|
---
|
|
pretty_name: CMU ARCTIC X-Vectors
|
|
task_categories:
|
|
- text-to-speech
|
|
- audio-to-audio
|
|
- text2text-generation
|
|
- text-generation
|
|
- translation
|
|
- question-answering
|
|
license: mit
|
|
language:
|
|
- es
|
|
- en
|
|
size_categories:
|
|
- 10B<n<100B
|
|
---
|
|
|
|
# Speaker embeddings extracted from CMU ARCTIC |
|
|
|
There is one `.npy` file for each utterance in the dataset, 7931 files in total. The speaker embeddings are 512-element X-vectors. |
|
|
|
The [CMU ARCTIC](http://www.festvox.org/cmu_arctic/) dataset divides the utterances among the following speakers: |
|
|
|
- bdl (US male) |
|
- slt (US female) |
|
- jmk (Canadian male) |
|
- awb (Scottish male) |
|
- rms (US male) |
|
- clb (US female) |
|
- ksp (Indian male) |
|
|
|
The X-vectors were extracted using [this script](https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py), which uses the `speechbrain/spkrec-xvect-voxceleb` model. |
|
|
|
Usage: |
|
|
|
```python |
|
from datasets import load_dataset |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
|
|
speaker_embeddings = embeddings_dataset[7306]["xvector"] |
|
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0) |
|
``` |