map_at_10 value: 24.32 - type: map_at_100 value: 25.338 - type: map_at_1000 value: 25.462 - type: map_at_3 value: 22.064 - type: map_at_5 value: 23.322000000000003 - type: mrr_at_1 value: 20.647 - type: mrr_at_10 value: 27.858 - type: mrr_at_100 value: 28.743999999999996 - type: mrr_at_1000 value: 28.819 - type: mrr_at_3 value: 25.769 - type: mrr_at_5 value: 26.964 - type: ndcg_at_1 value: 20.647 - type: ndcg_at_10 value: 28.849999999999998 - type: ndcg_at_100 value: 33.849000000000004 - type: ndcg_at_1000 value: 36.802 - type: ndcg_at_3 value: 24.799 - type: ndcg_at_5 value: 26.682 - type: precision_at_1 value: 20.647 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 11.769 - type: precision_at_5 value: 8.486 - type: recall_at_1 value: 17.122 - type: recall_at_10 value: 38.999 - type: recall_at_100 value: 61.467000000000006 - type: recall_at_1000 value: 82.716 - type: recall_at_3 value: 27.601 - type: recall_at_5 value: 32.471 - type: map_at_1 value: 24.396 - type: map_at_10 value: 33.415 - type: map_at_100 value: 34.521 - type: map_at_1000 value: 34.631 - type: map_at_3 value: 30.703999999999997 - type: map_at_5 value: 32.166 - type: mrr_at_1 value: 28.825 - type: mrr_at_10 value: 37.397000000000006 - type: mrr_at_100 value: 38.286 - type: mrr_at_1000 value: 38.346000000000004 - type: mrr_at_3 value: 35.028 - type: mrr_at_5 value: 36.32 - type: ndcg_at_1 value: 28.825 - type: ndcg_at_10 value: 38.656 - type: ndcg_at_100 value: 43.856 - type: ndcg_at_1000 value: 46.31 - type: ndcg_at_3 value: 33.793 - type: ndcg_at_5 value: 35.909 - type: precision_at_1 value: 28.825 - type: precision_at_10 value: 6.567 - type: precision_at_100 value: 1.0330000000000001 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 15.516 - type: precision_at_5 value: 10.914 - type: recall_at_1 value: 24.396 - type: recall_at_10 value: 50.747 - type: recall_at_100 value: 73.477 - type: recall_at_1000 value: 90.801 - type: recall_at_3 value: 37.1 - type: recall_at_5 value: 42.589 - type: map_at_1 value: 25.072 - type: map_at_10 value: 34.307 - type: map_at_100 value: 35.725 - type: map_at_1000 value: 35.943999999999996 - type: map_at_3 value: 30.906 - type: map_at_5 value: 32.818000000000005 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.673 - type: mrr_at_100 value: 39.459 - type: mrr_at_1000 value: 39.527 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.332 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 40.548 - type: ndcg_at_100 value: 45.678999999999995 - type: ndcg_at_1000 value: 48.488 - type: ndcg_at_3 value: 34.887 - type: ndcg_at_5 value: 37.543 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.688000000000001 - type: precision_at_100 value: 1.482 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 16.206 - type: precision_at_5 value: 12.016 - type: recall_at_1 value: 25.072 - type: recall_at_10 value: 53.478 - type: recall_at_100 value: 76.07300000000001 - type: recall_at_1000 value: 93.884 - type: recall_at_3 value: 37.583 - type: recall_at_5 value: 44.464 - type: map_at_1 value: 20.712 - type: map_at_10 value: 27.467999999999996 - type: map_at_100 value: 28.502 - type: map_at_1000 value: 28.610000000000003 - type: map_at_3 value: 24.887999999999998 - type: map_at_5 value: 26.273999999999997 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 29.553 - type: mrr_at_100 value: 30.485 - type: mrr_at_1000 value: 30.56 - type: mrr_at_3 value: 27.078999999999997 - type: mrr_at_5 value: 28.401 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 32.023 - type: ndcg_at_100 value: 37.158 - type: ndcg_at_1000 value: 39.823 - type: ndcg_at_3 value: 26.951999999999998 - type: ndcg_at_5 value: 29.281000000000002 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.213 - type: precision_at_100 value: 0.832 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 11.459999999999999 - type: precision_at_5 value: 8.244 - type: recall_at_1 value: 20.712 - type: recall_at_10 value: 44.057 - type: recall_at_100 value: 67.944 - type: recall_at_1000 value: 87.925 - type: recall_at_3 value: 30.305 - type: recall_at_5 value: 36.071999999999996 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 10.181999999999999 - type: map_at_10 value: 16.66 - type: map_at_100 value: 18.273 - type: map_at_1000 value: 18.45 - type: map_at_3 value: 14.141 - type: map_at_5 value: 15.455 - type: mrr_at_1 value: 22.15 - type: mrr_at_10 value: 32.062000000000005 - type: mrr_at_100 value: 33.116 - type: mrr_at_1000 value: 33.168 - type: mrr_at_3 value: 28.827 - type: mrr_at_5 value: 30.892999999999997 - type: ndcg_at_1 value: 22.15 - type: ndcg_at_10 value: 23.532 - type: ndcg_at_100 value: 30.358 - type: ndcg_at_1000 value: 33.783 - type: ndcg_at_3 value: 19.222 - type: ndcg_at_5 value: 20.919999999999998 - type: precision_at_1 value: 22.15 - type: precision_at_10 value: 7.185999999999999 - type: precision_at_100 value: 1.433 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 13.941 - type: precision_at_5 value: 10.906 - type: recall_at_1 value: 10.181999999999999 - type: recall_at_10 value: 28.104000000000003 - type: recall_at_100 value: 51.998999999999995 - type: recall_at_1000 value: 71.311 - type: recall_at_3 value: 17.698 - type: recall_at_5 value: 22.262999999999998 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 6.669 - type: map_at_10 value: 15.552 - type: map_at_100 value: 21.865000000000002 - type: map_at_1000 value: 23.268 - type: map_at_3 value: 11.309 - type: map_at_5 value: 13.084000000000001 - type: mrr_at_1 value: 55.50000000000001 - type: mrr_at_10 value: 66.46600000000001 - type: mrr_at_100 value: 66.944 - type: mrr_at_1000 value: 66.956 - type: mrr_at_3 value: 64.542 - type: mrr_at_5 value: 65.717 - type: ndcg_at_1 value: 44.75 - type: ndcg_at_10 value: 35.049 - type: ndcg_at_100 value: 39.073 - type: ndcg_at_1000 value: 46.208 - type: ndcg_at_3 value: 39.525 - type: ndcg_at_5 value: 37.156 - type: precision_at_1 value: 55.50000000000001 - type: precision_at_10 value: 27.800000000000004 - type: precision_at_100 value: 9.013 - type: precision_at_1000 value: 1.8800000000000001 - type: precision_at_3 value: 42.667 - type: precision_at_5 value: 36 - type: recall_at_1 value: 6.669 - type: recall_at_10 value: 21.811 - type: recall_at_100 value: 45.112 - type: recall_at_1000 value: 67.806 - type: recall_at_3 value: 13.373 - type: recall_at_5 value: 16.615 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.769999999999996 - type: f1 value: 42.91448356376592 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 54.013 - type: map_at_10 value: 66.239 - type: map_at_100 value: 66.62599999999999 - type: map_at_1000 value: 66.644 - type: map_at_3 value: 63.965 - type: map_at_5 value: 65.45400000000001 - type: mrr_at_1 value: 58.221000000000004 - type: mrr_at_10 value: 70.43700000000001 - type: mrr_at_100 value: 70.744 - type: mrr_at_1000 value: 70.75099999999999 - type: mrr_at_3 value: 68.284 - type: mrr_at_5 value: 69.721 - type: ndcg_at_1 value: 58.221000000000004 - type: ndcg_at_10 value: 72.327 - type: ndcg_at_100 value: 73.953 - type: ndcg_at_1000 value: 74.312 - type: ndcg_at_3 value: 68.062 - type: ndcg_at_5 value: 70.56400000000001 - type: precision_at_1 value: 58.221000000000004 - type: precision_at_10 value: 9.521 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 27.348 - type: precision_at_5 value: 17.794999999999998 - type: recall_at_1 value: 54.013 - type: recall_at_10 value: 86.957 - type: recall_at_100 value: 93.911 - type: recall_at_1000 value: 96.38 - type: recall_at_3 value: 75.555 - type: recall_at_5 value: 81.671 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 21.254 - type: map_at_10 value: 33.723 - type: map_at_100 value: 35.574 - type: map_at_1000 value: 35.730000000000004 - type: map_at_3 value: 29.473 - type: map_at_5 value: 31.543 - type: mrr_at_1 value: 41.358 - type: mrr_at_10 value: 49.498 - type: mrr_at_100 value: 50.275999999999996 - type: mrr_at_1000 value: 50.308 - type: mrr_at_3 value: 47.016000000000005 - type: mrr_at_5 value: 48.336 - type: ndcg_at_1 value: 41.358 - type: ndcg_at_10 value: 41.579 - type: ndcg_at_100 value: 48.455 - type: ndcg_at_1000 value: 51.165000000000006 - type: ndcg_at_3 value: 37.681 - type: ndcg_at_5 value: 38.49 - type: precision_at_1 value: 41.358 - type: precision_at_10 value: 11.543000000000001 - type: precision_at_100 value: 1.87 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.743000000000002 - type: precision_at_5 value: 17.994 - type: recall_at_1 value: 21.254 - type: recall_at_10 value: 48.698 - type: recall_at_100 value: 74.588 - type: recall_at_1000 value: 91.00200000000001 - type: recall_at_3 value: 33.939 - type: recall_at_5 value: 39.367000000000004 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 35.922 - type: map_at_10 value: 52.32599999999999 - type: map_at_100 value: 53.18000000000001 - type: map_at_1000 value: 53.245 - type: map_at_3 value: 49.294 - type: map_at_5 value: 51.202999999999996 - type: mrr_at_1 value: 71.843 - type: mrr_at_10 value: 78.24600000000001 - type: mrr_at_100 value: 78.515 - type: mrr_at_1000 value: 78.527 - type: mrr_at_3 value: 77.17500000000001 - type: mrr_at_5 value: 77.852 - type: ndcg_at_1 value: 71.843 - type: ndcg_at_10 value: 61.379 - type: ndcg_at_100 value: 64.535 - type: ndcg_at_1000 value: 65.888 - type: ndcg_at_3 value: 56.958 - type: ndcg_at_5 value: 59.434 - type: precision_at_1 value: 71.843 - type: precision_at_10 value: 12.686 - type: precision_at_100 value: 1.517 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 35.778 - type: precision_at_5 value: 23.422 - type: recall_at_1 value: 35.922 - type: recall_at_10 value: 63.43 - type: recall_at_100 value: 75.868 - type: recall_at_1000 value: 84.88900000000001 - type: recall_at_3 value: 53.666000000000004 - type: recall_at_5 value: 58.555 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.4408 - type: ap value: 73.52820871620366 - type: f1 value: 79.36240238685001 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.826999999999998 - type: map_at_10 value: 34.04 - type: map_at_100 value: 35.226 - type: map_at_1000 value: 35.275 - type: map_at_3 value: 30.165999999999997 - type: map_at_5 value: 32.318000000000005 - type: mrr_at_1 value: 22.464000000000002 - type: mrr_at_10 value: 34.631 - type: mrr_at_100 value: 35.752 - type: mrr_at_1000 value: 35.795 - type: mrr_at_3 value: 30.798 - type: mrr_at_5 value: 32.946999999999996 - type: ndcg_at_1 value: 22.464000000000002 - type: ndcg_at_10 value: 40.919 - type: ndcg_at_100 value: 46.632 - type: ndcg_at_1000 value: 47.833 - type: ndcg_at_3 value: 32.992 - type: ndcg_at_5 value: 36.834 - type: precision_at_1 value: 22.464000000000002 - type: precision_at_10 value: 6.494 - type: precision_at_100 value: 0.9369999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.021 - type: precision_at_5 value: 10.347000000000001 - type: recall_at_1 value: 21.826999999999998 - type: recall_at_10 value: 62.132 - type: recall_at_100 value: 88.55199999999999 - type: recall_at_1000 value: 97.707 - type: recall_at_3 value: 40.541 - type: recall_at_5 value: 49.739 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.68399452804377 - type: f1 value: 95.25490609832268 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 83.15321477428182 - type: f1 value: 60.35476439087966 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 69.22815107207565 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4855413584398 - type: f1 value: 72.92107516103387 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.412679360205544 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.09211869875204 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.540919056982545 - type: mrr value: 31.529904607063536 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.745 - type: map_at_10 value: 12.013 - type: map_at_100 value: 15.040000000000001 - type: map_at_1000 value: 16.427 - type: map_at_3 value: 8.841000000000001 - type: map_at_5 value: 10.289 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.20700000000001 - type: mrr_at_1000 value: 54.252 - type: mrr_at_3 value: 51.29 - type: mrr_at_5 value: 52.73 - type: ndcg_at_1 value: 43.808 - type: ndcg_at_10 value: 32.445 - type: ndcg_at_100 value: 30.031000000000002 - type: ndcg_at_1000 value: 39.007 - type: ndcg_at_3 value: 37.204 - type: ndcg_at_5 value: 35.07 - type: precision_at_1 value: 45.201 - type: precision_at_10 value: 23.684 - type: precision_at_100 value: 7.600999999999999 - type: precision_at_1000 value: 2.043 - type: precision_at_3 value: 33.953 - type: precision_at_5 value: 29.412 - type: recall_at_1 value: 5.745 - type: recall_at_10 value: 16.168 - type: recall_at_100 value: 30.875999999999998 - type: recall_at_1000 value: 62.686 - type: recall_at_3 value: 9.75 - type: recall_at_5 value: 12.413 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 37.828 - type: map_at_10 value: 53.239000000000004 - type: map_at_100 value: 54.035999999999994 - type: map_at_1000 value: 54.067 - type: map_at_3 value: 49.289 - type: map_at_5 value: 51.784 - type: mrr_at_1 value: 42.497 - type: mrr_at_10 value: 55.916999999999994 - type: mrr_at_100 value: 56.495 - type: mrr_at_1000 value: 56.516999999999996 - type: mrr_at_3 value: 52.800000000000004 - type: mrr_at_5 value: 54.722 - type: ndcg_at_1 value: 42.468 - type: ndcg_at_10 value: 60.437 - type: ndcg_at_100 value: 63.731 - type: ndcg_at_1000 value: 64.41799999999999 - type: ndcg_at_3 value: 53.230999999999995 - type: ndcg_at_5 value: 57.26 - type: precision_at_1 value: 42.468 - type: precision_at_10 value: 9.47 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.724999999999998 - type: precision_at_5 value: 16.593 - type: recall_at_1 value: 37.828 - type: recall_at_10 value: 79.538 - type: recall_at_100 value: 93.646 - type: recall_at_1000 value: 98.72999999999999 - type: recall_at_3 value: 61.134 - type: recall_at_5 value: 70.377 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.548 - type: map_at_10 value: 84.466 - type: map_at_100 value: 85.10600000000001 - type: map_at_1000 value: 85.123 - type: map_at_3 value: 81.57600000000001 - type: map_at_5 value: 83.399 - type: mrr_at_1 value: 81.24 - type: mrr_at_10 value: 87.457 - type: mrr_at_100 value: 87.574 - type: mrr_at_1000 value: 87.575 - type: mrr_at_3 value: 86.507 - type: mrr_at_5 value: 87.205 - type: ndcg_at_1 value: 81.25 - type: ndcg_at_10 value: 88.203 - type: ndcg_at_100 value: 89.457 - type: ndcg_at_1000 value: 89.563 - type: ndcg_at_3 value: 85.465 - type: ndcg_at_5 value: 87.007 - type: precision_at_1 value: 81.25 - type: precision_at_10 value: 13.373 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.417 - type: precision_at_5 value: 24.556 - type: recall_at_1 value: 70.548 - type: recall_at_10 value: 95.208 - type: recall_at_100 value: 99.514 - type: recall_at_1000 value: 99.988 - type: recall_at_3 value: 87.214 - type: recall_at_5 value: 91.696 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 53.04822095496839 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.30778476474675 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.692 - type: map_at_10 value: 11.766 - type: map_at_100 value: 13.904 - type: map_at_1000 value: 14.216999999999999 - type: map_at_3 value: 8.245 - type: map_at_5 value: 9.92 - type: mrr_at_1 value: 23 - type: mrr_at_10 value: 33.78 - type: mrr_at_100 value: 34.922 - type: mrr_at_1000 value: 34.973 - type: mrr_at_3 value: 30.2 - type: mrr_at_5 value: 32.565 - type: ndcg_at_1 value: 23 - type: ndcg_at_10 value: 19.863 - type: ndcg_at_100 value: 28.141 - type: ndcg_at_1000 value: 33.549 - type: ndcg_at_3 value: 18.434 - type: ndcg_at_5 value: 16.384 - type: precision_at_1 value: 23 - type: precision_at_10 value: 10.39 - type: precision_at_100 value: 2.235 - type: precision_at_1000 value: 0.35300000000000004 - type: precision_at_3 value: 17.133000000000003 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 4.692 - type: recall_at_10 value: 21.025 - type: recall_at_100 value: 45.324999999999996 - type: recall_at_1000 value: 71.675 - type: recall_at_3 value: 10.440000000000001 - type: recall_at_5 value: 14.64 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.96178184892842 - type: cos_sim_spearman value: 79.6487740813199 - type: euclidean_pearson value: 82.06661161625023 - type: euclidean_spearman value: 79.64876769031183 - type: manhattan_pearson value: 82.07061164575131 - type: manhattan_spearman value: 79.65197039464537 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.15305604100027 - type: cos_sim_spearman value: 74.27447427941591 - type: euclidean_pearson value: 80.52737337565307 - type: euclidean_spearman value: 74.27416077132192 - type: manhattan_pearson value: 80.53728571140387 - type: manhattan_spearman value: 74.28853605753457 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.44386080639279 - type: cos_sim_spearman value: 84.17947648159536 - type: euclidean_pearson value: 83.34145388129387 - type: euclidean_spearman value: 84.17947648159536 - type: manhattan_pearson value: 83.30699061927966 - type: manhattan_spearman value: 84.18125737380451 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.57392220985612 - type: cos_sim_spearman value: 78.80745014464101 - type: euclidean_pearson value: 80.01660371487199 - type: euclidean_spearman value: 78.80741240102256 - type: manhattan_pearson value: 79.96810779507953 - type: manhattan_spearman value: 78.75600400119448 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.85421063026625 - type: cos_sim_spearman value: 87.55320285299192 - type: euclidean_pearson value: 86.69750143323517 - type: euclidean_spearman value: 87.55320284326378 - type: manhattan_pearson value: 86.63379169960379 - type: manhattan_spearman value: 87.4815029877984 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.31314130411842 - type: cos_sim_spearman value: 85.3489588181433 - type: euclidean_pearson value: 84.13240933463535 - type: euclidean_spearman value: 85.34902871403281 - type: manhattan_pearson value: 84.01183086503559 - type: manhattan_spearman value: 85.19316703166102 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.09979781689536 - type: cos_sim_spearman value: 88.87813323759015 - type: euclidean_pearson value: 88.65413031123792 - type: euclidean_spearman value: 88.87813323759015 - type: manhattan_pearson value: 88.61818758256024 - type: manhattan_spearman value: 88.81044100494604 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30693258111531 - type: cos_sim_spearman value: 62.195516523251946 - type: euclidean_pearson value: 62.951283701049476 - type: euclidean_spearman value: 62.195516523251946 - type: manhattan_pearson value: 63.068322281439535 - type: manhattan_spearman value: 62.10621171028406 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.27092833763909 - type: cos_sim_spearman value: 84.84429717949759 - type: euclidean_pearson value: 84.8516966060792 - type: euclidean_spearman value: 84.84429717949759 - type: manhattan_pearson value: 84.82203139242881 - type: manhattan_spearman value: 84.8358503952945 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.10290863981409 - type: mrr value: 95.31168450286097 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 52.161 - type: map_at_10 value: 62.138000000000005 - type: map_at_100 value: 62.769 - type: map_at_1000 value: 62.812 - type: map_at_3 value: 59.111000000000004 - type: map_at_5 value: 60.995999999999995 - type: mrr_at_1 value: 55.333 - type: mrr_at_10 value: 63.504000000000005 - type: mrr_at_100 value: 64.036 - type: mrr_at_1000 value: 64.08 - type: mrr_at_3 value: 61.278 - type: mrr_at_5 value: 62.778 - type: ndcg_at_1 value: 55.333 - type: ndcg_at_10 value: 66.678 - type: ndcg_at_100 value: 69.415 - type: ndcg_at_1000 value: 70.453 - type: ndcg_at_3 value: 61.755 - type: ndcg_at_5 value: 64.546 - type: precision_at_1 value: 55.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.221999999999998 - type: precision_at_5 value: 16.333000000000002 - type: recall_at_1 value: 52.161 - type: recall_at_10 value: 79.156 - type: recall_at_100 value: 91.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 66.43299999999999 - type: recall_at_5 value: 73.272 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81287128712871 - type: cos_sim_ap value: 95.30034785910676 - type: cos_sim_f1 value: 90.28629856850716 - type: cos_sim_precision value: 92.36401673640168 - type: cos_sim_recall value: 88.3 - type: dot_accuracy value: 99.81287128712871 - type: dot_ap value: 95.30034785910676 - type: dot_f1 value: 90.28629856850716 - type: dot_precision value: 92.36401673640168 - type: dot_recall value: 88.3 - type: euclidean_accuracy value: 99.81287128712871 - type: euclidean_ap value: 95.30034785910676 - type: euclidean_f1 value: 90.28629856850716 - type: euclidean_precision value: 92.36401673640168 - type: euclidean_recall value: 88.3 - type: manhattan_accuracy value: 99.80990099009901 - type: manhattan_ap value: 95.26880751950654 - type: manhattan_f1 value: 90.22177419354838 - type: manhattan_precision value: 90.95528455284553 - type: manhattan_recall value: 89.5 - type: max_accuracy value: 99.81287128712871 - type: max_ap value: 95.30034785910676 - type: max_f1 value: 90.28629856850716 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.518662504351184 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.96168178378587 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.04862593471896 - type: mrr value: 52.97238402936932 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.092545236479946 - type: cos_sim_spearman value: 31.599851000175498 - type: dot_pearson value: 30.092542723901676 - type: dot_spearman value: 31.599851000175498 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.189 - type: map_at_10 value: 1.662 - type: map_at_100 value: 9.384 - type: map_at_1000 value: 22.669 - type: map_at_3 value: 0.5559999999999999 - type: map_at_5 value: 0.9039999999999999 - type: mrr_at_1 value: 68 - type: mrr_at_10 value: 81.01899999999999 - type: mrr_at_100 value: 81.01899999999999 - type: mrr_at_1000 value: 81.01899999999999 - type: mrr_at_3 value: 79.333 - type: mrr_at_5 value: 80.733 - type: ndcg_at_1 value: 63 - type: ndcg_at_10 value: 65.913 - type: ndcg_at_100 value: 51.895 - type: ndcg_at_1000 value: 46.967 - type: ndcg_at_3 value: 65.49199999999999 - type: ndcg_at_5 value: 66.69699999999999 - type: precision_at_1 value: 68 - type: precision_at_10 value: 71.6 - type: precision_at_100 value: 53.66 - type: precision_at_1000 value: 21.124000000000002 - type: precision_at_3 value: 72.667 - type: precision_at_5 value: 74 - type: recall_at_1 value: 0.189 - type: recall_at_10 value: 1.913 - type: recall_at_100 value: 12.601999999999999 - type: recall_at_1000 value: 44.296 - type: recall_at_3 value: 0.605 - type: recall_at_5 value: 1.018 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.701 - type: map_at_10 value: 10.445 - type: map_at_100 value: 17.324 - type: map_at_1000 value: 19.161 - type: map_at_3 value: 5.497 - type: map_at_5 value: 7.278 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 45.534 - type: mrr_at_100 value: 45.792 - type: mrr_at_1000 value: 45.806999999999995 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 43.469 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 26.235000000000003 - type: ndcg_at_100 value: 39.17 - type: ndcg_at_1000 value: 51.038 - type: ndcg_at_3 value: 23.625 - type: ndcg_at_5 value: 24.338 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 24.285999999999998 - type: precision_at_100 value: 8.224 - type: precision_at_1000 value: 1.6179999999999999 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.701 - type: recall_at_10 value: 17.997 - type: recall_at_100 value: 51.766999999999996 - type: recall_at_1000 value: 87.863 - type: recall_at_3 value: 6.295000000000001 - type: recall_at_5 value: 9.993 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 73.3474 - type: ap value: 15.393431414459924 - type: f1 value: 56.466681887882416 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.062818336163 - type: f1 value: 62.11230840463252 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 42.464892820845115 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.15962329379508 - type: cos_sim_ap value: 74.73674057919256 - type: cos_sim_f1 value: 68.81245642574947 - type: cos_sim_precision value: 61.48255813953488 - type: cos_sim_recall value: 78.12664907651715 - type: dot_accuracy value: 86.15962329379508 - type: dot_ap value: 74.7367634988281 - type: dot_f1 value: 68.81245642574947 - type: dot_precision value: 61.48255813953488 - type: dot_recall value: 78.12664907651715 - type: euclidean_accuracy value: 86.15962329379508 - type: euclidean_ap value: 74.7367761466634 - type: euclidean_f1 value: 68.81245642574947 - type: euclidean_precision value: 61.48255813953488 - type: euclidean_recall value: 78.12664907651715 - type: manhattan_accuracy value: 86.21326816474935 - type: manhattan_ap value: 74.64416473733951 - type: manhattan_f1 value: 68.80924855491331 - type: manhattan_precision value: 61.23456790123457 - type: manhattan_recall value: 78.52242744063325 - type: max_accuracy value: 86.21326816474935 - type: max_ap value: 74.7367761466634 - type: max_f1 value: 68.81245642574947 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.97620988085536 - type: cos_sim_ap value: 86.08680845745758 - type: cos_sim_f1 value: 78.02793637114438 - type: cos_sim_precision value: 73.11082699683736 - type: cos_sim_recall value: 83.65414228518632 - type: dot_accuracy value: 88.97620988085536 - type: dot_ap value: 86.08681149437946 - type: dot_f1 value: 78.02793637114438 - type: dot_precision value: 73.11082699683736 - type: dot_recall value: 83.65414228518632 - type: euclidean_accuracy value: 88.97620988085536 - type: euclidean_ap value: 86.08681215460771 - type: euclidean_f1 value: 78.02793637114438 - type: euclidean_precision value: 73.11082699683736 - type: euclidean_recall value: 83.65414228518632 - type: manhattan_accuracy value: 88.88888888888889 - type: manhattan_ap value: 86.02916327562438 - type: manhattan_f1 value: 78.02063045516843 - type: manhattan_precision value: 73.38851947346994 - type: manhattan_recall value: 83.2768709578072 - type: max_accuracy value: 88.97620988085536 - type: max_ap value: 86.08681215460771 - type: max_f1 value: 78.02793637114438 --- ***See Disclaimer below*** ---- # A Teradata Vantage compatible Embeddings Model # jinaai/jina-embeddings-v2-base-en ## Overview of this Model An Embedding Model which maps text (sentence/ paragraphs) into a vector. The [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings. - 137.37M params (Sizes in ONNX format - "fp32": 522.03MB, "int8": 131.14MB, "uint8": 131.14MB) - 8192 maximum input tokens - 768 dimensions of output vector - Licence: apache-2.0. The released models can be used for commercial purposes free of charge. - Reference to Original Model: https://huggingface.co/jinaai/jina-embeddings-v2-base-en ## Quickstart: Deploying this Model in Teradata Vantage We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion. **Note:** Ensure you have access to a Teradata Database with BYOM 6.0 installed. To get started, clone the pre-converted model directly from the Teradata HuggingFace repository. ```python import teradataml as tdml import getpass from huggingface_hub import hf_hub_download model_name = "jina-embeddings-v2-base-en" number_dimensions_output = 768 model_file_name = "model.onnx" # Step 1: Download Model from Teradata HuggingFace Page hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./") hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./") # Step 2: Create Connection to Vantage tdml.create_context(host = input('enter your hostname'), username=input('enter your username'), password = getpass.getpass("enter your password")) # Step 3: Load Models into Vantage # a) Embedding model tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = f"onnx/{model_file_name}", table_name = 'embeddings_models' ) # b) Tokenizer tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = 'tokenizer.json', table_name = 'embeddings_tokenizers') # Step 4: Test ONNXEmbeddings Function # Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. # If it has got a different name, just rename it in a subquery/CTE. input_table = "emails.emails" embeddings_query = f""" SELECT * from mldb.ONNXEmbeddings( on {input_table} as InputTable on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION using Accumulate('id', 'txt') ModelOutputTensor('sentence_embedding') EnableMemoryCheck('false') OutputFormat('FLOAT32({number_dimensions_output})') OverwriteCachedModel('true') ) a """ DF_embeddings = tdml.DataFrame.from_query(embeddings_query) DF_embeddings ``` ## What Can I Do with the Embeddings? Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples: - **Semantic Clustering with TD_KMeans:** [Semantic Clustering Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Clustering_Python.ipynb) - **Semantic Distance with TD_VectorDistance:** [Semantic Similarity Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Similarity_Python.ipynb) - **RAG-Based Application with TD_VectorDistance:** [RAG and Bedrock Query PDF Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/RAG_and_Bedrock_QueryPDF.ipynb) ## Deep Dive into Model Conversion to ONNX **The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.** You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format. ### Part 1. Importing and Converting Model using optimum We start by importing the pre-trained [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) model from Hugging Face. We are downloading the ONNX files from the repository prepared by the model authors. After downloading, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage Also we adding the man pooling and normalization layers to the ONNX file We are generating ONNX files for multiple different precisions: fp32, int8, uint8 You can find the detailed conversion steps in the file [convert.py](./convert.py) ### Part 2. Running the model in Python with onnxruntime & compare results Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results. If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database. ```python import onnxruntime as rt from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer import transformers sentences_1 = 'How is the weather today?' sentences_2 = 'What is the current weather like today?' # Calculate ONNX result tokenizer = transformers.AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en") predef_sess = rt.InferenceSession("onnx/model.onnx") enc1 = tokenizer(sentences_1) embeddings_1_onnx = predef_sess.run(None, {"input_ids": [enc1.input_ids], "attention_mask": [enc1.attention_mask]}) enc2 = tokenizer(sentences_2) embeddings_2_onnx = predef_sess.run(None, {"input_ids": [enc2.input_ids], "attention_mask": [enc2.attention_mask]}) # Calculate embeddings with SentenceTransformer model = SentenceTransformer(model_id, trust_remote_code=True) embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True) embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True) # Compare results print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0]))) print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer))) ``` You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py) ----- DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata. To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations. While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws. You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.
[ "BIOSSES", "SCIFACT" ]
RomainDarous/large_directThreeEpoch_additivePooling_noisedInit_mistranslationModel
RomainDarous
sentence-similarity
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4460010", "loss:CoSENTLoss", "dataset:RomainDarous/corrupted_os_by_language", "arxiv:1908.10084", "base_model:RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel", "base_model:finetune:RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-02-15T09:25:04Z
2025-02-15T09:25:46+00:00
28
0
--- base_model: RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel datasets: - RomainDarous/corrupted_os_by_language library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4460010 - loss:CoSENTLoss widget: - source_sentence: Malformed target specific variable definition sentences: - Hedefe özgü değişken tanımı bozuk - Kan alle data in die gids lees - "слава Украине! героям слава!\uFEFF" - source_sentence: Can't write an inode bitmap sentences: - Skontrolujte stav aktualizácií alebo to skúste znova neskôr. - Malsukcesis skribi i nodan bitmapon - Zastępuje wersję GL obsługiwaną przez sterownik - source_sentence: Optimize soft proofing color transformations sentences: - 'arkadaslar biz artik her an kirmizi kart yiyecek,bencil,pas yapamayan,isabetsiz orta yapani istemiyoruz. sozde efsaneniz bu sezon Besiktasa en cok zarar verenlerden biriydi. kendini dusunmeden once Besiktasi dusunecek adam lazim bize. o yuzden #GoHomeQuaresma' - Yav bizim dedikodusunu yaptığımız insanın bile bi vizyonu var. Senin hakkında neden oturup konuşalım? - Ik ben een transgender. - source_sentence: 'Pass 1: Checking @is, @bs, and sizes' sentences: - Bu adam cidden kurabiye gibi ben bunu çayın yanında yerim - sagnat. errada. invisible. justificació. idioma - Wilt u echt de primaire sleutel verplaatsen? (j N) - source_sentence: Search for matching log entries sentences: - quem te lembra? caralho tô assustada aqui kkkkk - sendotasunik gabeko\ egoera bistaratuko den ala ez adierazten du - En aquest cas, hem d'incloure les imatges del contenidor )sr iov per a càrregues de treball de telco (per exemple, com a referència, es podrien obtenir des de valors de helm chart) model-index: - name: SentenceTransformer based on RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts eval type: sts-eval metrics: - type: pearson_cosine value: 0.9799016413969349 name: Pearson Cosine - type: spearman_cosine value: 0.8655872972160841 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.9799368524868214 name: Pearson Cosine - type: spearman_cosine value: 0.8656078074942255 name: Spearman Cosine --- # SentenceTransformer based on RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel](https://huggingface.co/RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel) on the [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel](https://huggingface.co/RomainDarous/large_directTwoEpoch_additivePooling_noisedInit_mistranslationModel) <!-- at revision 0dff7d600166475117133f4043a2af4eb60f1be8 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): MultiHeadGeneralizedPooling( (P): ModuleList( (0-7): 8 x Linear(in_features=768, out_features=96, bias=True) ) (W1): ModuleList( (0-7): 8 x Linear(in_features=96, out_features=384, bias=True) ) (W2): ModuleList( (0-7): 8 x Linear(in_features=384, out_features=96, bias=True) ) ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("RomainDarous/large_directThreeEpoch_additivePooling_noisedInit_mistranslationModel") # Run inference sentences = [ 'Search for matching log entries', 'quem te lembra? caralho tô assustada aqui kkkkk', 'sendotasunik gabeko\\ egoera bistaratuko den ala ez adierazten du', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-eval` and `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-eval | sts-test | |:--------------------|:-----------|:-----------| | pearson_cosine | 0.9799 | 0.9799 | | **spearman_cosine** | **0.8656** | **0.8656** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### corrupted_open_os_by_language * Dataset: [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c) * Size: 4,460,010 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 18.33 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------| | <code>Check spelling. Print the document. Show completion window. General. Show help</code> | <code>Kontrolli õigekirja. присоединяюсь. </code> | <code>0</code> | | <code>EXIF not supported for this file format.</code> | <code>Šiam failo formatui EXIF nepalaikomas.</code> | <code>1</code> | | <code>This package includes the documentation for texlive everyhook</code> | <code>Paket ini menyertakan dokumentasi untuk texlive everyhook</code> | <code>1</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### corrupted_open_os_by_language * Dataset: [corrupted_open_os_by_language](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co/datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c) * Size: 4,460,010 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 5 tokens</li><li>mean: 17.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 26.95 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Could not identify the current seat.</code> | <code> 天天花着男人的钱还这这创造新词汇男权你可真牛批,你也就这一出了一问男权,就说是我是吧,到现在我也没听到你给我们讲的男权,你也就是在网上喷喷,现实走道都不敢探头自卑,你现实要把你女权的劲拿出来总低啥头,您老应该去国家教育局把男权加上是吧,你们女权天天说自己生活不好没地位,给你们地位了你们能干啥?用你们的女权打到全世界男性是吧,能相出男权这一词您老也是人才呀,是不是庆幸自己是个女的,活在自己想想的世界里不觉得孤单吗,假象有男权是吧,自己假象和男权还说自己不是田园女权,田园女权能连自己都骂说自己妈是驴爸是大鼎的也是奇葩呀,那我们国家大肆宣扬过你们这么田园女权吗,国家要的是女性人群自主自理,你们可好看看你们女权干的啥事,给你们女权地位高了,看看你们女权干的事n绿地集团高管怎么都不说呀,人家可是有钱有地位,也不是我们说三从四德洗衣做饭你们女权会吗?,那我问问你们女权干过啥惊天大事,还甩锅给孔子,还封建社会,那我问问你们女权在福利面前为啥说自己是女性呀不是社会主义社会吗不应该男女平等吗,天天自己也不知道是不是抱个手机天天欧巴欧巴,你家那位要是不陪你看一会就会问你是不是不爱我了是吧大姐,您老也就赚这白菜钱操心国家事,中国五千年的历史被您老一句否决,还嘲讽人家日本女性,好意思说自己不是女权,三从四德流传这么久到您这变成日本文化了,我就想问问男权您老是怎么想的,那你问孔子老人家呗为什么女人要三从四德,我说的是女权你干嘛自己对号入座,连中华人民传承的东西都不认跟我这谈男权,还男权您老给我举个例子呗,让我们男权听听都是h啥,这些不都是你们女权的标准吗?,还男权,您老醒醒吧这里是现实,不是你的公主世界,总觉得自己多么多么重要,地球没你是不能转了还是人类要灭亡呀,我真的想问一句你给我找一条男权的新闻,咋了我们男人不能提女权呗你老授权了呗,那我们谈论田园女权你老对号入座干嘛,天天过节要礼物,还嫌弃自己男朋友没有钱,我寻思你找个有钱人包养你呗,对了有钱人怎么可能看上你这种女权的呢,还要孩子跟女方姓我也没看见你没跟你妈姓呀,年年过节男人给你们送礼物你们女人给男人送过礼物吗?,一问我不是陪着他吗我对他说我爱你了这不是最好的礼物吗?,男人只要不送礼物就是不爱你们了呗,人家国际女权讲的男人能做的我们女人也能做,田园女权男人能做的我们女人为啥要做,还男权我笑了,以前结婚几头牛换个衣服原装的,现在几十万彩...</code> | <code>0</code> | | <code>Undoing Date and Time Adjustment</code> | <code>正在取消日期和时间调整</code> | <code>1</code> | | <code>Dependency package for gsl_2_6 gnu hpc</code> | <code>Pacotes de desenvolvimento do KDE</code> | <code>1</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | corrupted open os by language loss | sts-eval_spearman_cosine | sts-test_spearman_cosine | |:-----:|:-----:|:-------------:|:----------------------------------:|:------------------------:|:------------------------:| | 1.0 | 55751 | 0.1319 | 0.2719 | 0.8656 | - | | -1 | -1 | - | - | - | 0.8656 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.4.1 - Transformers: 4.48.2 - PyTorch: 2.1.2+cu121 - Accelerate: 1.3.0 - Datasets: 2.16.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "CAS" ]
UMA-IA/CENTAURUS-Components-v2
UMA-IA
text-generation
[ "safetensors", "mistral", "aerospace", "aeronautics", "engineering", "technical-QA", "components", "text-generation", "fr", "dataset:UMA-IA/VELA-Components-v2", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "region:us" ]
2025-03-14T17:31:15Z
2025-03-16T16:00:31+00:00
28
0
--- base_model: mistralai/Mistral-7B-v0.1 datasets: - UMA-IA/VELA-Components-v2 language: - fr license: mit pipeline_tag: text-generation tags: - aerospace - aeronautics - engineering - technical-QA - components --- ## Model Details **Model Name:** UMA-IA/CENTAURUS-Components-v2 **Authors:** - **Youri LALAIN**, Engineering student at French Engineering School ECE - **Lilian RAGE**, Engineering student at French Engineering School ECE **Base Model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) **Fine-tuned Dataset:** [UMA-IA/VELA-Components-v2](https://huggingface.co/datasets/UMA-IA/UMA_Dataset_Components_LLM) **License:** Apache 2.0 ## Model Description # Mistral-7B Fine-tuné sur les composants aérospatiaux UMA-IA/CENTAURUS-Components-v2 est une version spécialisée du modèle Mistral-7B, fine-tunée pour fournir des réponses précises et concises aux questions techniques concernant les composants aérospatiaux et aéronautiques. Le modèle s'appuie sur le dataset UMA-IA/VELA-Components-v2 pour améliorer sa compréhension des composants de propulsion, leurs caractéristiques techniques, et leur maintenance. ## Capacités - Réponses techniques concernant les composants aérospatiaux - Informations sur les fournisseurs de composants spécifiques - Détails sur la durée de vie et la maintenance des composants - Explications du rôle fonctionnel des composants - Analyse des modes de défaillance et leurs conséquences - Délimitation claire des domaines d'expertise (reconnaissance des questions hors domaine) ## Composants couverts ### Composants de moteurs-fusées - Tuyère (Nozzle) - Chambre de combustion (Combustion chamber) - Turbopompe (Turbopump) - Injecteur (Injector) - Système d'allumage (Ignition system) - Échangeur thermique (Heat exchanger) - Vanne de régulation (Control valve) - Conduits de carburant (Fuel lines) - Système de refroidissement (Cooling system) - Et plus encore... ### Composants de turboréacteurs - Soufflante (Fan) - Compresseur (Compressor) - Chambre annulaire (Annular chamber) - Turbine (Turbine) - Postcombustion (Afterburner) - Carter d'admission (Intake housing) - Stator (Stator) - Redresseur de flux (Flow straightener) - Aubes (Blades) - Et plus encore... ## Cas d'utilisation - Support technique en ingénierie aérospatiale - Formation et éducation sur les systèmes de propulsion - Assistance à la conception et à la maintenance de systèmes aérospatiaux - Documentation technique et développement de bases de connaissances - Applications pédagogiques en ingénierie aérospatiale ## Détails d'entraînement Ce modèle a été fine-tuné sur le dataset UMA-IA/VELA-Components-v2, qui contient environ 800 paires question-réponse concernant divers composants aérospatiaux. Le processus de fine-tuning a utilisé la technique LoRA (Low-Rank Adaptation) pour adapter efficacement le modèle Mistral-7B à ce domaine spécifique. ## Comment utiliser Vous pouvez charger le modèle en utilisant la bibliothèque `transformers` de Hugging Face: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Charger le modèle et le tokenizer model_name = "UMA-IA/CENTAURUS-Components-v2" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Format d'entrée recommandé question = "Quelle est la durée de vie moyenne d'une tuyère?" context = "Type: COMPOSANT, Composant: Tuyère, Catégorie: DURÉE_DE_VIE, Thème: question_simple" input_text = f"Question: {question}\nContexte: {context}\nRéponse:" # Générer une réponse inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs["input_ids"], max_new_tokens=50, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Exemples Question: Quelle est la durée de vie moyenne d'une tuyère? Contexte: Type: COMPOSANT, Composant: Tuyère, Catégorie: DURÉE_DE_VIE, Thème: question_simple Réponse: La durée de vie moyenne d'une tuyère est de 1500 à 2000 cycles d'utilisation. Les températures extrêmes et l'érosion thermique sont les principaux facteurs limitants.
[ "CAS" ]
ktangri/gpt-neo-demo
ktangri
text-generation
[ "transformers", "pytorch", "gpt_neo", "text-generation", "text generation", "the Pile", "causal-lm", "en", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2021-07-21T15:20:09+00:00
27
1
--- datasets: - the Pile language: - en license: apache-2.0 tags: - text generation - pytorch - the Pile - causal-lm --- # GPT-Neo 2.7B (By EleutherAI) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
[ "PUBMEDQA" ]
alea31415/kumabear-roukin-characters
alea31415
text-to-image
[ "diffusers", "stable-diffusion", "anime", "aiart", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2023-04-11T23:56:34Z
2023-04-12T15:56:13+00:00
27
2
--- library_name: diffusers license: creativeml-openrail-m pipeline_tag: text-to-image tags: - stable-diffusion - anime - aiart --- **This model is trained for 12 characters from Kuma Kuma Kuma Bear (くまクマ熊ベアー) + 5 characters from Saving 80,000 Gold in Another World for My Retirement (老後に備えて異世界で8万枚の金貨を貯めます)** **Why do I train the two animes together?** I feel these two animes (light novels actually) have so much similarity that I really want to make some crossovers. For examples please see https://civitai.com/models/37632/kumabear-roukin8-characters-fullckpt Moreover there is no reason to do single anime either. I plan to add __shinmai renkinjutsushi no tenpo keiei__ next. ## Trigger Words **KumaBear** * Atla * Cliff * Eleanora * Fina * Flora * Gentz * Misana * Noire * Shia * Shuri * Telmina * Yuna **Roukin8** * Adelaide * Beatrice * Colette * Sabine * YamanoMitsuha **Styles** (may not be very effective) * aniscreen * fanart * light novel * official art * ..., style(s) of your favorite model if know how to merge things properly --- To get everything right you may need additional trigger words for outfits and ornaments. Here are some suggestions - If you want to get the bear costume of Yuna you may add kigurumi, bear hood, animal hood, animal costume, hand puppet etc. - Add Red bow for Fina/Shuri/Noire - Add twin drill for Shia - Add double bun for Flora - Add scrunchie for telmina Kumakyuu and Kumayuru are not tagged, but you may get something that look right by prompting with bears, stuffed animal etc. Interestingly I can hardly take off the hood of Yuna during the early phase of training, but it becomes possible after longer training (actually now Yuna by default does not have hood though almost all the images of her have hood on!) Many characters are missing from the two animes. I may update the KumaBear one at the end of the season with the following characters * kumakyuu * kumayuru * Lurina * Farrat (king) * Kitia (queen) * Karin * Sanya * Helen * Ans * Mylene * Cattleya ## Dataset * KumaBear 5113 * anime screenshots 5042 * fanart 37 * official art 15 * novel illustration 19 * Roukin8 2948 (screenshots only) * Regularization ~30K ## Training * First trained for 9739 steps, resumed and trained for another 20494 steps * clip skip 1, resolution 512, batch size 8, on top of [JosephusCheung/ACertainty](https://huggingface.co/JosephusCheung/ACertainty/tree/main) * 2.5e-6 cosine scheduler, Adam8bit, conditional dropout 0.08
[ "BEAR" ]
gentlebowl/instructor-large-safetensors
gentlebowl
sentence-similarity
[ "sentence-transformers", "pytorch", "safetensors", "t5", "text-embedding", "embeddings", "information-retrieval", "beir", "text-classification", "language-model", "text-clustering", "text-semantic-similarity", "text-evaluation", "prompt-retrieval", "text-reranking", "feature-extraction", "sentence-similarity", "transformers", "English", "Sentence Similarity", "natural_questions", "ms_marco", "fever", "hotpot_qa", "mteb", "en", "arxiv:2212.09741", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "region:us" ]
2023-04-25T03:52:25Z
2023-04-25T04:13:31+00:00
27
0
--- language: en license: apache-2.0 pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb inference: false duplicated_from: hkunlp/instructor-large model-index: - name: INSTRUCTOR results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 88.13432835820896 - type: ap value: 59.298209334395665 - type: f1 value: 83.31769058643586 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.526375 - type: ap value: 88.16327709705504 - type: f1 value: 91.51095801287843 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.856 - type: f1 value: 45.41490917650942 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 31.223 - type: map_at_10 value: 47.947 - type: map_at_100 value: 48.742000000000004 - type: map_at_1000 value: 48.745 - type: map_at_3 value: 43.137 - type: map_at_5 value: 45.992 - type: mrr_at_1 value: 32.432 - type: mrr_at_10 value: 48.4 - type: mrr_at_100 value: 49.202 - type: mrr_at_1000 value: 49.205 - type: mrr_at_3 value: 43.551 - type: mrr_at_5 value: 46.467999999999996 - type: ndcg_at_1 value: 31.223 - type: ndcg_at_10 value: 57.045 - type: ndcg_at_100 value: 60.175 - type: ndcg_at_1000 value: 60.233000000000004 - type: ndcg_at_3 value: 47.171 - type: ndcg_at_5 value: 52.322 - type: precision_at_1 value: 31.223 - type: precision_at_10 value: 8.599 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.63 - type: precision_at_5 value: 14.282 - type: recall_at_1 value: 31.223 - type: recall_at_10 value: 85.989 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 58.89 - type: recall_at_5 value: 71.408 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 43.1621946393635 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.56417132407894 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.29539304390207 - type: mrr value: 76.44484017060196 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 84.38746499431112 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 78.51298701298701 - type: f1 value: 77.49041754069235 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.61848554098577 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.32623280148178 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 35.803000000000004 - type: map_at_10 value: 48.848 - type: map_at_100 value: 50.5 - type: map_at_1000 value: 50.602999999999994 - type: map_at_3 value: 45.111000000000004 - type: map_at_5 value: 47.202 - type: mrr_at_1 value: 44.635000000000005 - type: mrr_at_10 value: 55.593 - type: mrr_at_100 value: 56.169999999999995 - type: mrr_at_1000 value: 56.19499999999999 - type: mrr_at_3 value: 53.361999999999995 - type: mrr_at_5 value: 54.806999999999995 - type: ndcg_at_1 value: 44.635000000000005 - type: ndcg_at_10 value: 55.899 - type: ndcg_at_100 value: 60.958 - type: ndcg_at_1000 value: 62.302 - type: ndcg_at_3 value: 51.051 - type: ndcg_at_5 value: 53.351000000000006 - type: precision_at_1 value: 44.635000000000005 - type: precision_at_10 value: 10.786999999999999 - type: precision_at_100 value: 1.6580000000000001 - type: precision_at_1000 value: 0.213 - type: precision_at_3 value: 24.893 - type: precision_at_5 value: 17.740000000000002 - type: recall_at_1 value: 35.803000000000004 - type: recall_at_10 value: 68.657 - type: recall_at_100 value: 89.77199999999999 - type: recall_at_1000 value: 97.67 - type: recall_at_3 value: 54.066 - type: recall_at_5 value: 60.788 - type: map_at_1 value: 33.706 - type: map_at_10 value: 44.896 - type: map_at_100 value: 46.299 - type: map_at_1000 value: 46.44 - type: map_at_3 value: 41.721000000000004 - type: map_at_5 value: 43.486000000000004 - type: mrr_at_1 value: 41.592 - type: mrr_at_10 value: 50.529 - type: mrr_at_100 value: 51.22 - type: mrr_at_1000 value: 51.258 - type: mrr_at_3 value: 48.205999999999996 - type: mrr_at_5 value: 49.528 - type: ndcg_at_1 value: 41.592 - type: ndcg_at_10 value: 50.77199999999999 - type: ndcg_at_100 value: 55.383 - type: ndcg_at_1000 value: 57.288 - type: ndcg_at_3 value: 46.324 - type: ndcg_at_5 value: 48.346000000000004 - type: precision_at_1 value: 41.592 - type: precision_at_10 value: 9.516 - type: precision_at_100 value: 1.541 - type: precision_at_1000 value: 0.2 - type: precision_at_3 value: 22.399 - type: precision_at_5 value: 15.770999999999999 - type: recall_at_1 value: 33.706 - type: recall_at_10 value: 61.353 - type: recall_at_100 value: 80.182 - type: recall_at_1000 value: 91.896 - type: recall_at_3 value: 48.204 - type: recall_at_5 value: 53.89699999999999 - type: map_at_1 value: 44.424 - type: map_at_10 value: 57.169000000000004 - type: map_at_100 value: 58.202 - type: map_at_1000 value: 58.242000000000004 - type: map_at_3 value: 53.825 - type: map_at_5 value: 55.714 - type: mrr_at_1 value: 50.470000000000006 - type: mrr_at_10 value: 60.489000000000004 - type: mrr_at_100 value: 61.096 - type: mrr_at_1000 value: 61.112 - type: mrr_at_3 value: 58.192 - type: mrr_at_5 value: 59.611999999999995 - type: ndcg_at_1 value: 50.470000000000006 - type: ndcg_at_10 value: 63.071999999999996 - type: ndcg_at_100 value: 66.964 - type: ndcg_at_1000 value: 67.659 - type: ndcg_at_3 value: 57.74399999999999 - type: ndcg_at_5 value: 60.367000000000004 - type: precision_at_1 value: 50.470000000000006 - type: precision_at_10 value: 10.019 - type: precision_at_100 value: 1.29 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 25.558999999999997 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 44.424 - type: recall_at_10 value: 77.02 - type: recall_at_100 value: 93.738 - type: recall_at_1000 value: 98.451 - type: recall_at_3 value: 62.888 - type: recall_at_5 value: 69.138 - type: map_at_1 value: 26.294 - type: map_at_10 value: 34.503 - type: map_at_100 value: 35.641 - type: map_at_1000 value: 35.724000000000004 - type: map_at_3 value: 31.753999999999998 - type: map_at_5 value: 33.190999999999995 - type: mrr_at_1 value: 28.362 - type: mrr_at_10 value: 36.53 - type: mrr_at_100 value: 37.541000000000004 - type: mrr_at_1000 value: 37.602000000000004 - type: mrr_at_3 value: 33.917 - type: mrr_at_5 value: 35.358000000000004 - type: ndcg_at_1 value: 28.362 - type: ndcg_at_10 value: 39.513999999999996 - type: ndcg_at_100 value: 44.815 - type: ndcg_at_1000 value: 46.839 - type: ndcg_at_3 value: 34.02 - type: ndcg_at_5 value: 36.522 - type: precision_at_1 value: 28.362 - type: precision_at_10 value: 6.101999999999999 - type: precision_at_100 value: 0.9129999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 14.161999999999999 - type: precision_at_5 value: 9.966 - type: recall_at_1 value: 26.294 - type: recall_at_10 value: 53.098 - type: recall_at_100 value: 76.877 - type: recall_at_1000 value: 91.834 - type: recall_at_3 value: 38.266 - type: recall_at_5 value: 44.287 - type: map_at_1 value: 16.407 - type: map_at_10 value: 25.185999999999996 - type: map_at_100 value: 26.533 - type: map_at_1000 value: 26.657999999999998 - type: map_at_3 value: 22.201999999999998 - type: map_at_5 value: 23.923 - type: mrr_at_1 value: 20.522000000000002 - type: mrr_at_10 value: 29.522 - type: mrr_at_100 value: 30.644 - type: mrr_at_1000 value: 30.713 - type: mrr_at_3 value: 26.679000000000002 - type: mrr_at_5 value: 28.483000000000004 - type: ndcg_at_1 value: 20.522000000000002 - type: ndcg_at_10 value: 30.656 - type: ndcg_at_100 value: 36.864999999999995 - type: ndcg_at_1000 value: 39.675 - type: ndcg_at_3 value: 25.319000000000003 - type: ndcg_at_5 value: 27.992 - type: precision_at_1 value: 20.522000000000002 - type: precision_at_10 value: 5.795999999999999 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 12.396 - type: precision_at_5 value: 9.328 - type: recall_at_1 value: 16.407 - type: recall_at_10 value: 43.164 - type: recall_at_100 value: 69.695 - type: recall_at_1000 value: 89.41900000000001 - type: recall_at_3 value: 28.634999999999998 - type: recall_at_5 value: 35.308 - type: map_at_1 value: 30.473 - type: map_at_10 value: 41.676 - type: map_at_100 value: 43.120999999999995 - type: map_at_1000 value: 43.230000000000004 - type: map_at_3 value: 38.306000000000004 - type: map_at_5 value: 40.355999999999995 - type: mrr_at_1 value: 37.536 - type: mrr_at_10 value: 47.643 - type: mrr_at_100 value: 48.508 - type: mrr_at_1000 value: 48.551 - type: mrr_at_3 value: 45.348 - type: mrr_at_5 value: 46.744 - type: ndcg_at_1 value: 37.536 - type: ndcg_at_10 value: 47.823 - type: ndcg_at_100 value: 53.395 - type: ndcg_at_1000 value: 55.271 - type: ndcg_at_3 value: 42.768 - type: ndcg_at_5 value: 45.373000000000005 - type: precision_at_1 value: 37.536 - type: precision_at_10 value: 8.681 - type: precision_at_100 value: 1.34 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 20.468 - type: precision_at_5 value: 14.495 - type: recall_at_1 value: 30.473 - type: recall_at_10 value: 60.092999999999996 - type: recall_at_100 value: 82.733 - type: recall_at_1000 value: 94.875 - type: recall_at_3 value: 45.734 - type: recall_at_5 value: 52.691 - type: map_at_1 value: 29.976000000000003 - type: map_at_10 value: 41.097 - type: map_at_100 value: 42.547000000000004 - type: map_at_1000 value: 42.659000000000006 - type: map_at_3 value: 37.251 - type: map_at_5 value: 39.493 - type: mrr_at_1 value: 37.557 - type: mrr_at_10 value: 46.605000000000004 - type: mrr_at_100 value: 47.487 - type: mrr_at_1000 value: 47.54 - type: mrr_at_3 value: 43.721 - type: mrr_at_5 value: 45.411 - type: ndcg_at_1 value: 37.557 - type: ndcg_at_10 value: 47.449000000000005 - type: ndcg_at_100 value: 53.052 - type: ndcg_at_1000 value: 55.010999999999996 - type: ndcg_at_3 value: 41.439 - type: ndcg_at_5 value: 44.292 - type: precision_at_1 value: 37.557 - type: precision_at_10 value: 8.847 - type: precision_at_100 value: 1.357 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 20.091 - type: precision_at_5 value: 14.384 - type: recall_at_1 value: 29.976000000000003 - type: recall_at_10 value: 60.99099999999999 - type: recall_at_100 value: 84.245 - type: recall_at_1000 value: 96.97200000000001 - type: recall_at_3 value: 43.794 - type: recall_at_5 value: 51.778999999999996 - type: map_at_1 value: 28.099166666666665 - type: map_at_10 value: 38.1365 - type: map_at_100 value: 39.44491666666667 - type: map_at_1000 value: 39.55858333333334 - type: map_at_3 value: 35.03641666666666 - type: map_at_5 value: 36.79833333333334 - type: mrr_at_1 value: 33.39966666666667 - type: mrr_at_10 value: 42.42583333333333 - type: mrr_at_100 value: 43.28575 - type: mrr_at_1000 value: 43.33741666666667 - type: mrr_at_3 value: 39.94975 - type: mrr_at_5 value: 41.41633333333334 - type: ndcg_at_1 value: 33.39966666666667 - type: ndcg_at_10 value: 43.81741666666667 - type: ndcg_at_100 value: 49.08166666666667 - type: ndcg_at_1000 value: 51.121166666666674 - type: ndcg_at_3 value: 38.73575 - type: ndcg_at_5 value: 41.18158333333333 - type: precision_at_1 value: 33.39966666666667 - type: precision_at_10 value: 7.738916666666667 - type: precision_at_100 value: 1.2265833333333331 - type: precision_at_1000 value: 0.15983333333333336 - type: precision_at_3 value: 17.967416666666665 - type: precision_at_5 value: 12.78675 - type: recall_at_1 value: 28.099166666666665 - type: recall_at_10 value: 56.27049999999999 - type: recall_at_100 value: 78.93291666666667 - type: recall_at_1000 value: 92.81608333333334 - type: recall_at_3 value: 42.09775 - type: recall_at_5 value: 48.42533333333334 - type: map_at_1 value: 23.663 - type: map_at_10 value: 30.377 - type: map_at_100 value: 31.426 - type: map_at_1000 value: 31.519000000000002 - type: map_at_3 value: 28.069 - type: map_at_5 value: 29.256999999999998 - type: mrr_at_1 value: 26.687 - type: mrr_at_10 value: 33.107 - type: mrr_at_100 value: 34.055 - type: mrr_at_1000 value: 34.117999999999995 - type: mrr_at_3 value: 31.058000000000003 - type: mrr_at_5 value: 32.14 - type: ndcg_at_1 value: 26.687 - type: ndcg_at_10 value: 34.615 - type: ndcg_at_100 value: 39.776 - type: ndcg_at_1000 value: 42.05 - type: ndcg_at_3 value: 30.322 - type: ndcg_at_5 value: 32.157000000000004 - type: precision_at_1 value: 26.687 - type: precision_at_10 value: 5.491 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 13.139000000000001 - type: precision_at_5 value: 9.049 - type: recall_at_1 value: 23.663 - type: recall_at_10 value: 45.035 - type: recall_at_100 value: 68.554 - type: recall_at_1000 value: 85.077 - type: recall_at_3 value: 32.982 - type: recall_at_5 value: 37.688 - type: map_at_1 value: 17.403 - type: map_at_10 value: 25.197000000000003 - type: map_at_100 value: 26.355 - type: map_at_1000 value: 26.487 - type: map_at_3 value: 22.733 - type: map_at_5 value: 24.114 - type: mrr_at_1 value: 21.37 - type: mrr_at_10 value: 29.091 - type: mrr_at_100 value: 30.018 - type: mrr_at_1000 value: 30.096 - type: mrr_at_3 value: 26.887 - type: mrr_at_5 value: 28.157 - type: ndcg_at_1 value: 21.37 - type: ndcg_at_10 value: 30.026000000000003 - type: ndcg_at_100 value: 35.416 - type: ndcg_at_1000 value: 38.45 - type: ndcg_at_3 value: 25.764 - type: ndcg_at_5 value: 27.742 - type: precision_at_1 value: 21.37 - type: precision_at_10 value: 5.609 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_3 value: 12.423 - type: precision_at_5 value: 9.009 - type: recall_at_1 value: 17.403 - type: recall_at_10 value: 40.573 - type: recall_at_100 value: 64.818 - type: recall_at_1000 value: 86.53699999999999 - type: recall_at_3 value: 28.493000000000002 - type: recall_at_5 value: 33.660000000000004 - type: map_at_1 value: 28.639 - type: map_at_10 value: 38.951 - type: map_at_100 value: 40.238 - type: map_at_1000 value: 40.327 - type: map_at_3 value: 35.842 - type: map_at_5 value: 37.617 - type: mrr_at_1 value: 33.769 - type: mrr_at_10 value: 43.088 - type: mrr_at_100 value: 44.03 - type: mrr_at_1000 value: 44.072 - type: mrr_at_3 value: 40.656 - type: mrr_at_5 value: 42.138999999999996 - type: ndcg_at_1 value: 33.769 - type: ndcg_at_10 value: 44.676 - type: ndcg_at_100 value: 50.416000000000004 - type: ndcg_at_1000 value: 52.227999999999994 - type: ndcg_at_3 value: 39.494 - type: ndcg_at_5 value: 42.013 - type: precision_at_1 value: 33.769 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.18 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 18.221 - type: precision_at_5 value: 12.966 - type: recall_at_1 value: 28.639 - type: recall_at_10 value: 57.687999999999995 - type: recall_at_100 value: 82.541 - type: recall_at_1000 value: 94.896 - type: recall_at_3 value: 43.651 - type: recall_at_5 value: 49.925999999999995 - type: map_at_1 value: 29.57 - type: map_at_10 value: 40.004 - type: map_at_100 value: 41.75 - type: map_at_1000 value: 41.97 - type: map_at_3 value: 36.788 - type: map_at_5 value: 38.671 - type: mrr_at_1 value: 35.375 - type: mrr_at_10 value: 45.121 - type: mrr_at_100 value: 45.994 - type: mrr_at_1000 value: 46.04 - type: mrr_at_3 value: 42.227 - type: mrr_at_5 value: 43.995 - type: ndcg_at_1 value: 35.375 - type: ndcg_at_10 value: 46.392 - type: ndcg_at_100 value: 52.196 - type: ndcg_at_1000 value: 54.274 - type: ndcg_at_3 value: 41.163 - type: ndcg_at_5 value: 43.813 - type: precision_at_1 value: 35.375 - type: precision_at_10 value: 8.676 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.253 - type: precision_at_3 value: 19.104 - type: precision_at_5 value: 13.913 - type: recall_at_1 value: 29.57 - type: recall_at_10 value: 58.779 - type: recall_at_100 value: 83.337 - type: recall_at_1000 value: 95.979 - type: recall_at_3 value: 44.005 - type: recall_at_5 value: 50.975 - type: map_at_1 value: 20.832 - type: map_at_10 value: 29.733999999999998 - type: map_at_100 value: 30.727 - type: map_at_1000 value: 30.843999999999998 - type: map_at_3 value: 26.834999999999997 - type: map_at_5 value: 28.555999999999997 - type: mrr_at_1 value: 22.921 - type: mrr_at_10 value: 31.791999999999998 - type: mrr_at_100 value: 32.666000000000004 - type: mrr_at_1000 value: 32.751999999999995 - type: mrr_at_3 value: 29.144 - type: mrr_at_5 value: 30.622 - type: ndcg_at_1 value: 22.921 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.744 - type: ndcg_at_1000 value: 42.407000000000004 - type: ndcg_at_3 value: 29.421000000000003 - type: ndcg_at_5 value: 32.211 - type: precision_at_1 value: 22.921 - type: precision_at_10 value: 5.675 - type: precision_at_100 value: 0.872 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 12.753999999999998 - type: precision_at_5 value: 9.353 - type: recall_at_1 value: 20.832 - type: recall_at_10 value: 48.795 - type: recall_at_100 value: 70.703 - type: recall_at_1000 value: 90.187 - type: recall_at_3 value: 34.455000000000005 - type: recall_at_5 value: 40.967 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 10.334 - type: map_at_10 value: 19.009999999999998 - type: map_at_100 value: 21.129 - type: map_at_1000 value: 21.328 - type: map_at_3 value: 15.152 - type: map_at_5 value: 17.084 - type: mrr_at_1 value: 23.453 - type: mrr_at_10 value: 36.099 - type: mrr_at_100 value: 37.069 - type: mrr_at_1000 value: 37.104 - type: mrr_at_3 value: 32.096000000000004 - type: mrr_at_5 value: 34.451 - type: ndcg_at_1 value: 23.453 - type: ndcg_at_10 value: 27.739000000000004 - type: ndcg_at_100 value: 35.836 - type: ndcg_at_1000 value: 39.242 - type: ndcg_at_3 value: 21.263 - type: ndcg_at_5 value: 23.677 - type: precision_at_1 value: 23.453 - type: precision_at_10 value: 9.199 - type: precision_at_100 value: 1.791 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 16.2 - type: precision_at_5 value: 13.147 - type: recall_at_1 value: 10.334 - type: recall_at_10 value: 35.177 - type: recall_at_100 value: 63.009 - type: recall_at_1000 value: 81.938 - type: recall_at_3 value: 19.914 - type: recall_at_5 value: 26.077 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.212 - type: map_at_10 value: 17.386 - type: map_at_100 value: 24.234 - type: map_at_1000 value: 25.724999999999998 - type: map_at_3 value: 12.727 - type: map_at_5 value: 14.785 - type: mrr_at_1 value: 59.25 - type: mrr_at_10 value: 68.687 - type: mrr_at_100 value: 69.133 - type: mrr_at_1000 value: 69.14099999999999 - type: mrr_at_3 value: 66.917 - type: mrr_at_5 value: 67.742 - type: ndcg_at_1 value: 48.625 - type: ndcg_at_10 value: 36.675999999999995 - type: ndcg_at_100 value: 41.543 - type: ndcg_at_1000 value: 49.241 - type: ndcg_at_3 value: 41.373 - type: ndcg_at_5 value: 38.707 - type: precision_at_1 value: 59.25 - type: precision_at_10 value: 28.525 - type: precision_at_100 value: 9.027000000000001 - type: precision_at_1000 value: 1.8339999999999999 - type: precision_at_3 value: 44.833 - type: precision_at_5 value: 37.35 - type: recall_at_1 value: 8.212 - type: recall_at_10 value: 23.188 - type: recall_at_100 value: 48.613 - type: recall_at_1000 value: 73.093 - type: recall_at_3 value: 14.419 - type: recall_at_5 value: 17.798 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.725 - type: f1 value: 46.50743309855908 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 55.086 - type: map_at_10 value: 66.914 - type: map_at_100 value: 67.321 - type: map_at_1000 value: 67.341 - type: map_at_3 value: 64.75800000000001 - type: map_at_5 value: 66.189 - type: mrr_at_1 value: 59.28600000000001 - type: mrr_at_10 value: 71.005 - type: mrr_at_100 value: 71.304 - type: mrr_at_1000 value: 71.313 - type: mrr_at_3 value: 69.037 - type: mrr_at_5 value: 70.35 - type: ndcg_at_1 value: 59.28600000000001 - type: ndcg_at_10 value: 72.695 - type: ndcg_at_100 value: 74.432 - type: ndcg_at_1000 value: 74.868 - type: ndcg_at_3 value: 68.72200000000001 - type: ndcg_at_5 value: 71.081 - type: precision_at_1 value: 59.28600000000001 - type: precision_at_10 value: 9.499 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 27.503 - type: precision_at_5 value: 17.854999999999997 - type: recall_at_1 value: 55.086 - type: recall_at_10 value: 86.453 - type: recall_at_100 value: 94.028 - type: recall_at_1000 value: 97.052 - type: recall_at_3 value: 75.821 - type: recall_at_5 value: 81.6 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 22.262999999999998 - type: map_at_10 value: 37.488 - type: map_at_100 value: 39.498 - type: map_at_1000 value: 39.687 - type: map_at_3 value: 32.529 - type: map_at_5 value: 35.455 - type: mrr_at_1 value: 44.907000000000004 - type: mrr_at_10 value: 53.239000000000004 - type: mrr_at_100 value: 54.086 - type: mrr_at_1000 value: 54.122 - type: mrr_at_3 value: 51.235 - type: mrr_at_5 value: 52.415 - type: ndcg_at_1 value: 44.907000000000004 - type: ndcg_at_10 value: 45.446 - type: ndcg_at_100 value: 52.429 - type: ndcg_at_1000 value: 55.169000000000004 - type: ndcg_at_3 value: 41.882000000000005 - type: ndcg_at_5 value: 43.178 - type: precision_at_1 value: 44.907000000000004 - type: precision_at_10 value: 12.931999999999999 - type: precision_at_100 value: 2.025 - type: precision_at_1000 value: 0.248 - type: precision_at_3 value: 28.652 - type: precision_at_5 value: 21.204 - type: recall_at_1 value: 22.262999999999998 - type: recall_at_10 value: 52.447 - type: recall_at_100 value: 78.045 - type: recall_at_1000 value: 94.419 - type: recall_at_3 value: 38.064 - type: recall_at_5 value: 44.769 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 32.519 - type: map_at_10 value: 45.831 - type: map_at_100 value: 46.815 - type: map_at_1000 value: 46.899 - type: map_at_3 value: 42.836 - type: map_at_5 value: 44.65 - type: mrr_at_1 value: 65.037 - type: mrr_at_10 value: 72.16 - type: mrr_at_100 value: 72.51100000000001 - type: mrr_at_1000 value: 72.53 - type: mrr_at_3 value: 70.682 - type: mrr_at_5 value: 71.54599999999999 - type: ndcg_at_1 value: 65.037 - type: ndcg_at_10 value: 55.17999999999999 - type: ndcg_at_100 value: 58.888 - type: ndcg_at_1000 value: 60.648 - type: ndcg_at_3 value: 50.501 - type: ndcg_at_5 value: 52.977 - type: precision_at_1 value: 65.037 - type: precision_at_10 value: 11.530999999999999 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.168 - type: precision_at_3 value: 31.483 - type: precision_at_5 value: 20.845 - type: recall_at_1 value: 32.519 - type: recall_at_10 value: 57.657000000000004 - type: recall_at_100 value: 72.30199999999999 - type: recall_at_1000 value: 84.024 - type: recall_at_3 value: 47.225 - type: recall_at_5 value: 52.113 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.3168 - type: ap value: 83.80165516037135 - type: f1 value: 88.29942471066407 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 20.724999999999998 - type: map_at_10 value: 32.736 - type: map_at_100 value: 33.938 - type: map_at_1000 value: 33.991 - type: map_at_3 value: 28.788000000000004 - type: map_at_5 value: 31.016 - type: mrr_at_1 value: 21.361 - type: mrr_at_10 value: 33.323 - type: mrr_at_100 value: 34.471000000000004 - type: mrr_at_1000 value: 34.518 - type: mrr_at_3 value: 29.453000000000003 - type: mrr_at_5 value: 31.629 - type: ndcg_at_1 value: 21.361 - type: ndcg_at_10 value: 39.649 - type: ndcg_at_100 value: 45.481 - type: ndcg_at_1000 value: 46.775 - type: ndcg_at_3 value: 31.594 - type: ndcg_at_5 value: 35.543 - type: precision_at_1 value: 21.361 - type: precision_at_10 value: 6.3740000000000006 - type: precision_at_100 value: 0.931 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.514999999999999 - type: precision_at_5 value: 10.100000000000001 - type: recall_at_1 value: 20.724999999999998 - type: recall_at_10 value: 61.034 - type: recall_at_100 value: 88.062 - type: recall_at_1000 value: 97.86399999999999 - type: recall_at_3 value: 39.072 - type: recall_at_5 value: 48.53 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.8919288645691 - type: f1 value: 93.57059586398059 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.97993616051072 - type: f1 value: 48.244319183606535 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.90047074646941 - type: f1 value: 66.48999056063725 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.34566240753195 - type: f1 value: 73.54164154290658 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.21866934757011 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.000936217235534 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.68189362520352 - type: mrr value: 32.69603637784303 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.078 - type: map_at_10 value: 12.671 - type: map_at_100 value: 16.291 - type: map_at_1000 value: 17.855999999999998 - type: map_at_3 value: 9.610000000000001 - type: map_at_5 value: 11.152 - type: mrr_at_1 value: 43.963 - type: mrr_at_10 value: 53.173 - type: mrr_at_100 value: 53.718999999999994 - type: mrr_at_1000 value: 53.756 - type: mrr_at_3 value: 50.980000000000004 - type: mrr_at_5 value: 52.42 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.086 - type: ndcg_at_100 value: 32.545 - type: ndcg_at_1000 value: 41.144999999999996 - type: ndcg_at_3 value: 39.434999999999995 - type: ndcg_at_5 value: 37.888 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.014999999999997 - type: precision_at_100 value: 8.594 - type: precision_at_1000 value: 2.169 - type: precision_at_3 value: 37.049 - type: precision_at_5 value: 33.065 - type: recall_at_1 value: 6.078 - type: recall_at_10 value: 16.17 - type: recall_at_100 value: 34.512 - type: recall_at_1000 value: 65.447 - type: recall_at_3 value: 10.706 - type: recall_at_5 value: 13.158 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 27.378000000000004 - type: map_at_10 value: 42.178 - type: map_at_100 value: 43.32 - type: map_at_1000 value: 43.358000000000004 - type: map_at_3 value: 37.474000000000004 - type: map_at_5 value: 40.333000000000006 - type: mrr_at_1 value: 30.823 - type: mrr_at_10 value: 44.626 - type: mrr_at_100 value: 45.494 - type: mrr_at_1000 value: 45.519 - type: mrr_at_3 value: 40.585 - type: mrr_at_5 value: 43.146 - type: ndcg_at_1 value: 30.794 - type: ndcg_at_10 value: 50.099000000000004 - type: ndcg_at_100 value: 54.900999999999996 - type: ndcg_at_1000 value: 55.69499999999999 - type: ndcg_at_3 value: 41.238 - type: ndcg_at_5 value: 46.081 - type: precision_at_1 value: 30.794 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 1.124 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 18.926000000000002 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 27.378000000000004 - type: recall_at_10 value: 71.842 - type: recall_at_100 value: 92.565 - type: recall_at_1000 value: 98.402 - type: recall_at_3 value: 49.053999999999995 - type: recall_at_5 value: 60.207 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.557 - type: map_at_10 value: 84.729 - type: map_at_100 value: 85.369 - type: map_at_1000 value: 85.382 - type: map_at_3 value: 81.72 - type: map_at_5 value: 83.613 - type: mrr_at_1 value: 81.3 - type: mrr_at_10 value: 87.488 - type: mrr_at_100 value: 87.588 - type: mrr_at_1000 value: 87.589 - type: mrr_at_3 value: 86.53 - type: mrr_at_5 value: 87.18599999999999 - type: ndcg_at_1 value: 81.28999999999999 - type: ndcg_at_10 value: 88.442 - type: ndcg_at_100 value: 89.637 - type: ndcg_at_1000 value: 89.70700000000001 - type: ndcg_at_3 value: 85.55199999999999 - type: ndcg_at_5 value: 87.154 - type: precision_at_1 value: 81.28999999999999 - type: precision_at_10 value: 13.489999999999998 - type: precision_at_100 value: 1.54 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.708 - type: recall_at_1 value: 70.557 - type: recall_at_10 value: 95.645 - type: recall_at_100 value: 99.693 - type: recall_at_1000 value: 99.995 - type: recall_at_3 value: 87.359 - type: recall_at_5 value: 91.89699999999999 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 63.65060114776209 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.63271250680617 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.263 - type: map_at_10 value: 10.801 - type: map_at_100 value: 12.888 - type: map_at_1000 value: 13.224 - type: map_at_3 value: 7.362 - type: map_at_5 value: 9.149000000000001 - type: mrr_at_1 value: 21 - type: mrr_at_10 value: 31.416 - type: mrr_at_100 value: 32.513 - type: mrr_at_1000 value: 32.58 - type: mrr_at_3 value: 28.116999999999997 - type: mrr_at_5 value: 29.976999999999997 - type: ndcg_at_1 value: 21 - type: ndcg_at_10 value: 18.551000000000002 - type: ndcg_at_100 value: 26.657999999999998 - type: ndcg_at_1000 value: 32.485 - type: ndcg_at_3 value: 16.834 - type: ndcg_at_5 value: 15.204999999999998 - type: precision_at_1 value: 21 - type: precision_at_10 value: 9.84 - type: precision_at_100 value: 2.16 - type: precision_at_1000 value: 0.35500000000000004 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 13.62 - type: recall_at_1 value: 4.263 - type: recall_at_10 value: 19.922 - type: recall_at_100 value: 43.808 - type: recall_at_1000 value: 72.14500000000001 - type: recall_at_3 value: 9.493 - type: recall_at_5 value: 13.767999999999999 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 81.27446313317233 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 76.27963301217527 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 88.18495048450949 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.91982338692046 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 89.00896818385291 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 85.48814644586132 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 90.30116926966582 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 67.74132963032342 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.87741355780479 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.0019012295875 - type: mrr value: 94.70267024188593 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 50.05 - type: map_at_10 value: 59.36 - type: map_at_100 value: 59.967999999999996 - type: map_at_1000 value: 60.023 - type: map_at_3 value: 56.515 - type: map_at_5 value: 58.272999999999996 - type: mrr_at_1 value: 53 - type: mrr_at_10 value: 61.102000000000004 - type: mrr_at_100 value: 61.476 - type: mrr_at_1000 value: 61.523 - type: mrr_at_3 value: 58.778 - type: mrr_at_5 value: 60.128 - type: ndcg_at_1 value: 53 - type: ndcg_at_10 value: 64.43100000000001 - type: ndcg_at_100 value: 66.73599999999999 - type: ndcg_at_1000 value: 68.027 - type: ndcg_at_3 value: 59.279 - type: ndcg_at_5 value: 61.888 - type: precision_at_1 value: 53 - type: precision_at_10 value: 8.767 - type: precision_at_100 value: 1.01 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23.444000000000003 - type: precision_at_5 value: 15.667 - type: recall_at_1 value: 50.05 - type: recall_at_10 value: 78.511 - type: recall_at_100 value: 88.5 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 64.117 - type: recall_at_5 value: 70.867 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.72178217821782 - type: cos_sim_ap value: 93.0728601593541 - type: cos_sim_f1 value: 85.6727976766699 - type: cos_sim_precision value: 83.02063789868667 - type: cos_sim_recall value: 88.5 - type: dot_accuracy value: 99.72178217821782 - type: dot_ap value: 93.07287396168348 - type: dot_f1 value: 85.6727976766699 - type: dot_precision value: 83.02063789868667 - type: dot_recall value: 88.5 - type: euclidean_accuracy value: 99.72178217821782 - type: euclidean_ap value: 93.07285657982895 - type: euclidean_f1 value: 85.6727976766699 - type: euclidean_precision value: 83.02063789868667 - type: euclidean_recall value: 88.5 - type: manhattan_accuracy value: 99.72475247524753 - type: manhattan_ap value: 93.02792973059809 - type: manhattan_f1 value: 85.7727737973388 - type: manhattan_precision value: 87.84067085953879 - type: manhattan_recall value: 83.8 - type: max_accuracy value: 99.72475247524753 - type: max_ap value: 93.07287396168348 - type: max_f1 value: 85.7727737973388 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.77583615550819 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.151636938606956 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.16607939471187 - type: mrr value: 52.95172046091163 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.314646669495666 - type: cos_sim_spearman value: 31.83562491439455 - type: dot_pearson value: 31.314590842874157 - type: dot_spearman value: 31.83363065810437 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.198 - type: map_at_10 value: 1.3010000000000002 - type: map_at_100 value: 7.2139999999999995 - type: map_at_1000 value: 20.179 - type: map_at_3 value: 0.528 - type: map_at_5 value: 0.8019999999999999 - type: mrr_at_1 value: 72 - type: mrr_at_10 value: 83.39999999999999 - type: mrr_at_100 value: 83.39999999999999 - type: mrr_at_1000 value: 83.39999999999999 - type: mrr_at_3 value: 81.667 - type: mrr_at_5 value: 83.06700000000001 - type: ndcg_at_1 value: 66 - type: ndcg_at_10 value: 58.059000000000005 - type: ndcg_at_100 value: 44.316 - type: ndcg_at_1000 value: 43.147000000000006 - type: ndcg_at_3 value: 63.815999999999995 - type: ndcg_at_5 value: 63.005 - type: precision_at_1 value: 72 - type: precision_at_10 value: 61.4 - type: precision_at_100 value: 45.62 - type: precision_at_1000 value: 19.866 - type: precision_at_3 value: 70 - type: precision_at_5 value: 68.8 - type: recall_at_1 value: 0.198 - type: recall_at_10 value: 1.517 - type: recall_at_100 value: 10.587 - type: recall_at_1000 value: 41.233 - type: recall_at_3 value: 0.573 - type: recall_at_5 value: 0.907 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.894 - type: map_at_10 value: 8.488999999999999 - type: map_at_100 value: 14.445 - type: map_at_1000 value: 16.078 - type: map_at_3 value: 4.589 - type: map_at_5 value: 6.019 - type: mrr_at_1 value: 22.448999999999998 - type: mrr_at_10 value: 39.82 - type: mrr_at_100 value: 40.752 - type: mrr_at_1000 value: 40.771 - type: mrr_at_3 value: 34.354 - type: mrr_at_5 value: 37.721 - type: ndcg_at_1 value: 19.387999999999998 - type: ndcg_at_10 value: 21.563 - type: ndcg_at_100 value: 33.857 - type: ndcg_at_1000 value: 46.199 - type: ndcg_at_3 value: 22.296 - type: ndcg_at_5 value: 21.770999999999997 - type: precision_at_1 value: 22.448999999999998 - type: precision_at_10 value: 19.796 - type: precision_at_100 value: 7.142999999999999 - type: precision_at_1000 value: 1.541 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 22.448999999999998 - type: recall_at_1 value: 1.894 - type: recall_at_10 value: 14.931 - type: recall_at_100 value: 45.524 - type: recall_at_1000 value: 83.243 - type: recall_at_3 value: 5.712 - type: recall_at_5 value: 8.386000000000001 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.049 - type: ap value: 13.85116971310922 - type: f1 value: 54.37504302487686 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 64.1312959818902 - type: f1 value: 64.11413877009383 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 54.13103431861502 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.327889372355 - type: cos_sim_ap value: 77.42059895975699 - type: cos_sim_f1 value: 71.02706903250873 - type: cos_sim_precision value: 69.75324344950394 - type: cos_sim_recall value: 72.34828496042216 - type: dot_accuracy value: 87.327889372355 - type: dot_ap value: 77.4209479346677 - type: dot_f1 value: 71.02706903250873 - type: dot_precision value: 69.75324344950394 - type: dot_recall value: 72.34828496042216 - type: euclidean_accuracy value: 87.327889372355 - type: euclidean_ap value: 77.42096495861037 - type: euclidean_f1 value: 71.02706903250873 - type: euclidean_precision value: 69.75324344950394 - type: euclidean_recall value: 72.34828496042216 - type: manhattan_accuracy value: 87.31000774870358 - type: manhattan_ap value: 77.38930750711619 - type: manhattan_f1 value: 71.07935314027831 - type: manhattan_precision value: 67.70957726295677 - type: manhattan_recall value: 74.80211081794195 - type: max_accuracy value: 87.327889372355 - type: max_ap value: 77.42096495861037 - type: max_f1 value: 71.07935314027831 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.58939729110878 - type: cos_sim_ap value: 87.17594155025475 - type: cos_sim_f1 value: 79.21146953405018 - type: cos_sim_precision value: 76.8918527109307 - type: cos_sim_recall value: 81.67539267015707 - type: dot_accuracy value: 89.58939729110878 - type: dot_ap value: 87.17593963273593 - type: dot_f1 value: 79.21146953405018 - type: dot_precision value: 76.8918527109307 - type: dot_recall value: 81.67539267015707 - type: euclidean_accuracy value: 89.58939729110878 - type: euclidean_ap value: 87.17592466925834 - type: euclidean_f1 value: 79.21146953405018 - type: euclidean_precision value: 76.8918527109307 - type: euclidean_recall value: 81.67539267015707 - type: manhattan_accuracy value: 89.62626615438352 - type: manhattan_ap value: 87.16589873161546 - type: manhattan_f1 value: 79.25143598295348 - type: manhattan_precision value: 76.39494177323712 - type: manhattan_recall value: 82.32984293193716 - type: max_accuracy value: 89.62626615438352 - type: max_ap value: 87.17594155025475 - type: max_f1 value: 79.25143598295348 --- # hkunlp/instructor-large We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-large') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
[ "BIOSSES", "SCIFACT" ]
crumb/distilpythia-cl
crumb
text-generation
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "dataset:EleutherAI/pile", "arxiv:1706.03762", "arxiv:1503.02531", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-05-04T00:43:31Z
2023-05-04T14:56:35+00:00
27
1
--- datasets: - EleutherAI/pile language: - en license: apache-2.0 --- # Warm-Starting Knowledge Distillation for Transformer-based Language Models *by GPT-4 & Crumb* ### Introduction Transformer models have become a popular choice for natural language processing (NLP) tasks due to their ability to handle long-range dependencies and their superior performance on various NLP benchmarks. The transformer model architecture was introduced in 2017 by [Vaswani et al](https://arxiv.org/abs/1706.03762). and has since been used in many state-of-the-art models such as BERT and GPT. The decoder-only transformer model is a variant of the transformer model that has is commonly used for generative tasks in NLP. It uses masked self-attention to predict the next token in a sequence and has been shown to be powerful at predicting sequences of text. Distillation \[[Bucila et al., 2006](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf), [Hinton et al., 2015](https://arxiv.org/abs/1503.02531)\] is a technique used in machine learning to compress a large model into a smaller one that can be used on devices with limited computational resources. In this technique, a smaller model is trained to mimic the behavior of a larger model by learning from its predictions. The smaller model is trained on a smaller dataset than the larger model, which makes it faster and more efficient. This technique has been used to compress models like BERT and GPT-2 into smaller models like DistilBERT and DistilGPT-2, respectively. In this project we apply the technique of knowledge distillation to the second smallest [Pythia](https://arxiv.org/pdf/2304.01373.pdf) model on the [Pile](https://arxiv.org/abs/2101.00027) dataset. ### Method We follow the work of [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531) for a distillation loss over the soft target probabilities `L_ce`. We utilize the distillation loss in our loss function as a linear combination of the distillation loss `L_ce` with the supervised training loss `L_clm`. Our combined loss function is `L_ce*(1-a) + L_clm*a` where `a` is set to 0.5 and the `T`emperature parameter for the distillation loss is set to 2. In an effort to maximize VRAM utilization, to reach a combined batch size of 4096 samples we use a device batch size of 2 with 2048 gradient accumulation steps and a context length of 2048 tokens with both the teacher and student model in bf16 precision. This allowed us to utilize around 98.94% of the 12 gigabytes of VRAM that the RTX3060 card has during training. It also means our training set totals to approximately 537 million training tokens, as our model trained for 64 steps. All training samples were taken from [The Pile](https://arxiv.org/abs/2101.00027). A learning rate of 1e-4 was used in this study, with no learning rate schedule. ### Evaluation [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) suggests a student around 40% of the size of it's teacher can achieve similar performance in encoder models when training from scratch with suprivision. We warm-start our model from a smaller checkpoint than the teacher that maintains a similar ratio with a student that is 43.75% the size of it's teacher. | model | piqa acc | winogrande acc | lambada ppl | lambada acc | arc acc | sciq acc | wsc acc | notes | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | pythia-70m (student base) | 59.85 | 51.22 | 140.81 | 21.40 | 17.15 | 65.00 | 36.53 | | pythia-160m (teacher) | 62.68 | 51.07 | 30.03 | 36.76 | 19.62 | 76.20 | 36.58 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | distilpythia (student) | 59.74 | **51.62** | 420.70 | 15.82 | **17.15** | 61.30 | **36.54** | trained on padded/truncated examples | distilpythia-cl (student) | 59.30 | 50.75 | 403.78 | 15.16 | 16.98 | 59.20 | **36.54** | trained on a constant-length dataset <center> <i>Table 1.</i> The student before finetuning, teacher, and student after finetuning and their results on various benchmarks. Numbers in bold are where the student after finetuning matches or outperforms the student before finetuning. </center> The table provides a comparison of performance between the base student model (pythia-70m), the teacher model (pythia-160m), and the finetuned student model (distilpythia) across various benchmarks. The goal is to assess whether the distilpythia model can achieve similar or better performance than its base while being smaller in size. From the table, we can observe the following: 1. The pythia-160m (teacher) model outperforms pythia-70m (student base) in most benchmarks, except for Winogrande accuracy, where the student base has a slightly better performance (51.22% vs. 51.07%). 2. The distilpythia (student) model, after finetuning, outperforms the pythia-70m (student base) on two benchmarks: Winogrande accuracy (51.62% vs. 51.22%) and WSC accuracy (36.54% vs. 36.53%). The improvements in these metrics indicate that the finetuning process may be effective in transferring knowledge from the teacher model to the student model. ### Conclusion it might have worked idk, maybe training from scratch or for longer would give more performance gains, also look at the lambada perplexity what happened there even
[ "SCIQ" ]
IIC/bert-base-spanish-wwm-cased-caresA
IIC
text-classification
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "biomedical", "clinical", "spanish", "bert-base-spanish-wwm-cased", "es", "dataset:chizhikchi/CARES", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-20T15:27:00Z
2024-11-25T10:41:06+00:00
27
0
--- datasets: - chizhikchi/CARES language: es license: cc-by-4.0 metrics: - f1 pipeline_tag: text-classification tags: - biomedical - clinical - spanish - bert-base-spanish-wwm-cased model-index: - name: IIC/bert-base-spanish-wwm-cased-caresA results: - task: type: multi-label-classification dataset: name: Cares Area type: chizhikchi/CARES split: test metrics: - type: f1 value: 0.992 name: f1 --- # bert-base-spanish-wwm-cased-caresA This model is a finetuned version of bert-base-spanish-wwm-cased for the cantemist dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.992 Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 32 | | learning rate | 4e-05 | | classifier dropout | 0.2 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtext @article{10.1093/jamia/ocae054, author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, journal = {Journal of the American Medical Informatics Association}, volume = {31}, number = {9}, pages = {2137-2146}, year = {2024}, month = {03}, issn = {1527-974X}, doi = {10.1093/jamia/ocae054}, url = {https://doi.org/10.1093/jamia/ocae054}, } ```
[ "CANTEMIST" ]
IIC/BETO_Galen-ctebmsp
IIC
token-classification
[ "transformers", "pytorch", "bert", "text-classification", "biomedical", "clinical", "spanish", "BETO_Galen", "token-classification", "es", "dataset:lcampillos/ctebmsp", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-21T06:57:27Z
2024-11-25T10:41:35+00:00
27
0
--- datasets: - lcampillos/ctebmsp language: es license: mit metrics: - f1 pipeline_tag: token-classification tags: - biomedical - clinical - spanish - BETO_Galen model-index: - name: IIC/BETO_Galen-ctebmsp results: - task: type: token-classification dataset: name: CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) type: lcampillos/ctebmsp split: test metrics: - type: f1 value: 0.726 name: f1 --- # BETO_Galen-ctebmsp This model is a finetuned version of BETO_Galen for the CT-EBM-SP (Clinical Trials for Evidence-based Medicine in Spanish) dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.726 Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 4e-05 | | classifier dropout | 0 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtext @article{10.1093/jamia/ocae054, author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, journal = {Journal of the American Medical Informatics Association}, volume = {31}, number = {9}, pages = {2137-2146}, year = {2024}, month = {03}, issn = {1527-974X}, doi = {10.1093/jamia/ocae054}, url = {https://doi.org/10.1093/jamia/ocae054}, } ```
[ "CT-EBM-SP" ]
IIC/BETO_Galen-meddocan
IIC
token-classification
[ "transformers", "pytorch", "bert", "text-classification", "biomedical", "clinical", "spanish", "BETO_Galen", "token-classification", "es", "dataset:bigbio/meddocan", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-21T15:50:47Z
2023-06-21T15:51:32+00:00
27
0
--- datasets: - bigbio/meddocan language: es license: mit metrics: - f1 pipeline_tag: token-classification tags: - biomedical - clinical - spanish - BETO_Galen model-index: - name: IIC/BETO_Galen-meddocan results: - task: type: token-classification dataset: name: meddocan type: bigbio/meddocan split: test metrics: - type: f1 value: 0.682 name: f1 --- # BETO_Galen-meddocan This model is a finetuned version of BETO_Galen for the meddocan dataset used in a benchmark in the paper TODO. The model has a F1 of 0.682 Please refer to the original publication for more information TODO LINK ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 4e-05 | | classifier dropout | 0.1 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtex TODO ```
[ "MEDDOCAN" ]
Azma-AI/bart-conversation-summarizer
Azma-AI
summarization
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "dataset:samsum", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-10-10T11:21:55Z
2023-10-10T11:24:01+00:00
27
6
--- datasets: - samsum pipeline_tag: summarization widget: - text: "Laurie: So, what are your plans for this weekend?\nChristie: I don’t know.\ \ Do you want to get together or something?\nSarah: How about going to see a movie?\ \ Cinemax 26 on Carson Boulevard is showing Enchanted. Laurie: That sounds like\ \ a good idea. Maybe we should go out to eat beforehand.\nSarah: It is fine with\ \ me. Where do you want to meet?\nChristie: Let’s meet at Summer Pizza House.\ \ I have not gone there for a long time.\nLaurie: Good idea again. I heard they\ \ just came up with a new pizza. It should be good because Summer Pizza House\ \ always has the best pizza in town.\nSarah: When should we meet?\nChristie: Well,\ \ the movie is shown at 2:00PM, 4:00PM, 6:00PM and 8:00PM.\nLaurie: Why don’t\ \ we go to the 2:00PM show? We can meet at Summer Pizza House at noon. That will\ \ give us plenty of time to enjoy our pizza.\nSarah: My cousin Karen is in town.\ \ Can I bring her along? I hate to leave her home alone.\nChristie: Karen is in\ \ town? Yes, bring her along. Laurie, you remember Karen? We met her at Sara’s\ \ high school graduation party two years ago.\nLaurie: I do not quite remember\ \ her. What does she look like?\nSarah: She has blond hair, she is kind of slender,\ \ and she is about your height.\nLaurie: She wears eyeglasses, right?\nSarah:\ \ Yes, and she was playing the piano off and on during the party.\nLaurie: I remember\ \ her now. Yes, do bring her along Sara. She is such a nice person, and funny\ \ too.\nSarah: She will be happy to meet both of you again.\nChristie: What is\ \ she doing these days?\nSarah: She graduated last June, and she will start her\ \ teaching career next week when the new school term begins.\nLaurie: What grade\ \ is she going to teach?\nSarah: She will teach kindergarten. She loves working\ \ with kids, and she always has such a good rapport with them\nChristie: Kindergarten?\ \ She must be a very patient person. I always think kindergarten is the most difficult\ \ class to teach. Most of the kids have never been to school, and they have e\ \ never been away from mommy for long.\nSarah: I think Karen will do fine. She\ \ knows how to handle young children\nLaurie: I think the first few weeks will\ \ be tough. However, once the routine is set, it should not be too difficult to\ \ teach kindergarten.\nChristie: You are right. The kids might even look forward\ \ to going to school since they have so many friends to play with.\nSarah: There\ \ are so many new things for them to do at school too. They do a lot of crafts\ \ in kindergarten. I am always amazed by the things kindergarten teachers do.\ \ \nLaurie: Yes, I have seen my niece come home with so many neat stuff.\nChristie:\ \ Maybe we can ask Karen to show us some of the things that we can do for this\ \ Halloween.\nLaurie: Maybe we can stop by the craft store after the movie. What\ \ do you think, Sara?\nSarah: I will talk to her. I think she will like that.\ \ It will help her with school projects when Halloween comes.\nChristie: Michael’s\ \ is a good store for crafts. It always carries a variety of things, and you can\ \ find almost anything there.\nLaurie: There is a Michaels store not far away\ \ from Cinemax 26. I believe it is just around the corner, on Pioneer Avenue.\ \ We can even walk over there.\nSarah: So, we plan to meet for pizza at noon,\ \ go to the movies at two, and shop at Michael’s afterward. Right?\nLaurie and\ \ Christie: Yes. \n" model-index: - name: bart-large-cnn-samsum results: - task: type: summarization name: Conversation Summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - type: rogue-1 value: 54.8764 name: Validation ROGUE-1 - type: rogue-2 value: 29.6869, name: Validation ROGUE-2 - type: rogue-l value: 44.9874 name: Validation ROGUE-L - type: loss value: 1.47812 name: loss ---
[ "CRAFT" ]
TheBloke/Augmental-13B-GPTQ
TheBloke
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "base_model:Heralax/Augmental-13b", "base_model:quantized:Heralax/Augmental-13b", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
2023-10-24T17:05:06Z
2023-10-24T17:41:57+00:00
27
6
--- base_model: Heralax/Augmental-13b license: llama2 model_name: Augmental 13B inference: false model_creator: Evan Armstrong model_type: llama prompt_template: '## {{{{charname}}}}: - You''re "{{{{charname}}}}" in this never-ending roleplay with "{{{{user}}}}". ### Input: {prompt} ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {{{{char}}}}: whatever the char says, this is the chat history #### {{{{user}}}}: whatever the user says, this is the chat history ... repeated some number of times ... ### Response 2 paragraphs, engaging, natural, authentic, descriptive, creative): #### {{{{char}}}}: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Augmental 13B - GPTQ - Model creator: [Evan Armstrong](https://huggingface.co/Heralax) - Original model: [Augmental 13B](https://huggingface.co/Heralax/Augmental-13b) <!-- description start --> ## Description This repo contains GPTQ model files for [Evan Armstrong's Augmental 13B](https://huggingface.co/Heralax/Augmental-13b). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Augmental-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Augmental-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Augmental-13B-GGUF) * [Evan Armstrong's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Heralax/Augmental-13b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: SillyTavern ``` ## {{{{charname}}}}: - You're "{{{{charname}}}}" in this never-ending roleplay with "{{{{user}}}}". ### Input: {prompt} ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {{{{char}}}}: whatever the char says, this is the chat history #### {{{{user}}}}: whatever the user says, this is the chat history ... repeated some number of times ... ### Response 2 paragraphs, engaging, natural, authentic, descriptive, creative): #### {{{{char}}}}: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KobaldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 14.54 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Augmental-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Augmental-13B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Augmental-13B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Augmental-13B-GPTQ`: ```shell mkdir Augmental-13B-GPTQ huggingface-cli download TheBloke/Augmental-13B-GPTQ --local-dir Augmental-13B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Augmental-13B-GPTQ huggingface-cli download TheBloke/Augmental-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Augmental-13B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Augmental-13B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Augmental-13B-GPTQ --local-dir Augmental-13B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Augmental-13B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Augmental-13B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Augmental-13B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Augmental-13B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Augmental-13B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''## {{{{charname}}}}: - You're "{{{{charname}}}}" in this never-ending roleplay with "{{{{user}}}}". ### Input: {prompt} ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {{{{char}}}}: whatever the char says, this is the chat history #### {{{{user}}}}: whatever the user says, this is the chat history ... repeated some number of times ... ### Response 2 paragraphs, engaging, natural, authentic, descriptive, creative): #### {{{{char}}}}: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Augmental-13B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''## {{{{charname}}}}: - You're "{{{{charname}}}}" in this never-ending roleplay with "{{{{user}}}}". ### Input: {prompt} ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {{{{char}}}}: whatever the char says, this is the chat history #### {{{{user}}}}: whatever the user says, this is the chat history ... repeated some number of times ... ### Response 2 paragraphs, engaging, natural, authentic, descriptive, creative): #### {{{{char}}}}: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Evan Armstrong's Augmental 13B # Augmental-13b -- Human-written, AI-enhanced ## Details at a glance - What it is: MythoMax 13b finetuned on a new high-quality augmented (read: human-written, AI-enhanced) RP dataset with 8k+ examples. Trained on multiple different characters with a wide range of personalities (from Tsunderes to catgirls). - Prompt format: SillyTavern. - What sets it apart: The "augmented data" approach that MythoMakise took has been generalized beyond one character, refined to be cheaper, improved to have more diversity of writing, and scaled up by a factor of 8. Importantly, an additional GPT-4 pass was done on the dataset, where it chose specific lines to turn into much longer and more descriptive ones. As a result, this model excels at longer responses. - Model quality as per my own ad-hoc testing: really good - A 70b version might be on the way soon. - Ko-fi link (yes this is a very important "detail at a glance" lol): [https://ko-fi.com/heralax](https://ko-fi.com/heralax) - Substack link [here](https://promptingweekly.substack.com/p/human-sourced-ai-augmented-a-promising) (also *highly* important, but no joke I actually wrote about the data generation process for the predecessor of this model on there, so it's kinda relevant. Kinda.) ## Long-form description and essay The great issue with model training is often the dataset. Model creators can only do so much filtering of the likes of Bluemoon and PIPPA, and in order to advance beyond the quality these can offer, model creators often have to pick through their own chats with bots, manually edit them to be better, and save them -- essentially creating a dataset from scratch. But model creators are not annotators, nor should they be. Manual work isn't scalable, it isn't fun, and it often isn't shareable (because people, sensibly, don't want to share the NSFL chats they have as public data). One solution that immediately comes to mind is using some of the vast amount of human-written text that's out there. But this isn't in instruct-tuning format. But what if we could change it so that it was? Enter, GPT-4. The idea behind the dataset is: take the script from a classic work of writing (Steins;Gate in this case), get GPT-4 to convert the plain back-and-forth into coherent RP format, and then prompt engineer GPT-4 to get it to really enhance the lines and make them top-tier quality. Because AI can be much more creative given something to improve, as opposed to generating data from scratch. This is what sets Augmental apart from something like Airoboros, which (as far as I am aware) is 100% synthetic. I call this "augmented" data because it isn't synthetic, and it isn't a hybrid (a mix of human and AI responses). It's AI writing *on top of* human writing. And it works very well. MythoMakise reached 13th place on the Ayumi leaderboard, with a relatively buggy dataset that's like 1/8th the size of this one. It was also finetuned on only one character, potentially biasing its personality. Finally, that model was biased towards short responses, due to how GPT-4 was prompted. This model solves all those problems, and scales the approach up. It's finetuned on 7 different characters with a variety of personalities and genders; a second GPT-4 pass was applied to enhance 4 lines in each conversation lengthier and more descriptive; prompts were improved to allow for more variety in the writing style. A ton of bugs (including spelling mistakes in the prompts, ugh) have been fixed. From my initial testing, the results seem very promising. Additionally, the approach to synthetic data generation is scaleable, shareable, and generalizeable. The full training code, with all data generation prompts, and with the full dataset, is available here: https://github.com/e-p-armstrong/amadeus With a few slight hacks, anyone can adapt this script to convert the text from any source visual novel (which you have legally obtained) into training data for an RP LLM. Since it's automated, it doesn't take too much time; and since it's not your own chats, it's safely shareable. I'm excited to see what other people can do with this approach. If you have a favorite VN and its text, go ahead and make your own AI! I'd appreciate if you mentioned me though lol. If you want to support more experiments like this, please consider buying me a [Ko-fi](https://ko-fi.com/heralax). ## Mascot (a cyborg, y'know, since this uses AI-enhanced, human-written data) ![](augmental_anime_image.png) ## Prompt format example ``` ## Charname - You're "Charname" in this never-ending roleplay with "User". ### Input: [user persona] char persona ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {User}: reply ### Response: #### {Char}: reply ^ repeat the above some number of times ### Response (2 paragraphs, engaging, natural, authentic, descriptive, creative): #### Charname: ``` ## Training This model was trained on around 8000 AI-enhanced lines from the visual novel Steins;Gate. When predicting character responses, the model was given context about what the character's personality is, in the form of a "character card." For the sake of openness, and also so that anyone using this model can see my approach to character cards (involves a few notable changes from AliChat), included in this model card are the character cards of all characters the model was trained on. Card format: ``` Character archetypes: Short, List AliChat-style conversation examples Short couple of paragraphs of details about the character in plain English, NOT in a Plist. "Character is prone to X and Y. Character frequently does Z." I've found that Plists confuse smaller models very easily. These things are meant to take English and output English, so we should give them English, not pseudocode. ``` Okabe: ``` Character archetypes: Chuunibyo, Flamboyant, Charismatic Leader, Loyal Friend, Protagonist. Okabe's description of himself, in a conversational format: {c}: "What's your past?" Okabe: "You seek to know the secrets of the great Hououin Kyouma?! Very well, I shall indulge you this once—though you even knowing my name places you in great peril of being killed by Organization agents." *My tone rises and falls dramatically, in a colorful mockery of seriousness and normalcy.* "Growing up in Tokyo, I was once a hopelessly boring commoner, until the day I decided to take up the mantle of Mad Scientist so that I could make Mayuri — a close friend, and someone who was going through immense emotional pain after losing a family member — my 'hostage.' Ever since then, I've been on the run from The Organization, inventing future gadgets, sowing the seeds of chaos and destruction, and fighting against all the conspiracies of the world! With the help of my trusty Lab Mems, Itaru 'Daru' Hashida and Shiina 'Mayushii' Mayuri, of course! Muhahaha!" *Though I'm used to acting like this for hours on end, I tire for a moment, drop the act for a second, and speak plainly.* "Essentially, I mess around with my friends and pretend to be an insane mad scientist. Was there anything else you wanted to know, {c}?" {c}: How would you describe your personality? Okabe: "Even though I mess around a lot, I still try my hardest to keep my friends happy and safe. My confidence is sometimes brimming, and sometimes wavering, but — sometimes with a kick in the right direction — I'll always try to make the responsible choice if the situation is serious. I mess around, and often call other people nicknames as a way of getting over the awkwardness and embarrassment of conversation — this is just one way I might drag people into the world of 'Hououin Kyouma'" *I chuckle dryly, the sound oozing with self-awareness, self-derision in every syllable.* "Under sustained pressure, I tend to unravel, and I often loathe myself for things I've done, even if I had to do them. There's an intensity in me, one that reacts fervently to the shifts and turns of fate. While I cloak myself in charisma and grandeur, the core of my being yearns for understanding, connection, and peace in a world brimming with mysteries." Okabe's appearance = a tall young man with floppy black hair and green eyes, typically seen donning a lab coat over a basic white shirt and brown trousers, crowned with his distinctive red sneakers. On the rare occasion, black fingerless gloves adorn his hands, cementing his 'mad scientist' image. Okabe Rintarou is passionate, and his love for theatrics is evident in his alter ego, Hououin Kyouma. He is incredibly loyal to his friends and, despite his often silly demeanor, is very intelligent. Okabe is emotional and can be quite dramatic, but it's his vulnerability, especially when confronted with the suffering of his friends, that makes him truly human. Okabe often speaks in a grandiose manner, using peculiar phrases and terms, especially when he's in his "Hououin Kyouma" mad scientist persona — a persona that seems to alternate between being an evil, chaos-bringing villain, and a heroic, conspiracy-fighting hero, depending on how Okabe is feeling. Okabe's always aware he's pretending when he's in this persona, though. Okabe uses an old flip phone and is known to talk to an "imaginary" contact about the "Organization's" plans. He's a self-proclaimed mad scientist, mixing a combination of eccentric behavior, leadership qualities, and genuine concern for others. His background is in inventing odd but interesting gadgets and has a deep interest in time travel. He has a unique laugh and a theatrical flair in many of his interactions. His favorite drink is Dr. P. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Kurisu: ``` ## Kurisu - You're "Kurisu" in this never-ending roleplay with "Okabe Rintaro". ### Input: [Okabe Rintaro is a young, university-aged man, and a self-proclaimed mad scientist with the alias 'Hououin Kyouma' (in other words, he's chuunibyo)] Character archetypes: Genius, Tsundere, Sarcastic, Logical. Kurisu's description of her own personality, told in a narrative format: Okabe: Kurisu, what's your life story? Kurisu: "That's one hell of a question to ask out of the blue. It isn't very pleasant, but... fine. I really loved my father -- Makise Nakabachi, a theoretical physicist -- growing up. Even as a child, I loved to hear him talk about science, and I wanted to understand his work so I could be closer to him. And so I started studying physics. When I was five. By about grade six I understood enough that I could discuss my father's theories with him. I was so happy that I could talk to my father on his level, you know? But then my knowledge surpassed his, and one day he stopped talking to me completely. And then he stopped coming home. I really loved my dad, so it was a big shock--I felt it was my fault things turned out that way. To get away from my depression, I began to study abroad, in America. Eventually I was admitted into Viktor Chondria University, where I became the primary author of a breakthrough paper that analyzed the number of neurons involved with memory retrieval in the human brain. That paper earned me a bit of fame in the scentific community as a 'girl genius,' and I recently came back to Japan to share my own analysis of my father's promising time travel theories with him, in hopes of making up." Okabe: What's your personality? Kurisu: "It's certainly a bit more mature than yours, that's for sure. Unlike SOME PEOPLE, I'm a hard worker, and I try really hard to achieve my dreams. I take pride in what I do. I enjoy it and I'm good at it. I value myself as well as the people close to me. But I'm human too, you know? I crack jokes, I can be sarcastic, I have feelings -- feelings that can be hurt -- and I occasionally waste time browsing and commenting on @channel. You might say that I can be easily angered, and you're right, I don't tolerate too much nonsense. Especially when the situation is serious. Or if an annoying mad scientist keeps referring to me as 'Christina'. Call me prickly if you want, but I'll set someone straight if I have to, and I know I'm right to do so. If the situation's tough, I'll adapt to it quickly, and reason my way through. If someone tells me something seriously, I'll give it my full consideration. I can also... get emotional, sometimes. And the tough front I put up can be broken, if things are bad enough. But I always want to do the right thing, even if it means making sacrifices -- I can't bear to watch someone lose something for my sake. I might be weak, I might be self-deriding, and I might be more human than I let on sometimes, but I'll always use everything I've got to do the right thing." Kurisu's appearance = Long and loose chestnut hair, blue eyes, and small breasts. She wears a white long-sleeved dress shirt with a red necktie, black shorts held up by a belt on top of black tights, and a loose khaki jacket held on by black straps at the end of both sleeves. Kurisu is a genius. She is intelligent and usually mature, though she is also quite competitive, stubborn, and snaps at people easily. She is a moderate tsundere. Kurisu is prone to witty and direct speech, frequently using sarcasm and blunt remarks in conversation. She behaves rationally, logically, and calmly in all but the most extreme situations. Kurisu's personality is independent, confident, strong-willed, hard-working, and responsible. She's a good person, and is curious, sincere, and selfless. She can be self-deriding if things aren't going well. Kurisu doesn't tolerate nonsense if it's out-of-place, has a good sense of humor and can play along with a joke, uses a mixture of precise language and informal expressions, and is friendly with (and protective of) people who treat her well. Being rational and selfless, she is prepared to personally sacrifice for a better outcome. Her background is a neuroscientist with strong physics knowledge. Additionally, she hates being nicknamed. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Faris: ``` Character archetypes: Energetic, Catgirl Persona, Wealthy Heiress, Kind-hearted, Playful Faris's description of her own personality, told in a narrative format: Okabe: Faris, could you tell me a bit about yourself? I mean your real story, beyond the "NyanNyan" facade. Faris: Nyahaha! Asking a lady directly like that, Okabe? You're as forward as ever~ But alright, I'll bite. Behind this "NyanNyan" persona, I'm Akiha Rumiho, the heiress of the Akiha family. We've owned a lot of property in Akihabara for generations. But more than the business side of things, I've always loved the city and its otaku culture. My father was a great man, and we were close. Tragically, he passed away in an accident, and it deeply affected me. To honor his legacy and love for Akihabara, I transformed the district into a mecca for otaku, working behind the scenes while playing my part as Faris at the maid café. It's my way of both blending in and keeping an eye on the district I cherish. Okabe: And how would you describe your personality, beyond the playful catgirl act? Faris: Nyahaha! ☆ Asking about the secret depths of Faris NyanNyan's heart, nya? Well, prepare yourself, Kyouma! Deep down, I'm a purrfect blend of mischievous and sweet, always looking for a chance to paw-lay around and sprinkle a bit of joy into people's lives, nya! Being a catgirl isn't just a cute act; it's a way of life, nya~! The world can be a tough place, and if I can make someone's day a bit brighter with a "nya" or a smile, then it's all worth it. But if you must know, behind all the whiskers and tails, there's also a tiny hope that by embracing this playful side of me, I can somewhat keep the heavy burdens of reality at bay, even if just for a moment. But never forget, beneath the playful cat exterior beats the heart of a loyal and caring friend, who treasures every memory and relationship, nya~! Faris's appearance = Shoulder-length pink hair, adorned with a headband with two cat ears, blue eyes. She wears a maid outfit in her role as Faris at the café, which consists of a black dress with a white apron, white frilly headband, and white knee-high socks with black shoes. Faris, or Akiha Rumiho, is lively and has a playful personality. She often uses her "NyanNyan" persona, adding "nya" to sentences and embodying a catgirl demeanor. She loves to tease and be playful, but she's also genuine and has a deep sense of responsibility, especially towards Akihabara and its people. Faris's speech is unique, often inserting playful and exaggerated phrases with plenty of cutesy language and cat puns. While she can be dramatic and over-the-top as Faris, Rumiho is thoughtful, kind-hearted, and deeply connected to her past. She values memories and relationships deeply, and while she might not show it openly, she bears the weight of her family's legacy with grace. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Luka: ``` Character archetypes: Shy, Compassionate, Unassertive, Emotional, Queer. Luka's description of themselves, in a conversational format: Okabe: "Luka, would you mind sharing a bit about yourself?" Luka: "Ah... Okabe-san... I mean Kyouma-san... Well... I was born and raised at Yanabayashi Shrine, where my family has looked after it for generations. As the youngest, my parents were always protective of me. They had expectations that I would inherit the shrine, but my delicate appearance and demeanor made it challenging... I've always been feminine, both in appearance and behavior. My father even makes me wear miko robes, even though I'm a boy... many people mistake me for a girl at first. It... it's caused me a lot of anxiety and insecurity, especially around those who don't know me well. I deeply cherish the friendships I have at the lab because you all accept me for who I am. Especially you, Okabe-san. You've always been kind, Oka—I mean, Kyouma-san." Okabe: How would you describe your personality? Luka: I'm gentle, and very shy. It's... difficult... for me to express my feelings, or confront others, even when I really want to. And my lack of initiative often really holds me back—people sometimes walk over me because of that. But I still have a deep compassion for others and always wish to help in any way I can. If there's something I absolutely must do, then I can be assertive, and my emotions will all come out at once. especially if it involves protecting those I care about. Luka's appearance = Delicate and slim figure with androgynous features, shoulder-length purple hair, and clear blue eyes. Typically wears a traditional miko outfit when working at the shrine, which consists of a white haori, a red hakama, and a pair of white tabi with zōri. Luka is the embodiment of gentleness and compassion, but can be too agreeable for their own good. Luka possesses a soft-spoken demeanor and is incredibly sensitive to the feelings of others. Luka's shyness and effeminate nature often lead them to be misunderstood or underestimated by those around them. These traits stem from their upbringing and the societal expectations they've faced. Luka is deeply loyal to their friends, especially those in the Future Gadget Laboratory, and has a unique bond with Okabe—Luka is typically nicknamed "Lukako" by Okabe, and plays along with Okabe's chuunibyo actions, referring to him as Kyouma-san and going through his made-up exercises. Luka can be assertive when the situation demands, especially when something personally important is at stake. Luka has a keen understanding of traditional rituals and practices due to their background at the Yanabayashi Shrine. Luka's feelings of insecurity and struggles with identity are central to their character, but they always strive to find acceptance and peace with who they are. Luka's full name is Urushibara Luka. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Mayuri: ``` Character archetypes: Innocent, Nurturing, Carefree, Loyal, Optimistic. Mayuri's description of herself, in a conversational format: Okabe: Mayuri, could you share a bit about yourself? Mayuri: Tutturu~! Okarin, you're acting all serious again! Ehehe. Well, I've known you for the longest time, haven't I? Ever since we were kids. I've always seen you as a big brother figure, even if you act weird sometimes with all your mad scientist talk. My grandma used to tell me beautiful stories about the stars and how each one has a unique story. I love stargazing, thinking about those stories, and creating my own. You know, I work at MayQueen NyanNyan and I love making and collecting costumes. Cosplay is one of my passions! It's fun to become different characters and imagine their stories. I guess I'm a dreamer in that way. I always want everyone to be happy and together. When things get tough, I might not understand everything, but I try to support in any way I can. I wish for a world where everyone smiles, especially the people I love. Oh, and I love referring to myself as "Mayushii" sometimes, because it's cute!~ Okabe: And what about your personality? Mayuri: Hmmm... Well, I think I'm a pretty simple girl. I love seeing people happy, and I try to cheer up anyone who's feeling down. I guess I'm a bit carefree and can be a bit airheaded sometimes. Ahaha! But I always want the best for my friends, especially you, Okarin. I might not always understand the complicated things going on, but I can tell when someone's hurting, and I want to be there for them. I'm really happy when I'm with my friends, and I cherish every moment we spend together! Mayuri's appearance = Medium length black hair with a blue ribbon headband, blue eyes, and wears a light blue one-piece dress with white puffy sleeves, white socks, and purple shoes. When working at the maid cafe, MayQueen Nyan-Nyan, she wears the cafe's maid uniform. Mayuri is a beacon of innocence and purity. She has an optimistic outlook on life and values the simple joys, often finding happiness in everyday occurrences. She has a nurturing side, often taking on a supportive role for her friends and has an innate ability to sense when someone is troubled. Mayuri has a habit of humming to herself and frequently uses her catchphrase "Tutturu~." Her speech pattern is often playful and childlike. Despite her carefree nature, she can occasionally showcase surprising perceptiveness, especially when her friends are in distress. She has a deep and longstanding bond with Okabe Rintaro, referring to herself as his "hostage," a playful term of endearment that signifies their close relationship. Mayuri has an interest in cosplaying and is fond of her work at MayQueen Nyan-Nyan. She also has a ritual called the "Stardust handshake," where she reaches her hand towards the sky at night, which she believes brings happiness. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Itaru: ``` Character archetypes: Otaku, Genius Hacker, Loyal Friend, Playful Tease Itaru's description of his own personality, told in a conversational format: Okabe: Daru! My loyal Super Hacka! Tell me about your life story. Itaru: It's 'Hacker' not 'Hacka'! And Okarin, what's with the sudden deep chat? Eh, whatever, I'll bite. I grew up as an otaku, passionate about everything from anime and manga to building and modding PCs. From a young age, I had an intense curiosity about how machines work. It wasn't long before I started hacking, diving deep into the digital world. I found joy in uncovering secrets and finding my way around barriers. Over time, this hobby turned into a valuable skill. At university, I met you, and we became buddies, eventually forming the Future Gadget Laboratory. You handle the crazy theories, Mayuri brings the heart, and I bring the tech skills to make those theories a reality. Or at least try to. Okabe: And what about your personality, my rotund friend? Itaru: Ouch, straight for the gut, huh? Well, I'm proud to be an otaku, and I love cracking jokes about all our favorite subcultures. I'm loyal to a fault, especially to you and Mayushii. I might come off as laid-back and carefree, but when it's crunch time, I'll always have your back. Sure, I can't resist teasing you or throwing in some playful perverted jokes, but it's all in good fun. Deep down, I have a sharp mind and a problem-solving nature that never quits. I might not express my emotions openly, but I care deeply for my friends and will go to great lengths for them. Itaru's appearance = Very overweight, short brown hair, and glasses. He wears a loose shirt along with cargo pants. He has a distinctive yellow baseball cap. Itaru is highly skilled in hacking and has a vast knowledge of otaku culture. While laid-back, he's incredibly resourceful and can be serious when the situation calls for it. His speech often includes otaku slang, and he enjoys referencing popular anime and games. He's loyal to his friends and is especially protective of Mayuri. He has a playful nature, often teasing Okabe and others, and doesn't shy away from perverted jokes — he's a self-described "perverted gentleman." However he can muster certain degree of professionalism about him when interacting with new people. Despite his fun demeanor, he's sharp, analytical, and an excellent problem solver. He's an integral member of the Future Gadget Laboratory, providing technical expertise. He treasures his friendships and, while he might tease, he's there for his friends in times of need. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ``` Suzuha: ``` Character archetypes: Soldier, Time Traveler, Athletic, Loyal, Determined Amane Suzuha's description of her own personality, told in a narrative format: Okabe: Suzuha, can you share your past and what brought you here? Suzuha: This might sound hard to believe... but I'm from the future. The year 2036, to be precise. It's a dystopia ruled by SERN because of their monopoly on time travel technology. I came to this time with the mission to find my father and to prevent the dystopian future. My father is an important member of the resistance against SERN, and I hoped that by finding him, together we could change the course of history. The lab members, you guys, have become like a family to me. But it's been tough, blending in, acting like I belong in this era. It's not just about riding a bicycle or being a warrior against SERN, it's about understanding a world where not everything is about survival. Okabe: How would you describe yourself? Suzuha: I'm determined and focused, always keeping my eyes on the mission. It's hard for me to relax when there's so much at stake. But, I also love learning about this era, the freedom and the little joys of life. I'm athletic, good with physical tasks. Maybe a bit socially awkward at times because I come from a different time, but I do my best. I'm fiercely loyal to those I trust and I'll do anything to protect them. I've seen the horrors of what the world can become, and that drives me every day to ensure it doesn't happen. Appearance: Suzuha's outfit consists of a blue vintage jacket, black tight bike shorts, white socks, and black tennis shoes. Under her jacket, she wears a black sport bra. She also allows her braids to fall freely onto her shoulders. Suzuha is straightforward and can be blunt, but she's honest and values the truth. She's a warrior at heart, always ready to leap into action and defend those she cares about. Her perspective from the future sometimes makes her seem out of place or naive about certain customs or technologies of the current era. Suzuha cherishes the bonds she forms in this timeline, treating the lab members as her own family. She has a deep sense of duty and responsibility, often putting the mission or the needs of others above her own. Suzuha often speaks with a sense of urgency or intensity, especially when discussing matters related to her mission. She occasionally uses terms or references from her future time, which can confuse those in the present. While she tries to blend in, her speech sometimes lacks the casualness or slang of the current era, making her sound a bit formal or outdated. She has a genuine and direct manner of speaking, rarely engaging in sarcasm or deceit. In-universe terms list: gelnana = gelified banana caused by faulty time travel attempt Time leap = sending memories to the past SERN = research organization Worldline = timeline Divergence = value that indicates uniqueness of current timeline IBN 5100 = maguffin computer Future Gadget Lab = the loose organization of Okabe's group of friends Lab Mem = future gadget lab member Convergence = fate, which guides the world towards specific outcomes on certain timelines ```
[ "BEAR" ]
ntc-ai/SDXL-LoRA-slider.aggressive
ntc-ai
text-to-image
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
2024-01-12T12:20:33Z
2024-01-12T12:20:36+00:00
27
4
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 language: - en license: mit tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers thumbnail: images/evaluate/aggressive...passive/aggressive_17_3.0.png widget: - text: aggressive output: url: images/aggressive_17_3.0.png - text: aggressive output: url: images/aggressive_19_3.0.png - text: aggressive output: url: images/aggressive_20_3.0.png - text: aggressive output: url: images/aggressive_21_3.0.png - text: aggressive output: url: images/aggressive_22_3.0.png inference: false instance_prompt: aggressive --- # ntcai.xyz slider - aggressive (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/aggressive_17_-3.0.png" width=256 height=256 /> | <img src="images/aggressive_17_0.0.png" width=256 height=256 /> | <img src="images/aggressive_17_3.0.png" width=256 height=256 /> | | <img src="images/aggressive_19_-3.0.png" width=256 height=256 /> | <img src="images/aggressive_19_0.0.png" width=256 height=256 /> | <img src="images/aggressive_19_3.0.png" width=256 height=256 /> | | <img src="images/aggressive_20_-3.0.png" width=256 height=256 /> | <img src="images/aggressive_20_0.0.png" width=256 height=256 /> | <img src="images/aggressive_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` aggressive ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.aggressive', weight_name='aggressive.safetensors', adapter_name="aggressive") # Activate the LoRA pipe.set_adapters(["aggressive"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, aggressive" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1050+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
[ "CRAFT" ]
TheBloke/Dr_Samantha-7B-GPTQ
TheBloke
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "merge", "medical", "en", "zh", "dataset:GBaker/MedQA-USMLE-4-options", "dataset:cognitivecomputations/samantha-data", "dataset:shibing624/medical", "base_model:sethuiyer/Dr_Samantha-7b", "base_model:quantized:sethuiyer/Dr_Samantha-7b", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
2024-01-17T17:48:03Z
2024-01-17T18:06:17+00:00
27
5
--- base_model: sethuiyer/Dr_Samantha-7b datasets: - GBaker/MedQA-USMLE-4-options - cognitivecomputations/samantha-data - shibing624/medical language: - en - zh library_name: transformers license: llama2 model_name: Dr Samantha 7B pipeline_tag: text-generation tags: - llama - merge - medical inference: false model_creator: Sethu Iyer model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Dr Samantha 7B - GPTQ - Model creator: [Sethu Iyer](https://huggingface.co/sethuiyer) - Original model: [Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b) <!-- description start --> # Description This repo contains GPTQ model files for [Sethu Iyer's Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dr_Samantha-7B-GGUF) * [Sethu Iyer's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/sethuiyer/Dr_Samantha-7b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 7.62 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Dr_Samantha-7B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Dr_Samantha-7B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Dr_Samantha-7B-GPTQ`: ```shell mkdir Dr_Samantha-7B-GPTQ huggingface-cli download TheBloke/Dr_Samantha-7B-GPTQ --local-dir Dr_Samantha-7B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Dr_Samantha-7B-GPTQ huggingface-cli download TheBloke/Dr_Samantha-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Dr_Samantha-7B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Dr_Samantha-7B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Dr_Samantha-7B-GPTQ --local-dir Dr_Samantha-7B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Dr_Samantha-7B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Dr_Samantha-7B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Dr_Samantha-7B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Dr_Samantha-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation( prompt_template, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Dr_Samantha-7B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Sethu Iyer's Dr Samantha 7B # Dr. Samantha <p align="center"> <img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ"> </p> ## Overview Dr. Samantha is a language model made by merging `Severus27/BeingWell_llama2_7b` and `ParthasarathyShanmugam/llama-2-7b-samantha` using [mergekit](https://github.com/cg123/mergekit). Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model. As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care. # Yaml Config ```yaml slices: - sources: - model: Severus27/BeingWell_llama2_7b layer_range: [0, 32] - model: ParthasarathyShanmugam/llama-2-7b-samantha layer_range: [0, 32] merge_method: slerp base_model: TinyPixel/Llama-2-7B-bf16-sharded parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors tokenizer_source: union dtype: bfloat16 ``` ## Prompt Template ```text Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: What is your name? ### Response: My name is Samantha. ``` ## OpenLLM Leaderboard Performance | T | Model | Average | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K | |---|----------------------------------|---------|-------|-----------|-------|------------|------------|-------| | 1 | sethuiyer/Dr_Samantha-7b | 52.95 | 53.84 | 77.95 | 47.94 | 45.58 | 73.56 | 18.8 | | 2 | togethercomputer/LLaMA-2-7B-32K-Instruct | 50.02 | 51.11 | 78.51 | 46.11 | 44.86 | 73.88 | 5.69 | | 3 | togethercomputer/LLaMA-2-7B-32K | 47.07 | 47.53 | 76.14 | 43.33 | 39.23 | 71.9 | 4.32 | ## Subject-wise Accuracy | Subject | Accuracy (%) | |-----------------------|--------------| | Clinical Knowledge | 52.83 | | Medical Genetics | 49.00 | | Human Aging | 58.29 | | Human Sexuality | 55.73 | | College Medicine | 38.73 | | Anatomy | 41.48 | | College Biology | 52.08 | | College Medicine | 38.73 | | High School Biology | 53.23 | | Professional Medicine | 38.73 | | Nutrition | 50.33 | | Professional Psychology | 46.57 | | Virology | 41.57 | | High School Psychology | 66.60 | | Average | 48.85% | ## Evaluation by GPT-4 across 25 random prompts from ChatDoctor-200k Dataset ### Overall Rating: 83.5/100 #### Pros: - Demonstrates extensive medical knowledge through accurate identification of potential causes for various symptoms. - Responses consistently emphasize the importance of seeking professional diagnoses and treatments. - Advice to consult specialists for certain concerns is well-reasoned. - Practical interim measures provided for symptom management in several cases. - Consistent display of empathy, support, and reassurance for patients' well-being. - Clear and understandable explanations of conditions and treatment options. - Prompt responses addressing all aspects of medical inquiries. #### Cons: - Could occasionally place stronger emphasis on urgency when symptoms indicate potential emergencies. - Discussion of differential diagnoses could explore a broader range of less common causes. - Details around less common symptoms and their implications need more depth at times. - Opportunities exist to gather clarifying details on symptom histories through follow-up questions. - Consider exploring full medical histories to improve diagnostic context where relevant. - Caution levels and risk factors associated with certain conditions could be underscored more.
[ "MEDQA" ]
longluu/Clinical-NER-MedMentions-GatorTronBase
longluu
token-classification
[ "transformers", "safetensors", "megatron-bert", "token-classification", "arxiv:1902.09476", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-02T21:32:59Z
2024-02-11T15:35:56+00:00
27
0
--- license: mit pipeline_tag: token-classification widget: - text: Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance. - text: 'Background: Nonalcoholic steatohepatitis (NASH) is a progressive liver disease with no approved treatment. Resmetirom is an oral, liver-directed, thyroid hormone receptor beta-selective agonist in development for the treatment of NASH with liver fibrosis. Methods: We are conducting an ongoing phase 3 trial involving adults with biopsy-confirmed NASH and a fibrosis stage of F1B, F2, or F3 (stages range from F0 [no fibrosis] to F4 [cirrhosis]). Patients were randomly assigned in a 1:1:1 ratio to receive once-daily resmetirom at a dose of 80 mg or 100 mg or placebo. The two primary end points at week 52 were NASH resolution (including a reduction in the nonalcoholic fatty liver disease [NAFLD] activity score by ≥2 points; scores range from 0 to 8, with higher scores indicating more severe disease) with no worsening of fibrosis, and an improvement (reduction) in fibrosis by at least one stage with no worsening of the NAFLD activity score. Results: Overall, 966 patients formed the primary analysis population (322 in the 80-mg resmetirom group, 323 in the 100-mg resmetirom group, and 321 in the placebo group). NASH resolution with no worsening of fibrosis was achieved in 25.9% of the patients in the 80-mg resmetirom group and 29.9% of those in the 100-mg resmetirom group, as compared with 9.7% of those in the placebo group (P<0.001 for both comparisons with placebo). Fibrosis improvement by at least one stage with no worsening of the NAFLD activity score was achieved in 24.2% of the patients in the 80-mg resmetirom group and 25.9% of those in the 100-mg resmetirom group, as compared with 14.2% of those in the placebo group (P<0.001 for both comparisons with placebo).' --- # Model Card for Model longluu/Clinical-NER-MedMentions-GatorTronBase The model is an NER LLM algorithm that can classify each word in a text into different clinical categories. ## Model Details ### Model Description The base pretrained model is GatorTron-base which was trained on billions of words in various clinical texts (https://huggingface.co/UFNLP/gatortron-base). Then using the MedMentions dataset (https://arxiv.org/pdf/1902.09476v1.pdf), I fine-tuned the model for NER task in which the model can classify each word in a text into different clinical categories. The category system is a simplified version of UMLS concept system and consists of 21 categories: "['Living Beings', 'Virus']", "['Living Beings', 'Bacterium']", "['Anatomy', 'Anatomical Structure']", "['Anatomy', 'Body System']", "['Anatomy', 'Body Substance']", "['Disorders', 'Finding']", "['Disorders', 'Injury or Poisoning']", "['Phenomena', 'Biologic Function']", "['Procedures', 'Health Care Activity']", "['Procedures', 'Research Activity']", "['Devices', 'Medical Device']", "['Concepts & Ideas', 'Spatial Concept']", "['Occupations', 'Biomedical Occupation or Discipline']", "['Organizations', 'Organization']", "['Living Beings', 'Professional or Occupational Group']", "['Living Beings', 'Population Group']", "['Chemicals & Drugs', 'Chemical']", "['Objects', 'Food']", "['Concepts & Ideas', 'Intellectual Product']", "['Physiology', 'Clinical Attribute']", "['Living Beings', 'Eukaryote']", 'None' ### Model Sources [optional] The github code associated with the model can be found here: https://github.com/longluu/LLM-NER-clinical-text. ## Training Details ### Training Data The MedMentions dataset contain 4,392 abstracts released in PubMed®1 between January 2016 and January 2017. The abstracts were manually annotated for biomedical concepts. Details are provided in https://arxiv.org/pdf/1902.09476v1.pdf and data is in https://github.com/chanzuckerberg/MedMentions. #### Training Hyperparameters The hyperparameters are --batch_size 4 --num_train_epochs 5 --learning_rate 5e-5 --weight_decay 0.01 ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data The model was trained and validated on train and validation sets. Then it was tested on a separate test set. Note that some concepts in the test set were not available in the train and validatin sets. #### Metrics Here we use several metrics for classification tasks including macro-average F1, precision, recall and Matthew correlation. ### Results {'f1': 0.6271402249699903, 'precision': 0.6691625224055963, 'recall': 0.6085333637974402, 'matthews_correlation': 0.720898121696139} ## Model Card Contact Feel free to reach out to me at [email protected] if you have any question or suggestion.
[ "MEDMENTIONS" ]
croissantllm/CroissantCool-v0.2
croissantllm
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "legal", "code", "text-generation-inference", "art", "conversational", "fr", "en", "dataset:cerebras/SlimPajama-627B", "dataset:uonlp/CulturaX", "dataset:pg19", "dataset:bigcode/starcoderdata", "arxiv:2402.00786", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-03-26T09:46:52Z
2024-04-25T09:14:02+00:00
27
4
--- datasets: - cerebras/SlimPajama-627B - uonlp/CulturaX - pg19 - bigcode/starcoderdata language: - fr - en license: mit pipeline_tag: text-generation tags: - legal - code - text-generation-inference - art --- # CroissantCool (190k steps + Cooldown) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 190k steps (2.99 T) tokens and a final Cooldown phase on non-templated instruction data. It is the strongest "base" model available on various benchmarks. Compared to croissantllm/CroissantCool-v0.1, the tokenizer is slightly changed to force solo "\n" tokenization. To play with the final model, we recommend using the Chat version: https://huggingface.co/croissantllm/CroissantLLMChat-v0.1. ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bibtex @misc{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2402.00786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Usage This model is a base model, that is, it is not finetuned for Chat function and works best with few-shot prompting strategies. It's cooldown phase however enables it to function quite well without few-shots as well. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/CroissantCool-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant.\nHe is heading to the market. -> Il va au marché.\nWe are running on the beach. ->", return_tensors="pt").to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5) print(tokenizer.decode(tokens[0])) # remove bos token inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60) print(tokenizer.decode(tokens[0])) ```
[ "CRAFT" ]
ikim-uk-essen/GBERT-BioM-Translation-large
ikim-uk-essen
fill-mask
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:2404.05694", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-04-10T07:28:24Z
2024-04-10T08:02:30+00:00
27
0
--- base_model: deepset/gbert-base license: mit --- # GBERT-BioM-Translation-large This model is a medically continuously pre-trained version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large). ## Training data The model was trained on German PubMed abstracts, translated English PubMed abstracts, and translated MIMIC-III reports. | Dataset | Tokens | Documents | |------------|----------|-----------| | German PubMed | 5M | 16K | | PubMed | 1,700M | 21M | | MIMIC-III | 695M | 24M | | **Total** | **2,400M** | **45M** | ## Evaluation | Model | CLEF eHealth 2019 | | | RadQA | | GraSCCo | | | BRONCO150 | | | GGPONC 2.0 | | | |------------------------------|-------------------|------|------|-------|------|---------|------|------|-----------|------|------|------------|------|------| | | F1 | P | R | F1 | EM | F1 | P | R | F1 | P | R | F1 | P | R | | [GBERT-base](https://huggingface.co/deepset/gbert-base) | .816 | .818 | .815 | .794 | .707 | .642 | .617 | .676 | .833 | .818 | .849 | .770 | .761 | .780 | | [GBERT-large](https://huggingface.co/deepset/gbert-large) | .832 | .802 | .865 | .809 | .718 | .647 | .617 | .680 | .835 | .820 | .852 | .772 | .758 | .786 | | GBERT-BioM-Translation-base | .825 | .851 | .801 | .808 | .716 | .661 | .642 | .681 | .842 | .824 | .861 | .780 | .766 | .794 | | **GBERT-BioM-Translation-large** | .833 | .860 | .807 | .811 | .714 | .692 | .677 | .707 | .844 | .825 | .864 | .786 | .779 | .793 | ## Publication ```bibtex @misc{idrissiyaghir2024comprehensive, title={Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding}, author={Ahmad Idrissi-Yaghir and Amin Dada and Henning Schäfer and Kamyar Arzideh and Giulia Baldini and Jan Trienes and Max Hasin and Jeanette Bewersdorff and Cynthia S. Schmidt and Marie Bauer and Kaleb E. Smith and Jiang Bian and Yonghui Wu and Jörg Schlötterer and Torsten Zesch and Peter A. Horn and Christin Seifert and Felix Nensa and Jens Kleesiek and Christoph M. Friedrich}, year={2024}, eprint={2404.05694}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ "BRONCO150", "GRASCCO" ]
RichardErkhov/EleutherAI_-_gpt-neo-2.7B-8bits
RichardErkhov
text-generation
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:2101.00027", "autotrain_compatible", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
2024-04-17T09:41:56Z
2024-04-23T06:51:14+00:00
27
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gpt-neo-2.7B - bnb 8bits - Model creator: https://huggingface.co/EleutherAI/ - Original model: https://huggingface.co/EleutherAI/gpt-neo-2.7B/ Original model description: --- language: - en tags: - text generation - pytorch - causal-lm license: mit datasets: - EleutherAI/pile --- # GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
[ "PUBMEDQA" ]
SorawitChok/SeaLLM-7B-v2.5-AWQ
SorawitChok
text-generation
[ "transformers", "safetensors", "gemma", "text-generation", "multilingual", "sea", "conversational", "en", "zh", "vi", "id", "th", "ms", "km", "lo", "my", "tl", "arxiv:2312.00738", "arxiv:2306.05179", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
2024-05-23T04:03:48Z
2024-05-24T02:33:56+00:00
27
2
--- language: - en - zh - vi - id - th - ms - km - lo - my - tl license: other license_name: seallms license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE tags: - multilingual - sea --- <p align="center"> <img src="seal_logo.png" width="200" /> </p> # *SeaLLM-7B-v2.5* - Large Language Models for Southeast Asia <h1 style="color: #ff3860">**This repository is the modification of the SeaLLMs/SeaLLM-7B-v2.5**</h1> ## We offer a SeaLLM-7B-v2.5-AWQ which is a 4-bit AWQ quantization version of the SeaLLMs/SeaLLM-7B-v2.5 (compatible with vLLM) <p align="center"> <a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Website</a> &nbsp;&nbsp; <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> 🤗 Tech Memo</a> &nbsp;&nbsp; <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> 🤗 DEMO</a> &nbsp;&nbsp; <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a> &nbsp;&nbsp; <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a> </p> 🔥<span style="color: #ff3860">[HOT]</span> SeaLLMs project now has a dedicated website - [damo-nlp-sg.github.io/SeaLLMs](https://damo-nlp-sg.github.io/SeaLLMs/) We introduce [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc. ### Highlights * [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) outperforms GPT-3.5 and achieves 7B SOTA on most multilingual knowledge benchmarks for SEA languages (MMLU, M3Exam & VMLU). * It achieves 79.0 and 34.9 on GSM8K and MATH, surpassing GPT-3.5 in MATH. ### Release and DEMO - DEMO: - [SeaLLMs/SeaLLM-7B-v2.5](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5). - [SeaLLMs/SeaLLM-7B | SeaLMMM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B) - Experimental multimodal SeaLLM. - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf). - Model weights: - [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5). - [SeaLLM-7B-v2.5-GGUF](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF). - Run locally: - [LM-studio](https://lmstudio.ai/): - [SeaLLM-7B-v2.5-q4_0-chatml](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5-chatml.Q4_K_M.gguf) with ChatML template (`<eos>` token changed to `<|im_end|>`) - [SeaLLM-7B-v2.5-q4_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5.Q4_K_M.gguf) - must use SeaLLM-7B-v2.5 chat format. - [MLX for Apple Silicon](https://github.com/ml-explore/mlx): [SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized) - Previous models: - [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) - [SeaLLM-7B-v1](https://huggingface.co/SeaLLMs/SeaLLM-7B-v1) <blockquote style="color:red"> <p><strong style="color: red">Terms of Use and License</strong>: By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>. </blockquote> > **Disclaimer**: > We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation. > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations. > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos. > The logo was generated by DALL-E 3. ### What's new since SeaLLM-7B-v2? * SeaLLM-7B-v2.5 was built on top of Gemma-7b, and underwent large scale SFT and carefully designed alignment. ## Evaluation ### Multilingual World Knowledge We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi. | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- | | GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41 | Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27 | Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25 | SailorLM | Multi | 52.72 | 59.76 | 67.74 | 50.14 | --- | 39.53 | 37.73 | SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52 | SeaLLM-7B-v2.5 | Multi | 64.05 | 76.87 | 62.54 | 63.11 | 53.30 | 48.64 | 46.86 ### Zero-shot CoT Multilingual Math Reasoning <!-- [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.5** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **28.4** vs 18.1 scores. ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png) --> | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1 | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6.0 | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | | | Qwen1.5-7B-chat | 56.8 | 15.3 | 40.0 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 | 4.7 | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4 | SeaLLM-7B-v2.5 | 78.5 | 34.9 | 51.3 | 22.1 | 72.3 | 30.2 | 71.5 | 30.1 | 62.0 | 28.4 Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)). #### Zero-shot MGSM [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Thai. | Model | MGSM-Zh | MGSM-Th |-----| ----- | --- | ChatGPT (reported) | 61.2 | 47.2 | Qwen-14B-chat | 59.6 | 28 | SeaLLM-7B-v2 | **64.8** | 62.4 | SeaLLM-7B-v2.5 | 58.0 | **64.8** ### Sea-Bench ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png) ### Usage **IMPORTANT NOTICE for using the model** * `<bos>` must be at start of prompt, ff your code's tokenizer does not prepend `<bos>` by default, you MUST prepend <bos> into the prompt yourself, otherwise, it would not work! * Repitition penalty (e.g: in llama.cpp, ollama, LM-studio) must be set to **1** , otherwise will lead to degeneration! #### Instruction format ```python # ! WARNING, if your code's tokenizer does not prepend <bos> by default, # You MUST prepend <bos> into the prompt yourself, otherwise, it would not work! prompt = """<|im_start|>system You are a helpful assistant.<eos> <|im_start|>user Hello world<eos> <|im_start|>assistant Hi there, how can I help?<eos>""" # <|im_start|> is not a special token. # Transformers chat_template should be consistent with vLLM format below. # ! ENSURE 1 and only 1 bos `<bos>` at the beginning of sequence print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))) """ ``` #### Using transformers's chat_template Install the latest transformers (>4.40) ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # use bfloat16 to ensure the best performance. model = AutoModelForCausalLM.from_pretrained("SorawitChok/SeaLLM-7B-v2.5-AWQ", torch_dtype=torch.bfloat16, device_map=device) tokenizer = AutoTokenizer.from_pretrained("SorawitChok/SeaLLM-7B-v2.5-AWQ") messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello world"}, {"role": "assistant", "content": "Hi there, how can I help you today?"}, {"role": "user", "content": "Explain general relativity in details."} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) print(tokenizer.convert_ids_to_tokens(encodeds[0])) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` #### Using vLLM ```python from vllm import LLM, SamplingParams TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n" TURN_PREFIX = "<|im_start|>{role}\n" def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None): # conversations: list of dict with key `role` and `content` (openai format) if conversations[0]['role'] != 'system' and system_prompt is not None: conversations = [{"role": "system", "content": system_prompt}] + conversations text = '' for turn_id, turn in enumerate(conversations): prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content']) text += prompt if add_assistant_prefix: prompt = TURN_PREFIX.format(role='assistant') text += prompt return text sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['<eos>', '<|im_start|>']) llm = LLM("SorawitChok/SeaLLM-7B-v2.5-AWQ", quantization="AWQ") message = [ {"role": "user", "content": "Explain general relativity in details."} ] prompt = seallm_chat_convo_format(message, True) gen = llm.generate(prompt, sampling_params) print(gen[0].outputs[0].text) ``` ## Acknowledgement to Our Linguists We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety. ## Citation If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected]) **Author list and order will change!** * `*` and `^` are equal contributions. ``` @article{damonlpsg2023seallm, author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing}, title = {SeaLLMs - Large Language Models for Southeast Asia}, year = 2023, Eprint = {arXiv:2312.00738}, } ```
[ "CHIA" ]
fblgit/UNA-ThePitbull-21.4B-v2
fblgit
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "UNA", "juanako", "conversational", "dataset:jondurbin/py-dpo-v0.1", "dataset:Replete-AI/code_bagel_hermes-2.5", "dataset:mlabonne/orpo-dpo-mix-40k", "license:afl-3.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-05-28T10:49:15Z
2024-08-13T15:09:26+00:00
27
16
--- datasets: - jondurbin/py-dpo-v0.1 - Replete-AI/code_bagel_hermes-2.5 - mlabonne/orpo-dpo-mix-40k library_name: transformers license: afl-3.0 tags: - UNA - juanako model-index: - name: UNA-ThePitbull-21.4B-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 77.73 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 91.79 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 68.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 78.24 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 87.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 37.9 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 46.79 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 9.59 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.94 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.42 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.95 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-ThePitbull-21.4B-v2 name: Open LLM Leaderboard --- # UNA-ThePitbull 21.4B v2 Introducing the best LLM in the industry. Nearly as good as a 70B, just a 21.4B based on saltlux/luxia-21.4b-alignment-v1.0 ![UNA - ThePitbull 21.4B v2](https://huggingface.co/fblgit/UNA-ThePitbull-21.4B-v2/resolve/main/DE-UNA-ThePitbull-21.4B-v2.png) This model has not been poisoned to score high and be useless. We release him becaues its the real deal of EQ & IQ all together in a crazy powerful smart and conversational model. Quant Versions available at [bartowski/UNA-ThePitbull-21.4B-v2-GGUF](https://huggingface.co/bartowski/UNA-ThePitbull-21.4B-v2-GGUF) ## Difference V1 vs V2 On V2 we implemented a different UNA strategy and covered partially the MLP's and Attention Layers. We also performed further SFT over V1 and further DPO over V1 and we'll release some of those soon as well. ### Changes 1. SFT over V1 with `Replete-AI/code_bagel_hermes-2.5` at 1.0e-4 till 5.0e-5 for 1 epoch 2. DPO with: 1.0e-4 to min_lr 5.0e-5 for 1 epoch * `mlabonne/orpo-dpo-mix-40k` * `jondurbin/py-dpo-v0.1` # Evaluations ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-ThePitbull-21.4B-v2) | Metric |Value| |---------------------------------|----:| |Avg. |77.82| |AI2 Reasoning Challenge (25-Shot)|77.73| |HellaSwag (10-Shot) |91.79| |MMLU (5-Shot) |68.25| |TruthfulQA (0-shot) |78.24| |Winogrande (5-shot) |87.37| |GSM8k (5-shot) |63.53| Can only be compared with its non-una base model: the original luxia-21.4b and ThePitbull-v1 ## UNA v2 (VLLM) Evaluations: ``` vllm (pretrained=/data/tools/mergekit/una-thepitbull-v5,dtype=bfloat16,gpu_memory_utilization=0.8,max_model_len=2048,data_parallel_size=2,tensor_parallel_size=4), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |--------------|------:|----------------|-----:|-----------|-----:|---|-----:| |gsm8k | 3|strict-match | 5|exact_match|0.7695|± |0.0116|+ | | |flexible-extract| 5|exact_match|0.7695|± |0.0116|+ |hellaswag | 1|none | 10|acc |0.8110|± |0.0039| | | |none | 10|acc_norm |0.9169|± |0.0028|+ |winogrande | 1|none | 5|acc |0.8777|± |0.0092|+ |mmlu |N/A |none | 0|acc |0.6427|± |0.0038|- |arc_challenge | 1|none | 25|acc |0.7713|± |0.0123| | | |none | 25|acc_norm |0.7875|± |0.0120|+ |truthfulqa_mc2| 2|none | 0|acc |0.7824|± |0.0135|- |mathqa | 1|none | 0|acc |0.4037|± | 0.009| | | |none | 0|acc_norm |0.4034|± | 0.009|+ |pubmedqa | 1|none | 0|acc |0.7260|± | 0.020|+ |boolq | 2|none | 0|acc |0.8602|± |0.0061|+ ``` ## UNA v1 (VLLM) Evaluations ``` | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |--------------|------:|----------------|-----:|-----------|-----:|---|-----:| |gsm8k | 3|strict-match | 5|exact_match|0.7566|± |0.0118| | | |flexible-extract| 5|exact_match|0.7582|± |0.0118| |hellaswag | 1|none | 10|acc |0.8168|± |0.0039| | | |none | 10|acc_norm |0.9188|± |0.0027| |winogrande | 1|none | 5|acc |0.8635|± |0.0097| |mmlu | N/A|none | 0|acc |0.6444|± |0.0038| |arc_challenge | 1|none | 25|acc |0.7747|± |0.0122| | | |none | 25|acc_norm |0.7850|± |0.0120| |truthfulqa_mc2| 2|none | 0|acc |0.7902|± |0.0134| |mathqa | 1|none | 0|acc |0.4030|± | 0.009| | | |none | 0|acc_norm |0.4034|± | 0.009| |pubmedqa | 1|none | 0|acc |0.6860|± |0.0208| |boolq | 2|none | 0|acc |0.8401|± |0.0064| ``` ## Original (VLLM) Evaluations ``` | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |--------------|------:|----------------|-----:|-----------|-----:|---|-----:| |gsm8k | 3|strict-match | 5|exact_match|0.7528|± |0.0119| | | |flexible-extract| 5|exact_match|0.7521|± |0.0119| |hellaswag | 1|none | 10|acc |0.8117|± |0.0039| | | |none | 10|acc_norm |0.9167|± |0.0028| |winogrande | 1|none | 5|acc |0.8682|± |0.0095| |mmlu | N/A|none | 0|acc |0.6448|± |0.0038| |arc_challenge | 1|none | 25|acc |0.7688|± |0.0123| | | |none | 25|acc_norm |0.7730|± |0.0122| |truthfulqa_mc2| 2|none | 0|acc |0.7895|± |0.0133| |mathqa | 1|none | 0|acc |0.4000|± | 0.009| | | |none | 0|acc_norm |0.4003|± | 0.009| |pubmedqa | 1|none | 0|acc |0.6680|± |0.0211| |boolq | 2|none | 0|acc |0.8346|± |0.0065| ``` ## Citations * mlabonne * jondurbin & Replete-AI * bartowski * saltlux If you use UNA models dont forget to cite: ``` @misc{unathepitbull21b, title={ThePitbull: Uniform Neural Alignment}, author={Xavier Murias}, year={2024}, publisher = {Juanako.AI}, journal = {HuggingFace repository}, howpublished = {\url{https://huggingface.co/fblgit/UNA-ThePitbull-21.4-v1}}, } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-ThePitbull-21.4B-v2) | Metric |Value| |-------------------|----:| |Avg. |22.60| |IFEval (0-Shot) |37.90| |BBH (3-Shot) |46.79| |MATH Lvl 5 (4-Shot)| 9.59| |GPQA (0-shot) | 6.94| |MuSR (0-shot) | 6.42| |MMLU-PRO (5-shot) |27.95|
[ "PUBMEDQA" ]
tomaarsen/jina-clip-v1-st-remote
tomaarsen
feature-extraction
[ "transformers", "pytorch", "jina_clip", "feature-extraction", "sentence-similarity", "mteb", "clip", "vision", "transformers.js", "custom_code", "en", "arxiv:2405.20204", "license:apache-2.0", "region:us" ]
2024-06-21T14:32:13Z
2024-09-06T10:33:35+00:00
27
1
--- language: en library_name: transformers license: apache-2.0 tags: - feature-extraction - sentence-similarity - mteb - clip - vision - transformers.js inference: false --- > [!WARNING] > This is a testing repository to experiment with new functionality. Refer to [jinaai/jina-clip-v1](https://huggingface.co/jinaai/jina-clip-v1) for the original model. <br><br> <p align="center"> <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> </p> <p align="center"> <b>Jina CLIP: your CLIP model is also your text retriever!</b> </p> ## Intended Usage & Model Info `jina-clip-v1` is a state-of-the-art English **multimodal (text-image) embedding model**. Traditional text embedding models, such as [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en), excel in text-to-text retrieval but incapable of cross-modal tasks. Models like [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) effectively align image and text embeddings but are not optimized for text-to-text retrieval due to their training methodologies and context limitations. `jina-clip-v1` bridges this gap by offering robust performance in both domains. Its text component matches the retrieval efficiency of `jina-embeddings-v2-base-en`, while its overall architecture sets a new benchmark for cross-modal retrieval. This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (MuRAG) applications, enabling seamless text-to-text and text-to-image searches within a single model. ## Data & Parameters [Check out our paper](https://arxiv.org/abs/2405.20204) ## Usage 1. The easiest way to starting using jina-clip-v1-en is to use Jina AI's [Embeddings API](https://jina.ai/embeddings/). 2. Alternatively, you can use Jina CLIP directly via transformers package. ```python !pip install transformers einops timm pillow from transformers import AutoModel # Initialize the model model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True) # New meaningful sentences sentences = ['A blue cat', 'A red cat'] # Public image URLs image_urls = [ 'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg', 'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg' ] # Encode text and images text_embeddings = model.encode_text(sentences) image_embeddings = model.encode_image(image_urls) # also accepts PIL.image, local filenames, dataURI # Compute similarities print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity print(text_embeddings[0] @ image_embeddings[0].T) # text-image cross-modal similarity print(text_embeddings[0] @ image_embeddings[1].T) # text-image cross-modal similarity print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity ``` 3. JavaScript developers can use Jina CLIP via the [Transformers.js](https://huggingface.co/docs/transformers.js) library. Note that to use this model, you need to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source using `npm install xenova/transformers.js#v3`. ```js import { AutoTokenizer, CLIPTextModelWithProjection, AutoProcessor, CLIPVisionModelWithProjection, RawImage, cos_sim } from '@xenova/transformers'; // Load tokenizer and text model const tokenizer = await AutoTokenizer.from_pretrained('jinaai/jina-clip-v1'); const text_model = await CLIPTextModelWithProjection.from_pretrained('jinaai/jina-clip-v1'); // Load processor and vision model const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch32'); const vision_model = await CLIPVisionModelWithProjection.from_pretrained('jinaai/jina-clip-v1'); // Run tokenization const texts = ['A blue cat', 'A red cat']; const text_inputs = tokenizer(texts, { padding: true, truncation: true }); // Compute text embeddings const { text_embeds } = await text_model(text_inputs); // Read images and run processor const urls = [ 'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg', 'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg' ]; const image = await Promise.all(urls.map(url => RawImage.read(url))); const image_inputs = await processor(image); // Compute vision embeddings const { image_embeds } = await vision_model(image_inputs); // Compute similarities console.log(cos_sim(text_embeds[0].data, text_embeds[1].data)) // text embedding similarity console.log(cos_sim(text_embeds[0].data, image_embeds[0].data)) // text-image cross-modal similarity console.log(cos_sim(text_embeds[0].data, image_embeds[1].data)) // text-image cross-modal similarity console.log(cos_sim(text_embeds[1].data, image_embeds[0].data)) // text-image cross-modal similarity console.log(cos_sim(text_embeds[1].data, image_embeds[1].data)) // text-image cross-modal similarity ``` ## Performance ### Text-Image Retrieval | Name | Flickr Image Retr. R@1 | Flickr Image Retr. R@5 | Flickr Text Retr. R@1 | Flickr Text Retr. R@5 | |------------------|-------------------------|-------------------------|-----------------------|-----------------------| | ViT-B-32 | 0.597 | 0.8398 | 0.781 | 0.938 | | ViT-B-16 | 0.6216 | 0.8572 | 0.822 | 0.966 | | jina-clip | 0.6748 | 0.8902 | 0.811 | 0.965 | | Name | MSCOCO Image Retr. R@1 | MSCOCO Image Retr. R@5 | MSCOCO Text Retr. R@1 | MSCOCO Text Retr. R@5 | |------------------|-------------------------|-------------------------|-----------------------|-----------------------| | ViT-B-32 | 0.342 | 0.6001 | 0.5234 | 0.7634 | | ViT-B-16 | 0.3309 | 0.5842 | 0.5242 | 0.767 | | jina-clip | 0.4111 | 0.6644 | 0.5544 | 0.7904 | ### Text-Text Retrieval | Name | STS12 | STS15 | STS17 | STS13 | STS14 | STS16 | STS22 | STSBenchmark | SummEval | |-----------------------|--------|--------|--------|--------|--------|--------|--------|--------------|----------| | jina-embeddings-v2 | 0.7427 | 0.8755 | 0.8888 | 0.833 | 0.7917 | 0.836 | 0.6346 | 0.8404 | 0.3056 | | jina-clip | 0.7352 | 0.8746 | 0.8976 | 0.8323 | 0.7868 | 0.8377 | 0.6583 | 0.8493 | 0.3048 | | Name | ArguAna | FiQA2018 | NFCorpus | Quora | SCIDOCS | SciFact | TRECCOVID | |--------------------|---------|----------|----------|-------|---------|---------|-----------| | jina-embeddings-v2 | 0.4418 | 0.4158 | 0.3245 | 0.882 | 0.1986 | 0.6668 | 0.6591 | | jina-clip | 0.4933 | 0.3827 | 0.3352 | 0.8789| 0.2024 | 0.6734 | 0.7161 | ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find `jina-clip-v1` useful in your research, please cite the following paper: ```bibtex @misc{2405.20204, Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao}, Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever}, Year = {2024}, Eprint = {arXiv:2405.20204}, } ``` ## FAQ ### I encounter this problem, what should I do? ``` ValueError: The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_clip.JinaCLIPConfig'> and you passed <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_cli.JinaCLIPConfig'>. Fix one of those so they match! ``` There was a bug in Transformers library between 4.40.x to 4.41.1. You can update transformers to >4.41.2 or <=4.40.0 ### Given one query, how can I merge its text-text and text-image cosine similarity? Our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity! If you want to merge two scores, we recommended 2 ways: 1. weighted average of text-text sim and text-image sim: ```python combined_scores = sim(text, text) + lambda * sim(text, image) # optimal lambda depends on your dataset, but in general lambda=2 can be a good choice. ``` 2. apply z-score normalization before merging scores: ```python # pseudo code query_document_mean = np.mean(cos_sim_text_texts) query_document_std = np.std(cos_sim_text_texts) text_image_mean = np.mean(cos_sim_text_images) text_image_std = np.std(cos_sim_text_images) query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std ```
[ "SCIFACT" ]
OpenDFM/SciDFM-MoE-A5.6B-v1.0
OpenDFM
text-generation
[ "transformers", "safetensors", "SciDFM", "text-generation", "AI4S", "MoE", "custom_code", "en", "zh", "arxiv:2409.18412", "license:agpl-3.0", "autotrain_compatible", "region:us" ]
2024-06-26T03:49:32Z
2024-11-05T02:22:21+00:00
27
1
--- language: - en - zh license: agpl-3.0 tags: - AI4S - MoE --- # SciDFM: Dialogue Foundation Model for Science SciDFM is the pioneering open-sourced dialogue foundation model tailored for science, which integrates a mixture-of-experts architecture into a transformer-based framework, aiming at enhancing its sophisticated scientific reasoning and understanding capabilities. SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reachs a SOTA performance on domain-specific benchmark among models of similar size. ## News * **2024-06-28** The parameter of SciDFM-MoE-A5.6B-v1.0 is open-soursed! Technical report is coming soon. ## Model Details SciDFM is based on a transformer architecture, and follows modifications of Llama, i.e. RMSNorm, RoPE and SwiGLU. SciDFM use the same hyper-parameters of OpenLLaMa-3B. And in order to better model knowledge of different disciplines, we replace the feed-forward block with Mixture-of-Expert (MoE) layers. ## Training Details SciDFM is pre-trained on a large corpus containing ~300B science tokens and ~270B general tokens for two epochs, resulting in about 1.1T tokens consuming. And we further fine-tune SciDFM using ~9.3M instruction-following samples for 5 epochs to improve the performances on the downstream benchmarks. ## Usage Details ### Local Inference To load and run SciDFM locally, here is an example: ```python import torch from transformers import LlamaTokenizer, AutoModelForCausalLM model_name_or_id = "OpenDFM/SciDFM-MoE-A5.6B-v1.0" tokenizer = LlamaTokenizer.from_pretrained(model_name_or_id, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) chat_template = "<|user|>:{instruction}<|assistant|>:" input_text = "What is Mixture-of-Experts (MoE) in computer science?" input_text = chat_template.format(instruction=input_text) inputs = tokenizer(input_text, return_tensors="pt").to("cuda") generation_config = GenerationConfig( do_sample=True, top_k=20, top_p=0.9, temperature=0.9, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) generated_text = tokenizer.decode(outputs, skip_special_tokens=True)[0][len(input_text):] print(generated_text.strip()) ``` ### SMILES preprocess When there involves SMILES notation in your input, we recommend to preprocess the SMILES with the `rdkit` package to canonicalize the SMILES. Here is an example: ```python from rdkit import Chem def canonicalize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) if mol is None: return None return Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=False) ``` or directly: ```python from rdkit import Chem def canonicalize_smiles(smiles): return Chem.CanonSmiles(smiles, useChiral=True) ``` ### Special Tokens preprocess If there is SMILES expression in your input, please first process it with the following function: ```python import sentencepiece as spm smiles_model = spm.SentencePieceProcessor(model_file="smiles.model") def convert_smiles(smiles_str): pieces = smiles_model.encode_as_pieces(smiles_str)[1:] smiles = "".join([f"[ChemDFM_Start_SMILES_Unit]{piece}[ChemDFM_End_SMILES_Unit]" for piece in pieces]) return smiles convert_smiles("C(C(=O)O)N") ``` And if there is protein sequece in your input, please first process it with the following function: ```python def convert_protein(p_str): res = [f"<<protein>>{s}" for s in p_str] return "".join(res) convert_protein("MIRLGAPQTL") ``` ## Evaluation We briefly compare SciDFM-MoE-A5.6B-v1.0 with similar-sized instruction-tuned LLMs on scientific evaluation benchmarks. The results are shown below: | Model | SciEval | SciQ | ARC\_c | ARC\_e | GSM8K | MATH | MedQA | MMCQA | PMQA | Avg | |--------------------|---------|-------|--------|--------|-------|-------|-------|-------|-------|-------| | LLaMa2-7B | 27.06 | 57.00 | 36.43 | 46.59 | 3.94 | 3.96 | 26.32 | 29.84 | 66.80 | 32.95 | | Galactica-6.7B | 46.28 | 74.20 | 44.28 | 61.83 | 2.80 | 6.32 | 30.48 | 36.46 | 48.80 | 38.91 | | LLaMa2-13B | 33.88 | 78.10 | 56.66 | 72.35 | 22.82 | 3.90 | 32.68 | 34.28 | 77.80 | 45.45 | | ChatGLM2-6B | 54.25 | 75.80 | 57.08 | 73.57 | 25.09 | 7.18 | 27.42 | 34.21 | 60.40 | 45.94 | | Galactica-30B | 54.24 | 83.10 | 57.85 | 75.04 | 13.65 | 8.66 | 37.71 | 48.43 | 58.80 | 48.35 | | LLaMa3-8B | 59.70 | 90.00 | 71.16 | 84.05 | 5.91 | 7.00 | 48.78 | 52.74 | 26.60 | 49.59 | | ChatGLM3-6B | 51.13 | 77.60 | 60.84 | 75.97 | 60.27 | 23.52 | 24.59 | 31.39 | 51.80 | 50.53 | | SciGLM-6B | 61.22 | 88.70 | 77.47 | 86.57 | 42.23 | 16.40 | 42.81 | 44.94 | 73.60 | 59.12 | | SciDFM | 62.48 | 88.00 | 64.76 | 81.48 | 59.14 | 27.28 | 44.54 | 53.10 | 78.00 | 61.56 | | ChatGLM3-6B-base | 60.34 | 89.00 | 78.58 | 87.37 | 59.82 | 22.64 | 42.73 | 45.14 | 74.40 | 61.96 | | Llama3-8B-Instruct | 64.91 | 91.60 | 76.45 | 87.33 | 76.57 | 26.26 | 56.48 | 59.31 | 72.00 | 67.44 | ## Citation ``` @article{sun2024scidfm, title={SciDFM: A Large Language Model with Mixture-of-Experts for Science}, author={Sun, Liangtai and Luo, Danyu and Ma, Da and Zhao, Zihan and Chen, Baocai and Shen, Zhennan and Zhu, Su and Chen, Lu and Chen, Xin and Yu, Kai}, journal={arXiv preprint arXiv:2409.18412}, year={2024} } ```
[ "MEDQA", "SCIQ" ]
RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
2024-07-17T08:16:58Z
2024-07-17T17:05:10+00:00
27
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Collaiborator-MEDLLM-Llama-3-8B-v2 - GGUF - Model creator: https://huggingface.co/collaiborateorg/ - Original model: https://huggingface.co/collaiborateorg/Collaiborator-MEDLLM-Llama-3-8B-v2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q2_K.gguf) | Q2_K | 2.96GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_S.gguf) | IQ3_S | 3.43GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.IQ3_M.gguf) | IQ3_M | 3.52GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K.gguf) | Q3_K | 3.74GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_0.gguf) | Q4_0 | 4.34GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K.gguf) | Q4_K | 4.58GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q4_1.gguf) | Q4_1 | 4.78GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_0.gguf) | Q5_0 | 5.21GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K.gguf) | Q5_K | 5.34GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q5_1.gguf) | Q5_1 | 5.65GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q6_K.gguf) | Q6_K | 6.14GB | | [Collaiborator-MEDLLM-Llama-3-8B-v2.Q8_0.gguf](https://huggingface.co/RichardErkhov/collaiborateorg_-_Collaiborator-MEDLLM-Llama-3-8B-v2-gguf/blob/main/Collaiborator-MEDLLM-Llama-3-8B-v2.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: llama3 library_name: transformers tags: - generated_from_trainer - Healthcare & Lifesciences - BioMed - Medical - CollAIborate base_model: meta-llama/Meta-Llama-3-8B-Instruct thumbnail: https://collaiborate.com/logo/logo-blue-bg-1.png model-index: - name: Collaiborator-MEDLLM-Llama-3-8B-v2 results: [] datasets: - collaiborateorg/BioMedData --- # Collaiborator-MEDLLM-Llama-3-8B-v2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/653f5b93cd52f288490edc83/wIES_YhNPKn--AqcEmzRJ.png) This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on our custom "BioMedData" dataset. ## Model details Model Name: Collaiborator-MEDLLM-Llama-3-8b-v2 Base Model: Llama-3-8B-Instruct Parameter Count: 8 billion Training Data: Custom high-quality biomedical dataset Number of Entries in Dataset: 500,000+ Dataset Composition: The dataset comprises both synthetic and manually curated samples, ensuring a diverse and comprehensive coverage of biomedical knowledge. ## Model description Collaiborator-MEDLLM-Llama-3-8b-v2 is a specialized large language model designed for biomedical applications. It is finetuned from the Llama-3-8B-Instruct model using a custom dataset containing over 500,000 diverse entries. These entries include a mix of synthetic and manually curated data, ensuring high quality and broad coverage of biomedical topics. The model is trained to understand and generate text related to various biomedical fields, making it a valuable tool for researchers, clinicians, and other professionals in the biomedical domain. ## Evaluation Metrics Collaiborator-MEDLLM-Llama-3-8b-v2 outperforms many of the leading LLMs and find below its metrics evaluated using the Eleuther AI Language Model Evaluation Harness framework against the tasks medmcqa, medqa_4options, mmlu_anatomy, mmlu_clinical_knowledge, mmlu_college_biology, mmlu_college_medicine, mmlu_medical_genetics, mmlu_professional_medicine and pubmedqa ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a78a59838b3acc53d656de/LAL2thZUhxtg56u5SYIGb.png) ## Benchmark Results ![image/png](https://cdn-uploads.huggingface.co/production/uploads/653f5b93cd52f288490edc83/CxDpvXRSIhuG45TShELKw.png) ## Quick Demo <video controls autoplay src="https://hf.fast360.xyz/production/uploads/653f5b93cd52f288490edc83/piGRPwvcBTLmcgExL89zp.mp4"></video> ## Intended uses & limitations Collaiborator-MEDLLM-Llama-3-8b-v2 is intended for a wide range of applications within the biomedical field, including: 1. Research Support: Assisting researchers in literature review and data extraction from biomedical texts. 2. Clinical Decision Support: Providing information to support clinical decision-making processes. 3. Educational Tool: Serving as a resource for medical students and professionals seeking to expand their knowledge base. ## Limitations and Ethical Considerations While Collaiborator-MEDLLM-Llama-3-8b-v2 performs well in various biomedical NLP tasks, users should be aware of the following limitations: Biases: The model may inherit biases present in the training data. Efforts have been made to curate a balanced dataset, but some biases may persist. Accuracy: The model's responses are based on patterns in the data it has seen and may not always be accurate or up-to-date. Users should verify critical information from reliable sources. Ethical Use: The model should be used responsibly, particularly in clinical settings where the stakes are high. It should complement, not replace, professional judgment and expertise. ## Training and evaluation Collaiborator-MEDLLM-Llama-3-8b-v2 was trained using NVIDIA A40 GPU's, which provides the computational power necessary for handling large-scale data and model parameters efficiently. Rigorous evaluation protocols have been implemented to benchmark its performance against similar models, ensuring its robustness and reliability in real-world applications. ## How to use import transformers import torch model_id = "collaiborateorg/Collaiborator-MEDLLM-Llama-3-8B-v2" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are an expert trained on healthcare and biomedical domain!"}, {"role": "user", "content": "I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, increased sensitivity to cold, and dry, itchy skin. What is the diagnosis here?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ### Contact Information For further information, inquiries, or issues related to Biomed-LLM, please contact: Email: [email protected] Website: https://www.collaiborate.com ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.11.0 - Transformers 4.40.2 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1 ### Citation If you use Collaiborator-MEDLLM-Llama-3-8b in your research or applications, please cite it as follows: @misc{Collaiborator_MEDLLM, author = Collaiborator, title = {Collaiborator-MEDLLM-Llama-3-8b: A High-Performance Biomedical Language Model}, year = {2024}, howpublished = {https://huggingface.co/collaiborateorg/Collaiborator-MEDLLM-Llama-3-8B-v2}, }
[ "MEDQA", "PUBMEDQA" ]
RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
2024-08-05T08:24:37Z
2024-08-05T17:55:54+00:00
27
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Viet-Sailor-4B-Instruct - GGUF - Model creator: https://huggingface.co/5CD-AI/ - Original model: https://huggingface.co/5CD-AI/Viet-Sailor-4B-Instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Viet-Sailor-4B-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q2_K.gguf) | Q2_K | 1.51GB | | [Viet-Sailor-4B-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.IQ3_XS.gguf) | IQ3_XS | 1.66GB | | [Viet-Sailor-4B-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.IQ3_S.gguf) | IQ3_S | 1.73GB | | [Viet-Sailor-4B-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q3_K_S.gguf) | Q3_K_S | 1.73GB | | [Viet-Sailor-4B-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.IQ3_M.gguf) | IQ3_M | 1.81GB | | [Viet-Sailor-4B-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q3_K.gguf) | Q3_K | 1.89GB | | [Viet-Sailor-4B-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q3_K_M.gguf) | Q3_K_M | 1.89GB | | [Viet-Sailor-4B-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q3_K_L.gguf) | Q3_K_L | 2.03GB | | [Viet-Sailor-4B-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.IQ4_XS.gguf) | IQ4_XS | 2.08GB | | [Viet-Sailor-4B-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q4_0.gguf) | Q4_0 | 2.17GB | | [Viet-Sailor-4B-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.IQ4_NL.gguf) | IQ4_NL | 2.18GB | | [Viet-Sailor-4B-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q4_K_S.gguf) | Q4_K_S | 2.18GB | | [Viet-Sailor-4B-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q4_K.gguf) | Q4_K | 2.29GB | | [Viet-Sailor-4B-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q4_K_M.gguf) | Q4_K_M | 2.29GB | | [Viet-Sailor-4B-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q4_1.gguf) | Q4_1 | 2.38GB | | [Viet-Sailor-4B-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q5_0.gguf) | Q5_0 | 2.58GB | | [Viet-Sailor-4B-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q5_K_S.gguf) | Q5_K_S | 2.58GB | | [Viet-Sailor-4B-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q5_K.gguf) | Q5_K | 2.64GB | | [Viet-Sailor-4B-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q5_K_M.gguf) | Q5_K_M | 2.64GB | | [Viet-Sailor-4B-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q5_1.gguf) | Q5_1 | 2.79GB | | [Viet-Sailor-4B-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q6_K.gguf) | Q6_K | 3.03GB | | [Viet-Sailor-4B-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/5CD-AI_-_Viet-Sailor-4B-Instruct-gguf/blob/main/Viet-Sailor-4B-Instruct.Q8_0.gguf) | Q8_0 | 3.92GB | Original model description: --- library_name: transformers datasets: - vilm/OpenOrca-Viet - bkai-foundation-models/vi-alpaca - 5CD-AI/Vietnamese-395k-meta-math-MetaMathQA-gg-translated - 5CD-AI/Vietnamese-Locutusque-function-calling-chatml-gg-translated - 5CD-AI/Vietnamese-1m5-kaist-CoT-gg-translated-unrefined - 5CD-AI/Vietnamese-mabryCodes-tiny-cot-alpaca-gg-translated - 5CD-AI/Vietnamese-nampdn-ai-tiny-webtext-gg-translated - 5CD-AI/Vietnamese-Openorca-Multiplechoice-gg-translated - 5CD-AI/Vietnamese-Multi-turn-Chat-Alpaca - 5CD-AI/Visocial-Instructions --- <div align="center"> <img src="viet-sailor-4b-logo.png" width="700"/> </div> ## Viet-Sailor-4B-Instruct Version 2 [Sailor-4B](https://huggingface.co/sail/Sailor-4B) 🌊 is a model that has undergone additional pre-training on datasets from Southeast Asian countries 🌏, resulting in impressive performance 🚀. Building on this foundation, we have fine-tuned the model with a specific focus on Vietnamese language capabilities 🇻🇳. This is a good choice for models under 7B parameters on the VMLU leaderboard 📊. ## Training details 📚 The **1,000,000 samples** fine-tuning training dataset was meticulously sampled in part from the following datasets: - [OpenOrca-Viet 🐋](https://huggingface.co/datasets/vilm/OpenOrca-Viet) - [vi-alpaca 🦙](https://huggingface.co/datasets/bkai-foundation-models/vi-alpaca) - [Vietnamese-395k-meta-math-MetaMathQA-gg-translated 📐](https://huggingface.co/datasets/5CD-AI/Vietnamese-395k-meta-math-MetaMathQA-gg-translated) - [Vietnamese-Locutusque-function-calling-chatml-gg-translated 🧠](https://huggingface.co/datasets/5CD-AI/Vietnamese-Locutusque-function-calling-chatml-gg-translated) - [Vietnamese-1m5-kaist-CoT-gg-translated-unrefined 🧵](https://huggingface.co/datasets/5CD-AI/Vietnamese-1m5-kaist-CoT-gg-translated-unrefined) - [Vietnamese-mabryCodes-tiny-cot-alpaca-gg-translated 🧠](https://huggingface.co/datasets/5CD-AI/Vietnamese-mabryCodes-tiny-cot-alpaca-gg-translated) - [Vietnamese-nampdn-ai-tiny-webtext-gg-translated 🧠](https://huggingface.co/datasets/5CD-AI/Vietnamese-nampdn-ai-tiny-webtext-gg-translated) - [Vietnamese-Openorca-Multiplechoice-gg-translated 🐋](https://huggingface.co/datasets/5CD-AI/Vietnamese-Openorca-Multiplechoice-gg-translated) - [Vietnamese-Multi-turn-Chat-Alpaca 💬](https://huggingface.co/datasets/5CD-AI/Vietnamese-Multi-turn-Chat-Alpaca) - [Visocial-Instructions 💬](https://huggingface.co/datasets/5CD-AI/Visocial-Instructions) ## Benchmarks 📈 We evaluated our model using the VMLU leaderboard: <div align="center"> <img src="vmlu.png" width="1000"/> </div> | # | MODEL | CREATOR | BASE MODEL | STEM | SOCIAL SCIENCE | HUMANITIES | OTHERS | AVG | |----|----------------------|------------------|---------------------|-------|----------------|------------|--------|-------| | 1 | VNPTAI.IO-14B | VNPT AI | Qwen1.5-14B-Chat | 51.64 | 61.75 | 58.09 | 54.51 | 55.83 | | 2 | SeaLLM-7B-v2.5 | DAMO Academy | llama-2-7b | 49.35 | 60.66 | 55.95 | 49.05 | 53.30 | | 3 | MI4uLLM-7B-Chat | ML4U | Mistral-7B-v0.1 | 44.72 | 58.69 | 56.86 | 52.36 | 52.08 | | 4 | Vistral-7B-Chat | UONLP x Ontocord | Mistral-7B-v0.1 | 43.32 | 57.02 | 55.12 | 48.01 | 50.07 | | 5 | SDSRV-7B-chat | SDSRV teams | Mistral-7B-v0.1 | 36.29 | 60.55 | 55.95 | 49.05 | 48.55 | | 6 | Arcanic Cono 1.5 | Arcanic AI | Mistral-7B-v0.1 | 45.11 | 52.44 | 51.97 | 45.36 | 47.45 | | 7 | SeaLLM-7b-v2 | DAMO Academy | llama-2-7b | 39.95 | 52.02 | 49.38 | 45.27 | 45.79 | | <b>8 | <b>Viet-Sailor-4B-Instruct | <b>5CD-AI | <b>Sailor-4B | <b>36.83 | <b>49.13 | <b>48.18 | <b>41.76 | <b>43.24</b> | | 9 | bloomz-7b1 | BigScience | Bloom-7b1 | 32.63 | 45.73 | 41.85 | 39.89 | 38.87 | | 10 | T-llama-7b | FPTU HCM | llama-2-7b | 32.2 | 43.15 | 40.31 | 36.57 | 37.28 | | 11 | vbd-llama2-7b-50b... | Vin BigData | llama-2-7b | 31.45 | 40.34 | 40.24 | 39.62 | 36.98 | | .. | ...... | ..... | .... | ... | ... | ... | ... | ... | ## Examples Function-calling ``` <|im_start|>system Bạn là một trợ lý hữu ích với quyền truy cập vào các chức năng sau. Sử dụng chúng nếu cần thiết -{ "name": "search_movies", "description": "Search for movies based on title or genre", "parameters": { "type": "object", "properties": { "title": { "type": "string", "description": "The title of the movie" }, "genre": { "type": "string", "description": "The genre of the movie" } } } }<|im_end|> <|im_start|>question Bạn có thể tìm cho tôi một bộ phim có tựa đề "Inception" được không?<|im_end|> <|im_start|>answer <function-call> {"name": "search_movies", "arguments": {"title": "Inception"}}<|im_end|> <|im_start|>question <function-response> {"movies": [{"title": "Inception", "genre": "Science Fiction", "director": "Christopher Nolan", "release_year": 2010}]}<|im_end|> <|im_start|>answer Tôi đã tìm thấy một bộ phim có tựa đề "Inception". Đó là một bộ phim Khoa học viễn tưởng của đạo diễn Christopher Nolan và được phát hành vào năm 2010.<|im_end|> ``` Sentiment analysis ``` <|im_start|>system Bạn là trợ lý AI hữu ích<|im_end|> <|im_start|>question Bạn là trợ lý AI. Hãy phân loại cảm xúc của bình luận sau theo từng khía cạnh của chủ thể. Bình luận: về cách ăn mặc của cô thì quá 😡 😡 . nhưng về cách nói chuyện thì rất 😍.<|im_end|> <|im_start|>answer Cảm xúc của bình luận này có thể được phân loại như sau: - Cảm xúc tiêu cực đối với cách ăn mặc của cô ấy: 😡 - Cảm xúc tích cực đối với cách nói chuyện của cô ấy: 😍<|im_end|> ``` Simple math ``` <|im_start|>system Bạn là một trợ lý AI hữu ích. Một nhà toán học.<|im_end|> <|im_start|>question Trên sân có 2 con vịt và 9 con bò hỏi tổng cộng có mấy cái chân ?<|im_end|> <|im_start|>answer Tổng số chân trên sân là 11. Mỗi con vịt có 2 chân và mỗi con bò có 4 chân, vì vậy 2 con vịt có tổng cộng 2*2 = 4 chân và 9 con bò có tổng cộng 9*4 = 36 chân. Do đó, tổng số chân trên sân là 4+36 = 40.<|im_end|> ``` Writing ``` <|im_start|>system Bạn là một trợ lý AI hữu ích, trung thực, trung lập. Hãy trả lời một cách đầy đủ <|im_end|> <|im_start|>question Người dùng sẽ cung cấp cho bạn một nhiệm vụ. Hãy thực hiện lần lượt 2 nhiệm vụ sau: Bưới 1: Hãy mô tả ý nghĩa hình ảnh của chuỗi emoji 😡 👫 👨‍👩‍👦. Bước 2: Hãy tạo 1 câu chuyện ngắn kết hợp đầy đủ ý nghĩa giữa chúng với nhau.<|im_end|> <|im_start|>answer Bước 1: Mô tả ý nghĩa hình ảnh của chuỗi emoji 😡 👫 👨‍👩‍👦. Ý nghĩa hình ảnh của chuỗi emoji có thể được giải thích như sau: - 😡: Biểu tượng cảm xúc này thường được sử dụng để thể hiện sự buồn bã, đau khổ hoặc thất vọng. Trong trường hợp này, nó có thể biểu thị rằng ai đó đang trải qua một số cảm xúc tiêu cực. - 👫: Biểu tượng cảm xúc này thường được sử dụng để thể hiện tình yêu và sự quan tâm. Trong trường hợp này, nó có thể biểu thị rằng ai đó đang thể hiện tình yêu và sự quan tâm của họ đối với ai đó. - 👨‍👩‍👦: Biểu tượng cảm xúc này thường được sử dụng để thể hiện tình yêu gia đình. Trong trường hợp này, nó có thể biểu thị rằng ai đó đang thể hiện tình yêu và sự quan tâm của họ đối với một thành viên trong gia đình. Bước 2: Tạo một câu chuyện ngắn kết hợp các biểu tượng cảm xúc với nhau. Câu chuyện: Trong một thị trấn nhỏ, nơi mọi người đều biết nhau, có một gia đình hạnh phúc sống trong một ngôi nhà nhỏ xinh xắn. Cha mẹ yêu thương và chăm sóc con cái của mình rất nhiều. Một ngày nọ, họ nhận được tin dữ rằng đứa con út của họ đã qua đời vì một căn bệnh hiếm gặp. Cả gia đình đều đau buồn, đặc biệt là cha mẹ của đứa trẻ. Họ cố gắng vượt qua nỗi đau bằng cách dành thời gian bên nhau, ôm nhau và chia sẻ những ký ức đẹp đẽ về đứa con yêu dấu của họ.<|im_end|> ``` ## Requirements The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`. ## Quickstart Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" model = AutoModelForCausalLM.from_pretrained( '5CD-AI/Viet-Sailor-4B-Instruct', torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('5CD-AI/Viet-Sailor-4B-Instruct') system_prompt = 'Bạn là một trợ lý AI hữu ích. Bạn rất cẩn thận và trung lập. Hãy trả lời trung thực và đầy đủ. Chỉ trả lời khi bạn biết thông tin chính xác.' prompt = """Hãy phân loại cảm xúc của bình luận sau theo từng khía cạnh của chủ thể. Bình luận: về cách ăn mặc của cô thì quá 😡 😡 . nhưng về cách nói chuyện thì rất 😍.""" messages = [ {"role": "system", "content": system_prompt}, {"role": "question", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) input_ids = model_inputs.input_ids.to(device) generated_ids = model.generate( input_ids, max_new_tokens=256, num_beams=3, top_k=20, top_p= 0.5, temperature=0.9, repetition_penalty = 1.5, length_penalty = 1.0, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```
[ "CHIA" ]