Datasets:
File size: 2,873 Bytes
94617f7 ed79424 94617f7 ed79424 ddea2d2 ed79424 7c72dd1 ed79424 3e432a3 ddea2d2 ed79424 3e432a3 ed79424 3e432a3 ed79424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
license: apache-2.0
size_categories:
- n<1K
task_categories:
- image-text-to-text
pretty_name: LiveMCPBench
library_name: datasets
tags:
- llm-agents
- tool-use
- benchmark
- mcp
configs:
- config_name: default
data_files:
- split: test
path: tasks/tasks.json
---
<a id="readme-top"></a>
<!-- PROJECT -->
<br />
<div align="center">
<h3 align="center">LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?</h3>
<p align="center">
Benchmarking the agent in real-world tasks within a large-scale MCP toolset.
</p>
</div>
<p align="center">
🌐 <a href="https://icip-cas.github.io/LiveMCPBench" target="_blank">Website</a> |
📄 <a href="https://arxiv.org/abs/2508.01780" target="_blank">Paper</a> |
💻 <a href="https://github.com/icip-cas/LiveMCPBench" target="_blank">Code</a> |
🏆 <a href="https://docs.google.com/spreadsheets/d/1EXpgXq1VKw5A7l7-N2E9xt3w0eLJ2YPVPT-VrRxKZBw/edit?usp=sharing" target="_blank">Leaderboard</a>
|
🙏 <a href="#citation" target="_blank">Citation</a>
</p>
## Dataset Description
LiveMCPBench is the first comprehensive benchmark designed to evaluate LLM agents at scale across diverse Model Context Protocol (MCP) servers. It comprises 95 real-world tasks grounded in the MCP ecosystem, challenging agents to effectively use various tools in daily scenarios within complex, tool-rich, and dynamic environments. To support scalable and reproducible evaluation, LiveMCPBench is complemented by LiveMCPTool (a diverse collection of 70 MCP servers and 527 tools) and LiveMCPEval (an LLM-as-a-Judge framework that enables automated and adaptive evaluation). The benchmark offers a unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities.
## Dataset Structure
The dataset consists of `tasks.json`, which contains the 95 real-world tasks used for benchmarking LLM agents.
## Sample Usage
You can load the dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("ICIP/LiveMCPBench")
# Print the dataset structure
print(dataset)
# Access an example from the test split
print(dataset["test"][0])
```
## Citation
If you find this project helpful, please use the following to cite it:
```bibtex
@misc{mo2025livemcpbenchagentsnavigateocean,
title={LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?},
author={Guozhao Mo and Wenliang Zhong and Jiawei Chen and Xuanang Chen and Yaojie Lu and Hongyu Lin and Ben He and Xianpei Han and Le Sun},
year={2025},
eprint={2508.01780},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2508.01780},
}
``` |