File size: 12,788 Bytes
91899e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Weather Geo ERA5 Dataset Utilities
Helper functions for working with the geographically partitioned ERA5 weather dataset.
This module provides convenient access patterns for the HuggingFace hosted dataset.
Dataset: https://huggingface.co/datasets/NaaVrug/weather-geo-era5
License: CC-BY-4.0
Attribution: Contains modified Copernicus Climate Change Service information 2024
"""
import pandas as pd
from pathlib import Path
from typing import List, Tuple, Optional, Union
from datetime import datetime, date
import warnings
try:
from huggingface_hub import hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
warnings.warn("huggingface_hub not available. Install with: pip install huggingface-hub")
# Dataset configuration
REPO_ID = "NaaVrug/weather-geo-era5"
REPO_TYPE = "dataset"
# Geographic constants (30° lat × 45° lon tiles)
LAT_BANDS = [
("m90_m60", -90, -60), # Antarctic
("m60_m30", -60, -30), # Southern mid-latitudes
("m30_p00", -30, 0), # Southern tropics
("p00_p30", 0, 30), # Northern tropics
("p30_p60", 30, 60), # Northern mid-latitudes
("p60_p90", 60, 90), # Arctic
]
LON_BANDS = [
("000_045", 0, 45), # Europe/Africa West
("045_090", 45, 90), # Middle East/Central Asia
("090_135", 90, 135), # East Asia
("135_180", 135, 180), # Western Pacific
("180_225", 180, 225), # Central Pacific
("225_270", 225, 270), # Eastern Pacific
("270_315", 270, 315), # Americas West
("315_360", 315, 360), # Americas East/Atlantic
]
def get_tile_name(lat: float, lon: float) -> str:
"""
Get the tile filename for given coordinates.
Args:
lat: Latitude in degrees (-90 to 90)
lon: Longitude in degrees (-180 to 180 or 0 to 360)
Returns:
Tile filename (e.g., "lat_p30_p60__lon_000_045.parquet")
Examples:
>>> get_tile_name(48.8566, 2.3522) # Paris
'lat_p30_p60__lon_000_045.parquet'
>>> get_tile_name(40.7128, -74.0060) # NYC
'lat_p30_p60__lon_270_315.parquet'
>>> get_tile_name(-33.8688, 151.2093) # Sydney
'lat_m60_m30__lon_135_180.parquet'
"""
# Validate inputs
if not -90 <= lat <= 90:
raise ValueError(f"Latitude must be between -90 and 90, got {lat}")
# Normalize longitude to 0-360 range
lon = lon % 360
# Find latitude band
lat_band = None
for band_name, lat_min, lat_max in LAT_BANDS:
if lat_min <= lat < lat_max or (lat == 90 and lat_max == 90):
lat_band = band_name
break
if lat_band is None:
raise ValueError(f"Could not determine latitude band for {lat}")
# Find longitude band
lon_band = None
for band_name, lon_min, lon_max in LON_BANDS:
if lon_min <= lon < lon_max or (lon == 360 and lon_max == 360):
lon_band = band_name
break
if lon_band is None:
raise ValueError(f"Could not determine longitude band for {lon}")
return f"lat_{lat_band}__lon_{lon_band}.parquet"
def get_tiles_for_region(lat_min: float, lat_max: float,
lon_min: float, lon_max: float) -> List[str]:
"""
Get all tile names that overlap with a rectangular region.
Args:
lat_min, lat_max: Latitude bounds
lon_min, lon_max: Longitude bounds
Returns:
List of tile filenames
Example:
>>> # Europe region
>>> tiles = get_tiles_for_region(35, 70, -10, 40)
>>> print(len(tiles)) # Multiple tiles covering Europe
"""
# Normalize longitude
lon_min = lon_min % 360
lon_max = lon_max % 360
tiles = set()
# Handle longitude wrap-around
if lon_min > lon_max:
# Region crosses 0° longitude
for lat_band_name, lat_band_min, lat_band_max in LAT_BANDS:
if not (lat_max < lat_band_min or lat_min >= lat_band_max):
for lon_band_name, lon_band_min, lon_band_max in LON_BANDS:
if lon_band_min >= lon_min or lon_band_max <= lon_max:
tiles.add(f"lat_{lat_band_name}__lon_{lon_band_name}.parquet")
else:
# Normal case
for lat_band_name, lat_band_min, lat_band_max in LAT_BANDS:
if not (lat_max < lat_band_min or lat_min >= lat_band_max):
for lon_band_name, lon_band_min, lon_band_max in LON_BANDS:
if not (lon_max < lon_band_min or lon_min >= lon_band_max):
tiles.add(f"lat_{lat_band_name}__lon_{lon_band_name}.parquet")
return sorted(list(tiles))
def load_point_data(lat: float, lon: float,
start_date: Optional[Union[str, date, datetime]] = None,
end_date: Optional[Union[str, date, datetime]] = None,
cache_dir: Optional[str] = None) -> pd.DataFrame:
"""
Load weather data for a specific point.
Args:
lat: Latitude in degrees
lon: Longitude in degrees
start_date: Start date (YYYY-MM-DD or datetime object)
end_date: End date (YYYY-MM-DD or datetime object)
cache_dir: Local cache directory for downloaded files
Returns:
DataFrame with weather data for the point
Example:
>>> # Load 2020 data for Paris
>>> df = load_point_data(48.8566, 2.3522, "2020-01-01", "2020-12-31")
>>> print(f"Loaded {len(df)} records")
"""
if not HF_AVAILABLE:
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
# Get tile name
tile_name = get_tile_name(lat, lon)
# Download tile
file_path = hf_hub_download(
repo_id=REPO_ID,
filename=f"tiles/{tile_name}",
repo_type=REPO_TYPE,
cache_dir=cache_dir
)
# Load data
df = pd.read_parquet(file_path)
# Filter for approximate coordinates (within 0.25° grid)
lat_tolerance = 0.125 # Half grid resolution
lon_tolerance = 0.125
df = df[
(df['latitude'].between(lat - lat_tolerance, lat + lat_tolerance)) &
(df['longitude'].between(lon - lon_tolerance, lon + lon_tolerance))
]
# Filter by date range if specified
if start_date is not None:
df = df[df['time'] >= pd.to_datetime(start_date)]
if end_date is not None:
df = df[df['time'] <= pd.to_datetime(end_date)]
return df.sort_values('time').reset_index(drop=True)
def load_region_data(lat_min: float, lat_max: float,
lon_min: float, lon_max: float,
start_date: Optional[Union[str, date, datetime]] = None,
end_date: Optional[Union[str, date, datetime]] = None,
cache_dir: Optional[str] = None) -> pd.DataFrame:
"""
Load weather data for a rectangular region.
Args:
lat_min, lat_max: Latitude bounds
lon_min, lon_max: Longitude bounds
start_date: Start date filter
end_date: End date filter
cache_dir: Local cache directory
Returns:
Combined DataFrame for the region
Example:
>>> # Load data for a region around Paris
>>> df = load_region_data(48, 49, 2, 3, "2023-01-01", "2023-12-31")
"""
if not HF_AVAILABLE:
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
# Get all tiles covering the region
tiles = get_tiles_for_region(lat_min, lat_max, lon_min, lon_max)
if not tiles:
raise ValueError(f"No tiles found for region: lat[{lat_min}, {lat_max}], lon[{lon_min}, {lon_max}]")
print(f"Loading {len(tiles)} tiles for region...")
dfs = []
for tile_name in tiles:
print(f" Loading {tile_name}...")
# Download tile
file_path = hf_hub_download(
repo_id=REPO_ID,
filename=f"tiles/{tile_name}",
repo_type=REPO_TYPE,
cache_dir=cache_dir
)
# Load and filter data
df = pd.read_parquet(file_path)
# Filter by geographic bounds
df = df[
(df['latitude'].between(lat_min, lat_max)) &
(df['longitude'].between(lon_min, lon_max))
]
# Filter by date range if specified
if start_date is not None:
df = df[df['time'] >= pd.to_datetime(start_date)]
if end_date is not None:
df = df[df['time'] <= pd.to_datetime(end_date)]
if len(df) > 0:
dfs.append(df)
if not dfs:
raise ValueError("No data found in the specified region and time range")
# Combine all data
result = pd.concat(dfs, ignore_index=True)
return result.sort_values(['time', 'latitude', 'longitude']).reset_index(drop=True)
def load_cities_data(cities: List[Tuple[float, float, str]],
start_date: Optional[Union[str, date, datetime]] = None,
end_date: Optional[Union[str, date, datetime]] = None,
cache_dir: Optional[str] = None) -> pd.DataFrame:
"""
Load weather data for multiple cities.
Args:
cities: List of (lat, lon, name) tuples
start_date: Start date filter
end_date: End date filter
cache_dir: Local cache directory
Returns:
DataFrame with data for all cities, including 'city' column
Example:
>>> cities = [
... (48.8566, 2.3522, "Paris"),
... (51.5074, -0.1278, "London"),
... (52.5200, 13.4050, "Berlin"),
... ]
>>> df = load_cities_data(cities, "2023-01-01", "2023-12-31")
"""
if not HF_AVAILABLE:
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
dfs = []
for lat, lon, city_name in cities:
print(f"Loading data for {city_name}...")
try:
df = load_point_data(lat, lon, start_date, end_date, cache_dir)
df['city'] = city_name
dfs.append(df)
except Exception as e:
print(f" Warning: Failed to load data for {city_name}: {e}")
if not dfs:
raise ValueError("No data loaded for any cities")
return pd.concat(dfs, ignore_index=True)
def convert_temperature_units(df: pd.DataFrame,
from_unit: str = 'K',
to_unit: str = 'C') -> pd.DataFrame:
"""
Convert temperature units in the dataset.
Args:
df: DataFrame with temperature columns
from_unit: Source unit ('K', 'C', 'F')
to_unit: Target unit ('K', 'C', 'F')
Returns:
DataFrame with converted temperatures
"""
df = df.copy()
temp_columns = ['t2m', 'd2m']
for col in temp_columns:
if col in df.columns:
# Convert to Kelvin first
if from_unit == 'C':
temps_k = df[col] + 273.15
elif from_unit == 'F':
temps_k = (df[col] - 32) * 5/9 + 273.15
else: # Assume Kelvin
temps_k = df[col]
# Convert from Kelvin to target
if to_unit == 'C':
df[col] = temps_k - 273.15
elif to_unit == 'F':
df[col] = (temps_k - 273.15) * 9/5 + 32
else: # Keep Kelvin
df[col] = temps_k
return df
def get_dataset_info() -> dict:
"""Get information about the dataset."""
return {
"name": "Weather Geo ERA5 Dataset",
"repo_id": REPO_ID,
"url": f"https://huggingface.co/datasets/{REPO_ID}",
"license": "CC-BY-4.0",
"time_range": "1940-2024",
"resolution": "0.25° x 0.25°",
"total_tiles": len(LAT_BANDS) * len(LON_BANDS),
"variables": ["t2m", "tp", "d2m", "msl", "u10", "v10"],
"attribution": "Contains modified Copernicus Climate Change Service information 2024"
}
# Example usage
if __name__ == "__main__":
# Print dataset info
info = get_dataset_info()
print("Weather Geo ERA5 Dataset")
print("=" * 40)
for key, value in info.items():
print(f"{key}: {value}")
print("\nExample tile names:")
cities = [
(48.8566, 2.3522, "Paris"),
(40.7128, -74.0060, "New York"),
(-33.8688, 151.2093, "Sydney"),
(35.6762, 139.6503, "Tokyo"),
]
for lat, lon, name in cities:
tile = get_tile_name(lat, lon)
print(f" {name} ({lat:.4f}, {lon:.4f}): {tile}")
|