|
|
--- |
|
|
task_categories: |
|
|
- image-classification |
|
|
--- |
|
|
# EuroSAT Dataset |
|
|
|
|
|
The **EuroSAT** dataset consists of satellite imagery for land use and land cover classification. It contains labeled images of 10 different land cover classes. |
|
|
|
|
|
Please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) for more information about how to use the dataset! 🙂 |
|
|
|
|
|
## Metadata |
|
|
|
|
|
The following metadata provides details about the Sentinel-2 imagery used in the dataset: |
|
|
|
|
|
```python |
|
|
S2_MEAN = [1354.40546513, 1118.24399958, 1042.92983953, 947.62620298, 1199.47283961, 1999.79090914, 2369.22292565, 2296.82608323, 732.08340178, 12.11327804, 1819.01027855, 1118.92391149, 2594.14080798] |
|
|
S2_STD = [245.71762908, 333.00778264, 395.09249139, 593.75055589, 566.4170017, 861.18399006, 1086.63139075, 1117.98170791, 404.91978886, 4.77584468, 1002.58768311, 761.30323499, 1231.58581042] |
|
|
|
|
|
metadata = { |
|
|
"s2c": { |
|
|
"bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"], |
|
|
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4], |
|
|
"mean": S2_MEAN, |
|
|
"std": S2_STD, |
|
|
}, |
|
|
"s1": { |
|
|
"bands": None, |
|
|
"channel_wv": None, |
|
|
"mean": None, |
|
|
"std": None |
|
|
} |
|
|
} |
|
|
|
|
|
SIZE = HEIGHT = WIDTH = 64 |
|
|
|
|
|
NUM_CLASSES = 10 |
|
|
|
|
|
spatial_resolution = 10 |
|
|
``` |
|
|
|
|
|
## Split |
|
|
The **EuroSAT** dataset consists splits of: |
|
|
- **train**: 16200 samples |
|
|
- **val**: 5400 samples |
|
|
- **test**: 5400 samples |
|
|
|
|
|
## Features: |
|
|
The **EuroSAT** dataset consists of following features: |
|
|
- **optical**: the Sentinel-2 image. |
|
|
- **label**: the classification label. |
|
|
- **optical_channel_wv**: the wavelength of each optical channel. |
|
|
- **spatial_resolution**: the spatial resolution of images. |
|
|
|
|
|
## Citation |
|
|
If you use the EuroSAT dataset in your work, please cite the original paper: |
|
|
```python |
|
|
@article{helber2019eurosat, |
|
|
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification}, |
|
|
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, |
|
|
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, |
|
|
volume={12}, |
|
|
number={7}, |
|
|
pages={2217--2226}, |
|
|
year={2019}, |
|
|
publisher={IEEE} |
|
|
} |
|
|
``` |