Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
movie_id
int64
0
823
scene_index
int64
0
517
ttr
float64
0
1
flesch_reading_ease
float64
-91.3
121
flesch_kincaid_grade
float64
-3.4
63.4
gunning_fog
float64
0
65.8
smog_index
float64
0
22.1
automated_readability_index
float64
-6.8
78.1
sentence_count
int64
0
2.86k
token_count
int64
0
24k
avg_sentence_len
float64
0
161
var_sentence_len
float64
0
7.21k
exclaim_rate
float64
0
0.16
question_rate
float64
0
0.09
uppercase_ratio
float64
0
1
dialogue_ratio
float64
0
1
scene_index_norm
float64
0
1
overlap_prev
float64
0
1
overlap_next
float64
0
1
unique_PERSON_count
float64
0
195
top_character_mention_rate
float64
0
1
pronoun_ratio
float64
0
0.29
name_repetition_rate
float64
0
0.94
0
0
0.491525
79.23691
4.272426
6.633271
8.144726
3.295977
54
413
7.648148
26.116941
0
0.000463
0.173228
1
0
0
0.16318
8
0.272727
0.035789
0.272727
0
1
0.700935
63.191876
7.371258
11.126205
11.429528
5.217778
10
107
10.7
48.41
0
0
0.25
1
0.011494
0.16318
0.15748
4
0.25
0.008333
0
0
2
0.857143
63.313253
7.374045
8.598279
9.957138
6.410311
8
84
10.5
60.75
0
0
0.237975
1
0.022989
0.15748
0.174312
2
0.5
0.009434
0
0
3
0.823529
54.847857
9.087143
14.171429
13.348371
9.970417
6
68
11.333333
53.888889
0
0
0.15562
0
0.034483
0.174312
0.179245
2
0.5
0
0
0
4
0.726316
68.105
7.096079
9.626748
10.290406
6.027316
9
95
10.555556
61.358025
0
0
0.25
1
0.045977
0.179245
0.170213
1
1
0
0
0
5
0.759259
84.153718
3.674615
5.005128
6.427356
2.898616
7
54
7.714286
15.346939
0
0
0.286408
1
0.057471
0.170213
0.152778
1
1
0.015625
0
0
6
0.857143
61.326333
8.846
12.266667
12.457976
7.373718
3
49
16.333333
184.222222
0
0
0.25
0
0.068966
0.152778
0.080292
0
0
0.032787
0
0
7
0.679487
68.84671
6.032185
8.008007
9.354421
5.10125
19
156
8.210526
56.692521
0
0.003405
0.213974
1
0.08046
0.080292
0.222772
1
1
0.016129
0.5
0
8
0.566265
69.051847
6.633959
9.633388
10.467255
5.64127
24
249
10.375
57.317708
0
0.000751
0.129219
1
0.091954
0.222772
0.15102
2
0.5
0.003521
0
0
9
0.566265
74.2825
4.885833
6.533333
8.238736
4.575425
32
249
7.78125
19.233398
0
0.000714
0.189164
1
0.103448
0.15102
0.142494
7
0.4
0.037801
0.3
0
10
0.37561
88.824732
2.875599
4.571102
6.528864
1.993853
113
820
7.256637
27.111129
0
0.005993
0.158472
1
0.114943
0.142494
0.156977
19
0.3125
0.027112
0.40625
0
11
0.566038
89.122914
2.679258
4.322282
6.508806
1.7944
25
159
6.36
13.8304
0
0.007792
0.207254
1
0.126437
0.156977
0.010309
5
0.375
0.047872
0.375
0
12
1
18.94
12.605
18.2
13.023867
9.888
2
8
4
9
0
0
0.722222
0
0.137931
0.010309
0.014837
1
1
0
0
0
13
0.380844
84.715634
3.315279
5.099594
7.02168
2.924759
124
877
7.072581
29.357635
0
0.004153
0.188414
1
0.149425
0.014837
0.167095
24
0.2
0.024366
0.314286
0
14
0.615385
79.147315
4.239693
7.958056
8.716276
4.066963
26
195
7.5
35.865385
0
0.001908
0.159902
1
0.16092
0.167095
0.16955
4
0.25
0.03125
0
0
15
0.412879
86.976656
2.923609
4.946765
6.806111
2.483462
96
528
5.5
18.541667
0.000369
0.002216
0.207371
1
0.172414
0.16955
0.197802
17
0.212121
0.020376
0.484848
0
16
0.480176
91.662742
2.205197
3.342652
5.843745
1.675253
33
227
6.878788
13.379247
0
0.003571
0.230317
1
0.183908
0.197802
0.099174
8
0.125
0.011407
0
0
17
0.827586
69.643571
10.501429
11.2
3.1291
11.724
2
29
14.5
182.25
0
0
0.491379
1
0.195402
0.099174
0.057348
1
1
0.029412
0
0
18
0.41311
85.37391
3.504423
5.646154
7.594959
3.335762
79
656
8.303797
33.629226
0.000297
0.001785
0.116009
1
0.206897
0.057348
0.14658
7
0.142857
0.021192
0
0
19
0.648
93.304127
1.711
3.376949
6.2581
2.6365
24
125
5.208333
10.831597
0
0.004566
0.349174
1
0.218391
0.14658
0.1875
2
0.5
0.047619
0
0
20
0.465455
86.719798
3.08532
4.767121
6.522977
3.623892
42
275
6.547619
18.914399
0
0.003383
0.258065
1
0.229885
0.1875
0.178899
8
0.466667
0.021148
0.466667
0
21
0.511905
78.878278
4.636566
7.043621
8.617729
3.662127
41
252
6.146341
22.51517
0
0.003754
0.264447
1
0.241379
0.178899
0.1875
3
0.777778
0.019868
0.666667
0
22
0.45481
83.667521
3.38359
4.85812
6.841164
2.447074
54
343
6.351852
16.487311
0
0.008656
0.237339
1
0.252874
0.1875
0.066265
6
0.3
0.019753
0.4
0
23
0.875
48.525
12.453333
12.933333
11.208143
10.678077
2
24
12
121
0
0
0.396226
0
0.264368
0.066265
0.039088
2
0.5
0
0
0
24
0.372035
85.619511
3.367977
4.848519
6.761326
2.632449
118
801
6.788136
28.7263
0
0.003418
0.204187
1
0.275862
0.039088
0.121302
20
0.285714
0.020234
0.285714
0
25
0.736364
87.04218
2.504657
3.741013
5.750288
2.057547
21
110
5.238095
10.562358
0
0.005111
0.279642
1
0.287356
0.121302
0.176744
0
0
0.014599
0
0
26
0.49711
85.9875
3.235476
4.97323
6.971451
3.29213
60
346
5.766667
20.778889
0
0.001662
0.208514
1
0.298851
0.176744
0.168724
10
0.409091
0.012136
0.545455
0
27
0.662722
72.687683
6.03101
7.856446
9.42424
5.707263
17
169
9.941176
35.349481
0.002186
0.001093
0.128492
1
0.310345
0.168724
0.18617
2
0.8
0.035714
0.6
0
28
0.60989
89.912736
2.929315
4.458876
6.742158
2.606393
25
182
7.28
19.4016
0
0.003181
0.209141
1
0.321839
0.18617
0.139535
4
0.333333
0.051402
0.333333
0
29
0.72
79.937
4.594
6.4
8.841846
2.41
6
50
8.333333
20.222222
0.003861
0.003861
0.25641
1
0.333333
0.139535
0.171717
0
0
0.016949
0
0
30
0.567376
91.558152
3.345725
5.75942
6.427356
2.695634
14
141
10.071429
90.494898
0
0
0.166667
1
0.344828
0.171717
0.12605
1
1
0
0
0
31
0.80597
69.108333
6.27
8.641667
9.725611
5.02697
7
67
9.571429
41.959184
0
0
0.184397
1
0.356322
0.12605
0.133929
1
1
0
0
0
32
0.669725
83.802786
3.538835
5.887677
7.882392
2.482388
14
109
7.785714
33.168367
0.001805
0.00361
0.267943
1
0.367816
0.133929
0.103774
3
0.333333
0.071429
0
0
33
0.733333
64.246801
7.9625
10.645763
10.686353
7.179915
5
60
12
63.6
0
0
0.186047
1
0.37931
0.103774
0.098266
2
0.5
0.059701
0
0
34
0.494915
87.784915
3.030909
6.062616
7.760101
2.438786
49
295
6.020408
22.183257
0
0.004032
0.190941
1
0.390805
0.098266
0.215385
9
0.384615
0.028571
0.307692
0
35
0.52795
83.061826
3.720132
6.617421
8.119693
3.033832
44
322
7.318182
21.535124
0.000595
0.001786
0.166667
1
0.402299
0.215385
0.016949
6
0.333333
0.029333
0.333333
0
36
0.833333
88.905
3.84
8.133333
8.841846
3.772308
2
12
6
25
0
0
0.5
0
0.413793
0.016949
0.030303
1
1
0
0
0
37
0.506329
83.812408
3.268652
4.463938
6.680038
3.037781
67
316
4.716418
15.128536
0
0.004227
0.279257
1
0.425287
0.030303
0.206226
8
0.388889
0.02356
0.555556
0
38
0.510204
76.588592
4.663551
6.353197
8.146663
4.283243
48
294
6.125
30.692708
0
0.001214
0.27813
1
0.436782
0.206226
0.109091
4
0.6875
0.008427
0.75
0
39
0.804878
95.08
1.985
4.2
5.683918
1.98439
6
41
6.833333
43.472222
0
0.009569
0.436709
1
0.448276
0.109091
0.051282
3
0.5
0.04
0.25
0
40
0.8
95.165
2.47
4
3.1291
3.266364
2
10
5
16
0
0
0.454545
0
0.45977
0.051282
0.066667
0
0
0
0
0
41
0.833333
78.259848
4.165455
5.660606
7.168622
4.112
7
48
6.857143
22.408163
0
0
0.331606
1
0.471264
0.066667
0.125786
1
1
0.066667
0
0
42
0.565041
81.008601
4.916546
7.112941
8.395992
4.164625
26
246
9.461538
70.940828
0
0.001613
0.151515
1
0.482759
0.125786
0.165584
3
0.333333
0.014286
0
0
43
0.39783
88.047787
2.649107
3.656543
5.683918
2.182888
95
553
5.821053
13.38903
0.001396
0.007676
0.218476
1
0.494253
0.165584
0.043668
13
0.26087
0.045942
0.434783
0
44
1
71.065
7.818889
9.422222
8.841846
7.307143
2
19
9.5
72.25
0
0
0.5
1
0.505747
0.043668
0.18
0
0
0.041667
0
0
45
0.740741
81.344638
4.10783
5.797484
7.168622
4.053212
7
54
7.714286
11.061224
0
0
0.241525
1
0.517241
0.18
0.154412
2
0.666667
0.079365
0.333333
0
46
0.444867
85.291462
3.5302
3.963963
5.935793
3.415951
39
263
6.74359
20.0881
0.000734
0.004402
0.219653
1
0.528736
0.154412
0.10687
10
0.421053
0.042623
0.473684
0
47
0.903226
71.025081
7.203387
7.490323
7.168622
8.545313
4
31
7.75
71.1875
0
0
0.284722
0
0.54023
0.10687
0.128571
0
0
0.054054
0
0
48
0.653846
85.16701
3.096651
3.816268
5.565023
1.965584
15
78
5.2
11.893333
0
0.012438
0.348534
1
0.551724
0.128571
0.142857
2
0.5
0.021277
0
0
49
0.564394
85.189495
3.430774
4.274409
6.58834
2.804278
33
264
8
24.606061
0
0.006731
0.162562
1
0.563218
0.142857
0.27027
6
0.375
0.003236
0.25
0
50
0.37422
91.556538
2.334493
3.313309
5.405113
1.504286
71
481
6.774648
15.27316
0.000836
0.006686
0.256623
1
0.574713
0.27027
0.241935
8
0.25
0.055456
0.333333
0
51
0.492308
88.815787
2.667088
4.314353
6.86897
2.261815
42
260
6.190476
13.439909
0
0.001491
0.201772
1
0.586207
0.241935
0.138462
7
0.454545
0.029508
0.363636
0
52
0.643836
83.407753
3.599242
5.13582
6.937598
3.233739
19
146
7.684211
21.268698
0
0
0.160656
1
0.597701
0.138462
0.158333
10
0.230769
0.023529
0.230769
0
53
0.692308
92.7775
2.927222
4.2
3.1291
2.807188
8
65
8.125
35.359375
0
0
0.172131
1
0.609195
0.158333
0.2
1
1
0.090909
0
0
54
1
56.25
9.14
8.666667
8.841846
10.7975
2
15
7.5
42.25
0
0
0.822785
0
0.62069
0.2
0.2
0
0
0
0
0
55
0.84
78.33
5.315
4.8
3.1291
5.402692
4
25
6.25
30.6875
0
0
0.435185
1
0.632184
0.2
0.153846
1
1
0.064516
0
0
56
0.739726
84.010082
4.481338
5.296714
5.461319
5.133242
9
73
8.111111
44.765432
0
0
0.278146
1
0.643678
0.153846
0.1
1
1
0.035294
0.5
0
57
0.35183
93.25736
2.512772
4.529338
6.390086
2.09758
99
847
8.555556
50.469136
0
0.003134
0.12923
1
0.655172
0.1
0.140762
18
0.173913
0.024242
0.217391
0
58
0.594771
93.008057
1.946521
3.489054
5.565023
2.320909
28
153
5.464286
12.46301
0
0.002503
0.210084
1
0.666667
0.140762
0.010204
3
0.333333
0.022346
0
0
59
0.888889
50.665
8.18
3.2
8.841846
8.213333
2
9
4.5
12.25
0
0
0.8
1
0.678161
0.010204
0.125
1
1
0
0
0
60
0.833333
67.755
6.79
4.8
8.841846
7.395385
2
12
6
25
0
0
0.383333
0
0.689655
0.125
0.076923
0
0
0
0
0
61
0.810811
63.443986
9.006081
11.183784
10.686353
9.076974
5
74
14.8
68.56
0
0
0.158683
0
0.701149
0.076923
0.114286
5
0.2
0.012048
0
0
62
0.818182
91.842727
3.181818
4.4
3.1291
3.933913
3
22
7.333333
48.222222
0
0
0.315217
0
0.712644
0.114286
0.088889
1
1
0.037037
0
0
63
0.911765
84.970833
4.0575
5.516667
6.427356
2.47419
4
34
8.5
29.25
0
0.005814
0.34375
1
0.724138
0.088889
0.132353
2
0.5
0
0
0
64
0.602941
82.551875
4.016339
4.907143
7.071269
4.045088
29
204
7.034483
38.998811
0.000949
0.002846
0.141451
1
0.735632
0.132353
0.218845
9
0.277778
0.021368
0.5
0
65
0.387187
86.145246
3.115106
4.629205
6.652687
2.30188
105
718
6.838095
20.383311
0.000272
0.002988
0.184032
1
0.747126
0.218845
0.159664
12
0.344828
0.021302
0.586207
0
66
0.480565
82.825896
3.731842
5.937186
7.463857
3.521582
36
283
7.861111
28.008488
0
0.002024
0.191901
1
0.758621
0.159664
0.22439
3
0.625
0.088328
0.625
0
67
0.586735
91.136326
2.259032
4.045878
6.238725
2.713655
42
196
4.666667
12.460317
0.001953
0.00293
0.186327
1
0.770115
0.22439
0.114754
7
0.3
0.033473
0.3
0
68
0.729508
55.747851
9.777875
12.864699
13.256717
9.460906
8
122
15.25
100.9375
0
0
0.149281
1
0.781609
0.114754
0.110294
5
0.2
0.007143
0
0
69
0.729412
77.219805
4.385801
5.911688
8.296473
2.925973
12
85
7.083333
9.076389
0
0.002174
0.27809
1
0.793103
0.110294
0.089069
0
0
0.010309
0
0
70
0.481395
82.603695
4.17583
6.86397
8.499449
3.571509
48
430
8.958333
35.206597
0
0.002219
0.111047
1
0.804598
0.089069
0.06278
9
0.230769
0.034068
0.307692
0
71
0.789474
69.403007
5.876959
9.105405
9.516145
5.021829
5
38
7.6
18.64
0
0
0.333333
1
0.816092
0.06278
0.1875
1
1
0.042553
0
0
72
0.771429
48.878214
10.789286
11.571429
11.208143
11.594615
3
35
11.666667
80.888889
0
0
0.216495
0
0.827586
0.1875
0.042623
1
1
0.047619
0
0
73
0.3794
87.985255
3.21103
5.195797
6.994529
3.330304
109
767
7.036697
28.017002
0
0.004021
0.156014
1
0.83908
0.042623
0.065574
12
0.5
0.028571
0.571429
0
74
0.73913
98.79
1.077143
2.571429
3.1291
0.419503
8
46
5.75
26.1875
0
0
0.238372
1
0.850575
0.065574
0.147727
1
1
0.036364
0.5
0
75
0.676768
93.054206
2.985238
5.171882
5.822114
3.623424
11
99
9
46.545455
0
0.00198
0.216285
1
0.862069
0.147727
0.013699
2
0.666667
0.035398
0.333333
0
76
1
18.444286
12.425714
14.228571
11.208143
3.736
2
7
3.5
6.25
0
0
1
0
0.873563
0.013699
0.070423
1
1
0
0
0
77
0.734043
72.362903
6.466697
8.325038
9.236283
5.305517
9
94
10.444444
64.691358
0
0
0.21039
1
0.885057
0.070423
0.105882
3
0.333333
0.018519
0
0
78
0.961538
89.516923
4.003077
6.738462
7.168622
3.91
3
26
8.666667
29.555556
0
0
0.307692
0
0.896552
0.105882
0.096774
0
0
0
0
0
79
0.680982
86.232028
4.053122
5.549146
6.86897
4.08323
15
163
10.866667
32.915556
0
0
0.162539
1
0.908046
0.096774
0.241026
3
0.5
0.048913
0.25
0
80
0.61215
94.599763
1.93237
4.583762
6.605767
2.249113
29
214
7.37931
26.994055
0
0.003735
0.217178
1
0.91954
0.241026
0.163366
4
0.5
0.02439
0.333333
0
81
0.611765
63.293077
7.641667
10.169231
11.208143
7.639538
15
170
11.333333
88.222222
0.00203
0
0.203346
1
0.931034
0.163366
0.080292
3
0.5
0.005263
0.25
0
82
0.830189
61.244385
7.300615
9.544615
10.793553
6.164717
5
53
10.6
59.04
0
0
0.167364
1
0.942529
0.080292
0.096774
0
0
0.015625
0
0
83
0.577982
71.665512
6.06151
7.869749
8.990254
5.898107
23
218
9.478261
41.379962
0.002479
0
0.111925
1
0.954023
0.096774
0.181034
3
0.4
0.028455
0.4
0
84
0.56705
79.556988
4.884631
7.715942
8.716276
4.592658
29
261
9
42.413793
0
0.001452
0.16573
1
0.965517
0.181034
0.038462
4
0.428571
0.026667
0.428571
0
85
0.875
42.545
11.3
11.4
11.208143
8.55
2
16
8
49
0
0
0.5125
0
0.977011
0.038462
0.086538
0
0
0
0
0
86
0.655629
74.694654
4.97448
6.448993
7.928767
4.218239
19
151
7.947368
18.99723
0
0.003667
0.163551
1
0.988506
0.086538
0.142322
3
0.5
0.011561
0.25
0
87
0.524173
73.791339
5.358036
7.278571
8.472885
4.791591
47
393
8.361702
37.167044
0.001822
0.001367
0.13314
1
1
0.142322
0
7
0.2
0.026432
0.3
1
0
0.443478
80.395309
4.86884
6.394343
7.576467
5.913687
121
1,150
9.504132
89.37395
0.00282
0.00094
0.124149
1
0
0
0.142424
16
0.190476
0.042995
0.238095
1
1
0.559633
77.7
4.657589
6.436879
7.987972
4.962778
59
436
7.389831
34.339558
0.00082
0.00287
0.144231
1
0.017857
0.142424
0.151709
8
0.5
0.053604
0.428571
1
2
0.521201
80.376908
4.146623
5.709973
7.721217
4.182915
78
566
7.25641
18.421433
0.000649
0.004545
0.113463
1
0.035714
0.151709
0.114883
6
0.642857
0.043042
0.571429
1
3
0.554622
81.066879
4.395
5.289266
7.333567
4.53509
27
238
8.814815
30.447188
0
0
0.119725
1
0.053571
0.114883
0.105634
3
0.714286
0.052817
0.571429
1
4
0.574132
74.868987
4.79129
6.79239
8.303829
3.994359
49
317
6.469388
29.881716
0.002295
0.00459
0.141467
1
0.071429
0.105634
0.17734
8
0.2
0.048843
0.2
1
5
0.460342
80.622244
4.051252
6.401951
7.931433
3.400048
97
643
6.628866
22.254012
0.000892
0.00327
0.133412
1
0.089286
0.17734
0.147234
12
0.1875
0.049682
0.25
1
6
0.304486
82.379713
4.164312
5.90131
7.366338
4.455313
403
3,455
8.573201
37.832731
0.001867
0.001334
0.123291
1
0.107143
0.147234
0.02639
22
0.7
0.053314
0.8
1
7
0.616667
93.605424
2.297143
3.371429
5.288315
2.741913
8
60
7.5
17
0
0
0.2
1
0.125
0.02639
0.121212
1
1
0.014286
0.666667
1
8
0.634286
81.304009
4.141827
5.4613
7.66913
4.693158
20
175
8.75
17.2875
0
0
0.1313
1
0.142857
0.121212
0.096552
3
0.666667
0.069652
0.5
1
9
0.657534
80.722321
4.173929
6.928571
8.472885
3.974155
9
73
8.111111
23.654321
0
0
0.282895
1
0.160714
0.096552
0.152542
0
0
0.012048
0
1
10
0.869565
91.842727
3.181818
4.4
7.168622
4.548261
3
23
7.666667
22.888889
0
0
0.329787
1
0.178571
0.152542
0.038961
1
1
0
0
1
11
0.527578
86.529722
2.924881
4.669647
6.647476
4.208643
65
417
6.415385
21.473609
0.00085
0.002549
0.159485
1
0.196429
0.038961
0.166316
9
0.166667
0.041339
0.25
End of preview. Expand in Data Studio

Screenplay Scene Salience Features

Pre-extracted linguistic and narrative features for screenplay scene salience detection from the MENSA dataset.

Dataset Description

This dataset contains 913 linguistic features extracted from movie screenplays in the MENSA dataset. Features are organized into 24 feature groups covering various aspects of linguistic, narrative, and discourse analysis.

Dataset Statistics

Split Samples Size
Train 117,503 172.9 MB
Validation 8,052 16.1 MB
Test 8,156 16.1 MB
Total 133,711 140.1 MB

Feature Groups (24 groups)

  • base
  • bert_surprisal
  • character_arcs
  • emotional
  • gc_academic
  • gc_basic
  • gc_char_diversity
  • gc_concreteness
  • gc_dialogue
  • gc_discourse
  • gc_narrative
  • gc_polarity
  • gc_pos
  • gc_pronouns
  • gc_punctuation
  • gc_readability
  • gc_syntax
  • gc_temporal
  • ngram
  • ngram_surprisal
  • plot_shifts
  • rst
  • structure
  • surprisal

Usage

Option 1: Load with Hugging Face datasets (Recommended)

from datasets import load_dataset

# Load a single feature group
ds = load_dataset("Ishaank18/screenplay-features", data_files="train/base.parquet")
df = ds['train'].to_pandas()

# Load multiple groups for training
ds = load_dataset("Ishaank18/screenplay-features", 
                  data_files={
                      "train": ["train/base.parquet", "train/gc_polarity.parquet", "train/emotional.parquet"]
                  })
df = ds['train'].to_pandas()

# Load all splits for evaluation
ds = load_dataset("Ishaank18/screenplay-features",
                  data_files={
                      "train": "train/gc_polarity.parquet",
                      "validation": "validation/gc_polarity.parquet",
                      "test": "test/gc_polarity.parquet"
                  })

Option 2: Load with pandas directly

import pandas as pd

# From HuggingFace URL
df = pd.read_parquet("hf://datasets/Ishaank18/screenplay-features/train/base.parquet")

# Or if you have the repo cloned locally
df = pd.read_parquet("train/base.parquet")

Option 3: Use custom loader (Easiest)

from feature_cache.load_hf import load_groups

# Load features and labels
X, y = load_groups(
    groups=["base", "gc_polarity", "emotional", "rst"],
    split="train",
    hf_repo="Ishaank18/screenplay-features"
)

# Load features only (no labels)
X = load_groups(
    groups=["base", "gc_polarity"],
    split="test",
    include_label=False,
    hf_repo="Ishaank18/screenplay-features"
)

Data Structure

Each parquet file contains:

  • movie_id (string): Unique movie identifier
  • scene_index (int): Scene index within the movie (0-indexed)
  • label (int): Salience label
    • 0 = Non-salient scene
    • 1 = Salient scene
  • Feature columns: Various linguistic/narrative features (float/int)

Example row structure:

movie_id scene_index label feature_1 feature_2 ...
tt0111161 42 1 0.85 12.3 ...

Feature Categories

The features are organized into the following categories:

Base Features

  • Basic linguistic statistics (token count, sentence count, etc.)
  • Structural position features (act, scene positions)

GenreClassifier (GC) Features

  • gc_basic: Basic linguistic metrics
  • gc_char_diversity: Character diversity metrics
  • gc_concreteness: Concreteness scores
  • gc_dialogue: Dialogue-specific features
  • gc_discourse: Discourse markers and connectives
  • gc_narrative: Narrative structure features
  • gc_polarity: Sentiment polarity scores
  • gc_pos: Part-of-speech distributions
  • gc_pronouns: Pronoun usage patterns
  • gc_punctuation: Punctuation statistics
  • gc_readability: Readability metrics
  • gc_syntax: Syntactic complexity features
  • gc_temporal: Temporal expressions

Narrative Features

  • character_arcs: Character development metrics
  • plot_shifts: Plot progression indicators
  • structure: Narrative structure features
  • emotional: Emotional arc features

Linguistic Features

  • ngram: N-gram diversity metrics
  • rst: Rhetorical Structure Theory features
  • bert_surprisal: BERT-based surprisal scores
  • ngram_surprisal: N-gram-based surprisal
Downloads last month
228